JP2005150448A - Circuit substrate and its manufacturing method - Google Patents

Circuit substrate and its manufacturing method Download PDF

Info

Publication number
JP2005150448A
JP2005150448A JP2003386647A JP2003386647A JP2005150448A JP 2005150448 A JP2005150448 A JP 2005150448A JP 2003386647 A JP2003386647 A JP 2003386647A JP 2003386647 A JP2003386647 A JP 2003386647A JP 2005150448 A JP2005150448 A JP 2005150448A
Authority
JP
Japan
Prior art keywords
conductive layer
circuit board
wiring pattern
manufacturing
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003386647A
Other languages
Japanese (ja)
Inventor
Toshio Sugawa
俊夫 須川
Hideki Higashiya
秀樹 東谷
Hideji Ida
秀二 井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003386647A priority Critical patent/JP2005150448A/en
Publication of JP2005150448A publication Critical patent/JP2005150448A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a circuit substrate and its manufacturing method in which a conductor resistance can be reduced, a fine pattern in a widthwise direction can be formed, and also a peel-off strength is large. <P>SOLUTION: In the circuit substrate, a wiring pattern 112 composed of a coarse layer 107, a conductive layer 108 and a conductive layer 111 is embedded from a face of the coarse layer 107 onto at least one face of an insulating substrate 101 in which a conductive material 106 is filled in a through hole 105, and an insulating material 113 is filled in between the wiring patterns 112. Separately from the insulating substrate 101, the insulating material 113 is filled in between the wiring patterns 112, and a deformation or inclination caused by an external mechanical stress of the wiring pattern 112 is reduced, and additionally a fine adjustment for an amount of the insulating material 113 of the insulating substrate 101 is unwanted. A coefficient of expansion is made close to that of the wiring pattern 112 by mixing fine particles of metal oxide, etc., a stress due to a temperature is relieved, and a thermal conduction is improved, thereby making such an adjustment as to enhance an efficiency of heat radiation, etc. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は半導体素子、集積回路、電子部品等を搭載するための回路基板およびその製造方法に関するものである。   The present invention relates to a circuit board for mounting a semiconductor element, an integrated circuit, an electronic component, and the like, and a manufacturing method thereof.

従来、回路基板の導電性層の形成は一般的に絶縁性基板に銅箔を熱プレスによって接着し、感光性樹脂によって所定パターン形成し感光性樹脂パターンをマスクとして用いて銅箔をエッチングしていたが、導電性層の微細化に伴ってさらに銅箔を薄くすることによって対応してきている。   Conventionally, a conductive layer of a circuit board is generally formed by bonding a copper foil to an insulating substrate by hot pressing, forming a predetermined pattern with a photosensitive resin, and etching the copper foil using the photosensitive resin pattern as a mask. However, as the conductive layer is miniaturized, the copper foil is made thinner.

従来の回路基板の製造方法としては図21〜図25に示すものがある。   Conventional circuit board manufacturing methods include those shown in FIGS.

図21〜図25は従来の回路基板の製造方法を示す断面図である。図21に示すようにエッチングが容易な10μm程度の厚さの基材416としての銅箔や例えば40μmのアルミニュウム表面に配線パターンを形成するためのエッチングストッパーとしての厚さ3μm程度のニッケルからなるストッパー層417が形成され、さらにその表面に配線パターンとなる粗化層418を有する導電性層419としての銅が厚さ10μm程度で形成されている。なお基材416の支持のための機械的強度が必要で裏面はさらなる機械的な補強とエッチングの保護の目的で発泡剤を含んだ接着剤で樹脂基板420に接着ざれている。   21 to 25 are cross-sectional views showing a conventional circuit board manufacturing method. As shown in FIG. 21, a copper foil as a base material 416 having a thickness of about 10 μm that is easy to etch or a stopper made of nickel having a thickness of about 3 μm as an etching stopper for forming a wiring pattern on a surface of 40 μm aluminum, for example. A layer 417 is formed, and copper as a conductive layer 419 having a roughened layer 418 serving as a wiring pattern on the surface thereof is formed with a thickness of about 10 μm. Note that mechanical strength for supporting the base material 416 is required, and the back surface is adhered to the resin substrate 420 with an adhesive containing a foaming agent for the purpose of further mechanical reinforcement and etching protection.

そして、図22に示すように導電性層419表面に感光性樹脂421によって所定の配線パターンを形成し、図23に示す如く導電性層419としての銅をエッチングする。この時導電性層419としての銅のエッチング時間が長くなってもニッケルからなるストッパー層417によって基材416が保護され、図24に示すように導電性層419の銅のみがエッチングされ配線パターンが形成される。そして発泡剤を加熱発泡して接着剤の接着性を無くして樹脂基板420から剥離し、図25に示す如く貫通孔405に導電性材料406を充填したガラスエポキシ基板401に接着した基材416としての銅箔およびエッチングストッパーとなるニッケルによるストッパー層417を順次エッチングにより除去して回路基板を形成する方法が提案されていた。   Then, as shown in FIG. 22, a predetermined wiring pattern is formed on the surface of the conductive layer 419 with a photosensitive resin 421, and copper as the conductive layer 419 is etched as shown in FIG. At this time, even if the etching time of copper as the conductive layer 419 becomes long, the base material 416 is protected by the stopper layer 417 made of nickel, and only the copper of the conductive layer 419 is etched as shown in FIG. It is formed. Then, the foaming agent is heated and foamed to remove the adhesive from the resin substrate 420 and peel from the resin substrate 420. As shown in FIG. 25, the base material 416 is bonded to the glass epoxy substrate 401 filled with the conductive material 406 in the through holes 405. A method of forming a circuit board by sequentially removing the copper foil and the stopper layer 417 of nickel serving as an etching stopper by etching has been proposed.

なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。
特開平10−159586号公報
As prior art document information related to the invention of this application, for example, Patent Document 1 is known.
JP 10-159586 A

しかしながら、通常絶縁性基板401に銅箔を直接接着してエッチングする場合には配線パターンの表面は突起状になっており、特に微細な配線パターンにおいては絶縁性基板401の表面と平行方向からの機械的な応力によってパターンが倒れてしまい断線や隣の配線パターンとのショート(短絡)が発生するという問題があった。また上記説明した従来の回路基板の製造方法では配線パターンは絶縁性基板401のエポキシ層に埋め込まれているために配線パターンの倒れが起こりにくくなっているが、感光性樹脂による所定パターンを形成して導電性層419としての銅をエッチングによって配線パターンに形成する際にサイドエッチングによって感光性樹脂による所定パターンよりさらに細くなってしまう。その結果所定の配線パターンが得られず感光性樹脂の解像度限界まで微細な場合には配線パターンのサイドエッチングで細くなってしまいエッチングの途中で感光性樹脂が剥離する場合もあった。すなわちエッチングの際の横方向へのエッチングすなわちサイドエッチングが両側から進行することにより実際の銅パターン寸法は感光性樹脂パターンより細くなってしまい微細な幅のパターン形成が困難であり、サイドエッチングを少なくするために導電性層419としての銅の厚さを薄くすれば銅からなる配線パターンの配線抵抗が高くなる。さらにエッチングした配線パターンの側壁は滑らかな状態であるため配線パターンの表面のみを粗化で配線パターンと絶縁性基板401との剥離強度が得られないという問題点を有していた。   However, in general, when etching is performed by directly bonding a copper foil to the insulating substrate 401, the surface of the wiring pattern has a protruding shape, and particularly in a fine wiring pattern, the surface of the insulating substrate 401 is parallel to the surface. There is a problem in that the pattern collapses due to mechanical stress, causing a disconnection or a short circuit with the adjacent wiring pattern. In addition, in the conventional circuit board manufacturing method described above, the wiring pattern is embedded in the epoxy layer of the insulating substrate 401, so that the wiring pattern is less likely to fall down. However, a predetermined pattern is formed using a photosensitive resin. Then, when copper as the conductive layer 419 is formed into a wiring pattern by etching, it becomes thinner than the predetermined pattern by the photosensitive resin by side etching. As a result, when the predetermined wiring pattern cannot be obtained and the resolution is limited to the resolution limit of the photosensitive resin, the wiring pattern is thinned by side etching, and the photosensitive resin may be peeled off during the etching. In other words, the lateral copper etching, that is, side etching proceeds from both sides, so that the actual copper pattern dimension becomes thinner than the photosensitive resin pattern, making it difficult to form a pattern with a fine width, and reducing side etching. Therefore, if the thickness of copper as the conductive layer 419 is reduced, the wiring resistance of the wiring pattern made of copper is increased. Further, since the etched side wall of the wiring pattern is in a smooth state, there is a problem that the peeling strength between the wiring pattern and the insulating substrate 401 cannot be obtained by roughening only the surface of the wiring pattern.

本発明は導体抵抗が低くでき、幅方向の微細な配線パターンが形成できると共に引き剥がし強度が大きい回路基板およびその製造方法を提供することを目的とするものである。   It is an object of the present invention to provide a circuit board having a low conductor resistance, forming a fine wiring pattern in the width direction and having a high peel strength, and a method for manufacturing the circuit board.

上記目的を達成するために、本発明は以下の構成を有する。   In order to achieve the above object, the present invention has the following configuration.

本発明の請求項1に記載の発明は、貫通孔に導電性材料を充填した絶縁性基板の少なくとも一面に粗化層、導電性層および導電層からなる配線パターンを前記粗化層面から埋め込み、この配線パターン間に絶縁部材を充填した回路基板であり、配線パターンの間に絶縁性基板とは別に絶縁物を充填し、配線パターンの外的機械応力による変形や倒れを少なくするばかりでなく、絶縁性基板の絶縁部材の量は微妙な調整が不要であり、金属酸化物の微粒子を混入するなどして膨張係数を配線パターンに近づけて温度による応力を緩和および熱伝導を良くして放熱効率を向上するなどの調整も可能である。   The invention according to claim 1 of the present invention embeds a roughening layer, a conductive layer and a wiring pattern comprising a conductive layer from at least one surface of an insulating substrate in which a through hole is filled with a conductive material, from the roughened layer surface, It is a circuit board filled with an insulating member between the wiring patterns, and an insulating material is filled between the wiring patterns in addition to the insulating board to reduce deformation and collapse due to external mechanical stress of the wiring pattern, The amount of insulating material on the insulating substrate does not need to be finely adjusted. The thermal expansion efficiency is improved by reducing the stress due to temperature and improving heat conduction by bringing the expansion coefficient closer to the wiring pattern by mixing fine particles of metal oxide. It is possible to make adjustments such as improving.

請求項2に記載の発明は、配線パターンの表面と絶縁部材の表面とをほぼ同一面とした請求項1に記載の回路基板であり、配線パターンの間に絶縁性基板とは別の絶縁部材を充填し、配線パターンの表面と絶縁部材の表面とがほぼ同一面を成すことによって配線パターンは絶縁部材に埋め込まれ表面だけが露出しているので外的機械的応力による変形や倒れを無くすることができ、絶縁性基板の絶縁部材の量には微妙な調整が不要であり、金属酸化物の微粒子を混入するなどして膨張係数を配線パターンに近づけて温度による応力を緩和および熱伝導を良くして放熱効率を向上させるなどの調整も可能であり、部品や半導体を突起すなわちバンプによって実装する場合においても多少の位置ずれが生じても押さえ付けによるずれが無く十分な接続が得られる。   The invention according to claim 2 is the circuit board according to claim 1, wherein the surface of the wiring pattern and the surface of the insulating member are substantially flush with each other, and the insulating member is different from the insulating substrate between the wiring patterns. Since the surface of the wiring pattern and the surface of the insulating member are almost flush with each other, the wiring pattern is embedded in the insulating member and only the surface is exposed, so that deformation and collapse due to external mechanical stress are eliminated. It is possible to reduce the stress due to temperature and reduce thermal stress by bringing the expansion coefficient closer to the wiring pattern by mixing fine particles of metal oxide, etc. Adjustments such as improving heat dissipation efficiency are also possible, and even when mounting parts and semiconductors with protrusions or bumps, there is no deviation due to pressing even if there is a slight positional deviation. Connection is obtained.

請求項3に記載の発明は、導電性層の表面に粗化層を形成した金属基板を前記粗化層面から絶縁性基板に接着する工程と、前記金属基板を除去して導電性層を露出させる工程と、この露出した導電性層表面に所定の感光性樹脂パターンを形成する工程と、前記露出する導電性層表面に導電層を形成する工程とを含む回路基板の製造方法であり、表面が粗化された配線パターンを金属基板で補強することによって取り扱いを容易とし、マイクロクラックの発生を防止することができ、感光性樹脂をマスクとして用いて配線パターンを形成するためサイドエッチングが無く感光性樹脂パターンの解像限界まで微細なパターン形成が可能である。   According to a third aspect of the present invention, there is provided a step of bonding a metal substrate having a roughened layer formed on a surface of a conductive layer to an insulating substrate from the surface of the roughened layer, and exposing the conductive layer by removing the metal substrate. A circuit board manufacturing method comprising: a step of forming a predetermined photosensitive resin pattern on the exposed conductive layer surface; and a step of forming a conductive layer on the exposed conductive layer surface, Reinforce the roughened wiring pattern with a metal substrate to facilitate handling and prevent the occurrence of microcracks. Since the wiring pattern is formed using a photosensitive resin as a mask, there is no side etching. It is possible to form a fine pattern up to the resolution limit of the conductive resin pattern.

請求項4に記載の発明は、粗化層を除く導電性層の厚さを5μm以下とした請求項1に記載の回路基基板であり、表面の粗化により絶縁性基板との密着性を向上させ、絶縁性基板に形成された貫通孔に充填された導電性材料との電気的接続をより確実にすることができ、粗化層を除いた導電性層の厚さが5μm以下の薄いものとすることで露出した部分をエッチング除去する時間を短くすることで配線パターンのエッチングによる変形が小さくでき、さらに微細化することができる。   The invention according to claim 4 is the circuit base substrate according to claim 1, wherein the thickness of the conductive layer excluding the roughened layer is 5 μm or less, and the adhesion to the insulating substrate is improved by roughening the surface. The electrical connection with the conductive material filled in the through-hole formed in the insulating substrate can be made more reliable, and the thickness of the conductive layer excluding the roughened layer is 5 μm or less. By shortening the time for removing the exposed portion by etching, the deformation of the wiring pattern due to etching can be reduced, and further miniaturization can be achieved.

請求項5に記載の発明は、粗化層の厚みを3μm以上とした請求項1に記載の回路基板であり、この粗化層の凹凸により絶縁性基板との密着性が向上し、絶縁性基板に形成された貫通孔に充填された導電性材料との電気的接続をより確実にすることができ、特に厚みを3μm以上とすることで絶縁性基板の膨張または収縮による応力が生じても電気的接続を損なうこと無く高い信頼性が確保できる。   The invention according to claim 5 is the circuit board according to claim 1, wherein the roughened layer has a thickness of 3 μm or more, and the unevenness of the roughened layer improves the adhesion to the insulating substrate, resulting in an insulating property. The electrical connection with the conductive material filled in the through-hole formed in the substrate can be made more reliable, and even when the stress is caused by the expansion or contraction of the insulating substrate especially by setting the thickness to 3 μm or more. High reliability can be secured without impairing the electrical connection.

請求項6に記載の発明は、絶縁性基板に貫通孔を形成し、この貫通孔に導電性材料を充填する請求項3に記載の回路基板の製造方法であり、貫通孔に充填された導電性材料によって絶縁性基板の両面での配線パターンの電気的接続が金属を高温で溶融して接続することなく容易に接続が可能である。   Invention of Claim 6 is a manufacturing method of the circuit board of Claim 3 which forms a through-hole in an insulating board | substrate, and fills this through-hole with an electroconductive material, The electroconductive with which the through-hole was filled With the conductive material, the electrical connection of the wiring pattern on both surfaces of the insulating substrate can be easily performed without melting and connecting the metal at a high temperature.

本発明の請求項7に記載の発明は、感光性樹脂パターンを除去し、この感光性樹脂パターンの下面の導電性層表面を露出させ、この露出した導電性層を除去して配線パターンを形成する工程と、この配線パターン間を絶縁部材で充填する請求項3に記載の回路基板の製造方法であり、絶縁部材で導電性層および導電層による配線パターンを埋め込むことによってパターンの剥離強度を向上させると共にパターンの変形や倒れを防止することができる。   According to the seventh aspect of the present invention, the photosensitive resin pattern is removed, the conductive layer surface on the lower surface of the photosensitive resin pattern is exposed, and the exposed conductive layer is removed to form a wiring pattern. The circuit board manufacturing method according to claim 3, wherein the space between the wiring patterns is filled with an insulating member, and the pattern peeling strength is improved by embedding the conductive layer and the wiring pattern with the conductive layer with the insulating member. It is possible to prevent deformation and collapse of the pattern.

請求項8に記載の発明は、導電性層の表面に粗化層を形成した金属基板を前記粗化層面から絶縁性基板に接着する工程を前記絶縁性基板が完全硬化以下の温度で熱プレスして前記粗化層を絶縁性基板に埋め込み硬化させる請求項7に記載の回路基板の製造方法であり、導電性層を絶縁性基板への接着が熱プレスであって絶縁性基板の樹脂が完全硬化以下の温度とすることで熱プレスの時に絶縁性基板の絶縁部材を半溶融状態とすることができるため埋め込みが容易になると共に絶縁部材を熱硬化することで樹脂を安定かつ接着を完全にすることができる。   According to an eighth aspect of the present invention, the step of adhering a metal substrate having a roughened layer formed on the surface of the conductive layer to the insulating substrate from the roughened layer surface is hot-pressed at a temperature at which the insulating substrate is not fully cured. The method according to claim 7, wherein the roughened layer is embedded in an insulating substrate and cured, and the bonding of the conductive layer to the insulating substrate is a hot press, and the resin of the insulating substrate is By setting the temperature below the complete curing, the insulating member of the insulating substrate can be in a semi-molten state at the time of hot pressing, so that embedding is easy and the insulating member is thermally cured to ensure stable and complete adhesion of the resin. Can be.

請求項9に記載の発明は、配線パターンの間に導電層表面とほぼ同一高さまで絶縁部材を充填する請求項7に記載の回路基板の製造方法であり、埋め込みが絶縁部材を充填することで埋め込みのためプレスを必要とせず、かつ所定の深さに配線パターンを埋め込むことが可能であり、工程の簡略化と十分な埋め込みによって配線パターンの剥離強度を向上させると共に配線パターンの変形や倒れを確実に防止することができる。   The invention according to claim 9 is the method of manufacturing a circuit board according to claim 7, wherein the insulating member is filled between the wiring patterns to substantially the same height as the surface of the conductive layer, and the embedding is performed by filling the insulating member. It is possible to embed a wiring pattern at a predetermined depth without requiring a press for embedding, improving the peeling strength of the wiring pattern by simplifying the process and sufficiently embedding, and preventing deformation and collapse of the wiring pattern. It can be surely prevented.

請求項10に記載の発明は、導電層を形成して配線パターンの間に配線パターン表面と同一またはそれ以上の高さまで絶縁部材を充填する工程と、配線パターン表面を露出する工程とからなる請求項7に記載の回路基板の製造方法であり、配線パターンの表面を絶縁部材と同一平面上に形成することができ、配線パターンに外部から機械的な応力がかかることを防止することができると共に実装時においても少々の位置ずれが生じても十分な電気的接続を得ることができる。   The invention according to claim 10 comprises a step of forming a conductive layer and filling an insulating member between the wiring patterns to a height equal to or higher than the surface of the wiring pattern, and a step of exposing the surface of the wiring pattern. Item 8. The method for manufacturing a circuit board according to Item 7, wherein the surface of the wiring pattern can be formed on the same plane as the insulating member, and mechanical stress can be prevented from being applied to the wiring pattern from the outside. Even during mounting, a sufficient electrical connection can be obtained even if a slight misalignment occurs.

請求項11に記載の発明は、配線パターン間に導電性層の厚さの1/4以上絶縁部材を充填する請求項7に記載の回路基板の製造方法であり、配線パターンを十分に埋め込むことによって剥離強度を向上させると共に配線パターンの横方向の応力による倒れを確実に防止することができる。   The invention according to claim 11 is the method for manufacturing a circuit board according to claim 7, wherein the insulating member is filled between the wiring patterns by 1/4 or more of the thickness of the conductive layer, and the wiring pattern is sufficiently embedded. As a result, the peel strength can be improved and the collapse of the wiring pattern due to the lateral stress can be reliably prevented.

請求項12に記載の発明は、配線パターン間への絶縁部材の充填を配線パターンの幅が導電性層および導電層の合計の厚さの10倍以下の部分とする請求項7に記載の回路基板の製造方法であり、配線パターンの幅に対して厚さの大きい場合に特に横方向の応力に対して防護することができる。   The invention according to claim 12 is the circuit according to claim 7, wherein the filling of the insulating member between the wiring patterns is performed at a portion where the width of the wiring pattern is not more than 10 times the total thickness of the conductive layer and the conductive layer. This is a method for manufacturing a substrate, and can protect against lateral stress particularly when the thickness is large with respect to the width of the wiring pattern.

請求項13に記載の発明は、金属基板上に形成する導電性層表面に感光性樹脂パターンを形成する工程と、前記導電性層表面に導電層を形成する工程と、前記感光性樹脂パターンを除去する工程と、導電性層を選択的に除去する工程と、前記金属基板の導電層側の面を絶縁性基板に接着する工程と、前記金属基板を除去する工程とを含む回路基板の製造方法であり、導電性層に感光性樹脂のパターンと同じ精度で微細な導電層の配線パターンを形成することができ、導電性層によって感光性樹脂の剥離によって金属基板が化学的に腐食されることが無いという作用効果が得られると共に絶縁部材を充填する工程が無くても埋め込むことができるという作用効果も得られ、さらに金属基板に形成された配線パターンが突起状となっているために絶縁性基板の貫通孔に充填された導電性材料を強く圧縮するものの金属基板によって全体に接着の際の圧力を全体に均一にすることができ部分的な亀裂や部分的に過度の圧力を防止でき、貫通孔に充填された導電性材料と配線パターンとの接続を電気的、機械的に良好な状態とすることができ、その信頼性を向上させることができる。   The invention according to claim 13 includes a step of forming a photosensitive resin pattern on a surface of a conductive layer formed on a metal substrate, a step of forming a conductive layer on the surface of the conductive layer, and the photosensitive resin pattern. A circuit board manufacturing method comprising: a removing step; a step of selectively removing a conductive layer; a step of bonding a conductive layer side surface of the metal substrate to an insulating substrate; and a step of removing the metal substrate. This method can form a fine conductive layer wiring pattern on the conductive layer with the same accuracy as the photosensitive resin pattern, and the metal substrate is chemically corroded by peeling of the photosensitive resin by the conductive layer. Because there is an effect that there is no effect, an effect that it can be embedded without the step of filling the insulating member is also obtained, and furthermore, the wiring pattern formed on the metal substrate has a protruding shape Although the conductive material filled in the through hole of the edge substrate is strongly compressed, the metal substrate can uniformly apply the pressure during the entire bonding, preventing partial cracks and partial excessive pressure. In addition, the connection between the conductive material filled in the through-hole and the wiring pattern can be made electrically and mechanically good, and the reliability can be improved.

請求項14に記載の発明は、導電層の形成を金属基板および導電性層からの通電による電気めっきとする請求項13に記載の回路基板の製造方法であり、金属基板が導電性であるため金属基板の所定の部分から自由に通電することにより、電気めっきによって感光性樹脂パターンの無い露出した領域の導電性層にのみ選択的に導電層による配線パターンが感光性樹脂の解像度で決められる微細なパターンまで形成することができる。   The invention according to claim 14 is the method for manufacturing a circuit board according to claim 13, wherein the conductive layer is formed by electroplating by energization from the metal substrate and the conductive layer, and the metal substrate is conductive. By energizing freely from a predetermined part of the metal substrate, the wiring pattern by the conductive layer can be determined by the resolution of the photosensitive resin selectively only on the conductive layer in the exposed area without the photosensitive resin pattern by electroplating. Up to a simple pattern.

請求項15に記載の発明は、導電性層および金属基板を選択エッチングにより除去が可能な材料とし、前記金属基板をエッチングにより除去する請求項13に記載の回路基板の製造方法であり、金属基板のみを機械的応力のかからないエッチングで選択的に除去でき、絶縁性基板に接着した配線パターンに引っ張り等の機械的応力を与えること無く回路基板が製造でき、貫通孔に充填された導電性材料と配線パターンとの接続の電気的、機械的に良好な状態を損なうことなく高い信頼性を確保することができる。   The invention according to claim 15 is the method for manufacturing a circuit board according to claim 13, wherein the conductive layer and the metal substrate are made of a material that can be removed by selective etching, and the metal substrate is removed by etching. Can be selectively removed by etching without applying mechanical stress, and a circuit board can be manufactured without applying mechanical stress such as pulling to the wiring pattern adhered to the insulating substrate, and a conductive material filled in the through hole High reliability can be ensured without impairing the electrical and mechanical good state of connection with the wiring pattern.

請求項16に記載の発明は、導電性層の厚さを3μm以下とした請求項13に記載の回路基板の製造方法であり、導電性層を薄くすることによって電気めっきによる導電層の配線パターンの厚さを安定して形成することができる。   The invention according to claim 16 is the method of manufacturing a circuit board according to claim 13, wherein the thickness of the conductive layer is 3 μm or less, and the wiring pattern of the conductive layer by electroplating by thinning the conductive layer Can be formed stably.

以上のように本発明は、貫通孔に導電性材料を充填した絶縁性基板の少なくとも一面に粗化層、導電性層および導電層からなる配線パターンを前記粗化層面から埋め込み、この配線パターン間に絶縁部材を充填した回路基板であり、配線パターンの間に絶縁性基板とは別に絶縁物を充填し、配線パターンの外的機械応力による変形や倒れを少なくするばかりでなく、絶縁性基板の絶縁部材の量は微妙な調整が不要であり、金属酸化物の微粒子を混入するなどして膨張係数を配線パターンに近づけて温度による応力を緩和および熱伝導を良くして放熱効率を向上するなどの調整も可能である。   As described above, the present invention embeds a roughening layer, a conductive layer, and a wiring pattern composed of a conductive layer on at least one surface of an insulating substrate in which a through hole is filled with a conductive material from the roughened layer surface. The circuit board is filled with an insulating member, and an insulating material is filled between the wiring patterns in addition to the insulating board to reduce deformation and collapse of the wiring pattern due to external mechanical stress. The amount of insulation does not need to be finely adjusted. For example, metal oxide fine particles are mixed in to bring the expansion coefficient closer to the wiring pattern to relieve stress due to temperature and improve heat conduction. It is also possible to adjust.

以下、本発明の実施の形態について図を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1(a)、(b)は本発明の実施の形態1における回路基板の構成を示す断面図である。
(Embodiment 1)
FIGS. 1A and 1B are cross-sectional views showing the configuration of the circuit board according to Embodiment 1 of the present invention.

図1(a)に示すように貫通孔105に導電性材料106を充填したガラスクロス103およびエポキシ層104からなる絶縁性基板101の両面に表面が凹凸状の粗化層107の上に形成した導電性層108、この導電性層108の上に形成した導電層111からなる配線パターン112の粗化層105が埋め込まれ、さらにこの配線パターン112の間に絶縁部材113が充填された構成となっている。なお粗化層107を除く導電性層108の厚みを5μm以下としている。この厚みとすることにより、粗化層107により絶縁性基板101との密着性を向上させ、絶縁性基板101に形成された貫通孔105に充填された導電性材料との電気的接続をより確実にすることができ、粗化層107を除いた導電性層108の厚さが5μm以下の薄いものとすることで露出した部分のエッチングにより除去する時間を短くすることで配線パターン112のエッチングによる変形が小さくでき、さらに微細化することができる。   As shown in FIG. 1A, the surface of the insulating substrate 101 made of the glass cloth 103 and the epoxy layer 104 filled with the conductive material 106 in the through-hole 105 is formed on the roughened layer 107 having an uneven surface. The conductive layer 108 and the roughened layer 105 of the wiring pattern 112 made of the conductive layer 111 formed on the conductive layer 108 are embedded, and the insulating member 113 is filled between the wiring patterns 112. ing. Note that the thickness of the conductive layer 108 excluding the roughened layer 107 is 5 μm or less. With this thickness, the roughened layer 107 improves the adhesion to the insulating substrate 101, and the electrical connection with the conductive material filled in the through hole 105 formed in the insulating substrate 101 is more reliable. By making the thickness of the conductive layer 108 excluding the roughened layer 107 as thin as 5 μm or less, the time for removing the exposed portion by etching can be shortened, thereby reducing the etching time of the wiring pattern 112. Deformation can be reduced and further miniaturization can be achieved.

また、粗化層107の厚みを3μm以上としている。この厚みに設定することによりこの粗化層107の凹凸により絶縁性基板101との密着性が向上し、絶縁性基板101に形成された貫通孔105に充填された導電性材料106との電気的接続をより確実にすることができ、特に厚みを3μm以上とすることで絶縁性基板101の膨張または収縮による応力が生じても電気的接続を損なうこと無く高い信頼性が確保できる。   Moreover, the thickness of the roughening layer 107 is 3 μm or more. By setting the thickness, the roughness of the roughened layer 107 improves the adhesion with the insulating substrate 101, and the electrical contact with the conductive material 106 filled in the through-hole 105 formed in the insulating substrate 101 is achieved. Connection can be made more reliable. In particular, by setting the thickness to 3 μm or more, high reliability can be ensured without impairing the electrical connection even if stress due to expansion or contraction of the insulating substrate 101 occurs.

図1(b)に示すように図1(a)に示す回路基板の配線パターン112の間に絶縁部材113を充填して配線パターン112の表面とほぼ同一とした構成となっている。この構成により配線パターン112の間に絶縁性基板101とは別の絶縁部材113を充填し、配線パターン112の表面と絶縁部材113の表面とがほぼ同一面を成すことによって配線パターン112は絶縁部材113に埋め込まれ表面だけが露出しているので外的機械応力による変形や倒れを無くすることができ、絶縁性基板101の絶縁部材113の量には微妙な調整が不要であり、金属酸化物の微粒子を混入するなどして膨張係数を配線パターン112に近づけて温度による応力を緩和および熱伝導を良くして放熱効率を向上させるなどの調整も可能であり、部品や半導体を突起状電極すなわちバンプによって実装する場合においても多少の位置ずれが生じても押さえ付けによるずれが無く十分な接続を得ることができる。   As shown in FIG. 1B, the insulating member 113 is filled between the wiring patterns 112 of the circuit board shown in FIG. With this configuration, an insulating member 113 different from the insulating substrate 101 is filled between the wiring patterns 112, and the surface of the wiring pattern 112 and the surface of the insulating member 113 are substantially flush with each other so that the wiring pattern 112 is an insulating member. 113, since only the surface is exposed, deformation and collapse due to external mechanical stress can be eliminated, and the amount of the insulating member 113 of the insulating substrate 101 does not need to be finely adjusted. It is possible to adjust the expansion coefficient close to the wiring pattern 112 by mixing fine particles, etc., to relieve stress due to temperature and improve heat conduction to improve heat dissipation efficiency. Even in the case of mounting by bumps, even if some positional deviation occurs, there is no deviation due to pressing, and a sufficient connection can be obtained.

図2〜図10は本発明の実施の形態1における回路基板の製造方法を示す摸式断面図である。   2 to 10 are schematic cross-sectional views illustrating a method for manufacturing a circuit board according to Embodiment 1 of the present invention.

図2に示すようにアラミド樹脂やガラス等の絶縁性繊維として、例えばガラス繊維を縦糸と横糸として布状に織ったいわゆるガラスクロス(ガラス織布)103に樹脂としてエポキシ樹脂を含浸させ、さらにガラスクロス103の両面に厚さ例えば5〜20μm程度のエポキシ層104を形成した絶縁性基板101に炭酸ガスレーザー等の光学的手法やドリル等の機械的手法によって貫通孔105を形成する。ここでガラスクロス103の場合、縦方向や横方向の温度等による寸法変化がガラス繊維の物性値すなわち熱膨張係数などで決まるため寸法変化に対するパターンの位置設計や別のパターンとの位置合わせが容易である。   As shown in FIG. 2, as an insulating fiber such as an aramid resin or glass, for example, a so-called glass cloth (glass woven fabric) 103 in which glass fibers are woven in a warp shape as warps and wefts is impregnated with an epoxy resin as a resin, and further glass A through hole 105 is formed in an insulating substrate 101 having an epoxy layer 104 having a thickness of, for example, about 5 to 20 μm formed on both surfaces of the cloth 103 by an optical method such as a carbon dioxide laser or a mechanical method such as a drill. Here, in the case of the glass cloth 103, the dimensional change due to the temperature in the vertical direction or the horizontal direction is determined by the physical property value of the glass fiber, that is, the thermal expansion coefficient. It is.

次に、図3に示すように貫通孔105に1〜50μmの銅粒子を樹脂に30〜80容量%混入した導電性材料106すなわち導電性ペーストを印刷やノズルからの噴射などによって充填する。   Next, as shown in FIG. 3, the through hole 105 is filled with a conductive material 106 in which 1 to 50 μm of copper particles are mixed in a resin by 30 to 80% by volume, that is, a conductive paste, by printing or spraying from a nozzle.

ここで、エポキシ層104に1〜100μm程度のガラスやアルミナ等の絶縁性粒子を30〜90容量%混入すれば貫通孔105に充填された導電性材料106の銅粒子が後工程でのプレスによる圧力によってエポキシ層104に流出するのを防止する効果が得られる。   Here, if 30 to 90% by volume of insulating particles such as glass or alumina of about 1 to 100 μm are mixed in the epoxy layer 104, the copper particles of the conductive material 106 filled in the through holes 105 are pressed by a subsequent process. The effect of preventing the pressure from flowing into the epoxy layer 104 is obtained.

また、絶縁性基板101として絶縁性繊維を布状に織った織布の代わりにアラミド樹脂繊維を紙状にしたいわゆる不織布にエポキシを含浸させたものであればプレスによる圧力でアラミド繊維の不織布が圧縮により縮むので導電性材料106がより強く圧縮されるため銅粒子の接触が改善され低抵抗の接続が得られる。   In addition, if the so-called non-woven fabric in which the aramid resin fibers are made into a paper shape is impregnated with epoxy instead of the woven fabric in which the insulating fibers are woven in the form of cloth as the insulating substrate 101, the non-woven fabric of aramid fibers is pressed by the pressure of the press. Since the conductive material 106 is compressed more strongly because of the compression, the contact of the copper particles is improved, and a low resistance connection is obtained.

さらに、貫通孔105の周辺が密集するアラミド繊維で覆われているため貫通孔105に充填された導電性材料106の銅粒子が流れ出すのを防止して貫通孔105の両面の導電性層108と導電性材料106との電気的接続やその信頼性を良好なものとすることができる。尚、絶縁性基板101としてポリイミドや液晶ポリマーなどのフィルムであれば厚さが70μm以下の薄い基板とすることも可能で、YAGレーザーによって容易に貫通孔105の形成も可能である。   Further, since the periphery of the through hole 105 is covered with dense aramid fibers, the copper particles of the conductive material 106 filled in the through hole 105 are prevented from flowing out, and the conductive layers 108 on both sides of the through hole 105 The electrical connection with the conductive material 106 and its reliability can be improved. Note that if the insulating substrate 101 is a film of polyimide, liquid crystal polymer, or the like, it can be a thin substrate having a thickness of 70 μm or less, and the through hole 105 can be easily formed by a YAG laser.

一方、別の工程で図4に示すように金属基板109として厚さ20〜100μmとして例えばアルミニュウムの表面に鉄や亜鉛もしくはパラジュウムなどの銅めっきの形成のため中間層を形成して厚さ5μm以下の薄い2μm程度の厚さで導電性層108の銅を電気めっきで形成し、電流密度を極端に大きくして異常めっきを応用した粗化層107を形成し、導電性層108を有する金属基板109を形成する。この異常めっきによる粗化層107は微細な銅の粒子が多数付着して形成される。   On the other hand, as shown in FIG. 4, the metal substrate 109 has a thickness of 20 to 100 μm in another process, for example, an intermediate layer is formed on the surface of aluminum to form a copper plating such as iron, zinc or palladium, and the thickness is 5 μm or less. A metal substrate having a conductive layer 108, in which copper of the conductive layer 108 is formed by electroplating with a thin thickness of about 2 μm, a current density is extremely increased, and a roughened layer 107 is applied to which abnormal plating is applied. 109 is formed. The roughened layer 107 by the abnormal plating is formed by adhering many fine copper particles.

ここで、導電性層108は所定パターンを電気めっきで形成する際の導電路としての厚さがあれば良く5μm程度以下で良い。また所定パターンを電気めっきで形成してエッチングによる除去を考慮すれば薄い方が良く、厚さ2μm程度が適当である。またアルミニュウムは銅との選択エッチング、例えば塩酸によってアルミニュウムはエッチングできるが銅は侵されない。しかし過硫酸アンモニュウムや過硫酸ナトリュウムまたは硫酸と過酸化水素の混合液では反対に銅はエッチングできるがアルミニュウムは侵されない。またエッチング速度は1/3以下と非常に遅いものである。このことはエッチング液の選択によって所望の材料のみを選択的にエッチングしたり、銅をエッチングしてアルミニュウムが露出すれば自動的に進行を止めることができるものである。   Here, the conductive layer 108 may have a thickness as a conductive path when a predetermined pattern is formed by electroplating, and may be about 5 μm or less. If the predetermined pattern is formed by electroplating and the removal by etching is taken into consideration, the thinner one is better, and a thickness of about 2 μm is appropriate. Aluminum can be selectively etched with copper, for example, aluminum can be etched with hydrochloric acid, but copper is not attacked. However, with ammonium persulfate, sodium persulfate, or a mixture of sulfuric acid and hydrogen peroxide, copper can be etched, but aluminum is not attacked. Further, the etching rate is very slow as 1/3 or less. This means that only a desired material can be selectively etched by selecting an etching solution, or the progress can be automatically stopped if aluminum is exposed by etching copper.

次に、図5に示すように貫通孔105に導電性材料106を充填した絶縁性基板101の両面に金属基板109としてのアルミニュウム表面に導電性層108と粗化層107をそれぞれめっき形成した金属基板109を例えば真空熱プレスによって接着する。この真空熱プレスの真空によって接着界面に空気やガスなどの残留を防止することができる。なお真空熱プレスの際の温度は100〜260℃で、再度真空熱プレスする場合はエポキシ樹脂のガラス転移温度より低い温度120℃程度で、真空熱プレスを行わず完全にエポキシ樹脂を硬化させる場合にはガラス転移温度より高い240℃程度とする。   Next, as shown in FIG. 5, a metal in which a conductive layer 108 and a roughened layer 107 are formed by plating on both surfaces of an insulating substrate 101 in which a through hole 105 is filled with a conductive material 106 on an aluminum surface as a metal substrate 109, respectively. The substrate 109 is bonded by, for example, vacuum hot pressing. The vacuum of this vacuum hot press can prevent air or gas from remaining on the bonding interface. The temperature at the time of vacuum hot pressing is 100 to 260 ° C. When the vacuum hot pressing is performed again, the temperature is about 120 ° C. lower than the glass transition temperature of the epoxy resin, and the epoxy resin is completely cured without performing vacuum hot pressing. Is about 240 ° C., which is higher than the glass transition temperature.

ここで、真空熱プレスによって貫通孔105に充填された導電性材料106が圧縮され導電性材料106の導通抵抗を小さくすると共に粗化層107の凹凸によって導電性材料106との接触面積を大きくして電気的な接続抵抗を小さくするばかりでなく、エポキシ層104に食い込んで引き剥がし強度を大きくすることができる。またこのような構造とすることで通常の貫通孔105に電気めっきによって同程度の導通を得る方法に比べて全層IVH構造を可能とし内層のどこにでも層間導通を可能とし外層に至っては部品実装場所を自由に選択することができる。しかしながら貫通孔105に充填された導電性材料106は銅などの金属粒子を樹脂に混入しており、この混入比率と圧縮率が重要であり、この比率によっては接続の信頼性を低下させることがある。当然エポキシ層104の厚さとしてのエポキシ樹脂量も重要である。これらに均一に圧力がかかる場合にはバランスが保たれるが、配線パターンなど突起があれば均一に圧力がかからなくなり、樹脂およびエポキシ樹脂の流動により、接続不良や信頼性の低下や接着不良が発生する。アルミニュウムを選択的にエッチングし、銅を侵さないエッチング液として例えば20〜70容量%の塩酸や数%〜50重量%の水酸化ナトリュウムの30℃以上の加温液によってアルミニュウムのみをエッチングすることで、図6に示すように導電性層108を露出させる。さらに必要に応じて0.5μm以下のほんの少し銅をエッチングすることで鉄や亜鉛もしくはパラジュウムなどの銅めっき形成のための中間層を除去するが、ほとんどこれら中間層はアルミニュウムと共に除去される。この時基板表面は導電性層108である銅で全面覆われているため全面に導電性層108の銅が露出するもので、銅がパターンで形成されていた従来の方法のように銅のパターン周辺に溝が形成されることは無い。   Here, the conductive material 106 filled in the through-hole 105 is compressed by vacuum hot pressing to reduce the conductive resistance of the conductive material 106 and increase the contact area with the conductive material 106 by the unevenness of the roughened layer 107. In addition to reducing the electrical connection resistance, it is possible to increase the peeling strength by biting into the epoxy layer 104. Also, with this structure, an all-layer IVH structure is possible as compared with a method of obtaining the same degree of conduction in the normal through-hole 105 by electroplating, and interlayer conduction is possible anywhere in the inner layer. The place can be freely selected. However, the conductive material 106 filled in the through hole 105 contains metal particles such as copper mixed in the resin, and the mixing ratio and the compression ratio are important. Depending on this ratio, the reliability of the connection may be lowered. is there. Of course, the amount of the epoxy resin as the thickness of the epoxy layer 104 is also important. If pressure is applied uniformly to these, the balance is maintained, but if there is a protrusion such as a wiring pattern, pressure will not be applied uniformly, and the flow of resin and epoxy resin will cause poor connection, poor reliability, and poor adhesion Will occur. By selectively etching aluminum and etching only aluminum with an etching solution that does not attack copper, such as 20 to 70% by volume hydrochloric acid or several to 50% by weight sodium hydroxide at 30 ° C. or higher. As shown in FIG. 6, the conductive layer 108 is exposed. Further, if necessary, an intermediate layer for forming a copper plating such as iron, zinc or palladium is removed by etching a little copper of 0.5 μm or less, but these intermediate layers are almost removed together with aluminum. At this time, since the surface of the substrate is entirely covered with copper which is the conductive layer 108, the copper of the conductive layer 108 is exposed on the entire surface, and the copper pattern is formed as in the conventional method in which copper is formed in a pattern. No groove is formed around the periphery.

次に、図7に示すように露出した導電性層108の表面に絶縁性樹脂パターンとして感光性樹脂110によるパターン形成を行い、所定パターンの導電性層108の表面を再度露出させる。この感光性樹脂110によるパターンは例えばドライフィルムレジストを加熱圧着すなわちラミネートしたり液状レジストをスピンコートやロールコートなどで塗布して形成し、所定パターンの導電性層108の表面をマスクによる露光を行い現像することによって容易に形成することができる。この感光性樹脂110によるパターンは1μm以下の誤差でマスクとほとんど同じ寸法に形成することが可能で、露光により感光性材料110が現像で除去されるポジタイプであれば厚さ15μmでも5μm程度の解像度が得られる。   Next, as shown in FIG. 7, patterning is performed with the photosensitive resin 110 as an insulating resin pattern on the exposed surface of the conductive layer 108, and the surface of the conductive layer 108 having a predetermined pattern is exposed again. The pattern made of the photosensitive resin 110 is formed, for example, by hot-pressing or laminating a dry film resist or applying a liquid resist by spin coating or roll coating, and exposing the surface of the conductive layer 108 having a predetermined pattern with a mask. It can be easily formed by development. The pattern made of the photosensitive resin 110 can be formed in almost the same dimension as the mask with an error of 1 μm or less, and a resolution of about 5 μm even if the thickness is 15 μm if the photosensitive material 110 is removed by development by exposure. Is obtained.

次に、図8に示すように導電性層108からの通電による金属例えば銅の電気めっきで導電層111を形成する。この導電層111の銅の電気めっきは電流密度が10A/dm2以下のめっき焼けなど異常めっきが起こらない例えば2A/dm2で、めっき表面を光沢にするための光沢剤を添加した光沢めっきによればめっきパターンの異なる寸法や10μm程度の微細な領域にもほぼ均一に形成することができる。 Next, as shown in FIG. 8, a conductive layer 111 is formed by electroplating a metal such as copper by energization from the conductive layer 108. The electroplating of copper of the conductive layer 111 is, for example, 2 A / dm 2 where abnormal plating does not occur, such as plating burn with a current density of 10 A / dm 2 or less, and is bright plating with a brightening agent added to brighten the plating surface. Therefore, it can be formed substantially uniformly even in different dimensions of the plating pattern and in a fine region of about 10 μm.

ここで、光沢剤によってめっきの成長が縦方向でなく横方向に大きくなるため均一に成長ができ、導電性層108とは結晶粒の大きさや方向が異なる。   Here, the growth of the plating is increased in the horizontal direction instead of the vertical direction by the brightener, so that the growth can be performed uniformly, and the size and direction of the crystal grains are different from those of the conductive layer 108.

また、電気めっきでは導電性層108の露出した部分にのみ選択的に形成され、感光性樹脂110によるパターン寸法通りに形成されるもので所望パターンで寸法が高精度に形成できる。   Moreover, in electroplating, it is selectively formed only on the exposed portion of the conductive layer 108, and is formed according to the pattern dimensions of the photosensitive resin 110, so that the dimensions can be formed with a desired pattern with high accuracy.

次に、図9に示すように感光性樹脂110を例えば濃度3%の水酸化ナトリュウムで除去すれば銅は全く侵されずに感光性樹脂110で被覆されていた導電性層108の表面だけを露出させることができる。   Next, as shown in FIG. 9, if the photosensitive resin 110 is removed with, for example, 3% sodium hydroxide, copper is not attacked at all, and only the surface of the conductive layer 108 covered with the photosensitive resin 110 is covered. Can be exposed.

そして、図10に示すように露出した導電性層108をエッチングにより除去する。このエッチングには塩化アンモニュウムとアンモニア錯塩の混合液や硫酸と過酸化水素の混合液などが電気めっきにより形成した導電層111と露出した導電性層108との結晶組識の大きさや方向の違いなどによる選択性が良くなるために用いられ、特に硫酸が10%以下例えば4%と過酸化水素が5%以下例えば2%と水とを主成分とする混合液であればエッチングの選択性は向上する。なお導電層111は電気めっきの後結晶化が安定して粒になるまで2時間程度以上要するため、めっき形成後少なくとも2時間以上経過してエッチングする方が好ましい。この時間を短縮させるためには例えば50℃以上で10分以上の熱処理を行っても良い。   Then, as shown in FIG. 10, the exposed conductive layer 108 is removed by etching. In this etching, a mixed liquid of ammonium chloride and ammonia complex salt, a mixed liquid of sulfuric acid and hydrogen peroxide, or the like is different in the size and direction of crystal structure between the conductive layer 111 formed by electroplating and the exposed conductive layer 108. This is used to improve the selectivity by etching. Especially, the selectivity of etching is improved if the mixture is composed mainly of 10% or less of sulfuric acid, for example, 4%, 5% or less of hydrogen peroxide, for example, 2%, and water. To do. Note that the conductive layer 111 is preferably etched after at least 2 hours or more after the formation of the plating because it takes about 2 hours or more until the crystallization is stably formed into grains after electroplating. In order to shorten this time, for example, heat treatment may be performed at 50 ° C. or more for 10 minutes or more.

以上説明した実施の形態1において絶縁性基板101と導電性層108の密着は微細な銅の粒子が多数付着した形状に形成された粗化層107が食い込み。アンカー効果によって強固なものとなっている。粗化層107と導電性層108および第2の導電層111で構成される配線パターン112も導電層111すなわち感光性樹脂110で決められた微細で且つ高精度に電気めっきで形成され、導電性層108のエッチングにおいてもその厚さが2μm程度と薄いため配線パターン112に影響がなく、高精度で微細な配線パターン112が形成できるという効果を有する。   In the first embodiment described above, the roughened layer 107 formed in a shape in which a large number of fine copper particles are adhered to bite into the insulating substrate 101 and the conductive layer 108. Strong due to the anchor effect. The wiring pattern 112 composed of the roughened layer 107, the conductive layer 108, and the second conductive layer 111 is also formed by electroplating with a fine and high precision determined by the conductive layer 111, that is, the photosensitive resin 110, and is conductive. The etching of the layer 108 is also as thin as about 2 μm, so that there is no effect on the wiring pattern 112, and the fine wiring pattern 112 can be formed with high accuracy.

なお、導電層111表面にさらに鉛と錫の合金であるはんだや錫を1μmの厚さ電気めっきや蒸着やスパッタリングで被着形成して導電性層108をエッチングすれば配線パターン112を残すことが可能であり、はんだや錫は硝酸のエッチング液によって銅を侵さず容易に選択的に除去することができる。   If the surface of the conductive layer 111 is further coated with solder or tin, which is an alloy of lead and tin, with a thickness of 1 μm by electroplating, vapor deposition or sputtering, and the conductive layer 108 is etched, the wiring pattern 112 may be left. The solder and tin can be easily and selectively removed without damaging the copper by the nitric acid etchant.

(実施の形態2)
図11〜図13は本発明の実施の形態2における回路基板の製造方法を示す摸式断面図である。
(Embodiment 2)
11 to 13 are schematic cross-sectional views showing a method for manufacturing a circuit board according to Embodiment 2 of the present invention.

実施の形態1における図10に示す導電層111を形成し感光性樹脂110を除去してさらに導電性層108と粗化層107とで構成される導電性層108をエッチングにより除去して形成された回路基板を図11に示すように導電性層208と粗化層207とで構成される導電性層208とさらにその表面に電気めっきで形成された導電層211による配線パターン212をエポキシ層204に埋め込む。この埋め込みは金属基板102を接着する真空熱プレスの際の温度がエポキシ樹脂のガラス転移温度より低い例えば120℃程度で行って配線パターン212を形成し、再度真空熱プレスすることでガラス転移点以下の温度で未硬化であったエポキシ層204が溶融状態になり埋め込むことができる。この時の温度がエポキシ樹脂のガラス転移点以上の例えば230℃であればエポキシである絶縁性基板の樹脂を硬化することができる。これにより配線パターン212が硬化されたエポキシ層204に埋め込まれているため、配線パターン212が微細であっても引き剥がし強度が向上する。   The conductive layer 111 shown in FIG. 10 in Embodiment Mode 1 is formed, the photosensitive resin 110 is removed, and the conductive layer 108 including the conductive layer 108 and the roughened layer 107 is removed by etching. As shown in FIG. 11, a wiring pattern 212 made of a conductive layer 208 composed of a conductive layer 208 and a roughening layer 207 and a conductive layer 211 formed by electroplating on the surface of the circuit board as shown in FIG. Embed in. This embedding is performed at a temperature at the time of vacuum hot pressing for bonding the metal substrate 102 at a temperature lower than the glass transition temperature of the epoxy resin, for example, about 120 ° C. to form the wiring pattern 212, and again by vacuum hot pressing to be below the glass transition point. The epoxy layer 204 uncured at the temperature becomes molten and can be embedded. If the temperature at this time is, for example, 230 ° C. higher than the glass transition point of the epoxy resin, the resin of the insulating substrate that is epoxy can be cured. Thereby, since the wiring pattern 212 is embedded in the cured epoxy layer 204, the peeling strength is improved even if the wiring pattern 212 is fine.

さらに、配線パターン212に横方向の応力が加わっても、配線パターン212の側面の硬化されたエポキシ樹脂204によって補強されているため配線パターン212の変形や倒れを防止することができる。また配線パターン212のエポキシ層204への埋め込みは図12に示すように配線パターン212の間に別の絶縁部材213として例えばエポキシ樹脂にアルミナ微粒子を20〜80容量%混入した樹脂を充填することによっても可能である。この充填は液状のアルミナ混入のエポキシ樹脂を回転塗布や液状のアルミナ混入のエポキシ樹脂を塗布してスキージーで掻き取る印刷法や液状のアルミナ混入のエポキシ樹脂層に浸漬して後表面をスキージーで掻き取るなどして充填することができる。ここでアルミナはエポキシに比べて熱伝導が良く膨張係数も銅に近いため、実装した半導体や銅配線からの発熱を周辺に良く伝導することで放熱効果が向上すると共に温度の変化による膨張収縮を銅と近づけることにより配線パターンへの応力を小さくすることで微細な配線の断線などを防止することができる。   Further, even if a lateral stress is applied to the wiring pattern 212, the wiring pattern 212 can be prevented from being deformed or collapsed because the wiring pattern 212 is reinforced by the cured epoxy resin 204 on the side surface. Further, as shown in FIG. 12, the wiring pattern 212 is embedded in the epoxy layer 204 by filling a resin in which 20 to 80% by volume of alumina fine particles are mixed in an epoxy resin as another insulating member 213 between the wiring patterns 212. Is also possible. This filling can be done by rotating the epoxy resin mixed with liquid alumina or by applying the liquid alumina mixed epoxy resin and scraping it with a squeegee, or immersing it in the epoxy resin layer mixed with liquid alumina and scraping the surface with a squeegee. It can be filled by taking. Here, alumina has better thermal conductivity than copper and has a coefficient of expansion close to that of copper, so heat conduction from the mounted semiconductor and copper wiring is well conducted to the periphery, improving the heat dissipation effect and expanding / shrinking due to temperature changes. By reducing the stress on the wiring pattern by bringing it closer to copper, it is possible to prevent disconnection of fine wiring.

すなわち絶縁性基板201と特性の異なる絶縁部材213を用いることができる。そしてこのエポキシ樹脂を加熱して硬化する。この加熱を真空状態下で行えば充填した絶縁部材213としてのエポキシ層に気泡の混入が防止できる。これによって配線パターン212を埋め込むことができ、配線パターン212が微細であっても引き剥がし強度が強化されている。さらに配線パターン212に横方向の応力が加わっても配線パターン212の側面の硬化されたエポキシ樹脂204によって補強されているため配線パターン212の変形や倒れを防止することができる。   That is, the insulating member 213 having characteristics different from those of the insulating substrate 201 can be used. And this epoxy resin is heated and hardened. If this heating is performed under a vacuum state, bubbles can be prevented from being mixed into the epoxy layer as the filled insulating member 213. Thus, the wiring pattern 212 can be embedded, and the peeling strength is enhanced even if the wiring pattern 212 is fine. Further, even if a lateral stress is applied to the wiring pattern 212, the wiring pattern 212 is reinforced by the cured epoxy resin 204 on the side surface of the wiring pattern 212.

ここで、配線パターン212の倒れは配線パターン212の厚さに比べて埋め込み量が少ない場合には効果が少なく、導電性層208および導電層211で構成される配線パターン212の厚さの1/4以上の埋め込みがあれば配線パターン212の変形や倒れを防止できる。そして、導電性層208、導電層211で構成される配線パターン212の変形や倒れは配線パターン212の厚さに比べて幅が小さい程起こりやすく、微細な配線パターン212ほど配線パターン212の高さに対して配線パターン212のエポキシ層204との接着面積が小さく変形や倒れが起こりやすい。従って微細な配線パターン212で埋め込む必要があり、少なくとも導電性層208、導電層211で構成される配線パターン212の厚さの10倍以下のパターン幅の微細な部分に適用することによって、回路基板間のこすれ合いや他のものとの接触による横方向の応力に対して補強効果が大きく、回路基板における配線パターン212の変形や倒れを防止することができる。   Here, the collapse of the wiring pattern 212 is less effective when the embedding amount is smaller than the thickness of the wiring pattern 212, and is 1 / th of the thickness of the wiring pattern 212 composed of the conductive layer 208 and the conductive layer 211. If there are four or more embeddings, the deformation and collapse of the wiring pattern 212 can be prevented. The deformation or collapse of the wiring pattern 212 composed of the conductive layer 208 and the conductive layer 211 is more likely to occur as the width is smaller than the thickness of the wiring pattern 212, and the height of the wiring pattern 212 increases as the wiring pattern 212 becomes finer. On the other hand, the adhesion area of the wiring pattern 212 to the epoxy layer 204 is small, and deformation and collapse are likely to occur. Therefore, it is necessary to embed in the fine wiring pattern 212, and the circuit board is applied by applying to a fine portion having a pattern width of 10 times or less the thickness of the wiring pattern 212 composed of at least the conductive layer 208 and the conductive layer 211. The reinforcing effect is great against lateral stress due to rubbing and contact with other objects, and deformation and collapse of the wiring pattern 212 on the circuit board can be prevented.

また、配線パターン212の間に別の絶縁部材213として例えばエポキシ樹脂にアルミナ粒子を20〜80容量%混入した樹脂を配線パターン212の表面が埋まる程度に充填して、別の絶縁部材213としてのアルミナ混入のエポキシ樹脂が少なくとも流れてべたついて付かないすなわちタック性が無い程度に硬化し、機械や機械化学的な方法などで研磨することで、図13に示すように配線パターン212の表面が露出した平坦な表面とすることができ、必要によって硬化を行う。これによって実装した半導体や銅配線からの発熱を周辺に良く伝導することで放熱効果が向上すると共に温度変化による膨張収縮を銅と近づけることにより配線パターン212への応力を小さくすることができ、微細な配線の断線などを防止することができる。   Further, as another insulating member 213 between the wiring patterns 212, for example, a resin in which 20 to 80% by volume of alumina particles are mixed in an epoxy resin is filled to such an extent that the surface of the wiring pattern 212 is filled. The surface of the wiring pattern 212 is exposed as shown in FIG. 13 by curing the epoxy resin mixed with alumina at least so that it is not sticky by sticking, that is, hardened to the extent that there is no tackiness, and polished by a mechanical or mechanochemical method. And can be cured, if necessary. As a result, the heat generated from the mounted semiconductor and copper wiring is well conducted to the periphery, so that the heat dissipation effect is improved and the stress on the wiring pattern 212 can be reduced by bringing the expansion and contraction due to temperature changes closer to copper. It is possible to prevent disconnection of the wiring.

すなわち絶縁性基板201と特性の異なる絶縁部材213を用いることができる。また配線パターン212は平坦面に埋め込まれているため外的な機械的応力がかかることが無く、配線パターン212の変形や倒れが起こらない。さらに配線パターン212へのバンプによる部品や半導体の実装に対して、配線パターン212が突起状になっている場合、位置ずれにより加圧時の横ずれや変形や倒れが起こることが無く、高い歩留まりの実装が可能となる。なお実施の形態1における図10に示す導電層111を形成して導電層111の表面にフッ素系や炭化水素系やシリコン系の皮膜を被着して感光性樹脂110を除去することによって導電層111の表面を撥水性とし、配線パターン212の間に別の樹脂213としてアルミナを混入したエポキシ樹脂を配線パターン212の表面が埋まる程度に充填して配線パターン212表面に別の絶縁部材213としてのエポキシ樹脂がはじかれ付着することが防止でき、余分な別の絶縁部材213としてのアルミナを混入したエポキシ樹脂を掻き取るだけで比較的容易に配線パターン212の表面が露出した平坦な表面とすることができる。   That is, the insulating member 213 having characteristics different from those of the insulating substrate 201 can be used. Further, since the wiring pattern 212 is embedded in a flat surface, no external mechanical stress is applied, and the wiring pattern 212 is not deformed or collapsed. Further, when the wiring pattern 212 has a protrusion shape with respect to the mounting of components or semiconductors by bumps on the wiring pattern 212, there is no lateral shift, deformation, or collapse during pressurization due to misalignment, and high yield is achieved. Implementation is possible. Note that the conductive layer 111 shown in FIG. 10 in Embodiment Mode 1 is formed, and a fluorine-based, hydrocarbon-based, or silicon-based film is deposited on the surface of the conductive layer 111 to remove the photosensitive resin 110, thereby removing the conductive layer 110. The surface of 111 is made water-repellent, and an epoxy resin mixed with alumina as another resin 213 between the wiring patterns 212 is filled to the extent that the surface of the wiring pattern 212 is filled, and the surface of the wiring pattern 212 is used as another insulating member 213. The epoxy resin can be prevented from being repelled and adhered, and the surface of the wiring pattern 212 can be relatively easily exposed by simply scraping off the epoxy resin mixed with alumina as another extra insulating member 213. Can do.

なお、実施の形態2において金属材料や樹脂材料は特にこれを限定するものではない。   In the second embodiment, the metal material and the resin material are not particularly limited.

(実施の形態3)
図14〜図20は本発明の実施の形態3における回路基板の製造方法を示す摸式断面図である。
(Embodiment 3)
14 to 20 are schematic sectional views showing a circuit board manufacturing method according to the third embodiment of the present invention.

図14に示すように厚さ20〜100μmの金属基板として例えばアルミニュウムの表面に厚さ3μm程度以下の薄い例えば1μmの導電性層314を形成する金属基板309を形成し、導電性層314の表面に感光性樹脂として例えば厚さ15μm程度のドライフィルムレジストを加圧接着したりポジタイプの液状レジストを回転塗布によって厚さ15μmで被着形成した後マスクによる選択露光し現像することによって所定の配線パターンと逆の感光性樹脂パターン310を形成する。この導電性層314はアルミニュウム309とエッチング液が異なることにより選択エッチングが可能な例えば銅ニッケルやクロムなどをめっきやスパッタリングや電子ビームなどの蒸着法によって形成する。ここで、蒸着法であれば比較的薄い1μm以下を基板内の厚さばらつきが0.01μm程度で非常に均一に容易に被着形成が可能である。   As shown in FIG. 14, a metal substrate 309 is formed as a metal substrate having a thickness of 20 μm to 100 μm, for example, a thin conductive layer 314 having a thickness of about 1 μm or less on the surface of, for example, aluminum, and the surface of the conductive layer 314 is formed. For example, a dry film resist having a thickness of about 15 μm is pressure-bonded as a photosensitive resin, or a positive type liquid resist is deposited by spin coating to a thickness of 15 μm, and then selectively exposed and developed with a mask to develop a predetermined wiring pattern. The opposite photosensitive resin pattern 310 is formed. The conductive layer 314 is formed by depositing, for example, copper nickel or chromium, which can be selectively etched by using an etching solution different from that of the aluminum 309, such as plating, sputtering, or electron beam. Here, in the case of the vapor deposition method, a relatively thin film having a thickness of 1 μm or less can be easily and very easily formed with a thickness variation within the substrate of about 0.01 μm.

導電性層314の材料として例えば銅であれば後の工程における電気めっきを行う際に電気抵抗が小さく均一なめっきを行うことができる。また感光性樹脂の現像にはドライフィルムレジストには1%程度の炭酸ナトリュウムが、ポジタイプの液状レジストであれば1%程度の水酸化ナトリュウムが用いられ、アルミニュウム309は酸性でもアルカリにでも腐食されやすい両性金属で前記現像液に腐食され微細なパターンの感光性樹脂がアルミニュウム309の界面から剥離することもあるが導電性層314が銅であるために現像液に腐食されることも無く微細なパターン形成が可能である。感光性樹脂パターン310の除去に用いる水酸化ナトリュウム溶液によって腐食されることも無く、さらにアルミニュウム309のエッチング除去における塩酸にも腐食されない。   If the material of the conductive layer 314 is, for example, copper, it is possible to perform uniform plating with low electrical resistance when performing electroplating in a later step. For developing the photosensitive resin, about 1% sodium carbonate is used for the dry film resist, and about 1% sodium hydroxide is used for the positive type liquid resist, and the aluminum 309 is easily corroded by acid or alkali. The amphoteric metal is corroded by the developer and the fine pattern of the photosensitive resin may be peeled off from the interface of the aluminum 309. However, since the conductive layer 314 is copper, the fine pattern is not corroded by the developer. Formation is possible. It is not corroded by the sodium hydroxide solution used for removing the photosensitive resin pattern 310, and is not corroded by hydrochloric acid in etching removal of the aluminum 309.

次に図15に示すように硫酸銅溶液で電流密度が例えば2A/dm2程度で銅の配線パターンとなる導電層308を形成する。ここで導電層308のめっきに用いる硫酸銅溶液に光沢剤を添加することによって感光性樹脂310の間隔の微細なパターン部分にでも容易に、大きな間隔の部分でも同様な厚さで形成することが可能である。そしてさらに導電層308の表面に電流密度を極端に大きくして異常めっきを応用した粗化層307を形成し、導電性層314を有する金属基板309を形成する。この異常めっきによる粗化層307は微細な銅の粒子が多数付着して形成されるが条件や溶液の管理が困難であるため、別な方法として硫酸と過酸化水素を主体としてエッチング阻止剤を添加した粗化液でエッチングすることによって微細な凹凸を図16に示す如く形成することができる。この表面の粗化は後の工程で絶縁性基板に熱プレスによって接着した際に剥離強度を高めるばかりでなく絶縁性基板に形成された貫通孔に充填された導電性材料との接触面積を多くできるために電気的接続を小さく、安定にすることで高い信頼性を得ることができるものである。 Next, as shown in FIG. 15, a conductive layer 308 is formed with a copper sulfate solution and a current density of, for example, about 2 A / dm 2 to be a copper wiring pattern. Here, by adding a brightening agent to the copper sulfate solution used for plating of the conductive layer 308, the photosensitive resin 310 can be easily formed even in a fine pattern portion with a gap, and a large gap portion can be formed with the same thickness. Is possible. Further, a roughened layer 307 is formed on the surface of the conductive layer 308 by applying an abnormal plating by extremely increasing the current density, and a metal substrate 309 having the conductive layer 314 is formed. The roughened layer 307 formed by abnormal plating is formed by adhering a large number of fine copper particles, but it is difficult to manage conditions and solutions. Therefore, as another method, an etching inhibitor mainly composed of sulfuric acid and hydrogen peroxide is used. By etching with the added roughening solution, fine irregularities can be formed as shown in FIG. This roughening of the surface not only increases the peel strength when bonded to the insulating substrate in a later step by hot pressing, but also increases the contact area with the conductive material filled in the through holes formed in the insulating substrate. Therefore, high reliability can be obtained by making the electrical connection small and stable.

そして、図17に示す如く感光性樹脂310を除去することによって、金属基板309のアルミニュウム表面に形成した銅の導電性層314とその表面に電気めっき形成した導電層308の銅の配線パターンによって構成される転写基板302を形成する。さらに感光性樹脂310を除去した後に導電層308の銅配線パターンをマスクとして導電性層314をエッチングして金属基板309のアルミニュウムを露出する。   Then, by removing the photosensitive resin 310 as shown in FIG. 17, the copper conductive pattern 314 formed on the aluminum surface of the metal substrate 309 and the copper wiring pattern of the conductive layer 308 formed by electroplating on the surface are formed. A transfer substrate 302 to be formed is formed. Further, after removing the photosensitive resin 310, the conductive layer 314 is etched using the copper wiring pattern of the conductive layer 308 as a mask to expose aluminum of the metal substrate 309.

ここで、導電性層314が薄く非常に均一性の高いものであるため、エッチング液のエッチング速度すなわちエッチング液の濃度や組成を適切にすることによってエッチングが制御性良くほとんど導電性層314のみのエッチングも可能である。尚、感光性樹脂310を除去した後に、さらに前述の異常電気めっきすることによって特に銅の導電層308である配線パターン側壁に粒状の凹凸を形成すれば、配線パターンの剥離強度を大きく向上することができる。あるいは導電性層314をエッチングした後に同様に異常めっきすることによって特に銅の導電層308である配線パターン側の壁に粒状の凹凸を形成することも可能である。この金属基板309のアルミニュウムを露出した後に銅の導電層308である配線パターン側壁に粒状の凹凸を形成する方法では導電性層314の厚さが薄いため同じ銅である導電層308の銅配線パターンのエッチングも極少なく形状の変化もほとんど無いことはもちろん導電層308の銅配線パターン側壁を含む表面にのみ粒状の凹凸を形成することができ、後の熱プレス後に金属基板309のアルミニュウムを除去する際に導電層308の銅配線パターン側壁の凹凸によって樹脂との界面に深い溝を生じることが無いものである。尚、粗化には異常な条件での電気めっきの他に前述のエッチングによって凹凸を形成することも可能である、
次に、図18に示すようにガラスクロス303にエポキシ樹脂304を含浸させたガラスエポキシ基板に形成した貫通孔305に導電性材料306を充填したガラスエポキシ基板301の両面に前記形成した金属基板309としてのアルミニュウム表面に導電性層314を形成しさらに導電層308と粗化層307をそれぞれ電気めっき形成した転写基板302を例えば真空熱プレスによって接着する。
Here, since the conductive layer 314 is thin and has a very high uniformity, the etching is controlled with good controllability by adjusting the etching rate of the etching solution, that is, the concentration and composition of the etching solution. Etching is also possible. In addition, if granular irregularities are formed on the wiring pattern side wall, which is the copper conductive layer 308, by removing the photosensitive resin 310 and then performing the above-described abnormal electroplating, the peeling strength of the wiring pattern can be greatly improved. Can do. Alternatively, it is also possible to form granular irregularities on the wall on the wiring pattern side, which is the copper conductive layer 308, by performing abnormal plating similarly after etching the conductive layer 314. In the method of forming granular irregularities on the wiring pattern side wall which is the copper conductive layer 308 after exposing the aluminum of the metal substrate 309, the copper wiring pattern of the conductive layer 308 which is the same copper because the thickness of the conductive layer 314 is thin. It is possible to form granular irregularities only on the surface of the conductive layer 308 including the side wall of the copper wiring pattern, and to remove aluminum from the metal substrate 309 after the subsequent hot pressing. At this time, the groove on the side of the copper wiring pattern of the conductive layer 308 does not cause a deep groove at the interface with the resin. In addition to the electroplating under abnormal conditions for roughening, it is also possible to form irregularities by the aforementioned etching.
Next, as shown in FIG. 18, the metal substrate 309 formed on both surfaces of the glass epoxy substrate 301 in which the through hole 305 formed in the glass epoxy substrate in which the glass cloth 303 is impregnated with the epoxy resin 304 is filled with the conductive material 306 is formed. A transfer substrate 302 having a conductive layer 314 formed on the aluminum surface and further electroplated with the conductive layer 308 and the roughened layer 307 is bonded by, for example, vacuum hot pressing.

この真空熱プレスの真空によって接着界面に空気やガスなどの残留を防止することができる。なお真空熱プレスの際の温度は100〜260℃で、再度真空熱プレスする場合はエポキシ樹脂のガラス転移温度より低い温度120℃程度で、真空熱プレスを行わず完全にエポキシ樹脂を硬化させる場合にはガラス転移温度より高い240℃程度とする。   The vacuum of this vacuum hot press can prevent air or gas from remaining on the bonding interface. The temperature at the time of vacuum hot pressing is 100 to 260 ° C. When the vacuum hot pressing is performed again, the temperature is about 120 ° C. lower than the glass transition temperature of the epoxy resin, and the epoxy resin is completely cured without performing vacuum hot pressing. Is about 240 ° C., which is higher than the glass transition temperature.

ここで、真空熱プレスによって貫通孔305に充填された導電性材料306が圧縮され前述のように導電性材料306の導通抵抗を小さくすると共に粗化層307の凹凸によって導電性材料306との接触面積を大きくして電気的な接続抵抗を小さくするばかりでなく、エポキシ層304に食い込んで引き剥がし強度を大きくすることができる。またこのような構造とすることで通常の貫通孔305にめっきによって同程度の導通を得る方法に比べて全層IVH構造を可能とし内層のどこにでも層間導通を可能とし外層に至っては部品実装場所を自由に選択することができる。貫通孔305に充填された導電性材料306は銅などの金属粒子を樹脂に混入しており、この混入比率と圧縮率が重要である。この比率によっては接続の信頼性を低下させることがある。当然エポキシ層304の厚さとしてのエポキシ樹脂量も重要である。配線パターンが突起となっているために貫通孔305に充填された導電性材料306の圧縮率を高くすることができ接続抵抗を小さくすることができるものの、ガラスエポキシ基板301のエポキシ樹脂の量を適度にすることも重要である。この時に転写基板302は比較的厚く適度な弾力性を有するアルミニュウムの金属基板309があるので全体に均一に圧力がかけられ部分的に異常な大きさの圧力がかかることによる亀裂や樹脂不足などが起こりにくい。   Here, the conductive material 306 filled in the through-holes 305 is compressed by vacuum hot pressing to reduce the conductive resistance of the conductive material 306 as described above, and contact with the conductive material 306 by the unevenness of the roughened layer 307. In addition to reducing the electrical connection resistance by increasing the area, it is possible to increase the peel strength by biting into the epoxy layer 304. Also, with this structure, an all-layer IVH structure is possible compared to a method of obtaining the same degree of conduction by plating in a normal through-hole 305, and interlayer conduction is possible anywhere in the inner layer, and the component mounting place in the outer layer Can be selected freely. The conductive material 306 filled in the through-holes 305 has metal particles such as copper mixed in the resin, and the mixing ratio and compression rate are important. Depending on this ratio, connection reliability may be reduced. Of course, the amount of the epoxy resin as the thickness of the epoxy layer 304 is also important. Since the wiring pattern is a protrusion, the compressibility of the conductive material 306 filled in the through hole 305 can be increased and the connection resistance can be reduced, but the amount of epoxy resin in the glass epoxy substrate 301 can be reduced. It is also important to make it moderate. At this time, since the transfer substrate 302 has an aluminum metal substrate 309 having a relatively thick and appropriate elasticity, there is a crack or resin shortage due to the pressure being applied uniformly to the entire surface and partially applying an abnormal pressure. Hard to happen.

そしてアルミニュウムを選択的にエッチングし、銅を侵さないエッチング液として例えば20〜70容量%の塩酸や数%〜50重量%の水酸化ナトリュウムの30℃以上の加温液によってアルミニュウムのみをエッチングすることで、図19に示すように導電性層314の銅を露出させる。   Then, the aluminum is selectively etched, and only the aluminum is etched with a heating solution of, for example, 20 to 70% by volume hydrochloric acid or several to 50% by weight sodium hydroxide as an etching solution that does not attack copper. Thus, the copper of the conductive layer 314 is exposed as shown in FIG.

次に、図20に示すように露出した導電性層314を硫酸2〜15%、過酸化水素1〜10%の混合水溶液や塩化もしくは塩化銅の水溶液でスプレーエッチングすることによって導電性層314をエッチング除去する。ここで塩化鉄や塩化銅の水溶液は通常の回路基板に用いられているよりもエッチング速度が1/10程度となる濃度とする。これによって導電性層314が3μm以下の極薄いものであり且つ厚さが均一に形成されているために制御性良く導電性層314のみエッチング除去することができる。   Next, as shown in FIG. 20, the exposed conductive layer 314 is spray-etched with a mixed aqueous solution of 2 to 15% sulfuric acid and 1 to 10% hydrogen peroxide or an aqueous solution of chloride or copper chloride to form the conductive layer 314. Etch away. Here, the concentration of the aqueous solution of iron chloride or copper chloride is such that the etching rate is about 1/10 that of an ordinary circuit board. As a result, the conductive layer 314 is extremely thin with a thickness of 3 μm or less and has a uniform thickness, so that only the conductive layer 314 can be removed by etching with good controllability.

以上説明した本実施の形態3によれば微細な配線パターンも樹脂に埋め込まれているために配線パターンに横方向の機械的な応力が加わることも無くパターン倒れが生じないばかりでなく、導電性層によって配線パターンとガラスエポキシ基板の樹脂表面とが完全に同一平面であるため、実装によって半導体チップ接続部に形成された突起すなわちバンプが加圧により配線パターンが突起状になっている時に生じる横ずれが生じることも無く、確実に所定位置に実装することができるものである。   According to the third embodiment described above, since the fine wiring pattern is also embedded in the resin, the wiring pattern is not subjected to lateral mechanical stress, and the pattern collapse does not occur. Because the wiring pattern and the resin surface of the glass epoxy board are completely flush with each other, the lateral displacement that occurs when the wiring pattern is formed into a protruding shape by pressing the bumps or bumps formed on the semiconductor chip connection part by mounting Therefore, it can be surely mounted at a predetermined position.

なお、本実施の形態でガラスエポキシ基板などの材料は限定するもので無くアラミド不織布にエポキシ樹脂を含浸させた基板やフィルム基材に接着剤を塗布したものやさらにはアルミナグリーンシートでも可能である。また本実施の形態の基板表面にさらにビルドアップ法によって多層基板を形成することはもちろん、転写基材表面にさらに永久レジストや通常の感光性レジストと無電解めっきとによる多層化としてもよい。   In this embodiment, the material such as the glass epoxy substrate is not limited, and a substrate in which an aramid nonwoven fabric is impregnated with an epoxy resin, a film base material coated with an adhesive, or even an alumina green sheet is also possible. . In addition to forming a multilayer substrate on the substrate surface of the present embodiment by a build-up method, the transfer substrate surface may be further multilayered by a permanent resist, a normal photosensitive resist and electroless plating.

本発明にかかる回路基板およびその製造方法は、表面が粗化された配線パターンを金属基板で補強することによって取り扱いを容易とし、薄い銅箔を直接取り扱うようなマイクロクラックの発生を無くすることができ、感光性樹脂をマスクとして配線パターンを形成するためにサイドエッチングが無く感光性樹脂パターンの解像限界まで微細なパターン形成ができ、また導電性層を薄いものとすることで配線パターンのエッチングによる細りやパターンの角部の変形を小さくでき、さらに微細化ができ微細な配線パターンを容易に製造できるという効果を有している。   The circuit board and the manufacturing method thereof according to the present invention can be handled easily by reinforcing a wiring pattern whose surface is roughened with a metal substrate, and can eliminate the occurrence of microcracks that directly handle a thin copper foil. In order to form a wiring pattern using a photosensitive resin as a mask, there is no side etching, and a fine pattern can be formed up to the resolution limit of the photosensitive resin pattern, and the wiring layer is etched by making the conductive layer thin. Thus, it is possible to reduce the thinning and deformation of the corners of the pattern, to further reduce the size, and to easily manufacture a fine wiring pattern.

そして貫通孔に充填された導電性材料によって絶縁性基板両面での配線パターンの電気的接続が低温で容易に接続が可能であり特に配線パターンの粗化の凹凸を形成することで剥離強度の向上と高い電気的接続信頼性を保つことができる。さらに微細な導電性パターンを埋め込むことにより、パターンに対する横方向等の応力など外的応力による倒れや変形を防止すると共に剥離強度を高めることができ、すなわち基板と特性の異なる絶縁物を用いることができるため実装した半導体や銅配線からの発熱を周辺に良く伝導することで放熱効果を向上すると共に、温度の変化による膨張収縮を銅と近づけることにより配線パターンへの応力を小さくすることによって微細な配線の断線などをなくすことができ、配線パターンの側壁にも粗化すなわち凹凸を形成して埋め込むことで配線パターンの剥離強度を配線パターン表面のみの粗化よりさらに大きくできるという効果を有しており、半導体素子や集積回路、電子部品を搭載するための微細な配線パターンを必要とする回路基板およびその製造方法に有用である。   And, the conductive material filled in the through-holes allows the electrical connection of the wiring pattern on both sides of the insulating substrate to be easily connected at low temperatures, and in particular, the unevenness of the roughening of the wiring pattern is formed to improve the peel strength High electrical connection reliability can be maintained. Furthermore, by embedding a fine conductive pattern, it is possible to prevent falling and deformation due to external stress such as lateral stress on the pattern and to increase the peel strength, that is, using an insulator having different characteristics from the substrate. As a result, heat generated from the mounted semiconductor and copper wiring is well conducted to the surroundings, improving the heat dissipation effect, and reducing the stress on the wiring pattern by reducing the stress on the wiring pattern by bringing the expansion and contraction due to temperature changes closer to copper. Wiring breakage can be eliminated, and the effect of being able to make the peeling strength of the wiring pattern even greater than the roughening of only the wiring pattern surface by embedding the wiring pattern sidewalls by roughening, that is, by forming irregularities. Circuit boards that require fine wiring patterns for mounting semiconductor elements, integrated circuits, and electronic components. Useful in the method of manufacturing the patron.

(a)、(b)本発明の実施の形態1における回路基板の構成を示す断面図(A), (b) Sectional drawing which shows the structure of the circuit board in Embodiment 1 of this invention 本発明の実施の形態1における回路基板の製造方法を示す摸式断面図A schematic cross-sectional view showing a method of manufacturing a circuit board according to Embodiment 1 of the present invention 同回路基板の製造方法を示す摸式断面図Cross-sectional view showing the manufacturing method of the circuit board 同回路基板の製造方法を示す摸式断面図Cross-sectional view showing the manufacturing method of the circuit board 同回路基板の製造方法を示す摸式断面図Cross-sectional view showing the manufacturing method of the circuit board 同回路基板の製造方法を示す摸式断面図Cross-sectional view showing the manufacturing method of the circuit board 同回路基板の製造方法を示す摸式断面図Cross-sectional view showing the manufacturing method of the circuit board 同回路基板の製造方法を示す摸式断面図Cross-sectional view showing the manufacturing method of the circuit board 同回路基板の製造方法を示す摸式断面図Cross-sectional view showing the manufacturing method of the circuit board 同回路基板の製造方法を示す摸式断面図Cross-sectional view showing the manufacturing method of the circuit board 本発明の実施の形態2における回路基板の製造方法を示す摸式断面図Model sectional drawing which shows the manufacturing method of the circuit board in Embodiment 2 of this invention 同回路基板の製造方法を示す摸式断面図Cross-sectional view showing the manufacturing method of the circuit board 同回路基板の製造方法を示す摸式断面図Cross-sectional view showing the manufacturing method of the circuit board 本発明の実施の形態3における回路基板の製造方法を示す摸式断面図A schematic cross-sectional view showing a method of manufacturing a circuit board according to Embodiment 3 of the present invention 同回路基板の製造方法を示す摸式断面図Cross-sectional view showing the manufacturing method of the circuit board 同回路基板の製造方法を示す摸式断面図Cross-sectional view showing the manufacturing method of the circuit board 同回路基板の製造方法を示す摸式断面図Cross-sectional view showing the manufacturing method of the circuit board 同回路基板の製造方法を示す摸式断面図Cross-sectional view showing the manufacturing method of the circuit board 同回路基板の製造方法を示す摸式断面図Cross-sectional view showing the manufacturing method of the circuit board 同回路基板の製造方法を示す摸式断面図Cross-sectional view showing the manufacturing method of the circuit board 従来の回路基板の製造方法を示す摸式断面図A cross-sectional view showing a conventional circuit board manufacturing method 同回路基板の製造方法を示す摸式断面図Cross-sectional view showing the manufacturing method of the circuit board 同回路基板の製造方法を示す摸式断面図Cross-sectional view showing the manufacturing method of the circuit board 同回路基板の製造方法を示す摸式断面図Cross-sectional view showing the manufacturing method of the circuit board 同回路基板の製造方法を示す摸式断面図Cross-sectional view showing the manufacturing method of the circuit board

符号の説明Explanation of symbols

101,201,301,401 絶縁性基板
102,302 金属基板
103,203,303、403 ガラスクロス
104,204,304,404 エポキシ層
105,205,305,405 貫通孔
106,206,306,406 導電性材料
107,207,307,418 粗化層
108,208,419 導電性層
109,309,420 金属基板
110,310,421 感光性樹脂
111,211,308 導電層
112,212 配線パターン
113,213 絶縁部材
314 導電性層
101, 201, 301, 401 Insulating substrate 102, 302 Metal substrate 103, 203, 303, 403 Glass cloth 104, 204, 304, 404 Epoxy layer 105, 205, 305, 405 Through hole 106, 206, 306, 406 Conductive Conductive material 107, 207, 307, 418 Roughening layer 108, 208, 419 Conductive layer 109, 309, 420 Metal substrate 110, 310, 421 Photosensitive resin 111, 211, 308 Conductive layer 112, 212 Wiring pattern 113, 213 Insulating member 314 Conductive layer

Claims (16)

貫通孔に導電性材料を充填した絶縁性基板の少なくとも一面に粗化層、導電性層および導電層からなる配線パターンを前記粗化層面から埋め込み、この配線パターン間に絶縁部材を充填した回路基板。 A circuit board in which a wiring pattern comprising a roughened layer, a conductive layer, and a conductive layer is embedded in at least one surface of an insulating substrate having a through hole filled with a conductive material, and an insulating member is filled between the wiring patterns. . 配線パターンの表面と充填した絶縁部材の表面とをほぼ同一面とした請求項1に記載の回路基板。 The circuit board according to claim 1, wherein a surface of the wiring pattern and a surface of the filled insulating member are substantially flush with each other. 導電性層の表面に粗化層を形成した金属基板を前記粗化層面から絶縁性基板に接着する工程と、前記金属基板を除去して導電性層を露出させる工程と、この露出した導電性層表面に所定の感光性樹脂パターンを形成する工程と、前記露出する導電性層表面に導電層を形成する工程とを含む回路基板の製造方法。 Bonding a metal substrate having a roughened layer formed on the surface of the conductive layer to the insulating substrate from the surface of the roughened layer; removing the metal substrate to expose the conductive layer; and exposing the conductive layer A method for manufacturing a circuit board, comprising: forming a predetermined photosensitive resin pattern on a layer surface; and forming a conductive layer on the exposed conductive layer surface. 粗化層を除く導電性層の厚さを5μm以下とした請求項1に記載の回路基板。 The circuit board according to claim 1, wherein the thickness of the conductive layer excluding the roughened layer is 5 μm or less. 粗化層の厚みを3μm以上とした請求項1に記載の回路基板。 The circuit board according to claim 1, wherein the roughened layer has a thickness of 3 μm or more. 絶縁性基板に貫通孔を形成し、この貫通孔に導電性材料を充填する請求項3に記載の回路基板の製造方法。 The method for manufacturing a circuit board according to claim 3, wherein a through hole is formed in the insulating substrate, and the through hole is filled with a conductive material. 感光性樹脂パターンを除去し、この感光性樹脂パターンの下面の導電性層表面を露出させ、この露出した導電性層を除去して配線パターンを形成する工程と、この配線パターン間を絶縁部材で充填する請求項3に記載の回路基板の製造方法。 The step of removing the photosensitive resin pattern, exposing the surface of the conductive layer on the lower surface of the photosensitive resin pattern, removing the exposed conductive layer to form a wiring pattern, and an insulating member between the wiring patterns The method for manufacturing a circuit board according to claim 3, wherein the circuit board is filled. 導電性層の表面に粗化層を形成した金属基板を前記粗化層面から絶縁性基板に接着する工程を前記絶縁性基板が完全硬化以下の温度で熱プレスして前記粗化層を絶縁性基板に埋め込み硬化させる請求項7に記載の回路基板の製造方法。 The step of adhering a metal substrate having a roughened layer formed on the surface of the conductive layer to the insulating substrate from the surface of the roughened layer is heat-pressed at a temperature below the complete curing of the insulating substrate to insulate the roughened layer. The method for manufacturing a circuit board according to claim 7, wherein the circuit board is cured by being embedded in the board. 配線パターンの間に導電層表面とほぼ同一高さまで絶縁部材を充填する請求項7に記載の回路基板の製造方法。 The method for manufacturing a circuit board according to claim 7, wherein an insulating member is filled between the wiring patterns to substantially the same height as the surface of the conductive layer. 導電層を形成して配線パターンの間に配線パターン表面と同一またはそれ以上の高さまで絶縁部材を充填する工程と、配線パターン表面を露出する工程とからなる請求項7に記載の回路基板の製造方法。 8. The circuit board manufacturing method according to claim 7, comprising a step of forming a conductive layer and filling an insulating member between the wiring patterns to a height equal to or higher than the surface of the wiring pattern, and a step of exposing the surface of the wiring pattern. Method. 配線パターン間に導電性層の厚さの1/4以上絶縁部材を充填する請求項7に記載の回路基板の製造方法。 The method of manufacturing a circuit board according to claim 7, wherein an insulating member is filled between the wiring patterns by a quarter or more of the thickness of the conductive layer. 配線パターン間への絶縁部材の充填を配線パターンの幅が導電性層および導電層の合計の厚さの10倍以下の部分とする請求項7に記載の回路基板の製造方法。 The method for manufacturing a circuit board according to claim 7, wherein the filling of the insulating member between the wiring patterns is performed at a portion where the width of the wiring pattern is not more than 10 times the total thickness of the conductive layer and the conductive layer. 金属基板上に形成する導電性層表面に感光性樹脂パターンを形成する工程と、前記導電性層表面に導電層を形成する工程と、前記感光性樹脂パターンを除去する工程と、導電性層を選択的に除去する工程と、前記金属基板の導電層側の面を絶縁性基板に接着する工程と、前記金属基板を除去する工程とを含む回路基板の製造方法。 A step of forming a photosensitive resin pattern on the surface of the conductive layer formed on the metal substrate, a step of forming a conductive layer on the surface of the conductive layer, a step of removing the photosensitive resin pattern, and a conductive layer. A method of manufacturing a circuit board, comprising: a step of selectively removing; a step of adhering a conductive layer side surface of the metal substrate to an insulating substrate; and a step of removing the metal substrate. 導電層の形成を金属基板および導電性層からの通電による電気めっきとする請求項13に記載の回路基板の製造方法。 The method for manufacturing a circuit board according to claim 13, wherein the conductive layer is formed by electroplating by energization from the metal substrate and the conductive layer. 導電性層および金属基板を選択エッチングにより除去が可能な材料とし、前記金属基板をエッチングにより除去する請求項13に記載の回路基板の製造方法。 14. The method of manufacturing a circuit board according to claim 13, wherein the conductive layer and the metal substrate are made of a material that can be removed by selective etching, and the metal substrate is removed by etching. 導電性層の厚さを3μm以下とした請求項13に記載の回路基板の製造方法。 The method for manufacturing a circuit board according to claim 13, wherein the thickness of the conductive layer is 3 μm or less.
JP2003386647A 2003-11-17 2003-11-17 Circuit substrate and its manufacturing method Pending JP2005150448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003386647A JP2005150448A (en) 2003-11-17 2003-11-17 Circuit substrate and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003386647A JP2005150448A (en) 2003-11-17 2003-11-17 Circuit substrate and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005150448A true JP2005150448A (en) 2005-06-09

Family

ID=34694279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003386647A Pending JP2005150448A (en) 2003-11-17 2003-11-17 Circuit substrate and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005150448A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103648A (en) * 2005-10-04 2007-04-19 Hitachi Chem Co Ltd Printed circuit board, manufacturing metehod thereof, semiconductor chip mounting substrate, manufacturing method thereof and semiconductor package
JP2009117448A (en) * 2007-11-02 2009-05-28 Cmk Corp Method for manufacturing printed-circuit board
JP2009179044A (en) * 2008-02-01 2009-08-13 Shinsei:Kk Production process of conductive resin molding equipped with conduction terminal
KR100990575B1 (en) 2008-07-08 2010-10-29 삼성전기주식회사 Printed circuit board having fine pattern and manufacturing method of the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103648A (en) * 2005-10-04 2007-04-19 Hitachi Chem Co Ltd Printed circuit board, manufacturing metehod thereof, semiconductor chip mounting substrate, manufacturing method thereof and semiconductor package
JP4747770B2 (en) * 2005-10-04 2011-08-17 日立化成工業株式会社 Method for manufacturing printed wiring board and method for manufacturing semiconductor chip mounting substrate
JP2009117448A (en) * 2007-11-02 2009-05-28 Cmk Corp Method for manufacturing printed-circuit board
JP2009179044A (en) * 2008-02-01 2009-08-13 Shinsei:Kk Production process of conductive resin molding equipped with conduction terminal
KR100990575B1 (en) 2008-07-08 2010-10-29 삼성전기주식회사 Printed circuit board having fine pattern and manufacturing method of the same

Similar Documents

Publication Publication Date Title
US8052882B2 (en) Method of manufacturing wiring substrate
JP5254775B2 (en) Wiring board manufacturing method
JP5221887B2 (en) Wiring board manufacturing method
JP5640667B2 (en) Circuit board manufacturing method
JP2000208936A (en) Manufacture of printed wiring board
JPH11238970A (en) Multilayered printed board and manufacture thereof
JP2005150448A (en) Circuit substrate and its manufacturing method
JP3940617B2 (en) Wiring board and manufacturing method thereof
JP4480548B2 (en) Double-sided circuit board and manufacturing method thereof
JP2006080424A (en) Wiring board and its manufacturing method
JP2007243097A (en) Method of forming conductive pattern
JP2000236145A (en) Wiring board and its manufacturing method
KR100754061B1 (en) Method of fabricating printed circuit board
JP2015041729A (en) Printed wiring board
JP2003298212A (en) Printed wiring board and manufacturing method thereof
JP5482017B2 (en) Circuit board and manufacturing method thereof
JP3713158B2 (en) Manufacturing method of multilayer wiring board
JP2005045187A (en) Circuit board, method for manufacturing the same, and multi-layered circuit board
JP2007329325A (en) Method for manufacturing interconnection substrate
JP2004193168A (en) Wiring board and its manufacturing method
JP2007273896A (en) Wiring board
JP2000091743A (en) Build-up multilayered substrate and its manufacture
JP2009267055A (en) Mounting structure, wiring board, and method of manufacturing the same
JP2006019321A (en) Circuit board and its manufacturing method
JP2002368386A (en) Plate for electrodeposition metal pattern transfer and wiring board fabricated by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060920

RD01 Notification of change of attorney

Effective date: 20061012

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A977 Report on retrieval

Effective date: 20090318

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20090414

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090818