JP4271961B2 - Environmental purification method - Google Patents

Environmental purification method Download PDF

Info

Publication number
JP4271961B2
JP4271961B2 JP2003043221A JP2003043221A JP4271961B2 JP 4271961 B2 JP4271961 B2 JP 4271961B2 JP 2003043221 A JP2003043221 A JP 2003043221A JP 2003043221 A JP2003043221 A JP 2003043221A JP 4271961 B2 JP4271961 B2 JP 4271961B2
Authority
JP
Japan
Prior art keywords
sodium
organic compound
reducing agent
purification method
environmental purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003043221A
Other languages
Japanese (ja)
Other versions
JP2004249227A (en
Inventor
謙一 佐々木
薫 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2003043221A priority Critical patent/JP4271961B2/en
Publication of JP2004249227A publication Critical patent/JP2004249227A/en
Application granted granted Critical
Publication of JP4271961B2 publication Critical patent/JP4271961B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、有害な有機化合物、特にガス状の高揮発性有機化合物を低コストで効率良く分解できる有機化合物分解材及びそれを用いた環境浄化方法に関する。
【0002】
【従来の技術】
トリクロロエチレン、テトラクロロエチレン等のハロゲン化炭化水素類、ベンゼン、キシレン、トルエン等の芳香族類、アセトアルデヒド、ホルムアルデヒド等のアルデヒド類等の高揮発性有機化合物は、工業的に広く用いられてきたが、近年その毒性が問題となり、使用や廃棄が厳しく規制される方向にある。しかし、それまでは管理が厳重に行われておらず、これらの有機化合物が環境中に投棄されたり漏洩して、土壌や地下水を汚染し、更には大気中に放出され、深刻な社会問題を引き起こしている。
【0003】
環境中の前記有機化合物を処理する方法として、土壌や地下水を抜気し気体成分を捕集した後、水素を還元剤に用い、白金やパラジウム等を触媒として、還元分解する方法、酸化チタン等の光触媒を用いて酸化分解する方法(例えば非特許文献1参照。)、活性炭に気体成分を吸着させる方法(例えば特許文献1参照。)等が知られている。しかし、貴金属触媒はそれ自体が高価であり、また光触媒を用いる方法は装置コストがかさみ普及を妨げる要因となっている。活性炭を用いる方法では、有機化合物を吸着させるに従って吸着力が飽和してしまうので、活性炭を定期的に交換する必要があり、更には使用後の活性炭が産業廃棄物になるという問題があり、これを投棄や焼却で処理すると、二次的な影響を環境に与えることになった。
【0004】
【非特許文献1】
上甲 勲、松谷 浩他著、「環境触媒ハンドブック」、初版、エヌ・ティー・エス社刊、2001年11月20日、P134−143
【特許文献1】
特開平5−76618号公報(第1頁)
【0005】
【発明が解決しようとする課題】
本発明は、以上に述べた従来技術の問題点を克服し、ガス状の有機化合物の処理能力が高く、低コストでしかも環境に影響を与え難い有機化合物分解材及びそれを用いた環境浄化方法を提供するものである。
【0006】
【課題を解決するための手段】
本発明者らは、これらの問題点を解決すべく鋭意研究を重ねた結果、還元剤と金属酸化物とからなる有機化合物分解材に更に特定量の水を含ませると、ガス状の有機化合物を効率良く分解できることを見出し、本発明を完成した。
【0007】
即ち、本発明は、還元剤と金属酸化物とを含み、更に水を還元剤と金属酸化物との合量に対し10〜250重量%の範囲で含むことを特徴とする有機化合物分解材及びそれを用いた環境の浄化方法である。
【0008】
【発明の実施の形態】
本発明は還元剤と金属酸化物とを含む有機化合物分解材であって、更に水を還元剤と金属酸化物との合量に対し10〜250重量%の範囲で含むことを特徴とする。分解材が前記範囲の量の水を含むことにより、気化した有機化合物が分解材間を透過し難くなり、分解材の表面に滞留するので、土壌、地下水、大気等の環境中から放散したガス状有機化合物効率的に分解でき、あるいは、吸引、噴霧等により微細化され大気中に拡散したミスト状の有機化合物の分解にも適用できる。分解材に含まれる水の量が前記範囲より少ないと気化した有機化合物の十分な分解能力が得られ難く、一方、前記範囲より多くしても更なる分解能力の向上は得られず、むしろ分解材が液状になることにより作業性が低下する。更に好ましい範囲は、25〜150重量%である。本発明で用いる還元剤、金属酸化物及び水は各々を単独で有機物に接触させても有機物の分解能力は高くないが、これらを混合して用いることにより、非常に優れた分解能力が持続的に発現するので、例えば、環境基準の1000〜10000倍の高濃度の有機化合物で汚染された土壌、地下水や、有機化合物を取り扱う工場、作業場の排気、有機化合物を含む地下水が流入して継続的に汚染が進む土壌の浄化にも有用である。おそらくは、還元剤や金属酸化物が単独で有機化合物を直接分解するのではなく、金属酸化物がある種の触媒的な働きをして、還元剤により本発明の分解材に含まれる水分や環境中の水分をヒドロキシラジカルに還元し、このヒドロキシラジカルが有機化合物を酸化分解するのではないかと推測される。
【0009】
還元剤と金属酸化物との配合割合は、重量比で、0.01:1〜5:1の範囲が好ましく、この範囲より還元剤が多くても少なくても十分な有機化合物の分解能力が得られ難く、0.05:1〜2:1の範囲にあれば更に好ましい。還元剤、金属酸化物及び水は単に混合するだけでも良いが、作業性を向上させるために、粒状、ペレット状に成形しても良く、成形物に強度を付与するためにベントナイト、タルク、クレー等の粘土鉱物をバインダーとして添加しても良い。
【0010】
本発明において用いる還元剤には特に制限は無く、単独または2種以上の還元剤を混合して用いることができ、還元剤の性状は、液体状、固体状、ゲル状等種々のものが用いられる。具体的には、例えば、ヒドラジン及びその誘導体や金属塩、水素化ホウ素ナトリウム、メチルアルコール、アンモニア、亜硫酸ナトリウム、亜硫酸水素ナトリウム、チオ硫酸ナトリウム、亜ジチオン酸ナトリウム、亜硝酸ナトリウム、次亜硝酸ナトリウム、亜リン酸及びその金属塩、次亜リン酸及びその金属塩、アスコルビン酸、デキストリン、ショ糖等が挙げられる。
【0011】
金属酸化物としては、鉄、チタン、マンガン等の酸化物を用いることができ、これらは単独で用いても、2種以上を混合して用いても、それらの複合酸化物を用いても良い。ここで、金属酸化物とは通常の金属酸化物の他、金属水和酸化物、金属水酸化物をも包含するものである。金属酸化物として酸化鉄、酸化チタンから選ばれる少なくとも1種を用いると、有機化合物の分解能力が高く好ましい。酸化鉄としては、一般式FeO(1≦x≦1.5)で表される化合物であって、具体的には酸化第一鉄FeO(x=1の場合)、酸化第二鉄Fe(x=1.5の場合)、マグネタイトFe(x=1.33の場合)、過還元マグネタイトFeO(1<x<1.33)、及びベルトライドFeO(1.33<x<1.5)が挙げられ、中でもマグネタイト、過還元マグネタイト及びベルトライドは、有機化合物の分解能力により一層優れているため、好ましい酸化鉄である。酸化鉄には、硫酸法酸化チタンの製造工程や鉄材の酸洗浄工程で発生する鉄成分を含む廃硫酸を、中和・酸化して得られたものを用いることもできる。また、酸化チタンとしては、一般式TiO(1≦x≦2)で表される化合物であって、具体的には一酸化チタンTiO(x=1の場合)、三酸化二チタンTi(x=1.5の場合)、二酸化チタンTiO(x=2の場合)及び非化学量論組成のチタン酸化物(1<x<1.5又は1.5<x<2)が挙げられ、なかでも非化学量論組成のチタン酸化物は、有機化合物の分解能力により一層優れているため、好ましい酸化チタンである。
【0012】
次に、本発明は環境浄化方法であって、ガス状またはミスト状有機化合物を前記分解材に接触させ分解することを特徴とする。ガス状またはミスト状有機化合物と分解材とを接触させる方法には特に制限は無い。例えば土壌、地下水の浄化であれば、本発明を適用する対象の土質、地形、汚染状態等に応じて適宜選択でき、例えば、抜気法、原位置浄化法等の公知の方法を用いることができる。抜気法を適用する場合、有機化合物で汚染された土壌または有機化合物で汚染された地下水が流入する土壌に井戸を掘り、コンプレッサー、ブロアー等を用い井戸から空気を吹き込むか、真空ポンプ等を用い井戸から吸引するか、あるいは両方法を組み合わせる等し、土壌や地下水から有機化合物をガス状またはミスト状にして除去した後、本発明の分解材を充填した反応槽、反応塔等の処理設備に送気する。原位置浄化法は特別な処理設備を必要とせず、低コストで浄化でき、例えば、前記の土壌に本発明の分解材を盛り、土壌の表面を覆うことにより、土壌表面から放散するガス状有機化合物を捕集し分解することができる。塗装工場、印刷工場、クリーニング工場等の有機化合物を取り扱う工場においては、作業場から換気装置で捕集したガス状またはミスト状有機化合物を含む排気を、同様に本発明の分解材を充填した反応槽、反応塔等の処理設備に導入する。
【0013】
本発明を適用する有機化合物には特に制限は無いが、ガス状有機化合物であれば、常温、常圧下で容易に気化する高揮発性のもので、例えば、トリクロロエチレン、テトラクロロエチレン、パークロロエチレン、トリクロロエタン、テトラクロロエタン、クロロベンゼン等のハロゲン化炭化水素類、ベンゼン、キシレン、トルエン、アセトン等の芳香族類、アセトアルデヒド、ホルムアルデヒド等のアルデヒド類等が挙げられる。
【0014】
【実施例】
以下に本発明の実施例を示すが、本発明はこれらに制限されるものではない。
【0015】
参考例1
亜硫酸ナトリウム、ベルトライド(FeO1.443)、水を、亜硫酸ナトリウム:ベルトライド:水=1:1:2(重量比)の割合で混合し参考例の分解材(試料A)を得た。
【0016】
比較例1
実施例1において、水を用いなかったこと以外は実施例1と同様にして、混合比が亜硫酸ナトリウム:ベルトライド=1:1(重量比)である比較用分解材(試料B)を得た。
【0017】
実施例
トリクロロエチレン25gをまさ土(含水率20%)5kgに添加し、模擬土壌を調製した。得られた模擬土壌を直径15cmのモールドに敷き詰めた。次いで、模擬土壌の表面に、参考例1で得られた分解材(試料A)を、5cmの厚さで被覆処理した後、全体をアルミパックに密封した。試料Aの処理量は2kgであった。
【0018】
比較例2
実施例2において、試料Aに替えて比較例1で得られた分解材(試料B)を用いた以外は実施例2と同様に処理した。試料Bの処理量は1kgであった。
【0019】
比較例3
実施例2において、試料Aに替えて活性炭を用いた以外は実施例2と同様に処理した。活性炭の処理量は0.85kgであった。
【0020】
比較例4
実施例2において、試料Aを用いなかった以外は実施例2と同様に処理した。
【0021】
評価方法及び結果
実施例及び比較例2〜4において密封後、1日、7日及び28日目に、アルミパック中のトリクロロエチレンガス濃度を、北川式ガス検知管にて測定した。結果を表1に示す。実施例については、トリクロロエチレンガスの分解生成物であるエチレン及びアセチレンの存在を、北川式ガス検知管にて確認しており、参考例1の有機化合物分解材(試料A)を用いた実施例1はトリクロロエチレンガスの分解能力が高く、効果の持続性にも優れていることが判る。一方、水を含まない比較試料(試料B)を用いた比較例2では、ガス状有機化合物の処理には能力が不十分である。また、活性炭を用いた比較例3は初期の処理能力は高いが、28日目にはトリクロロエチレンガス濃度が増加しており、活性炭の吸着能力が飽和したと考えられる。
【0022】
【表1】

Figure 0004271961
【0023】
【発明の効果】
本発明の有機化合物分解材は、有害な有機化合物、特にガス状の有機化合物や、吸引、噴霧等によりミスト状になった有機化合物の分解に適しており、効果の持続性にも優れている。また、本発明の環境浄化方法は、低コストで環境に影響を与え難いので、有機化合物で汚染された土壌、地下水、大気等の浄化に有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an organic compound decomposition material capable of efficiently decomposing harmful organic compounds, particularly gaseous highly volatile organic compounds at low cost, and an environmental purification method using the same.
[0002]
[Prior art]
Highly volatile organic compounds such as halogenated hydrocarbons such as trichloroethylene and tetrachloroethylene, aromatics such as benzene, xylene and toluene, and aldehydes such as acetaldehyde and formaldehyde have been widely used industrially. Toxicity becomes a problem, and use and disposal are in a direction to be strictly regulated. However, until then, management was not strictly conducted, and these organic compounds were dumped or leaked into the environment, contaminating soil and groundwater, and then released into the atmosphere, causing serious social problems. Is causing.
[0003]
As a method of treating the organic compounds in the environment, after extracting the soil and groundwater and collecting gaseous components, using hydrogen as a reducing agent, reductive decomposition using platinum or palladium as a catalyst, titanium oxide, etc. There are known a method for oxidative decomposition using a photocatalyst (see, for example, Non-Patent Document 1), a method for adsorbing a gas component on activated carbon (for example, see Patent Document 1), and the like. However, the noble metal catalyst itself is expensive, and the method using the photocatalyst is a factor that increases the cost of the apparatus and hinders its spread. In the method using activated carbon, the adsorption power becomes saturated as the organic compound is adsorbed, so it is necessary to periodically exchange the activated carbon, and there is a problem that the activated carbon becomes industrial waste after use. Disposal and incineration would have a secondary impact on the environment.
[0004]
[Non-Patent Document 1]
Isao Kamiko, Hiroshi Matsutani et al., “Environmental Catalyst Handbook”, first edition, published by NTS, November 20, 2001, P134-143
[Patent Document 1]
JP-A-5-76618 (first page)
[0005]
[Problems to be solved by the invention]
The present invention overcomes the problems of the prior art described above, has a high treatment capacity for gaseous organic compounds, is low in cost, and does not easily affect the environment, and an environmental purification method using the same Is to provide.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve these problems, the present inventors have found that when an organic compound decomposing material comprising a reducing agent and a metal oxide further contains a specific amount of water, a gaseous organic compound The present invention was completed.
[0007]
That is, the present invention includes an organic compound decomposing material comprising a reducing agent and a metal oxide, and further containing water in a range of 10 to 250% by weight based on the total amount of the reducing agent and the metal oxide. It is a purification method of the environment using it.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is an organic compound decomposing material comprising a reducing agent and a metal oxide, and further comprises water in a range of 10 to 250% by weight based on the total amount of the reducing agent and the metal oxide. Since the decomposed material contains water in the above-mentioned range, the vaporized organic compound is difficult to permeate between the decomposed materials and stays on the surface of the decomposed material, so that gas emitted from the environment such as soil, groundwater, and air The organic compound can be efficiently decomposed, or it can be applied to the decomposition of a mist-like organic compound that has been refined by suction, spraying, etc. and diffused into the atmosphere. If the amount of water contained in the decomposition material is less than the above range, it is difficult to obtain a sufficient decomposition ability of the vaporized organic compound. The workability is reduced due to the liquid material. A more preferred range is 25 to 150% by weight. The reducing agent, metal oxide, and water used in the present invention do not have a high ability to decompose organic substances even if each of them is brought into contact with an organic substance alone. For example, soil contaminated with organic compounds with a high concentration of 1000 to 10,000 times the environmental standard, groundwater, factories that handle organic compounds, workplace exhaust, groundwater containing organic compounds inflow It is also useful for remediation of soils that are increasingly contaminated. Perhaps the reducing agent or metal oxide alone does not directly decompose the organic compound, but the metal oxide acts as a kind of catalyst, and the reducing agent causes moisture and environment contained in the decomposition material of the present invention. It is presumed that the water content therein is reduced to hydroxy radicals, and these hydroxy radicals oxidatively decompose organic compounds.
[0009]
The mixing ratio of the reducing agent and the metal oxide is preferably in a range of 0.01: 1 to 5: 1 by weight ratio, and sufficient decomposition ability of the organic compound can be obtained with more or less reducing agent than this range. It is difficult to obtain, and it is more preferable if it is in the range of 0.05: 1 to 2: 1. The reducing agent, metal oxide and water may be simply mixed. However, in order to improve workability, the reducing agent, metal oxide and water may be molded into a granular or pellet form, and bentonite, talc or clay may be added to give strength to the molded product. Such a clay mineral may be added as a binder.
[0010]
The reducing agent used in the present invention is not particularly limited, and can be used singly or in combination of two or more reducing agents. Various properties of the reducing agent such as liquid, solid, and gel are used. It is done. Specifically, for example, hydrazine and its derivatives and metal salts, sodium borohydride, methyl alcohol, ammonia, sodium sulfite, sodium hydrogen sulfite, sodium thiosulfate, sodium dithionite, sodium nitrite, sodium hyponitrite, Examples thereof include phosphorous acid and its metal salt, hypophosphorous acid and its metal salt, ascorbic acid, dextrin, sucrose and the like.
[0011]
As the metal oxide, oxides such as iron, titanium, and manganese can be used. These may be used alone, in combination of two or more, or a composite oxide thereof. . Here, the metal oxide includes not only a normal metal oxide but also a metal hydrated oxide and a metal hydroxide. Use of at least one selected from iron oxide and titanium oxide as the metal oxide is preferable because of its high ability to decompose organic compounds. The iron oxide is a compound represented by the general formula FeO x (1 ≦ x ≦ 1.5), specifically, ferrous oxide FeO (when x = 1), ferric oxide Fe 2. O 3 (when x = 1.5), magnetite Fe 3 O 4 (when x = 1.33), overreduced magnetite FeO x (1 <x <1.33), and beltride FeO x (1. 33 <x <1.5), among which magnetite, overreduced magnetite, and beltride are preferable iron oxides because they are more excellent in the ability to decompose organic compounds. As the iron oxide, a product obtained by neutralizing and oxidizing waste sulfuric acid containing an iron component generated in a manufacturing process of sulfuric acid method titanium oxide or an acid cleaning process of iron material can be used. Titanium oxide is a compound represented by the general formula TiO x (1 ≦ x ≦ 2). Specifically, titanium monoxide TiO (when x = 1), dititanium trioxide Ti 2 O 3 (when x = 1.5), titanium dioxide TiO 2 (when x = 2) and non-stoichiometric titanium oxide (1 <x <1.5 or 1.5 <x <2). Among them, titanium oxide having a non-stoichiometric composition is a preferable titanium oxide because it is more excellent in the ability to decompose organic compounds.
[0012]
Next, the present invention is an environmental purification method, characterized in that a gaseous or mist organic compound is brought into contact with the decomposition material and decomposed. There is no particular limitation on the method for bringing the gaseous or mist organic compound into contact with the decomposition material. For example, if it is the purification of soil and groundwater, it can be appropriately selected according to the soil quality, topography, contamination state, etc. to which the present invention is applied. For example, a known method such as an aeration method or an in-situ purification method can be used. it can. When applying the air extraction method, dig a well into soil contaminated with organic compounds or soil into which groundwater contaminated with organic compounds flows, and blow air from the wells using a compressor, blower, etc., or use a vacuum pump, etc. Suction from a well or a combination of both methods to remove organic compounds from the soil or groundwater in the form of gas or mist, and then to a treatment facility such as a reaction tank or a reaction tower filled with the decomposition material of the present invention Air. The in-situ purification method does not require any special treatment equipment and can be purified at low cost. For example, the organic material released from the soil surface by covering the soil surface with the decomposition material of the present invention on the soil. Compounds can be collected and decomposed. In factories that handle organic compounds, such as painting factories, printing factories, and cleaning factories, reaction tanks that are filled with the decomposition material of the present invention are exhausted containing gaseous or mist-like organic compounds collected from the workplace by a ventilator. Introduced into processing equipment such as reaction towers.
[0013]
The organic compound to which the present invention is applied is not particularly limited, but if it is a gaseous organic compound, it is highly volatile and easily vaporizes at room temperature and normal pressure. For example, trichloroethylene, tetrachloroethylene, perchloroethylene, trichloroethane Halogenated hydrocarbons such as tetrachloroethane and chlorobenzene, aromatics such as benzene, xylene, toluene and acetone, and aldehydes such as acetaldehyde and formaldehyde.
[0014]
【Example】
Examples of the present invention are shown below, but the present invention is not limited thereto.
[0015]
Reference example 1
Sodium sulfite, beltride (FeO 1.443 ), and water were mixed at a ratio of sodium sulfite: beltride : water = 1: 1: 2 (weight ratio) to obtain a decomposition material (sample A) of the reference example .
[0016]
Comparative Example 1
In Example 1, a comparative decomposition material (sample B) having a mixing ratio of sodium sulfite: beltride = 1: 1 (weight ratio) was obtained in the same manner as in Example 1 except that water was not used. .
[0017]
Example 1
25 g of trichlorethylene was added to 5 kg of masa soil (water content 20%) to prepare a simulated soil. The obtained simulated soil was spread on a mold having a diameter of 15 cm. Next, the surface of the simulated soil was coated with the decomposed material (sample A) obtained in Reference Example 1 with a thickness of 5 cm, and the whole was sealed in an aluminum pack. The throughput of sample A was 2 kg.
[0018]
Comparative Example 2
In Example 2, it processed like Example 2 except having replaced with the sample A and using the decomposition material (sample B) obtained by the comparative example 1. FIG. The throughput of sample B was 1 kg.
[0019]
Comparative Example 3
In Example 2, it processed like Example 2 except having replaced with the sample A and using activated carbon. The treated amount of activated carbon was 0.85 kg.
[0020]
Comparative Example 4
In Example 2, the same treatment as in Example 2 was performed except that Sample A was not used.
[0021]
Evaluation Method and Results After sealing in Example 1 and Comparative Examples 2 to 4, the trichlorethylene gas concentration in the aluminum pack was measured with a Kitagawa type gas detector tube on the 1st, 7th and 28th days. The results are shown in Table 1. Regarding Example 1 , the presence of ethylene and acetylene, which are decomposition products of trichlorethylene gas, was confirmed with a Kitagawa gas detector tube, and an example using the organic compound decomposition material (Sample A) of Reference Example 1 was used. It can be seen that No. 1 has a high ability to decompose trichlorethylene gas and is excellent in sustainability. On the other hand, in Comparative Example 2 using the comparative sample (sample B) that does not contain water, the ability is insufficient for the treatment of the gaseous organic compound. Further, Comparative Example 3 using activated carbon has a high initial treatment capacity, but on the 28th day, the trichlorethylene gas concentration increased, and it is considered that the adsorption ability of activated carbon was saturated.
[0022]
[Table 1]
Figure 0004271961
[0023]
【The invention's effect】
The organic compound decomposing material of the present invention is suitable for decomposing harmful organic compounds, particularly gaseous organic compounds, and organic compounds that have become mist-like due to suction, spraying, etc., and has excellent sustainability. . In addition, since the environmental purification method of the present invention is less expensive and hardly affects the environment, it is useful for purification of soil, groundwater, air, etc. contaminated with organic compounds.

Claims (2)

ヒドラジン及びその誘導体又はその金属塩、水素化ホウ素ナトリウム、メチルアルコール、アンモニア、亜硫酸ナトリウム、亜硫酸水素ナトリウム、チオ硫酸ナトリウム、亜ジチオン酸ナトリウム、亜硝酸ナトリウム、次亜硝酸ナトリウム、亜リン酸及びその金属塩、次亜リン酸及びその金属塩、アスコルビン酸、デキストリン、ショ糖から選ばれる少なくとも一種の還元剤と、酸化鉄と、水とを含み、還元剤と酸化鉄が重量比で0.01:1〜5:1の範囲で、且つ水が還元剤と酸化鉄の合量に対し10〜250重量%の範囲で配合された有機化合物分解材を用いる環境浄化方法であって、高揮発性有機化合物で汚染された土壌の表面を前記分解材で覆い、常温、常圧下で気化し土壌から拡散するガス状の高揮発性有機化合物を分解することを特徴とする環境浄化方法。 Hydrazine and its derivatives or metal salts thereof, sodium borohydride, methyl alcohol, ammonia, sodium sulfite, sodium hydrogen sulfite, sodium thiosulfate, sodium dithionite, sodium nitrite, sodium hyponitrite, phosphorous acid and its metal Salt, hypophosphorous acid and its metal salt, ascorbic acid, dextrin, at least one reducing agent selected from sucrose, iron oxide, and water, and the reducing agent and iron oxide are in a weight ratio of 0.01: An environmental purification method using an organic compound decomposing material in a range of 1 to 5: 1 and water in a range of 10 to 250% by weight with respect to the total amount of the reducing agent and iron oxide. the surface of the soil contaminated with compounds have covered in the degradation material, this degrades room temperature, the gaseous high volatile organic compound to diffuse from the vaporized soil under normal pressure Environmental purification method, characterized in. 高揮発性有機化合物がハロゲン化炭化水素類、芳香族類、アルデヒド類から選ばれる少なくとも一種であることを特徴とする請求項1記載の環境浄化方法。2. The environmental purification method according to claim 1, wherein the highly volatile organic compound is at least one selected from halogenated hydrocarbons, aromatics and aldehydes.
JP2003043221A 2003-02-20 2003-02-20 Environmental purification method Expired - Fee Related JP4271961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003043221A JP4271961B2 (en) 2003-02-20 2003-02-20 Environmental purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003043221A JP4271961B2 (en) 2003-02-20 2003-02-20 Environmental purification method

Publications (2)

Publication Number Publication Date
JP2004249227A JP2004249227A (en) 2004-09-09
JP4271961B2 true JP4271961B2 (en) 2009-06-03

Family

ID=33026285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003043221A Expired - Fee Related JP4271961B2 (en) 2003-02-20 2003-02-20 Environmental purification method

Country Status (1)

Country Link
JP (1) JP4271961B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4803346B2 (en) * 2004-09-02 2011-10-26 東亞合成株式会社 Composition having organic compound decomposability and decomposition method
JP4831292B2 (en) * 2005-05-26 2011-12-07 東亞合成株式会社 Composition and method for decomposing organic compounds

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3804756A (en) * 1972-06-22 1974-04-16 Standard Oil Co Environmentally safe disposal of organic pollutants
JPH0576618A (en) * 1991-09-13 1993-03-30 Japan Organo Co Ltd Purification processing method of earth polluted with organic solvent and purification processing device
US5460792A (en) * 1992-12-23 1995-10-24 Rohm And Haas Company Removal and destruction of halogenated organic and hydrocarbon compounds with porous carbonaceous materials
JP3442623B2 (en) * 1997-09-18 2003-09-02 株式会社東芝 Decomposition method of halogen-containing organic compounds
JP3805873B2 (en) * 1997-10-20 2006-08-09 奥多摩工業株式会社 Hazardous aromatic halide decomposing agent and method for detoxifying harmful aromatic halide using the same
JP3718066B2 (en) * 1998-02-10 2005-11-16 ミヨシ油脂株式会社 Solid waste treatment method
JP2004082115A (en) * 2002-08-07 2004-03-18 Katsuhisa Honda Soil treating agent and soil treatment method
JP2004075775A (en) * 2002-08-13 2004-03-11 Kurita Water Ind Ltd Detoxicating agent against halogenated aromatic compound and detoxication method

Also Published As

Publication number Publication date
JP2004249227A (en) 2004-09-09

Similar Documents

Publication Publication Date Title
CN101522572A (en) Method for adsorption of fluid contaminants and regeneration of the adsorbent
US20050145108A1 (en) Air cleaning system
CN106861389A (en) A kind of VOC off-gas cleaning equipments and purification method
KR101595335B1 (en) Compound reactor for removing malodor gas
JP4271961B2 (en) Environmental purification method
Vijwani et al. Dechlorination of environmental contaminants using a hybrid nanocatalyst: palladium nanoparticles supported on hierarchical carbon nanostructures
CN107081062A (en) A kind of exhaust processor being catalyzed based on photooxidation with high energy plasma
JP3784654B2 (en) Purification method for chemical contaminants
JP4324372B2 (en) Organic compound decomposition material
KR101351941B1 (en) DETOXIFICATION METHOD OF PAHs-POLLUTED SOIL
CN101433797B (en) Multi-layer solid basic element absorbing tower
KR101951409B1 (en) Adsorption tower having functional active carbon which is non-light catalyst
CN101306205A (en) Active composite catalyst air cleaning system
JP4920813B2 (en) Activated carbon-containing filler for analysis of dioxins
JP2003001277A (en) Method for decomposing persistent substance
JP4660958B2 (en) Purification of soil, water and gas contaminated with organochlorine compounds
CN108816011A (en) A kind of VOCs gas processing method of plasma combination vapor
KR101084371B1 (en) Direct oxidation method using iron-bearing mineral to degrade volatile organic compounds generated from the process of contaminated soil remediation
CN108854488A (en) A kind of VOCs gas processing method of plasma combination ozone
Kojima Utilization of Ionizing Radiation in Environmental Purification
JP2001293465A (en) Treating agent and treating method for contaminated medium
JPH081131A (en) Method of decontaminating solid contaminated with polychlorinated dibenzodioxine and/or polychlorinated dibenzofuran
CN114085674A (en) VOC (volatile organic compound) pollution repairing agent and application thereof and method for repairing VOC polluted environment
JP2005103519A (en) Method and apparatus for decomposing pollutant
KR100502852B1 (en) Cr·W·Ba·TiO2 CATALYST AND METHOD FOR THE REMOVAL OF DIOXINS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4271961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees