JP2005153449A - Joining method of ceramic molded items, and manufacturing method of gas sensor element - Google Patents

Joining method of ceramic molded items, and manufacturing method of gas sensor element Download PDF

Info

Publication number
JP2005153449A
JP2005153449A JP2003398844A JP2003398844A JP2005153449A JP 2005153449 A JP2005153449 A JP 2005153449A JP 2003398844 A JP2003398844 A JP 2003398844A JP 2003398844 A JP2003398844 A JP 2003398844A JP 2005153449 A JP2005153449 A JP 2005153449A
Authority
JP
Japan
Prior art keywords
molded body
shrinkage
molded
sensor element
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003398844A
Other languages
Japanese (ja)
Inventor
Kenichi Yoneyama
健一 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003398844A priority Critical patent/JP2005153449A/en
Publication of JP2005153449A publication Critical patent/JP2005153449A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Laminated Bodies (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a jointing method of molded items each made of a different ceramic material capable of preventing generation of warp and the like in the case of sintering a laminate obtained by laminating the molded items each made of the different ceramic material into one body, and to provide a manufacturing method of a gas sensor element using the method. <P>SOLUTION: In the jointing method of the ceramic molded items of laminating the molded items each made of the different ceramic material and integrating the laminate by sintering, a difference ΔT of an initiation temperature of shrinkage between the molded items each made of the different ceramic material during sintering is not more than 70°C, and the difference ΔS of the shrinkage ratio between the molded item having a higher initiation temperature of shrinkage and the molded item having a lower initiation temperature of shrinkage is not more than 1.5% at a temperature at which the shrinkage ratio of the molded item having the lower initiation temperature of shrinkage is 2%. The gas sensor element is made using the jointing method. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、セラミック成形体の接合方法およびこの方法を用いたガスセンサ素子の製造方法に関し、より詳しくは自動車の排ガス中の酸素濃度検出等に用いられる板状の酸素センサ素子を製造する際に好適なセラミック成形体の接合方法およびガスセンサ素子の製造方法に関する。   The present invention relates to a method for joining ceramic molded bodies and a method for producing a gas sensor element using this method, and more specifically, suitable for producing a plate-like oxygen sensor element used for detecting oxygen concentration in exhaust gas from automobiles. The present invention relates to a method for joining ceramic molded bodies and a method for producing a gas sensor element.

近年、環境問題がクローズアップされ、各業界にて地球環境を最優先とする取り組みがなされている。とりわけ、自動車業界においては、アメリカ合衆国、カルフォルニア州の排ガス規制に代表されるように、排気ガス中のCO2、CO、HC、NOx量を年々低減していくことが世の中の流れになってきている。その中で、更なる排ガス中の上記ガスを低減するためには、如何に効率よく燃料を燃焼させるかが重要であり、そのためにも排ガス中の残存酸素量を瞬時に測定し、その情報を燃焼系に速くフィードバックすることができる酸素センサの要望が高まりつつある。 In recent years, environmental issues have been highlighted, and efforts are being made to put the global environment as a top priority in each industry. In particular, in the automobile industry, as represented by the exhaust gas regulations of California, the United States, reducing the amount of CO 2 , CO, HC, NOx in exhaust gas year by year has become a trend in the world. . Among them, in order to further reduce the gas in the exhaust gas, it is important how to burn the fuel efficiently. For that purpose, the residual oxygen amount in the exhaust gas is instantaneously measured and the information is obtained. There is a growing demand for oxygen sensors that can provide fast feedback to the combustion system.

酸素センサはこれまで、排気ガスの熱を利用して、一端が封止された円筒状のセンサを昇温し、センサ機能を発現させてきた。しかし、センサ機能が発現するまでの間、排ガスは垂れ流しの状態にあり、昨今の厳しい排ガス規制には対応しきれなくなってきた。そこで、円筒状のセンサを積極的にヒータで加熱する酸素センサが開発された。このような酸素センサを用いることで、センサ機能を速く発現できるようになり、よりレスポンス良く情報をフィードバックできるようになった。   Up to now, oxygen sensors have used a heat of exhaust gas to raise the temperature of a cylindrical sensor sealed at one end to develop a sensor function. However, until the sensor function appears, the exhaust gas is in a state of running down, and it has become impossible to meet the recent strict exhaust gas regulations. Therefore, an oxygen sensor that actively heats a cylindrical sensor with a heater has been developed. By using such an oxygen sensor, the sensor function can be expressed quickly, and information can be fed back more responsively.

ところが、円筒状のセンサでは、どうしてもサイズが大きくなり、しかもヒータとセンサ部との間隔が大きくなるために、センサ機能の発現速度には限界があった。そこで、最近では、センサ部を板状にして小さくし、更にセンサ部とヒータとを一体成形することで昇温スピードを高め、より速くセンサ機能を発現できるようにした板状の酸素センサ素子を備えた酸素センサが開発されつつある(例えば、特許文献1)。   However, in the cylindrical sensor, the size is inevitably increased, and the distance between the heater and the sensor unit is increased, so that the speed of the sensor function is limited. Therefore, recently, a plate-like oxygen sensor element has been developed in which the sensor portion is made into a plate shape, and the temperature rise speed is increased by integrally forming the sensor portion and the heater so that the sensor function can be expressed more quickly. An oxygen sensor provided is being developed (for example, Patent Document 1).

特許文献1に記載の酸素センサ素子は、センサ部を構成する固体電解質層、ヒータを内在する絶縁層(絶縁質基体部)などを積層密着し焼成一体化したものである。しかしながら、固体電解質層を構成するセラミック材料と絶縁層を構成するセラミック材料とは成分が異なるため、積層密着条件、脱脂焼成条件等の条件設定が容易ではなく、焼成時にしばしば反りが発生することがある。このように酸素センサ素子を構成する積層焼結体に反りが発生すると、製造歩留まりが低下してコストアップにつながるという問題があった。
特開平8−5603号公報
The oxygen sensor element described in Patent Document 1 is obtained by laminating and solidifying a solid electrolyte layer constituting a sensor part, an insulating layer (insulating base part) in which a heater is incorporated, and the like. However, since the ceramic material composing the solid electrolyte layer and the ceramic material composing the insulating layer have different components, it is not easy to set conditions such as lamination adhesion conditions and degreasing firing conditions, and warping often occurs during firing. is there. As described above, when the laminated sintered body constituting the oxygen sensor element is warped, there is a problem that the manufacturing yield is lowered and the cost is increased.
JP-A-8-5603

本発明の課題は、異種のセラミック材料からなる成形体を積層した積層体を焼成して一体化する際に、反り等が生じるのを抑制することができる異種セラミック成形体の接合方法およびこの方法を用いたガスセンサ素子の製造方法を提供することである。   An object of the present invention is to provide a bonding method for dissimilar ceramic molded bodies capable of suppressing the occurrence of warping and the like when a laminated body obtained by stacking formed bodies made of different ceramic materials is integrated by firing, and this method It is providing the manufacturing method of the gas sensor element using this.

本発明者らは、上記課題を解決すべく鋭意研究した結果、互いに異なるセラミック材料からなる成形体を積層した積層体を焼成するに際して、これらの成形体の焼成時における収縮初期の挙動、すなわち各成形体の収縮開始温度および収縮初期の収縮率を所定の範囲内に調整することにより、焼成時に反りが生じるのを抑制することができるという新たな事実を見出し、本発明を完成するに至った。   As a result of diligent research to solve the above problems, the inventors of the present invention, when firing a laminate in which compacts made of different ceramic materials are fired, the behavior of the initial shrinkage during firing of these compacts, By adjusting the shrinkage start temperature of the molded body and the shrinkage ratio at the initial stage of shrinkage within a predetermined range, a new fact that warpage can be suppressed during firing was found, and the present invention was completed. .

すなわち、本発明のセラミック成形体の接合方法およびガスセンサ素子の製造方法は、以下の構成からなる。
(1) 互いに異なるセラミック材料からなる成形体を積層し、該積層体を焼成して一体化するセラミック成形体の接合方法であって、互いに異なるセラミック材料からなる前記成形体の焼成時における収縮開始温度差ΔTが70℃以内であり、収縮開始温度が低い成形体の収縮率が2%である温度において、収縮開始温度が高い成形体との収縮率差ΔSが1.5%以内であることを特徴とするセラミック成形体の接合方法。
(2) 互いに異なるセラミック材料からなる成形体を積層し、該積層体を焼成して一体化するセラミック成形体の接合方法であって、互いに異なるセラミック材料からなる前記成形体の焼成時における収縮開始温度差ΔTが70℃以内であり、収縮開始温度が低い成形体の収縮率が1.5%である温度において、収縮開始温度が高い成形体との収縮率差ΔSが1%以内であることを特徴とするセラミック成形体の接合方法。
(3) 一方のセラミック材料がジルコニア質セラミックスであり、他方のセラミック材料がアルミナ質セラミックスである(1)または(2)記載の接合方法。
(4) 互いに異なるセラミック材料からなる前記成形体のうち、一方が固体電解質層用の成形体であり、他方が絶縁質基体部用の成形体である、(1)〜(3)のいずれかに記載の接合方法を用いたガスセンサ素子の製造方法。
That is, the method for joining ceramic molded bodies and the method for producing a gas sensor element of the present invention have the following configurations.
(1) A method of joining ceramic molded bodies in which molded bodies made of different ceramic materials are laminated, and the laminated bodies are fired and integrated, and starts shrinking when the molded bodies made of different ceramic materials are fired. At a temperature at which the temperature difference ΔT is within 70 ° C. and the shrinkage rate of the molded product with a low shrinkage start temperature is 2%, the shrinkage rate difference ΔS with the molded product with a high shrinkage start temperature is within 1.5%. A method for joining ceramic molded bodies.
(2) A method of joining ceramic molded bodies in which molded bodies made of different ceramic materials are laminated, and the laminated bodies are fired and integrated, and starts shrinking when the molded bodies made of different ceramic materials are fired. At a temperature at which the temperature difference ΔT is within 70 ° C. and the shrinkage rate of the molded product with a low shrinkage start temperature is 1.5%, the shrinkage rate difference ΔS with the molded product with a high shrinkage start temperature is within 1%. A method for joining ceramic molded bodies.
(3) The joining method according to (1) or (2), wherein one ceramic material is zirconia ceramics and the other ceramic material is alumina ceramics.
(4) Any one of (1) to (3), wherein one of the molded bodies made of different ceramic materials is a molded body for a solid electrolyte layer, and the other is a molded body for an insulating base portion. The manufacturing method of the gas sensor element using the joining method of description.

前記(1)〜(3)に記載のセラミック成形体の接合方法によれば、一方のセラミック成形体と他方のセラミック成形体の収縮開始温度差および収縮初期における収縮率差を所定の範囲内に調整することにより、焼成時の反りを抑制し、反りの小さい積層焼結体を得ることができる。これにより、製造歩留まりの低下を抑制できるので、量産性が向上し、コストダウンを図ることができる。   According to the method for joining ceramic molded bodies described in (1) to (3) above, the shrinkage start temperature difference between one ceramic molded body and the other ceramic molded body and the shrinkage rate difference at the initial stage of shrinkage are within a predetermined range. By adjusting, it is possible to suppress a warp during firing and obtain a laminated sintered body having a small warp. Thereby, since the fall of a manufacturing yield can be suppressed, mass productivity can improve and cost reduction can be aimed at.

前記(4)記載のガスセンサ素子の製造方法によれば、上記(1)〜(3)のいずれかに記載の接合方法を用いることにより、反りが小さく高品質な酸素センサ素子を提供することができるとともに、製造歩留まりの低下を抑制できるので、量産性が向上し、コストダウンを図ることができる。   According to the method for producing a gas sensor element according to (4), it is possible to provide a high-quality oxygen sensor element with small warpage by using the bonding method according to any one of (1) to (3). In addition, since a decrease in manufacturing yield can be suppressed, mass productivity can be improved and costs can be reduced.

以下、本発明の一実施形態にかかるセラミック成形体の接合方法について、図面を参照して詳細に説明する。図1は、本実施形態にかかるセラミック成形体の接合方法を用いて製造した酸素センサ素子の長手方向に垂直な断面を示す断面図であり、図2は、この酸素センサ素子の構造を説明するための分解斜視図である。   Hereinafter, a method for joining ceramic molded bodies according to an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view showing a cross section perpendicular to the longitudinal direction of an oxygen sensor element manufactured by using the method for joining ceramic molded bodies according to this embodiment, and FIG. 2 explains the structure of the oxygen sensor element. FIG.

図1および図2に示すように、本実施形態の酸素センサ素子は、酸素濃度を検知する機能を有するセンサ部11と、このセンサ部11を加熱するためのヒータ21が内在された絶縁質基体部15と、検知電極13を排ガスによる被毒から保護するために形成された多孔質保護層16とを備えており、これらが焼成により一体化されている。   As shown in FIGS. 1 and 2, the oxygen sensor element of the present embodiment includes an insulating substrate in which a sensor unit 11 having a function of detecting an oxygen concentration and a heater 21 for heating the sensor unit 11 are contained. Part 15 and a porous protective layer 16 formed to protect the detection electrode 13 from poisoning by exhaust gas, and these are integrated by firing.

センサ部11は、酸素イオン導電性を有する固体電解質層12と、この固体電解質層12の上面に設けられた検知電極13と、固体電解質層12の下面に設けられた基準電極14とで構成されている。検知電極13および基準電極14にはリード部18,19がそれぞれ接続されている。リード部18の端部には電極パッド31が接続され、リード部19の端部には電極パッド32が接続されている。そして、この電極パッド32は、図示しないスルーホールを介して固体電解質層12の上面に設けられた電極パッド33に電気的に接続されている。   The sensor unit 11 includes a solid electrolyte layer 12 having oxygen ion conductivity, a detection electrode 13 provided on the upper surface of the solid electrolyte layer 12, and a reference electrode 14 provided on the lower surface of the solid electrolyte layer 12. ing. Lead portions 18 and 19 are connected to the detection electrode 13 and the reference electrode 14, respectively. An electrode pad 31 is connected to the end of the lead portion 18, and an electrode pad 32 is connected to the end of the lead portion 19. The electrode pad 32 is electrically connected to an electrode pad 33 provided on the upper surface of the solid electrolyte layer 12 through a through hole (not shown).

絶縁質基体部15は、積層された絶縁質基体部用のセラミック成形体15a,15b,15cと、成形体15b,15c内に埋設されたヒータ21とが焼成により一体化されたものである。また、成形体15aは金型でコ字形状に打ち抜かれている。これにより、この酸素センサ素子には、一端が封止された空洞部(大気導入孔)17が形成されている。   The insulating base portion 15 is formed by integrating the laminated ceramic molded bodies 15a, 15b, 15c for the insulating base portion and the heater 21 embedded in the molded bodies 15b, 15c by firing. Further, the molded body 15a is punched into a U shape by a mold. Thus, the oxygen sensor element is formed with a cavity portion (atmospheric introduction hole) 17 whose one end is sealed.

ヒータ21は、発熱体22と、該発熱体22に電流を供給するために発熱体22に接続されたリード部23と、このリード部23の端部に接続された電極パッド34とから構成されており、これらが絶縁質基体部15内に埋設されている。電極パッド34は、図示しないスルーホールを介して絶縁質基体部15の下面に設けられた電極パッド35に電気的に接続されている。   The heater 21 includes a heating element 22, a lead portion 23 connected to the heating element 22 for supplying a current to the heating element 22, and an electrode pad 34 connected to an end portion of the lead portion 23. These are embedded in the insulating base 15. The electrode pad 34 is electrically connected to an electrode pad 35 provided on the lower surface of the insulating base portion 15 through a through hole (not shown).

固体電解質層12用のセラミック材料としては、ジルコニア系セラミック材料、チタニア系セラミック材料等の固体電解質を用いることができる。この固体電解質としては、安定化剤としてY23、Yb23、Sc23、Sm23、Nd23、Dy23などの希土類酸化物を酸化物換算で3〜15モル%含有する部分安定化ZrO2または安定化ZrO2、アルカリ土類元素を固溶させたZrO2などを用いてもよい。 As the ceramic material for the solid electrolyte layer 12, a solid electrolyte such as a zirconia ceramic material or a titania ceramic material can be used. As this solid electrolyte, rare earth oxides such as Y 2 O 3 , Yb 2 O 3 , Sc 2 O 3 , Sm 2 O 3 , Nd 2 O 3 , and Dy 2 O 3 are used as stabilizers in terms of oxides. partially stabilized ZrO 2 or stabilized ZrO 2 containing 15 mol%, or the like may be used ZrO 2 which was a solid solution of alkaline earth elements.

絶縁質基体部15用のセラミック材料としては、絶縁性を有したセラミックスであれば特に限定されず、例えばアルミナ、フォルステライトなどの絶縁性セラミック材料を用いることができる。特に、固体電解質層12用のセラミック材料がジルコニア質セラミックスであり、絶縁質基体部15用のセラミック材料がアルミナ質セラミックスであるのがよい。   The ceramic material for the insulating base portion 15 is not particularly limited as long as it is an insulating ceramic, and for example, an insulating ceramic material such as alumina or forsterite can be used. In particular, the ceramic material for the solid electrolyte layer 12 may be zirconia ceramics, and the ceramic material for the insulating substrate 15 may be alumina ceramics.

発熱体22、リード部18,19,23、検知電極13、基準電極14および電極パッド31〜35の材料としては、公知の導電性金属材料を用いることができる。具体的には、例えば白金、タングステンあるいは白金とロジウム、パラジウム、ルテチウムおよび金からなる群より選ばれる1種との合金などが使用可能である。特に、これらの材料としては、固体電解質および絶縁質基体部のセラミック材料と同時に焼成できる点で、白金、タングステン等が好適である。また、発熱体22には、該発熱体22の抵抗値、熱膨張係数等を調整するために、無機材料からなる共材を混在させてもよい。   A known conductive metal material can be used as the material of the heating element 22, the lead portions 18, 19, 23, the detection electrode 13, the reference electrode 14, and the electrode pads 31 to 35. Specifically, for example, platinum, tungsten, or an alloy of platinum and one kind selected from the group consisting of rhodium, palladium, lutetium, and gold can be used. In particular, platinum, tungsten, and the like are preferable as these materials because they can be fired simultaneously with the ceramic material of the solid electrolyte and the insulating base portion. In addition, in order to adjust the resistance value, thermal expansion coefficient, and the like of the heating element 22, a co-material made of an inorganic material may be mixed.

本実施形態の酸素センサ素子を備えた酸素センサでは、発熱体22に通電して固体電解質層12を400〜1000℃程度に加熱した状態で、空洞部17に基準大気(酸素)が導入され、検知電極13が排ガス等の測定雰囲気中に配置される。測定方式としては、検知電極13と基準電極14との間で発生する起電力を測定して排気ガス中の酸素濃度を測定する濃淡電池型でもよく、一定電圧を印加し電流を検出して酸素濃度を測定する限界電流型でもよい。   In the oxygen sensor including the oxygen sensor element of the present embodiment, the reference atmosphere (oxygen) is introduced into the cavity 17 in a state where the heating element 22 is energized and the solid electrolyte layer 12 is heated to about 400 to 1000 ° C. The detection electrode 13 is disposed in a measurement atmosphere such as exhaust gas. As a measurement method, a concentration cell type in which an electromotive force generated between the detection electrode 13 and the reference electrode 14 is measured to measure the oxygen concentration in the exhaust gas may be used. A limiting current type for measuring the concentration may be used.

本発明では、上記のような酸素センサ素子を製造するに際して、互いに異なるセラミック材料からなる成形体、すなわち固体電解質層12用のセラミック成形体と絶縁質基体部15用のセラミック成形体は、これらの成形体間の収縮開始温度差ΔTおよび収縮初期における収縮率差ΔSが下記の所定範囲内に調整されている。   In the present invention, when the oxygen sensor element as described above is manufactured, a molded body made of different ceramic materials, that is, a ceramic molded body for the solid electrolyte layer 12 and a ceramic molded body for the insulating base portion 15 are formed by these. The shrinkage start temperature difference ΔT between the compacts and the shrinkage ratio difference ΔS at the beginning of shrinkage are adjusted within the following predetermined range.

図3は、焼成時の温度とセラミック成形体の収縮率との関係を表すグラフである。実線が収縮開始温度の低い方のセラミック成形体、破線が収縮開始温度の高い方のセラミック成形体の収縮挙動を表している。ここで、収縮開始温度とは、焼成時に温度を上昇させたとき、セラミック成形体が収縮し始めた時点の温度をいう。また、収縮率は、焼成前の成形体の寸法と焼成時のある温度における成形体の寸法との差を、焼成前の寸法で除し、100倍したものである。収縮率および収縮開始温度は、熱機械分析装置(TMA)を用いた測定方法、後述する実施例に示す測定方法などから得ることができる。   FIG. 3 is a graph showing the relationship between the firing temperature and the shrinkage ratio of the ceramic molded body. The solid line represents the shrinkage behavior of the ceramic molded body with the lower shrinkage start temperature, and the broken line represents the shrinkage behavior of the ceramic molded body with the higher shrinkage start temperature. Here, the shrinkage start temperature refers to the temperature at which the ceramic molded body starts to shrink when the temperature is raised during firing. The shrinkage ratio is obtained by dividing the difference between the dimensions of the molded body before firing and the dimensions of the molded body at a certain temperature during firing by the dimensions before firing and multiplying by 100. The shrinkage rate and the shrinkage start temperature can be obtained from a measurement method using a thermomechanical analyzer (TMA), a measurement method shown in Examples described later, and the like.

図3には、各成形体の収縮開始温度をT1,T2で示している。また、収縮率S1,S2は、ある温度Tにおける各成形体の収縮率である。本発明では、上記成形体の収縮開始温度差ΔT、すなわち(T2−T1)は0〜70℃の範囲にある。また、収縮開始温度がT1の成形体(収縮開始温度が低い成形体)の収縮率S1が2%である温度において、収縮開始温度がT2の成形体(収縮開始温度が高い成形体)との収縮率差ΔS、すなわち(S1−S2)は0〜1.5%の範囲にある。このように各成形体の収縮初期の挙動を制御することにより、反りが生じるのを抑制し、反りの小さい酸素センサ素子を得ることができる。   In FIG. 3, the shrinkage start temperature of each molded body is indicated by T1 and T2. Further, the shrinkage rates S1 and S2 are shrinkage rates of the respective molded bodies at a certain temperature T. In the present invention, the shrinkage start temperature difference ΔT of the molded body, that is, (T2−T1) is in the range of 0 to 70 ° C. Further, at a temperature at which the shrinkage rate S1 of the molded body having a shrinkage start temperature T1 (molded body having a low shrinkage start temperature) is 2%, the molded body having a shrinkage start temperature T2 (a molded body having a high shrinkage start temperature). The shrinkage rate difference ΔS, that is, (S1−S2) is in the range of 0 to 1.5%. In this way, by controlling the behavior of each molded body in the initial stage of shrinkage, it is possible to suppress the occurrence of warpage and obtain an oxygen sensor element with a small warpage.

また、酸素センサ素子の反り量をさらに低減するには、収縮率差ΔSを下記の所定範囲内に調整するのが好ましい。すなわち、収縮開始温度がT1の成形体の収縮率S1が1.5%である温度において、収縮開始温度がT2の成形体との収縮率差ΔSを0〜1%の範囲とする。これにより、反り抑制効果がさらに向上し、反り量がより低減された酸素センサ素子を得ることができる。   In order to further reduce the amount of warpage of the oxygen sensor element, it is preferable to adjust the shrinkage rate difference ΔS within the following predetermined range. That is, at a temperature at which the shrinkage rate S1 of the molded body with the shrinkage start temperature T1 is 1.5%, the shrinkage rate difference ΔS with the molded body with the shrinkage start temperature T2 is set in the range of 0 to 1%. Thereby, the warpage suppressing effect is further improved, and an oxygen sensor element in which the amount of warpage is further reduced can be obtained.

以下、本実施形態にかかる酸素センサ素子の製造方法について、図2の分解斜視図をもとに説明する。まず、グリーンシートを作製するためのドクターブレード法などの公知の成形方法を用いて、未焼成の固体電解質層用成形体12を作製する。ついで、同様の成形方法を用いて、未焼成の絶縁質基体部用成形体15a,15b,15cを作製する。さらに、多孔質保護層用の成形体16を上記と同様の成形方法によって作製する。   Hereinafter, the manufacturing method of the oxygen sensor element according to the present embodiment will be described based on the exploded perspective view of FIG. First, an unfired solid electrolyte layer molded body 12 is produced using a known molding method such as a doctor blade method for producing a green sheet. Next, unsintered molded bodies 15a, 15b, 15c for the insulating base are produced using the same molding method. Furthermore, the molded body 16 for the porous protective layer is produced by the same molding method as described above.

成形体12と成形体15a,15b,15cとは、互いに異なる前記セラミック材料が用いられている。そして、成形体12と成形体15a,15b,15cとの焼成時における収縮開始温度差ΔTおよび収縮率差ΔSは、上記条件の範囲内に設定されている。なお、多孔質保護層はポーラス体であるので、多孔質保護層用成形体16の収縮開始温度および収縮率が酸素センサ素子の反りに与える影響は、固体電解質層用成形体12および絶縁質基体部用成形体15a,15b,15cの収縮開始温度および収縮率と比較すると極僅かである。したがって、多孔質保護層用成形体16の収縮開始温度および収縮率については特に考慮しなくても、成形体12と成形体15a,15b,15cとの焼成時における収縮開始温度差ΔTおよび収縮率差ΔSを上記条件の範囲内に設定するだけで、反りの小さな酸素センサ素子を得ることができる。   Different ceramic materials are used for the molded body 12 and the molded bodies 15a, 15b, and 15c. The shrinkage start temperature difference ΔT and the shrinkage rate difference ΔS during firing of the molded body 12 and the molded bodies 15a, 15b, and 15c are set within the range of the above conditions. Since the porous protective layer is a porous body, the influence of the shrinkage start temperature and shrinkage rate of the porous protective layer molded body 16 on the warpage of the oxygen sensor element is affected by the solid electrolyte layer molded body 12 and the insulating substrate. Compared with the shrinkage start temperature and shrinkage rate of the molded parts 15a, 15b, 15c for parts, it is very slight. Therefore, the shrinkage start temperature difference ΔT and the shrinkage rate during firing of the molded body 12 and the molded bodies 15a, 15b, and 15c are not particularly considered in regard to the shrinkage start temperature and the shrinkage ratio of the porous protective layer molded body 16. An oxygen sensor element with small warpage can be obtained simply by setting the difference ΔS within the range of the above conditions.

各成形体の収縮開始温度および収縮率は、例えば該成形体に配合するバインダー、可塑剤などの助剤の配合量を変えたり、成形体の主成分であるセラミック材料(セラミック粉末)の粒径を変えることにより調整することができる。助剤の配合量を増やすと収縮開始温度は上昇し収縮率は低下する。一方、助剤の配合量を減らすと収縮開始温度は低下し収縮率は上昇する。また、セラミック粉末の粒径を小さくすると収縮開始温度は低下し収縮率は上昇する。一方、セラミック粉末の粒径を大きくすると収縮開始温度は上昇し収縮率は低下する。   The shrinkage start temperature and shrinkage rate of each molded body can be changed, for example, by changing the blending amount of an auxiliary agent such as a binder and a plasticizer blended in the molded body, or the particle size of the ceramic material (ceramic powder) that is the main component of the molded body. It can be adjusted by changing. When the amount of the auxiliary agent is increased, the shrinkage start temperature rises and the shrinkage rate decreases. On the other hand, when the amount of the auxiliary agent is reduced, the shrinkage start temperature is lowered and the shrinkage rate is increased. Further, when the particle size of the ceramic powder is reduced, the shrinkage start temperature is lowered and the shrinkage rate is increased. On the other hand, when the particle size of the ceramic powder is increased, the shrinkage start temperature rises and the shrinkage rate decreases.

次に、導電性金属材料と必要に応じて共材を混合して発熱体用の印刷ペーストを作製する。混合方法は、特に限定されるものではなく、例えば3本ロール等のロール混合、ミルを用いたミル混合等を用いることができる。同様に、リード部用、検知電極用、基準電極用および電極パッド用の各印刷ペーストを、ロール混合等を用いて作製する。   Next, a conductive metal material and a co-material as necessary are mixed to produce a print paste for a heating element. The mixing method is not particularly limited, and for example, roll mixing such as three rolls, mill mixing using a mill, or the like can be used. Similarly, printing pastes for the lead portion, the detection electrode, the reference electrode, and the electrode pad are produced using roll mixing or the like.

次に、成形体12にスクリーン印刷等により上記印刷ペーストを塗布し乾燥させることによって、検知電極13、基準電極14、リード部18,19および電極パッド31〜33の各電極パターンを形成する。成形体12には、電極パッド32と電極パッド33を電気的に接続するための図示しないスルーホールを形成する。   Next, the printed paste is applied to the molded body 12 by screen printing or the like and dried to form the electrode patterns of the detection electrode 13, the reference electrode 14, the lead portions 18 and 19, and the electrode pads 31 to 33. A through hole (not shown) for electrically connecting the electrode pad 32 and the electrode pad 33 is formed in the molded body 12.

ついで、成形体15cにスクリーン印刷等により上記印刷ペーストを塗布し乾燥させることによって、発熱体22、リード部23および電極パッド34のヒータパターンを形成する。成形体15cの裏面には上記と同様にして電極パッド35の電極パターンを形成する。成形体15cには、電極パッド34と電極パッド35を電気的に接続するための図示しないスルーホールを形成する。   Subsequently, the heater paste of the heating element 22, the lead portion 23, and the electrode pad 34 is formed by applying the printing paste to the molded body 15c by screen printing or the like and drying it. An electrode pattern of the electrode pad 35 is formed on the back surface of the molded body 15c in the same manner as described above. A through hole (not shown) for electrically connecting the electrode pad 34 and the electrode pad 35 is formed in the molded body 15c.

次に、多孔質保護層用の成形体16、電極パターンが形成された成形体12、金型でコ字形状に打ち抜いた成形体15a、成形体15bおよびヒータパターンが形成された成形体15cを位置決めして密着積層し、グリーン体(各成形体を積層した積層体)を得る。なお、酸素センサ素子の厚み調整のために、各種パターンが印刷されていない他の成形体(グリーンシート)を上記成形体間にさらに介在させても何ら問題なく、図2に限定されるものではない。   Next, a molded body 16 for the porous protective layer, a molded body 12 with an electrode pattern formed thereon, a molded body 15a punched into a U-shape with a mold, a molded body 15b, and a molded body 15c with a heater pattern formed thereon. The green body (laminated body in which each molded body is laminated) is obtained by positioning and closely laminating. In order to adjust the thickness of the oxygen sensor element, there is no problem even if another molded body (green sheet) on which various patterns are not printed is further interposed between the molded bodies. Absent.

次に、上記積層体を必要に応じて所定の寸法にカットし、焼成し一体化して酸素センサ素子を得ることができる。焼成温度は、セラミック材料、電極材料等に応じて適宜選択することができ、通常、1300〜1600℃程度とする。上記のように各部材を同時焼成することで、焼成を一回にすることができ、コストダウンを図ることができる。   Next, the laminated body can be cut into predetermined dimensions as necessary, fired and integrated to obtain an oxygen sensor element. The firing temperature can be appropriately selected depending on the ceramic material, the electrode material, and the like, and is usually about 1300 to 1600 ° C. By simultaneously firing the respective members as described above, the firing can be performed once, and the cost can be reduced.

なお、本発明の目的を逸脱しない範囲において、酸素センサ素子の構成は上記実施形態のみに限定されるものではない。例えば、上記実施形態では、本発明を酸素センサ素子に適用した場合について説明したが、本発明は、例えばNOxセンサ、CO2センサ等の類似した構造のガスセンサ素子に用いられるガスセンサにも適用可能である。 It should be noted that the configuration of the oxygen sensor element is not limited to the above embodiment without departing from the object of the present invention. For example, in the above embodiment, the case where the present invention is applied to an oxygen sensor element has been described. However, the present invention can also be applied to a gas sensor used for a gas sensor element having a similar structure, such as a NOx sensor or a CO 2 sensor. is there.

また、本発明のセラミック成形体の接合方法は、上記のようなガスセンサ素子を製造する場合だけでなく、互いに異なる複数のセラミック成形体を焼成し一体化して積層焼結体を製造する種々の用途にも同様に適用することができる。   In addition, the ceramic molded body joining method of the present invention is not limited to the case of manufacturing the gas sensor element as described above, but various uses for manufacturing a laminated sintered body by firing and integrating a plurality of different ceramic molded bodies. It can be similarly applied to.

以下、実施例および比較例を挙げて本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated further in detail, this invention is not limited to a following example.

[実施例1,2,4,5および比較例1]
まず、平均粒径0.7μmのジルコニア粉末に、ブチラール系バインダー、可塑剤および溶剤を混合し、48時間撹拌してスラリーを得た。その際、ジルコニア粉末100質量部に対して前記バインダーの添加量を8〜20質量%の範囲で調整した。その後、ドクターブレード成形にて上記スラリーを成形し、乾燥させて、収縮開始温度が表1に示す値に調整された厚さ180μmの固体電解質層用の成形体をそれぞれ作製した。
[Examples 1, 2, 4, 5 and Comparative Example 1]
First, a butyral binder, a plasticizer and a solvent were mixed with zirconia powder having an average particle size of 0.7 μm and stirred for 48 hours to obtain a slurry. At that time, the addition amount of the binder was adjusted in a range of 8 to 20% by mass with respect to 100 parts by mass of the zirconia powder. Then, the said slurry was shape | molded by doctor blade shaping | molding, it was made to dry, and the molded object for solid electrolyte layers of thickness 180 micrometers whose shrinkage start temperature was adjusted to the value shown in Table 1 was produced, respectively.

一方、平均粒径0.6μmのアルミナ粉末に、ブチラール系バインダー、可塑剤および溶剤を混合し、48時間撹拌してスラリーを得た。その際、アルミナ粉末100質量部に対して前記バインダーの添加量を10〜25質量%の範囲で調整した。その後、ドクターブレード成形にて上記スラリーを成形、乾燥させて、収縮開始温度が表1に示す値に調整された厚さ200μmの絶縁質基体部用の成形体をそれぞれ作製した。   On the other hand, a butyral binder, a plasticizer and a solvent were mixed with alumina powder having an average particle diameter of 0.6 μm and stirred for 48 hours to obtain a slurry. At that time, the addition amount of the binder was adjusted in a range of 10 to 25% by mass with respect to 100 parts by mass of the alumina powder. Thereafter, the slurry was molded and dried by doctor blade molding, and a molded body for an insulating base part having a thickness of 200 μm and a shrinkage start temperature adjusted to the value shown in Table 1 was produced.

また、平均粒径1.0μmのアルミナ粉末に、有機質空孔材、ブチラール系バインダー、可塑剤および溶剤を混合し、24時間撹拌してスラリーを得た。その後、ドクターブレード成形にて上記スラリーを成形、乾燥させて、厚さ120μmの多孔質保護層用の成形体を作製した。   Further, an organic pore material, a butyral binder, a plasticizer and a solvent were mixed with alumina powder having an average particle diameter of 1.0 μm, and stirred for 24 hours to obtain a slurry. Thereafter, the slurry was molded by doctor blade molding and dried to produce a molded body for a porous protective layer having a thickness of 120 μm.

次に、平均粒径0.5μmの白金粉末に、平均粒径1.0μmのアルミナ粉末、ブチラール系バインダーおよびテルピネオールを所定量調合し、3本ロールにて10回パス混合した後、テルピネオールにて希釈し、粘度調整してヒータパターン用の印刷ペーストを得た。   Next, a predetermined amount of alumina powder, butyral binder, and terpineol having an average particle diameter of 1.0 μm is prepared in platinum powder having an average particle diameter of 0.5 μm, and after 10 passes of mixing with three rolls, terpineol is used. Dilution and viscosity adjustment were performed to obtain a heater pattern printing paste.

また、平均粒径0.5μmの白金粉末に、平均粒径0.7μmのジルコニア粉末、ブチラール系バインダーおよびテルピネオールを調合し、3本ロールにて10回パス混合した後、テルピネオールにて希釈し、粘度調整した検知電極用印刷ペースト、基準電極用印刷ペースト、電極パッド用印刷ペーストおよびリード部用印刷ペーストを得た。   In addition, platinum powder with an average particle size of 0.5 μm was mixed with zirconia powder with an average particle size of 0.7 μm, butyral binder and terpineol, mixed 10 times with 3 rolls, diluted with terpineol, The viscosity-adjusted detection electrode printing paste, reference electrode printing paste, electrode pad printing paste, and lead portion printing paste were obtained.

次に、絶縁質基体部用の成形体にヒータパターン用の印刷ペーストをスクリーン印刷にて形成し、乾燥させて、ヒータパターンが形成された成形体を得た。ついで、この成形体に打ち抜きによりスルーホールを形成し、導電ペーストを充填した後、電極パッドパターンを形成した。また、幅1.6mmの空洞部を形成するために、絶縁質基体部用の成形体を金型で打ち抜いてコ字形状の成形体を得た。   Next, a heater pattern printing paste was formed on the molded body for the insulating substrate by screen printing and dried to obtain a molded body on which the heater pattern was formed. Next, through holes were formed in the molded body by punching, and after filling with a conductive paste, an electrode pad pattern was formed. Further, in order to form a hollow portion having a width of 1.6 mm, a molded body for the insulating base portion was punched out with a mold to obtain a U-shaped molded body.

一方、固体電解質層用の成形体の表裏面に、検知電極用、基準電極用およびリード部用の印刷ペーストをスクリーン印刷により形成し、乾燥させて、電極パターンが形成された成形体を得た。ついで、この成形体に打ち抜きによりスルーホールを形成し、導電ペーストを充填した後、電極パッドパターンを形成した。   On the other hand, on the front and back surfaces of the molded body for the solid electrolyte layer, a printing paste for the detection electrode, the reference electrode, and the lead portion was formed by screen printing and dried to obtain a molded body on which the electrode pattern was formed. . Next, through holes were formed in the molded body by punching, and after filling with a conductive paste, an electrode pad pattern was formed.

その後、上記で得られた各成形体を位置決めして、熱圧着にて積層し、加圧プレスしてグリーン体(積層体)を得た。ついで、この積層体を所定形状にホットナイフでカットして酸素センサ素子成形体を得た。そして、この酸素センサ素子成形体を下記焼成条件で焼成して、酸素センサ素子をそれぞれ作製した。
焼成条件:室温から500℃まで6時間で昇温、500℃で1時間保持、500℃から800℃まで2時間で昇温、800℃から1450℃まで7時間で昇温、1450℃で2時間保持
Thereafter, each molded body obtained above was positioned, laminated by thermocompression bonding, and pressed under pressure to obtain a green body (laminated body). Subsequently, this laminated body was cut into a predetermined shape with a hot knife to obtain an oxygen sensor element molded body. And this oxygen sensor element molded object was baked on the following baking conditions, and each oxygen sensor element was produced.
Firing conditions: Temperature rise from room temperature to 500 ° C. in 6 hours, hold at 500 ° C. for 1 hour, temperature rise from 500 ° C. to 800 ° C. in 2 hours, temperature rise from 800 ° C. to 1450 ° C. in 7 hours, temperature at 1450 ° C. for 2 hours Retention

固体電解質層用の成形体と絶縁質基体部用の成形体の収縮開始温度および収縮率は、以下のようにして測定した。まず、実施例および比較例で用いた固体電解質層用成形体および絶縁質基体部用成形体と同じ配合で、幅7mm、長さ60mm、厚さ200μmの収縮挙動測定用成形体をそれぞれ作製し、該成形体の焼成前の長さを測定した。ついで、各成形体の収縮率と温度の関係を調べるために、ある温度で焼成を止めて急冷し長さを測定するという焼成パターンを、焼成を止める温度を変えて15回繰り返し、得られた寸法データから下式により各温度における収縮率を算出し、図3に示すような収縮率と温度の関係を表す収縮曲線をそれぞれ得た。なお、上記焼成パターンにおいて、室温から焼成を止める温度までの昇温では、実際に酸素センサ素子を作製する際の上記焼成条件に示す昇温速度および保持時間に従った条件を用いた。収縮開始温度は収縮率が0.05%に達したときの温度とした。

Figure 2005153449
The shrinkage start temperature and shrinkage rate of the molded body for the solid electrolyte layer and the molded body for the insulating base were measured as follows. First, shrinkage behavior measurement compacts having a width of 7 mm, a length of 60 mm, and a thickness of 200 μm were prepared in the same composition as the solid electrolyte layer molded body and the insulating base body molded body used in the examples and comparative examples. The length of the molded body before firing was measured. Subsequently, in order to investigate the relationship between the shrinkage rate and the temperature of each molded body, a firing pattern in which firing was stopped at a certain temperature, quenched and measured for length was repeated 15 times while changing the temperature at which firing was stopped. The shrinkage rate at each temperature was calculated from the dimensional data using the following formula, and shrinkage curves representing the relationship between the shrinkage rate and temperature as shown in FIG. 3 were obtained. In the firing pattern, for the temperature rise from room temperature to the temperature at which firing was stopped, conditions according to the temperature rise rate and holding time shown in the firing conditions when actually producing the oxygen sensor element were used. The shrinkage start temperature was the temperature at which the shrinkage rate reached 0.05%.
Figure 2005153449

[実施例3,6]
平均粒径1.0μmのチタニア粉末に、ブチラール系バインダー、可塑剤および溶剤を混合し、48時間撹拌してスラリーを得た。その際、チタニア粉末100質量部に対して前記バインダーの添加量を9〜23質量%の範囲で調整した。その後、ドクターブレード成形にて上記スラリーを成形し、乾燥させて、収縮開始温度が表1に示す値に調整された厚さ180μmの固体電解質層用の成形体をそれぞれ作製した。
[Examples 3 and 6]
A butyral binder, a plasticizer and a solvent were mixed with titania powder having an average particle diameter of 1.0 μm and stirred for 48 hours to obtain a slurry. At that time, the addition amount of the binder was adjusted in a range of 9 to 23% by mass with respect to 100 parts by mass of titania powder. Then, the said slurry was shape | molded by doctor blade shaping | molding, it was made to dry, and the molded object for solid electrolyte layers of thickness 180 micrometers whose shrinkage start temperature was adjusted to the value shown in Table 1 was produced, respectively.

一方、平均粒径0.8μmのフォルステライト粉末に、ブチラール系バインダー、可塑剤および溶剤を混合し、48時間撹拌してスラリーを得た。その際、フォルステライト粉末100質量部に対して前記バインダーの添加量を10〜25質量%の範囲で調整した。その後、ドクターブレード成形にて上記スラリーを成形、乾燥させて、収縮開始温度が表1に示す値に調整された厚さ200μmの絶縁質基体部用の成形体をそれぞれ作製した。   On the other hand, a fortyrite powder having an average particle size of 0.8 μm was mixed with a butyral binder, a plasticizer and a solvent, and stirred for 48 hours to obtain a slurry. At that time, the addition amount of the binder was adjusted in a range of 10 to 25% by mass with respect to 100 parts by mass of the forsterite powder. Thereafter, the slurry was molded and dried by doctor blade molding, and a molded body for an insulating base part having a thickness of 200 μm and a shrinkage start temperature adjusted to the value shown in Table 1 was produced.

その他は、実施例1と同様にして酸素センサ素子成形体を作製し、この酸素センサ素子成形体を1400℃にて2時間焼成して、酸素センサ素子をそれぞれ作製した。

Figure 2005153449
Otherwise, an oxygen sensor element molded body was produced in the same manner as in Example 1, and this oxygen sensor element molded body was fired at 1400 ° C. for 2 hours to produce oxygen sensor elements.
Figure 2005153449

<性能評価>
上記各酸素センサ素子の焼成前後における反りの発生状況を評価した。図4は、酸素センサ素子の反り量の評価方法を示す概略図である。図4に示すように、酸素センサ素子における積層方向の厚みをH1とし、酸素センサ素子を水平板上に載置したときの鉛直方向の最大高さをH2としたとき、H2とH1の差(ΔH=(H2−H1))を反り量とした。結果を表1に示す。
<Performance evaluation>
The state of occurrence of warpage before and after the firing of each oxygen sensor element was evaluated. FIG. 4 is a schematic diagram showing a method for evaluating the amount of warpage of the oxygen sensor element. As shown in FIG. 4, when the thickness in the stacking direction of the oxygen sensor element is H1, and the maximum height in the vertical direction when the oxygen sensor element is placed on the horizontal plate is H2, the difference between H2 and H1 ( ΔH = (H2−H1)) was defined as the amount of warpage. The results are shown in Table 1.

表1から、絶縁質基体部用の成形体と固体電解質層用の成形体の収縮開始温度差ΔTが80℃であり、絶縁質基体部用の成形体の収縮率S2が2%となる測定温度Tにおける収縮率差ΔSが1.9%である比較例1では、反り量ΔHが200μmと大きな値となっていることがわかる。   From Table 1, the measurement is such that the shrinkage start temperature difference ΔT between the molded body for the insulating base portion and the molded body for the solid electrolyte layer is 80 ° C., and the shrinkage rate S2 of the molded body for the insulating base portion is 2%. In Comparative Example 1 in which the shrinkage ratio difference ΔS at the temperature T is 1.9%, it can be seen that the warpage amount ΔH is a large value of 200 μm.

一方、収縮開始温度差ΔTが70℃以内であり、絶縁質基体部用の成形体の収縮率S2が2%となる測定温度Tにおける収縮率差ΔSが1.5%以内である実施例1〜3では、反り量ΔHが80μm以下と小さく抑えられている。また、収縮開始温度差ΔTが70℃以内であり、絶縁質基体部用の成形体の収縮率S2が1.5%となる測定温度Tにおける収縮率差ΔSが1%以内である実施例4〜6では、反り量ΔHが50μm以下とさらに低減されている。   On the other hand, Example 1 in which the shrinkage start temperature difference ΔT is within 70 ° C. and the shrinkage rate difference ΔS at the measurement temperature T at which the shrinkage rate S2 of the molded body for the insulating base portion is 2% is within 1.5%. In .about.3, the warp amount .DELTA.H is suppressed to as small as 80 .mu.m or less. Example 4 in which the shrinkage start temperature difference ΔT is within 70 ° C., and the shrinkage rate difference ΔS at the measurement temperature T at which the shrinkage rate S2 of the molded body for the insulating base portion is 1.5% is within 1%. In .about.6, the warp amount .DELTA.H is further reduced to 50 .mu.m or less.

本発明のセラミック成形体の接合方法を用いて製造した酸素センサ素子の長手方向に垂直な断面を示す断面図である。It is sectional drawing which shows a cross section perpendicular | vertical to the longitudinal direction of the oxygen sensor element manufactured using the joining method of the ceramic molded body of this invention. 図1の酸素センサ素子の構造を説明するための分解斜視図である。It is a disassembled perspective view for demonstrating the structure of the oxygen sensor element of FIG. 焼成時の温度と成形体の収縮率との関係を表すグラフである。It is a graph showing the relationship between the temperature at the time of baking, and the shrinkage rate of a molded object. 実施例における酸素センサ素子の反り量の評価方法を説明するための概略図である。It is the schematic for demonstrating the evaluation method of the curvature amount of the oxygen sensor element in an Example.

符号の説明Explanation of symbols

11 センサ部
12 固体電解質層
13 検知電極
14 基準電極
15 絶縁質基体部
16 多孔質保護層
17 空洞部
18,19 リード部
21 ヒータ
22 発熱体
23 リード部
DESCRIPTION OF SYMBOLS 11 Sensor part 12 Solid electrolyte layer 13 Detection electrode 14 Reference electrode 15 Insulating base | substrate part 16 Porous protective layer 17 Cavity part 18, 19 Lead part 21 Heater 22 Heating element 23 Lead part

Claims (4)

互いに異なるセラミック材料からなる成形体を積層し、該積層体を焼成して一体化するセラミック成形体の接合方法であって、
互いに異なるセラミック材料からなる前記成形体の焼成時における収縮開始温度差ΔTが70℃以内であり、
収縮開始温度が低い成形体の収縮率が2%である温度において、収縮開始温度が高い成形体との収縮率差ΔSが1.5%以内であることを特徴とするセラミック成形体の接合方法。
A method of joining ceramic molded bodies in which molded bodies made of different ceramic materials are laminated, and the laminated bodies are fired and integrated.
The shrinkage start temperature difference ΔT at the time of firing the molded body made of different ceramic materials is within 70 ° C.,
A method for joining ceramic molded bodies, characterized in that a shrinkage ratio difference ΔS with a molded body having a high shrinkage start temperature is within 1.5% at a temperature at which the molded body having a low shrinkage starting temperature is 2%. .
互いに異なるセラミック材料からなる成形体を積層し、該積層体を焼成して一体化するセラミック成形体の接合方法であって、
互いに異なるセラミック材料からなる前記成形体の焼成時における収縮開始温度差ΔTが70℃以内であり、
収縮開始温度が低い成形体の収縮率が1.5%である温度において、収縮開始温度が高い成形体との収縮率差ΔSが1%以内であることを特徴とするセラミック成形体の接合方法。
A method of joining ceramic molded bodies in which molded bodies made of different ceramic materials are laminated, and the laminated bodies are fired and integrated.
The shrinkage start temperature difference ΔT during firing of the molded body made of different ceramic materials is within 70 ° C.,
A method for joining ceramic molded bodies, characterized in that a shrinkage ratio difference ΔS with a molded body having a high shrinkage start temperature is within 1% at a temperature at which the molded body having a low shrinkage starting temperature is 1.5%. .
一方のセラミック材料がジルコニア質セラミックスであり、他方のセラミック材料がアルミナ質セラミックスである請求項1または2記載の接合方法。   The joining method according to claim 1 or 2, wherein one ceramic material is zirconia ceramics and the other ceramic material is alumina ceramics. 互いに異なるセラミック材料からなる前記成形体のうち、一方が固体電解質層用の成形体であり、他方が絶縁質基体部用の成形体である、請求項1〜3のいずれかに記載の接合方法を用いたガスセンサ素子の製造方法。
The joining method according to any one of claims 1 to 3, wherein one of the molded bodies made of different ceramic materials is a molded body for a solid electrolyte layer, and the other is a molded body for an insulating base portion. Method for manufacturing gas sensor element using
JP2003398844A 2003-11-28 2003-11-28 Joining method of ceramic molded items, and manufacturing method of gas sensor element Pending JP2005153449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003398844A JP2005153449A (en) 2003-11-28 2003-11-28 Joining method of ceramic molded items, and manufacturing method of gas sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003398844A JP2005153449A (en) 2003-11-28 2003-11-28 Joining method of ceramic molded items, and manufacturing method of gas sensor element

Publications (1)

Publication Number Publication Date
JP2005153449A true JP2005153449A (en) 2005-06-16

Family

ID=34723569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003398844A Pending JP2005153449A (en) 2003-11-28 2003-11-28 Joining method of ceramic molded items, and manufacturing method of gas sensor element

Country Status (1)

Country Link
JP (1) JP2005153449A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105612A (en) * 2004-09-30 2006-04-20 Ngk Spark Plug Co Ltd Manufacturing method of gas sensor
JP2007139550A (en) * 2005-11-17 2007-06-07 Hitachi Ltd Oxygen sensor
JP2007198970A (en) * 2006-01-27 2007-08-09 Ngk Spark Plug Co Ltd Gas sensor
JP2007331965A (en) * 2006-06-14 2007-12-27 Denso Corp Method of manufacturing ceramic laminate
JP2009014706A (en) * 2007-06-06 2009-01-22 Ngk Spark Plug Co Ltd Gas sensor
JP2017049051A (en) * 2015-08-31 2017-03-09 株式会社日本自動車部品総合研究所 Gas sensor
CN112525967A (en) * 2019-09-18 2021-03-19 日本特殊陶业株式会社 Sensor element, gas sensor, and method for manufacturing sensor element
JP2021514870A (en) * 2018-03-02 2021-06-17 イメルテック ソシエテ パル アクシオン サンプリフィエ 3D ceramic structure
JPWO2020066713A1 (en) * 2018-09-28 2021-10-07 日本碍子株式会社 Sensor element

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105612A (en) * 2004-09-30 2006-04-20 Ngk Spark Plug Co Ltd Manufacturing method of gas sensor
JP4579636B2 (en) * 2004-09-30 2010-11-10 日本特殊陶業株式会社 Manufacturing method of gas sensor
JP2007139550A (en) * 2005-11-17 2007-06-07 Hitachi Ltd Oxygen sensor
JP2007198970A (en) * 2006-01-27 2007-08-09 Ngk Spark Plug Co Ltd Gas sensor
JP2007331965A (en) * 2006-06-14 2007-12-27 Denso Corp Method of manufacturing ceramic laminate
JP2009014706A (en) * 2007-06-06 2009-01-22 Ngk Spark Plug Co Ltd Gas sensor
JP2017049051A (en) * 2015-08-31 2017-03-09 株式会社日本自動車部品総合研究所 Gas sensor
JP2021514870A (en) * 2018-03-02 2021-06-17 イメルテック ソシエテ パル アクシオン サンプリフィエ 3D ceramic structure
JPWO2020066713A1 (en) * 2018-09-28 2021-10-07 日本碍子株式会社 Sensor element
JP7341155B2 (en) 2018-09-28 2023-09-08 日本碍子株式会社 Sensor element and method of manufacturing the sensor element
CN112525967A (en) * 2019-09-18 2021-03-19 日本特殊陶业株式会社 Sensor element, gas sensor, and method for manufacturing sensor element
CN112525967B (en) * 2019-09-18 2024-04-12 日本特殊陶业株式会社 Sensor element, gas sensor, and method for manufacturing sensor element

Similar Documents

Publication Publication Date Title
JP2006250537A (en) Gas sensor element and its manufacturing method
JP4884103B2 (en) Ceramic heater and gas sensor element
JP2006222008A (en) Ceramic heater and heater-built-in electronic component
JP2005153449A (en) Joining method of ceramic molded items, and manufacturing method of gas sensor element
JP2006337384A (en) Oxygen sensor
JP4342273B2 (en) Laminated sintered body, ceramic heater, gas sensor element, method for producing laminated sintered body, and method for producing gas sensor element.
JP4189260B2 (en) Manufacturing method of ceramic heater structure and ceramic heater structure
JP5935548B2 (en) Alumina / zirconia laminated sintered body, manufacturing method thereof, and gas sensor element including alumina / zirconia laminated sintered body
JP2006170862A (en) Ceramic heater element and gas sensor
JP4646115B2 (en) Gas sensor element and manufacturing method thereof
JP2003344348A (en) Oxygen sensor element
JP2006210122A (en) Ceramic heater element and detection element using it
JP4533159B2 (en) Ceramic heater and manufacturing method thereof
JP3898613B2 (en) Oxygen sensor element
JP4324439B2 (en) Ceramic heater and ceramic heater structure
JP3935166B2 (en) Manufacturing method of ceramic heater element
JP4808977B2 (en) Ceramic heater, gas sensor element and electrode pattern, ceramic heater, gas sensor element manufacturing method
JP3748408B2 (en) Oxygen sensor and manufacturing method thereof
JP4346424B2 (en) Gas sensor and gas sensor manufacturing method
JP4416427B2 (en) Ceramic heater and manufacturing method thereof
JP2005135868A (en) Ceramic heater, gas sensor element and manufacturing methods thereof
JP3898594B2 (en) Oxygen sensor element
JP3850286B2 (en) Oxygen sensor
JP2005005057A (en) Ceramic heater and ceramic heater structural body
JP4113479B2 (en) Oxygen sensor element