JP2004193168A - Wiring board and its manufacturing method - Google Patents

Wiring board and its manufacturing method Download PDF

Info

Publication number
JP2004193168A
JP2004193168A JP2002355854A JP2002355854A JP2004193168A JP 2004193168 A JP2004193168 A JP 2004193168A JP 2002355854 A JP2002355854 A JP 2002355854A JP 2002355854 A JP2002355854 A JP 2002355854A JP 2004193168 A JP2004193168 A JP 2004193168A
Authority
JP
Japan
Prior art keywords
wiring conductor
wiring
insulating substrate
insulating
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002355854A
Other languages
Japanese (ja)
Inventor
Seiichi Takami
征一 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002355854A priority Critical patent/JP2004193168A/en
Publication of JP2004193168A publication Critical patent/JP2004193168A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring board which can sufficiently endure a thermal stress even when a heat history of a long term is repeatedly applied and which has high connection reliability so as not to bring about disconnection, etc. <P>SOLUTION: The wiring board is obtained by alternately laminating pluralities of insulation resin layers 4 each containing an epoxy resin and wiring conductor layers 5, on the surface of core substrates 3 made by embedding wiring conductors 2 each made of a metal foil in an insulation board 1 obtained by impregnating a heat resistant fabric base material with an allyl modified polyphenylene ether resin, so that the surface of the wiring conductors 2 is formed in the same plane as the surface of the insulation board 1. The wiring conductors 2 each has a sectional shape in the widthwise direction of the wiring conductors 2 in a trapezoidal shape, in which the length of the bottom side of the insulation board 1 side is longer than the length of the bottom side opposed to the previous bottom side and the epoxy resin is interposed and embedded between its side face and the insulation board 1. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子等の電子部品を搭載するために用いられる配線基板およびその製造方法に関する。
【0002】
【従来の技術】
一般に、現在の電子機器は、移動体通信機器に代表されるように小型・薄型・軽量・高性能・高機能・高品質・高信頼性が要求されてきており、このような電子機器に搭載される電子装置も小型・高密度化が要求されるようになってきている。そのため、電子装置を構成する配線基板にも小型・薄型・多端子化が求められてきており、それを実現するために信号導体等を含む配線導体層の幅を細くするとともにその間隔を狭くし、さらに配線導体層の多層化により高密度配線化が図られている。
【0003】
このような高密度配線が可能な配線基板として、ビルドアップ法を採用して製作された配線基板が知られている。このビルドアップ配線基板は、例えば、次に述べる方法により製作される。
【0004】
まず、ガラスクロスやアラミド不布織等の補強材に耐熱性や耐薬品性を有するアリル変性ポリフェニレンエーテル樹脂に代表される熱硬化性樹脂を含浸させた絶縁シートに配線導体をその表面が絶縁シートの表面と同一面となるように埋入し、しかる後これを加熱硬化して絶縁基板に配線導体が埋入して成るコア基板を得る。
【0005】
次に、コア基板にエポキシ樹脂等の熱硬化性樹脂から成る樹脂フィルムを貼着し加熱硬化して、厚みが20〜200μmの絶縁樹脂層を形成する。次に、配線導体の上に位置する絶縁樹脂層に径が50〜200μmの貫通孔をレーザで穿設し、さらに絶縁樹脂層の表面および貫通孔の内面を過マンガン酸カリウム溶液等の粗化液で化学粗化し、次にセミアディティブ法を用いて絶縁樹脂層の表面および貫通孔の内面に銅めっきから成る導体膜を被着して配線導体層および貫通導体を形成する。そして、この上に絶縁樹脂層や貫通導体・配線導体層の形成を複数回繰り返すことによって、ビルドアップ配線基板が製作される。
【0006】
【特許文献1】
特開2002−261451号公報
【0007】
【発明が解決しようとする課題】
しかしながら、上述の配線基板は、絶縁基板の熱膨張係数が10×10−6〜15×10−6/℃、配線導体の熱膨張係数が15×10−6〜20×10−6/℃であり絶縁基板の熱膨張係数と配線導体の熱膨張係数が異なることから、配線基板に電子部品を搭載した後に長期の熱履歴が繰り返し印可されると、絶縁基板と配線導体の熱膨張差により発生する熱応力が絶縁基板と配線導体との境界に集中して配線導体の側面と絶縁基板との間に隙間が発生し、その隙間を起点として絶縁樹脂層にクラックが生じるとともに配線導体層を切断して断線不良を発生させてしまうことがあるという問題点を有していた。
【0008】
また、コア基板にアリル変性ポリフェニレンエーテル樹脂を用いた場合、アリル変性ポリフェニレンエーテル樹脂が化学的に安定で粗化することが困難であり、コア基板の表面にエポキシ樹脂を含む絶縁樹脂層を積層した場合、コア基板のアリル変性ポリフェニレンエーテル樹脂と絶縁樹脂層のエポキシ樹脂とが強固に結合することができず、その結果、コア基板とその上に積層された絶縁樹脂層との密着力が弱いものとなってしまい、例えば配線基板の表面に電子部品を実装する際に、配線基板に急激な温度変化が加わったりあるいは電子部品を実装した後に電子部品が作動する際に発生する熱や外部環境による熱等が長期間にわたり繰返し加わったりすると、絶縁樹脂層とコア基板との間で膨れや剥がれが発生してしまうことがあるという問題点も有していた。
【0009】
他方、上述の配線基板の製造方法は、配線導体を絶縁基板に埋入することによって、および絶縁樹脂層を絶縁基板に被着することによって配線基板を製作することから、絶縁基板と配線導体および絶縁樹脂層との密着が弱く、配線基板に電子部品を搭載した後に長期の熱履歴が繰り返し印可されると、絶縁基板と配線導体および絶縁樹脂層との熱膨張差により発生する熱応力が絶縁基板と配線導体との境界および絶縁基板と絶縁樹脂層との境界に集中して、配線導体の側面と絶縁基板との間に隙間が発生し、その隙間を起点として絶縁樹脂層にクラックが生じるとともに配線導体層を切断して断線不良を発生させてしまう、あるいは絶縁樹脂層が絶縁基板から剥離してしまうことがあるという問題点を有していた。
【0010】
本発明は、かかる従来技術の問題点に鑑み完成されたものであり、その目的は、電子部品を搭載した配線基板において、長期の熱履歴を繰り返し印可しても、熱応力に充分耐え、断線等が生じない接続信頼性の高い配線基板を提供することにある。
【0011】
【課題を解決するための手段】
本発明の配線基板は、耐熱性繊維基材にアリル変性ポリフェニレンエーテル樹脂を含浸させた絶縁基板に金属箔から成る配線導体をその表面が前記絶縁基板の表面と同一面をなすように埋入して成るコア基板の前記配線導体を埋入した表面に、エポキシ樹脂を含む絶縁樹脂層と配線導体層とを交互に複数層積層して成る配線基板において、前記配線導体は、その幅方向の断面形状が前記絶縁基板側の底辺の長さが対向する底辺の長さより長い台形状であり、かつその側面と前記絶縁基板との間に前記エポキシ樹脂を介在させて埋入されていることを特徴とするものである。
【0012】
本発明の配線基板によれば、配線導体は、その幅方向の断面形状が絶縁基板側の底辺の長さが対向する底辺の長さより長い台形状であり、かつその側面と絶縁基板との間にエポキシ樹脂を介在させて埋入されていることから、配線導体の側面と絶縁基板との間に介在させたエポキシ樹脂が接着材の機能を果たして絶縁基板と配線導体の側面とが強固に接着し、その結果、配線基板に電子部品を搭載した後に配線基板に長期の熱履歴が繰り返し印可され、絶縁基板と配線導体との熱膨張差により発生する熱応力が絶縁基板と配線導体との境界に集中したとしても、配線導体の側面と絶縁基板との間に隙間が発生することはなく、その隙間を起点として絶縁樹脂層にクラックが生じたり、このクラックが配線導体層を切断して断線不良を発生させてしまうということはない。
【0013】
さらに、本発明の配線基板によれば、絶縁基板と絶縁樹脂層とが配線導体の側面と絶縁基板との間に介在させたエポキシ樹脂のアンカー効果により強固に接合し、その結果、配線基板に電子部品を搭載した後に長期の熱履歴が繰り返し印可され、絶縁基板と絶縁樹脂層の熱膨張差により発生する熱応力が両者の境界に集中したとしても、絶縁樹脂層が絶縁基板から剥離してしまうということもない。
【0014】
また、本発明の配線基板の製造方法は、耐熱性繊維基材にアリル変性ポリフェニレンエーテル樹脂を含浸させた絶縁基板に、金属箔から成り、幅方向の断面形状が台形状の配線導体を、長さが短い底辺側の表面が前記絶縁基板の表面と同一面をなすように、かつ前記配線導体の側面と前記絶縁基板との間に隙間を形成するように埋入して成るコア基板を準備する工程と、このコア基板の前記配線導体を埋入した表面にエポキシ樹脂を含む絶縁樹脂層を被着するとともに前記隙間の内部に前記エポキシ樹脂を充填する工程と、前記絶縁樹脂層の表面に配線導体層を被着する工程とを具備することを特徴とするものである。
【0015】
本発明の配線基板の製造方法によれば、耐熱性繊維基材にアリル変性ポリフェニレンエーテル樹脂を含浸させた絶縁基板に、金属箔から成り、幅方向の断面形状が台形状の配線導体を、長さが短い底辺側の表面が絶縁基板の表面と同一面をなすように、かつ配線導体の側面と絶縁基板との間に隙間を形成するように埋入して成るコア基板を準備し、このコア基板の配線導体を埋入した表面にエポキシ樹脂を含む絶縁樹脂層を被着するとともに隙間の内部にエポキシ樹脂を充填することから、エポキシ樹脂が接着材の役割をはたし、配線導体と絶縁基板とが強固に接着した配線基板を提供することができる。また、絶縁基板と絶縁樹脂層とが配線導体の側面と絶縁基板との間に介在させたエポキシ樹脂のアンカー効果により強固に接合することから、絶縁基板と絶縁樹脂層との接合が強固な配線基板を提供することができる。
【0016】
【発明の実施の形態】
次に、本発明の配線基板を添付の図面に基づいて詳細に説明する。
図1は、本発明の配線基板の実施の形態の一例を示す断面図であり、図2は、図1の要部拡大断面図である。これらの図において、1は絶縁基板、2は配線導体、3は絶縁基板1と配線導体2とから成るコア基板、4は絶縁樹脂層、5は配線導体層で、主にこれらで本発明の配線基板が構成されている。
【0017】
コア基板3を構成する絶縁基板1は、例えば耐熱性繊維基材であるガラス繊維を縦横に織り込んだガラスクロスにアリル変性ポリフェニレンエーテル樹脂を含浸させて成る厚みが0.15〜1.5mmの略四角形状の基板であり、配線導体2および絶縁層4の支持体としての機能を有するとともに配線基板に強度を付与する機能を有する。絶縁基板1は、その厚みが0.15mm未満であると配線基板の剛性が低下し、反りが発生し易くなる傾向があり、1.5mmを超えると配線基板が不要に厚いものとなり配線基板を軽量化することが困難となる傾向がある。従って、絶縁基板1の厚みは0.15〜1.5mmの範囲が好ましい。
【0018】
また、絶縁基板1の表面には銅箔から成る配線導体2がその表面が絶縁基板1の表面と同一面をなすように埋入されている。
【0019】
このような銅箔から成る配線導体2は、その幅が20〜200μm、厚みが5〜50μmであり、配線導体層5とともに搭載する半導体素子等の電子部品(図示せず)の各電極を外部電気回路基板(図示せず)に電気的に接続する導電路の一部としての機能する。配線導体2は、その幅が20μm未満となると配線導体2の変形や断線が発生しやすくなる傾向があり、200μmを超えると高密度配線が形成できなくなる傾向がある。また、配線導体2の厚みが5μm未満になると配線導体2の強度が低下し変形や断線が発生しやすくなる傾向があり、50μmを超えると絶縁基板1への埋入が困難となる傾向がある。従って、配線導体2は、その幅を20〜200μm、厚みを5〜50μmの範囲とすることが好ましい。
【0020】
なお、上下に位置する配線導体2同士を、絶縁基板1に形成した貫通導体1bにより電気的に接続してもよい。このような貫通導体1bは、その直径が30〜100μmであり、例えば、絶縁基板1に設けた貫通孔1aの内部に銅や銀・錫合金等の金属粉末とトリアジン系熱硬化性樹脂等とから成る導体を埋め込むことにより形成される。貫通導体1bを設ける場合、その直径が30μm未満になると貫通導体1bの形成が困難となる傾向があり、100μmを超えると高密度配線が形成できなくなる傾向がある。従って、貫通導体1bを設ける場合、その直径は30〜100μmの範囲とすることが好ましい。
【0021】
また、コア基板3の主面、図1の例では上下面には、エポキシ樹脂を含有する絶縁樹脂層4と銅めっきから成る配線導体層5とが交互に積層されている。絶縁樹脂層4は、銅めっきから成る配線導体層5の支持体としての機能を有し、その厚みが10〜80μmであり、エポキシ樹脂と平均粒径が0.01〜2μmで含有量が10〜50重量%のシリカやアルミナ・窒化アルミニウム等の無機絶縁フィラーとから成る。
【0022】
無機絶縁フィラーは、絶縁樹脂層4の熱膨張係数を調整し配線導体層5の熱膨脹係数と整合させるとともに、絶縁樹脂層4の表面に適度な凹凸を形成し、配線導体層5と絶縁樹脂層4との密着性を良好となす機能を有する。なお、無機絶縁フィラーは、その平均粒径が0.01μm未満であると、無機絶縁フィラー同士が凝集して均一な厚みの絶縁樹脂層4を形成することが困難となる傾向があり、2μmを超えると絶縁樹脂層4の表面の凹凸が大きなものとなり過ぎて配線導体層5と絶縁樹脂層4との密着性を低下させてしまう傾向がある。従って、無機絶縁フィラーの平均粒径は、0.01〜2μmの範囲が好ましい。
【0023】
また、無機絶縁フィラーの含有量が10重量%未満であると、絶縁樹脂層4の熱膨張係数を調整する作用が小さくなる傾向があり、50重量%を超えると絶縁樹脂層4の樹脂量が減少し絶縁樹脂層4を成形することが困難となる傾向がある。従って、無機絶縁フィラーの含有量は、10〜50重量%の範囲が好ましい。
【0024】
また、絶縁樹脂層4には、レーザ加工によりビア孔6が形成されており、このビア孔6の内部に銅めっきから成る配線導体層5の一部を被着させることにより絶縁樹脂層4を挟んで上下に位置する配線導体2と配線導体層5、および配線導体層5同士が電気的に接続されている。なお、配線導体層5は、その幅が20〜200μmであり、その厚みが1〜2μmの無電解銅めっき層と厚みが10〜30μmの電解銅めっき層とから成り、配線基板に搭載される半導体素子等の電子部品の各電極を外部電気回路基板に電気的に接続する導電路としての機能を有する。
【0025】
配線導体層5は、その幅が20μm未満となると配線導体層5の変形や断線が発生しやすくなる傾向があり、200μmを超えると高密度配線が形成できなくなる傾向がある。また、配線導体層5の厚みが11μm未満になると配線導体層5の強度が低下し変形や断線が発生しやすくなる傾向があり、32μmを超えると配線導体層5の形成に長時間を要してしまう傾向がある。従って、配線導体層5は、その幅を20〜200μm、厚みを11〜32μmの範囲とすることが好ましい。
【0026】
そして、本発明の配線基板においては、配線導体2は、その幅方向の断面形状が絶縁基板1側の底辺の長さが対向する底辺の長さより長い台形状であり、かつ絶縁基板1に配線導体2の側面2aと絶縁基板1との間にエポキシ樹脂を介在させて埋入されており、またこのことが重要である。
【0027】
本発明の配線基板によれば、配線導体2は、その幅方向の断面形状が絶縁基板1側の底辺の長さが対向する底辺の長さより長い台形状であり、かつ絶縁基板1に配線導体2の側面2aと絶縁基板1との間にエポキシ樹脂を介在させて埋入されていることから、配線導体2の側面2aと絶縁基板1との間に介在させたエポキシ樹脂が接着材の機能を果たして絶縁基板1と配線導体2とが強固に接着し、その結果、配線基板に電子部品を搭載した後に配線基板に長期の熱履歴が繰り返し印可され、絶縁基板1と配線導体2との熱膨張差により発生する熱応力が絶縁基板1と配線導体2との境界に集中したとしても、配線導体2の側面2aと絶縁基板1との間に隙間が発生することはなく、その隙間を起点として絶縁樹脂層4にクラックが生じたり、このクラックが配線導体層5を切断して断線不良を発生させてしまうということはない。
【0028】
さらに、本発明の配線基板によれば、絶縁基板1と絶縁樹脂層4とが配線導体2の側面2aと絶縁基板1との間に介在させたエポキシ樹脂のアンカー効果により強固に接合し、その結果、配線基板に電子部品を搭載した後に長期の熱履歴が繰り返し印可され、絶縁基板1と絶縁樹脂層4の熱膨張差により発生する熱応力が両者の境界に集中したとしても、絶縁樹脂層4が絶縁基板1から剥離してしまうということもない。
【0029】
なお、配線導体2の幅方向の断面の、長さが長い底辺と側面2aとのなす角度は45〜60度が好ましい。長さが長い底辺と側面2aとのなす角度が45度未満であると、配線導体2が変形し絶縁基板1に良好に埋入させることが困難となる傾向にあり、60度を超えると配線導体2の側面2aと絶縁基板1との間の隙間が狭くなり絶縁樹脂層4のエポキシ樹脂を良好に充填することが困難となる傾向にある。従って、配線導体2の幅方向の断面の、長さが長い底辺と側面2aとのなす角度は45〜60度が好ましい。
【0030】
また、配線導体2の側面2aと絶縁基板1とで形成された隙間の、配線導体2の幅方向の断面形状は、図2に示すように楔形形状であり、開口の幅は1〜5μmであることが好ましい。開口の幅が1μm未満であると、配線導体2の側面2aと絶縁基板1との間にエポキシ樹脂を充填することが困難となる傾向にあり、5μmを超えると、このような大きな間隔を形成するのが困難となる傾向がある。従って、間隔の開口の幅は1〜5μmであることが好ましい。
【0031】
さらに、配線導体2の側面2aは、その算術平均粗さRaが0.1μm未満の場合、配線導体2の側面2aと絶縁基板1との間に介在させたエポキシ樹脂との接合が弱いものとなる傾向にあり、他方、2μmを超える場合、そのような粗面を形成するのに長時間を要し、形成することが困難となる傾向にある。従って、配線導体2の側面2aは、その算術平均粗さRaを0.1〜2μmの範囲とすることが好ましい。
【0032】
かくして、本発明の配線基板によれば、配線導体2は、その幅方向の断面形状が絶縁基板1側の底辺の長さが対向する底辺の長さより長い台形状であり、かつ絶縁基板1に配線導体2の側面2aと絶縁基板1との間にエポキシ樹脂を介在させて埋入されていることから、配線導体2の側面と絶縁基板1との間に介在させたエポキシ樹脂が接着材の機能を果たし、配線導体2と絶縁基板1とが強固に接着した配線基板とすることができる。
【0033】
なお、本発明は上述の実施の形態の一例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能であり、本実施例では、絶縁基板を1層から成るものとした例を示したが、絶縁基板を2層以上から成るものとし、内部に配線導体や、上下に位置するこれらの配線導体同士を電気的に接続する貫通導体を複数形成してもよい。
【0034】
次に、本発明の配線基板の製造方法を、図3に基づいて詳細に説明する。
図3(a)〜(d)は、本発明の配線基板の製造方法を説明するための各工程毎の要部断面図であり、11は転写用シート基材、12は転写用シート、13は前駆体シートである。なお、図3において、図1および図2と同じ部材・箇所には同じ符合を付した.
まず、図3(a)に示すように、耐熱性樹脂から成る転写用シート基材11に銅箔から成る配線導体2を被着して成る転写用シート12と、耐熱性繊維に未硬化のアリル変性ポリフェニレンエーテル樹脂を含浸させて成る絶縁基板1と成る前駆体シート13とを用意する。
【0035】
転写用シート基材11は、ポリエチレンテレフタレート(PET)樹脂やポリカーボネート(PC)等の耐熱性樹脂が用いられ、銅箔をエッチングして配線導体2を形成する際の支持体、および配線導体2を転写する際の支持体としての機能を有する。
【0036】
転写用シート基材11は、その厚みが20〜50μmであることが好ましく、厚みが20μm未満であると剛性が低下し銅箔をエッチングする際に配線導体2が変形し易くなる傾向にあり、50μmを超えると柔軟性が低下し絶縁基板1から剥離し難くなる傾向にある。従って、転写用シート基材11の厚みは20〜50μmが好ましい。
【0037】
また、配線導体2は、その厚みは5〜50μmが好ましく、さらには10〜20μmが好ましい。配線導体2の厚みが5μm未満になると配線導体2の強度が低下し変形や断線が発生しやすくなる傾向があり、50μmを超えると前駆体シートへの埋入が困難となる傾向がある。従って、配線導体2aの厚みは5〜50μmが好ましい。
【0038】
このような転写用シート12は、例えば厚みが25μm程度のポリエチレンテレフタレート等の耐熱性樹脂から成る転写シート基材11の一方の主面全体に、厚みが12〜30μm程度の銅箔を接着材を介して剥離可能に接着した後、銅箔上にフィルム状感光性レジストを被着するとともにこのレジストを露光・現像して配線導体2のパターンに対応するパターンのエッチングマスクを形成し、しかる後、40〜60℃で数分間、塩化第二鉄/塩酸水溶液中に浸漬して銅箔の非パターン部をエッチング除去し、さらに転写シート基材11側の底辺の長さがエッチングマスク側の底辺の長さよりも短くなるまで、具体的にはエッチングマスク側の底辺と側面2aとのなす角度が45〜60度となるまで側面2aをエッチングして、幅方向の断面形状が台形状の配線導体2を形成することにより製作される。
【0039】
他方、絶縁基板1と成る前駆体シート13は、ガラスクロスやアラミド繊維等の耐熱性繊維にアリル変性ポリフェニレンエーテル樹脂を含浸させて半硬化させたものから成り、その表面は配線導体2を埋入可能な程度の可塑性を備えている。さらに、絶縁基板1と成る前駆体シート13にレーザで貫通孔1aを穿孔し、この貫通孔1aに金属粉末からなる導電性材料を充填して貫通導体1bを形成する。
【0040】
次に、図3(b)に示すように、貫通導体1bと配線導体2とが接合するように前駆体シート13の表面に転写用シート12を積層するとともにそれらを加熱加圧して配線導体2を前駆体シート13に熱圧着して、配線導体2の長さの短い側の底辺と前駆体シート13の表面とが同一面となるように埋入する。なおこのとき、配線導体2の断面形状が前駆体シート13側の底辺の長さが対向する底辺の長さ、すなわち転写用シート12側の底辺の長さより長い台形状となっていることから、配線導体2を前駆体シート13に埋入させる際に、配線導体2の側面2aと前駆体シート13との間に、配線導体2の幅方向の断面形状が楔形形状の隙間7が形成される。
【0041】
このような熱圧着は、熱プレス機を用いて温度が100〜150℃、圧力が0.5〜5MPaの条件で数分間加圧することにより行なわれる。なお、熱圧着は加熱に先行して加圧のみを行なう方が良い。加熱を先に行なうと熱によって転写用シート11が伸び、配線導体2を所望の位置に正確に埋入することが困難となってしまう危険性がある。従って、熱圧着は加熱に先行して加圧を行なうことが好ましい。
【0042】
さらに、それらを加熱加圧して前駆体シート13のアリル変性ポリフェニレンエーテル樹脂を熱硬化し、コア基板3を製作する。なお、加熱処理にあたっては、前駆体シート13をフッ素系樹脂などから成る離型性シートで上下から挟みこみ、1〜5MPaの圧力で150〜240℃の温度で熱処理することにより、前駆体シートの熱硬化性樹脂を熱硬化させる。
【0043】
次に、コア基板3を約25℃の温度の蟻酸/銅イオン水溶液に数分間浸漬することにより、配線導体2の露出部を算術平均粗さが0.1〜2μmの凹凸を有するように粗化する。その後、コア基板3の主面にエポキシ樹脂から成り絶縁樹脂層4と成るフィルムを貼着するとともに150〜180℃で数時間熱硬化することにより、図3(c)に断面図で示すように、コア基板3の主面に絶縁樹脂層4を被着するとともに隙間7内に絶縁樹脂層4のエポキシ樹脂を充填する。なお、絶縁樹脂層4用のフィルムは、熱硬化の際に一旦、溶融軟化するのでその際に絶縁樹脂層4のエポキシ樹脂が隙間7の内部に良好に充填される。そして、隙間7内に充填されたエポキシ樹脂により絶縁基板1の表面に埋入された配線導体2と絶縁基板1とが強固に接着される。
【0044】
このように本発明の配線基板の製造方法によれば、耐熱性繊維基材にアリル変性ポリフェニレンエーテル樹脂を含浸させた絶縁基板1に、金属箔から成り、幅方向の断面形状が台形状の配線導体2を、長さが短い底辺側の表面が絶縁基板1の表面と同一面をなすように、かつ配線導体2の側面2aと絶縁基板1との間に隙間7を形成するように埋入して成るコア基板3を準備し、このコア基板3の配線導体2を埋入した表面にエポキシ樹脂を含む絶縁樹脂層4を被着するとともに隙間7の内部にエポキシ樹脂を充填することから、エポキシ樹脂が接着材の役割をはたし、配線導体2と絶縁基板1とが強固に接着した配線基板を提供することができる。また、絶縁基板1と絶縁樹脂層4とが配線導体2の側面2aと絶縁基板1との間に介在させたエポキシ樹脂のアンカー効果により強固に接合することから、絶縁基板1と絶縁樹脂層4との接合が強固な配線基板を提供することができる。
【0045】
なお、絶縁樹脂層4は、その厚みが10〜80μmであり、エポキシ樹脂と平均粒径が0.01〜2μmで含有量が10〜50重量%のシリカやアルミナ・窒化アルミニウム等の無機絶縁フィラーとから成る。
【0046】
次に、図3(d)に断面図で示すように、絶縁樹脂層3の上面に銅めっきから成る配線導体層5を被着させる。さらに必要に応じてその上に次層の絶縁樹脂層4および配線導体層5を積層することによって配線基板が完成する。
【0047】
なお、絶縁樹脂層4の上面に銅めっきから成る配線導体層5を被着させるには、まず、絶縁樹脂層4の表面を過マンガン酸塩類水溶液等の粗化液に浸漬して粗化した後、無電解めっき用パラジウム触媒の水溶液中に浸漬し表面にパラジウム触媒を付着させ、さらに、硫酸銅・ホルマリン・EDTAナトリウム塩・安定剤等から成る無電解銅めっき液に約30分間浸漬して厚みが1〜2μm程度の無電解銅めっき層を析出させる。次に、無電解銅めっき層の上面に耐めっき樹脂層を被着し露光・現像により銅めっきの配線導体層5のパターン形状に、電解銅めっき層を被着させるための開口部を複数形成し、さらに、硫酸・硫酸銅5水和物・塩素・光沢剤等から成る電解銅めっき液に数A/dmの電流を印加しながら数時間浸漬することにより開口部およびビア孔6の内面に厚みが10〜30μm程度の電解銅めっき層を被着させる。しかる後、耐めっき樹脂層を水酸化ナトリウムで剥離し、さらに、耐めっき樹脂層を剥離したことにより露出する無電解銅めっき層を硫酸と過酸化水素水の混合物等の硫酸系水溶液によりエッチング除去することにより形成される。
【0048】
かくして、本発明の配線基板の製造方法によれば、配線導体2と絶縁基板1との密着が強固であるとともに、絶縁基板1と絶縁樹脂層4との接合が強固な配線基板を提供することができる。
【0049】
なお、本発明は、上述の実施の形態の一例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能である。
【0050】
【発明の効果】
本発明の配線基板によれば、配線導体は、その幅方向の断面形状が絶縁基板側の底辺の長さが対向する底辺の長さより長い台形状であり、かつその側面と絶縁基板との間にエポキシ樹脂を介在させて埋入されていることから、配線導体の側面と絶縁基板との間に介在させたエポキシ樹脂が接着材の機能を果たして絶縁基板と配線導体の側面とが強固に接着し、その結果、配線基板に電子部品を搭載した後に配線基板に長期の熱履歴が繰り返し印可され、絶縁基板と配線導体との熱膨張差により発生する熱応力が絶縁基板と配線導体との境界に集中したとしても、配線導体の側面と絶縁基板との間に隙間が発生することはなく、その隙間を起点として絶縁樹脂層にクラックが生じたり、このクラックが配線導体層を切断して断線不良を発生させてしまうということはない。
【0051】
また、本発明の配線基板によれば、絶縁基板と絶縁樹脂層とが配線導体の側面と絶縁基板との間に介在させたエポキシ樹脂のアンカー効果により強固に接合し、その結果、配線基板に電子部品を搭載した後に長期の熱履歴が繰り返し印可され、絶縁基板と絶縁樹脂層の熱膨張差により発生する熱応力が両者の境界に集中したとしても、絶縁樹脂層が絶縁基板から剥離してしまうということもない。
【0052】
さらに、本発明の配線基板の製造方法によれば、耐熱性繊維基材にアリル変性ポリフェニレンエーテル樹脂を含浸させた絶縁基板に、金属箔から成り、幅方向の断面形状が台形状の配線導体を、長さが短い底辺側の表面が絶縁基板の表面と同一面をなすように、かつ配線導体の側面と絶縁基板との間に隙間を形成するように埋入して成るコア基板を準備し、このコア基板の配線導体を埋入した表面にエポキシ樹脂を含む絶縁樹脂層を被着するとともに隙間の内部にエポキシ樹脂を充填することから、エポキシ樹脂が接着材の役割をはたし、配線導体と絶縁基板とが強固に接着した配線基板を提供することができる。また、絶縁基板と絶縁樹脂層とが配線導体の側面と絶縁基板との間に介在させたエポキシ樹脂のアンカー効果により強固に接合することから、絶縁基板と絶縁樹脂層との接合が強固な配線基板を提供することができる。
【図面の簡単な説明】
【図1】本発明の配線基板の実施の形態の一例を示す断面図である。
【図2】図1の要部拡大断面図である。
【図3】(a)〜(d)は、本発明の配線基板の製造方法を説明するための各工程毎の要部断面図である。
【符号の説明】
1・・・・・・・・・・絶縁基板
2・・・・・・・・・・配線導体
2a・・・・・・・・・配線導体の側面
3・・・・・・・・・・コア基板
4・・・・・・・・・・絶縁樹脂層
5・・・・・・・・・・配線導体層
7・・・・・・・・・・隙間
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wiring board used for mounting an electronic component such as a semiconductor element, and a method for manufacturing the same.
[0002]
[Prior art]
In general, modern electronic devices are required to be small, thin, lightweight, high-performance, high-performance, high-quality, and high-reliable, as represented by mobile communication devices. Electronic devices to be used are also required to be smaller and higher in density. For this reason, there is a demand for smaller, thinner, and more multi-terminal wiring boards for electronic devices. To achieve this, the width of wiring conductor layers including signal conductors and the like must be reduced and the spacing between them must be reduced. Further, high-density wiring has been achieved by increasing the number of wiring conductor layers.
[0003]
As a wiring board capable of such high-density wiring, a wiring board manufactured by employing a build-up method is known. This build-up wiring board is manufactured, for example, by the method described below.
[0004]
First, a wiring conductor is placed on an insulating sheet in which a reinforcing material such as glass cloth or aramid non-woven fabric is impregnated with a thermosetting resin represented by an allyl-modified polyphenylene ether resin having heat resistance and chemical resistance. And then heat-cured to obtain a core substrate in which the wiring conductors are embedded in the insulating substrate.
[0005]
Next, a resin film made of a thermosetting resin such as an epoxy resin is adhered to the core substrate and cured by heating to form an insulating resin layer having a thickness of 20 to 200 μm. Next, a through hole having a diameter of 50 to 200 μm is formed in the insulating resin layer located above the wiring conductor by a laser, and the surface of the insulating resin layer and the inner surface of the through hole are roughened with a potassium permanganate solution or the like. The surface of the insulating resin layer and the inner surface of the through hole are coated with a conductive film made of copper plating using a semi-additive method to form a wiring conductive layer and a through conductor. Then, a build-up wiring board is manufactured by repeating the formation of the insulating resin layer and the through conductor / wiring conductor layer a plurality of times thereon.
[0006]
[Patent Document 1]
JP 2002-261451 A
[Problems to be solved by the invention]
However, in the above-mentioned wiring board, the thermal expansion coefficient of the insulating substrate is 10 × 10 −6 to 15 × 10 −6 / ° C., and the thermal expansion coefficient of the wiring conductor is 15 × 10 −6 to 20 × 10 −6 / ° C. Because the thermal expansion coefficient of the insulating substrate and the thermal expansion coefficient of the wiring conductor are different, if a long-term thermal history is repeatedly applied after mounting electronic components on the wiring substrate, it is caused by the difference in thermal expansion between the insulating substrate and the wiring conductor. Thermal stress concentrates on the boundary between the insulating substrate and the wiring conductor, and a gap is generated between the side surface of the wiring conductor and the insulating substrate, and the gap causes the insulating resin layer to crack and cut the wiring conductor layer As a result, there is a problem that a disconnection failure may occur.
[0008]
When an allyl-modified polyphenylene ether resin is used for the core substrate, the allyl-modified polyphenylene ether resin is chemically stable and difficult to roughen, and an insulating resin layer containing an epoxy resin is laminated on the surface of the core substrate. In the case where the allyl-modified polyphenylene ether resin of the core substrate and the epoxy resin of the insulating resin layer cannot be firmly bonded, as a result, the adhesion between the core substrate and the insulating resin layer laminated thereon is weak. For example, when mounting an electronic component on the surface of a wiring board, a sudden temperature change is applied to the wiring board or heat generated when the electronic component operates after mounting the electronic component or due to an external environment. If heat or the like is repeatedly applied for a long period of time, swelling or peeling may occur between the insulating resin layer and the core substrate. Also had problems.
[0009]
On the other hand, the above-described method of manufacturing a wiring board involves embedding a wiring conductor in an insulating substrate, and manufacturing a wiring board by attaching an insulating resin layer to the insulating substrate. If the long-term thermal history is repeatedly applied after mounting electronic components on the wiring board due to weak adhesion with the insulating resin layer, the thermal stress generated due to the difference in thermal expansion between the insulating substrate and the wiring conductor and the insulating resin layer is insulated. Concentration occurs at the boundary between the substrate and the wiring conductor and at the boundary between the insulating substrate and the insulating resin layer, and a gap occurs between the side surface of the wiring conductor and the insulating substrate, and cracks occur in the insulating resin layer starting from the gap. At the same time, there is a problem that the wiring conductor layer may be cut to cause a disconnection failure, or the insulating resin layer may be separated from the insulating substrate.
[0010]
The present invention has been completed in view of the problems of the related art, and an object of the present invention is to provide a wiring board on which electronic components are mounted, to withstand thermal stress sufficiently even when a long-term heat history is repeatedly applied, and to achieve disconnection. It is an object of the present invention to provide a wiring board with high connection reliability that does not cause any problem.
[0011]
[Means for Solving the Problems]
The wiring board of the present invention, a wiring conductor made of metal foil is embedded in an insulating substrate in which an allyl-modified polyphenylene ether resin is impregnated in a heat-resistant fiber base material so that the surface thereof is flush with the surface of the insulating substrate. A wiring board having a plurality of insulating resin layers containing epoxy resin and wiring conductor layers alternately laminated on the surface of the core substrate having the wiring conductor embedded therein, wherein the wiring conductor has a cross section in the width direction. The shape is a trapezoid in which the length of the base on the side of the insulating substrate is longer than the length of the opposite base, and is embedded between the side surface and the insulating substrate with the epoxy resin interposed therebetween. It is assumed that.
[0012]
According to the wiring board of the present invention, the wiring conductor has a trapezoidal cross-sectional shape in the width direction in which the length of the base on the insulating substrate side is longer than the length of the opposing base, and between the side surface and the insulating substrate. The epoxy resin interposed between the side of the wiring conductor and the insulating substrate serves as an adhesive, and the insulating substrate and the side of the wiring conductor are firmly bonded. As a result, a long-term heat history is repeatedly applied to the wiring board after the electronic components are mounted on the wiring board, and the thermal stress generated due to a difference in thermal expansion between the insulating substrate and the wiring conductor is generated at the boundary between the insulating substrate and the wiring conductor. Even if the wiring conductor layer is concentrated, there is no gap between the side surface of the wiring conductor and the insulating substrate, and cracks occur in the insulating resin layer starting from the gap, and the crack cuts the wiring conductor layer to break the wire. Cause defects It does not that put away.
[0013]
Furthermore, according to the wiring board of the present invention, the insulating substrate and the insulating resin layer are firmly joined by the anchor effect of the epoxy resin interposed between the side surface of the wiring conductor and the insulating substrate, and as a result, Even after long-term thermal history is repeatedly applied after mounting electronic components, even if the thermal stress generated due to the difference in thermal expansion between the insulating substrate and the insulating resin layer concentrates on the boundary between them, the insulating resin layer peels off from the insulating substrate. It doesn't even happen.
[0014]
Further, the method for producing a wiring board of the present invention is characterized in that a wiring conductor made of metal foil and having a trapezoidal cross-section in the width direction is formed on a heat-resistant fiber substrate impregnated with an allyl-modified polyphenylene ether resin. A core substrate is prepared by embedding such that the surface on the bottom side is shorter than the surface of the insulating substrate and forms a gap between the side surface of the wiring conductor and the insulating substrate. And applying an epoxy resin-containing insulating resin layer to the surface of the core substrate in which the wiring conductors are embedded, and filling the inside of the gap with the epoxy resin. And a step of applying a wiring conductor layer.
[0015]
According to the method for manufacturing a wiring board of the present invention, a wiring conductor made of metal foil and having a trapezoidal cross-section in the width direction is formed on a heat-resistant fiber substrate impregnated with an allyl-modified polyphenylene ether resin. The core substrate is prepared by embedding the short side of the bottom side so as to be flush with the surface of the insulating substrate and forming a gap between the side surface of the wiring conductor and the insulating substrate. Since the insulating resin layer containing epoxy resin is applied to the surface of the core board where the wiring conductor is embedded and the inside of the gap is filled with epoxy resin, the epoxy resin serves as an adhesive, It is possible to provide a wiring board to which an insulating substrate is firmly bonded. Also, since the insulating substrate and the insulating resin layer are firmly joined by the anchor effect of the epoxy resin interposed between the side surface of the wiring conductor and the insulating substrate, the wiring between the insulating substrate and the insulating resin layer is firmly bonded. A substrate can be provided.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the wiring board of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a sectional view showing an example of an embodiment of a wiring board of the present invention, and FIG. 2 is an enlarged sectional view of a main part of FIG. In these figures, 1 is an insulating substrate, 2 is a wiring conductor, 3 is a core substrate composed of the insulating substrate 1 and the wiring conductor 2, 4 is an insulating resin layer, and 5 is a wiring conductor layer. A wiring board is configured.
[0017]
The insulating substrate 1 constituting the core substrate 3 is, for example, a glass cloth in which glass fibers as a heat-resistant fiber base material are woven vertically and horizontally is impregnated with an allyl-modified polyphenylene ether resin and has a thickness of about 0.15 to 1.5 mm. It is a rectangular substrate, which has a function as a support for the wiring conductor 2 and the insulating layer 4 and a function to give strength to the wiring board. If the thickness of the insulating substrate 1 is less than 0.15 mm, the rigidity of the wiring substrate is reduced, and warpage tends to occur. If the thickness exceeds 1.5 mm, the wiring substrate becomes unnecessarily thick, and It tends to be difficult to reduce the weight. Therefore, the thickness of the insulating substrate 1 is preferably in the range of 0.15 to 1.5 mm.
[0018]
A wiring conductor 2 made of copper foil is embedded in the surface of the insulating substrate 1 so that the surface thereof is flush with the surface of the insulating substrate 1.
[0019]
The wiring conductor 2 made of such a copper foil has a width of 20 to 200 μm and a thickness of 5 to 50 μm, and connects each electrode of an electronic component (not shown) such as a semiconductor element mounted together with the wiring conductor layer 5 to the outside. It functions as a part of a conductive path electrically connected to an electric circuit board (not shown). When the width of the wiring conductor 2 is less than 20 μm, deformation and disconnection of the wiring conductor 2 tend to occur, and when the width exceeds 200 μm, high-density wiring tends not to be formed. Further, when the thickness of the wiring conductor 2 is less than 5 μm, the strength of the wiring conductor 2 tends to decrease and deformation or disconnection tends to occur, and when it exceeds 50 μm, it tends to be difficult to embed in the insulating substrate 1. . Therefore, the wiring conductor 2 preferably has a width of 20 to 200 μm and a thickness of 5 to 50 μm.
[0020]
The upper and lower wiring conductors 2 may be electrically connected to each other by the through conductor 1b formed on the insulating substrate 1. Such a through conductor 1 b has a diameter of 30 to 100 μm. For example, a metal powder such as copper, silver, or tin alloy and a triazine-based thermosetting resin are provided inside a through hole 1 a provided in the insulating substrate 1. Formed by embedding a conductor consisting of When the through conductor 1b is provided, if the diameter is less than 30 μm, it tends to be difficult to form the through conductor 1b, and if it exceeds 100 μm, there is a tendency that high-density wiring cannot be formed. Therefore, when the through conductor 1b is provided, the diameter thereof is preferably in the range of 30 to 100 μm.
[0021]
Also, an insulating resin layer 4 containing an epoxy resin and a wiring conductor layer 5 made of copper plating are alternately laminated on the main surface of the core substrate 3, that is, the upper and lower surfaces in the example of FIG. The insulating resin layer 4 functions as a support for the wiring conductor layer 5 made of copper plating, has a thickness of 10 to 80 μm, has an average particle size of 0.01 to 2 μm with the epoxy resin, and has a content of 10 to 10 μm. -50% by weight of an inorganic insulating filler such as silica or alumina / aluminum nitride.
[0022]
The inorganic insulating filler adjusts the coefficient of thermal expansion of the insulating resin layer 4 to match the coefficient of thermal expansion of the wiring conductor layer 5, and forms moderate irregularities on the surface of the insulating resin layer 4. 4 has a function of improving the adhesiveness to 4. If the average particle size of the inorganic insulating filler is less than 0.01 μm, it tends to be difficult to form the insulating resin layer 4 having a uniform thickness by agglomeration of the inorganic insulating fillers. If it exceeds, the irregularities on the surface of the insulating resin layer 4 become too large, and the adhesion between the wiring conductor layer 5 and the insulating resin layer 4 tends to be reduced. Therefore, the average particle size of the inorganic insulating filler is preferably in the range of 0.01 to 2 μm.
[0023]
When the content of the inorganic insulating filler is less than 10% by weight, the effect of adjusting the thermal expansion coefficient of the insulating resin layer 4 tends to be small. When the content exceeds 50% by weight, the resin amount of the insulating resin layer 4 is reduced. Therefore, it tends to be difficult to form the insulating resin layer 4. Therefore, the content of the inorganic insulating filler is preferably in the range of 10 to 50% by weight.
[0024]
Further, via holes 6 are formed in the insulating resin layer 4 by laser processing. The insulating resin layer 4 is formed by applying a part of the wiring conductor layer 5 made of copper plating to the inside of the via hole 6. The wiring conductors 2 and the wiring conductor layers 5, which are located vertically above and below, and the wiring conductor layers 5 are electrically connected to each other. The wiring conductor layer 5 has a width of 20 to 200 μm, a thickness of 1 to 2 μm, and an electroless copper plating layer of 10 to 30 μm in thickness, and is mounted on a wiring board. It has a function as a conductive path for electrically connecting each electrode of an electronic component such as a semiconductor element to an external electric circuit board.
[0025]
If the width of the wiring conductor layer 5 is less than 20 μm, the wiring conductor layer 5 tends to be easily deformed or disconnected, and if it exceeds 200 μm, high-density wiring tends not to be formed. If the thickness of the wiring conductor layer 5 is less than 11 μm, the strength of the wiring conductor layer 5 tends to decrease, and deformation or disconnection tends to occur. If the thickness exceeds 32 μm, it takes a long time to form the wiring conductor layer 5. Tend to be. Accordingly, the wiring conductor layer 5 preferably has a width in the range of 20 to 200 μm and a thickness in the range of 11 to 32 μm.
[0026]
In the wiring board according to the present invention, the wiring conductor 2 has a trapezoidal shape in cross section in the width direction whose base on the side of the insulating substrate 1 is longer than the length of the opposite base. It is embedded between the side surface 2a of the conductor 2 and the insulating substrate 1 with an epoxy resin interposed therebetween, and this is important.
[0027]
According to the wiring board of the present invention, the wiring conductor 2 has a trapezoidal cross-sectional shape in the width direction in which the length of the base on the side of the insulating substrate 1 is longer than the length of the opposing base. Since the epoxy resin is embedded between the side surface 2a of the wiring conductor 2 and the insulating substrate 1, the epoxy resin interposed between the side surface 2a of the wiring conductor 2 and the insulating substrate 1 functions as an adhesive. As a result, the insulating substrate 1 and the wiring conductor 2 are firmly adhered to each other. As a result, a long-term heat history is repeatedly applied to the wiring substrate after the electronic components are mounted on the wiring substrate, and the heat between the insulating substrate 1 and the wiring conductor 2 is increased. Even if the thermal stress generated due to the difference in expansion is concentrated on the boundary between the insulating substrate 1 and the wiring conductor 2, no gap is generated between the side surface 2a of the wiring conductor 2 and the insulating substrate 1, and the gap is used as a starting point. Cracks in the insulating resin layer 4 It is not that the crack will have to generate a disconnection failure by cutting the wiring conductor layer 5.
[0028]
Further, according to the wiring board of the present invention, the insulating substrate 1 and the insulating resin layer 4 are firmly joined by the anchor effect of the epoxy resin interposed between the side surface 2a of the wiring conductor 2 and the insulating substrate 1, As a result, a long-term thermal history is repeatedly applied after the electronic component is mounted on the wiring board, and even if the thermal stress generated due to the difference in thermal expansion between the insulating substrate 1 and the insulating resin layer 4 is concentrated on the boundary between them, 4 does not peel off from the insulating substrate 1.
[0029]
The angle formed by the long base and the side surface 2a of the cross section in the width direction of the wiring conductor 2 is preferably 45 to 60 degrees. If the angle between the long base and the side surface 2a is less than 45 degrees, the wiring conductor 2 tends to be deformed and it is difficult to satisfactorily embed it in the insulating substrate 1. There is a tendency that the gap between the side surface 2a of the conductor 2 and the insulating substrate 1 becomes narrow, and it becomes difficult to fill the insulating resin layer 4 with the epoxy resin satisfactorily. Therefore, the angle formed by the long base and the side surface 2a of the cross section in the width direction of the wiring conductor 2 is preferably 45 to 60 degrees.
[0030]
The cross-sectional shape of the gap formed between the side surface 2a of the wiring conductor 2 and the insulating substrate 1 in the width direction of the wiring conductor 2 is a wedge shape as shown in FIG. 2, and the width of the opening is 1 to 5 μm. Preferably, there is. If the width of the opening is less than 1 μm, it tends to be difficult to fill the space between the side surface 2 a of the wiring conductor 2 and the insulating substrate 1. If the width exceeds 5 μm, such a large gap is formed. Tend to be difficult to do. Therefore, it is preferable that the width of the opening of the interval is 1 to 5 μm.
[0031]
Further, when the arithmetic mean roughness Ra is less than 0.1 μm, the side surface 2a of the wiring conductor 2 has a weak joint with the epoxy resin interposed between the side surface 2a of the wiring conductor 2 and the insulating substrate 1. On the other hand, if it exceeds 2 μm, it takes a long time to form such a rough surface, and it tends to be difficult to form. Therefore, it is preferable that the arithmetic mean roughness Ra of the side surface 2a of the wiring conductor 2 be in the range of 0.1 to 2 μm.
[0032]
Thus, according to the wiring board of the present invention, the wiring conductor 2 has a trapezoidal shape in which the cross-sectional shape in the width direction is longer than the length of the opposite base on the side of the insulating substrate 1. Since the epoxy resin is interposed between the side surface 2a of the wiring conductor 2 and the insulating substrate 1, the epoxy resin interposed between the side surface of the wiring conductor 2 and the insulating substrate 1 is used as an adhesive. It is possible to provide a wiring board which fulfills the function and in which the wiring conductor 2 and the insulating substrate 1 are firmly bonded.
[0033]
Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention. Although an example in which the wiring substrate is formed is shown, the insulating substrate may be formed of two or more layers, and a plurality of wiring conductors or through conductors that electrically connect these wiring conductors located above and below may be formed inside. Good.
[0034]
Next, a method for manufacturing a wiring board according to the present invention will be described in detail with reference to FIG.
3 (a) to 3 (d) are cross-sectional views of a main part of each step for explaining the method of manufacturing a wiring board according to the present invention, in which 11 is a transfer sheet substrate, 12 is a transfer sheet, and 13 is a transfer sheet substrate. Is a precursor sheet. In FIG. 3, the same members and portions as those in FIGS. 1 and 2 are denoted by the same reference numerals.
First, as shown in FIG. 3A, a transfer sheet 12 in which a wiring conductor 2 made of copper foil is applied to a transfer sheet base material 11 made of a heat-resistant resin, and an uncured heat-resistant fiber. A precursor sheet 13 serving as an insulating substrate 1 impregnated with an allyl-modified polyphenylene ether resin is prepared.
[0035]
The transfer sheet base material 11 is made of a heat-resistant resin such as polyethylene terephthalate (PET) resin or polycarbonate (PC), and is used as a support when the copper foil is etched to form the wiring conductor 2 and the wiring conductor 2. It has a function as a support when transferring.
[0036]
The transfer sheet substrate 11 preferably has a thickness of 20 to 50 μm, and if the thickness is less than 20 μm, the rigidity is reduced and the wiring conductor 2 tends to be easily deformed when etching the copper foil, If it exceeds 50 μm, the flexibility tends to decrease, and it tends to be difficult to peel off from the insulating substrate 1. Therefore, the thickness of the transfer sheet substrate 11 is preferably 20 to 50 μm.
[0037]
The thickness of the wiring conductor 2 is preferably 5 to 50 μm, more preferably 10 to 20 μm. If the thickness of the wiring conductor 2 is less than 5 μm, the strength of the wiring conductor 2 tends to decrease and deformation or disconnection tends to occur, and if it exceeds 50 μm, it tends to be difficult to embed the precursor sheet. Therefore, the thickness of the wiring conductor 2a is preferably 5 to 50 μm.
[0038]
Such a transfer sheet 12 is formed by applying a copper foil having a thickness of about 12 to 30 μm to an entirety of one main surface of a transfer sheet substrate 11 made of a heat-resistant resin such as polyethylene terephthalate having a thickness of about 25 μm. Then, a film-like photosensitive resist is applied on the copper foil, and the resist is exposed and developed to form an etching mask having a pattern corresponding to the pattern of the wiring conductor 2. The non-patterned portion of the copper foil is removed by etching by dipping in an aqueous ferric chloride / hydrochloric acid solution at 40 to 60 ° C. for several minutes. The side surface 2a is etched until it becomes shorter than the length, specifically until the angle between the bottom side on the etching mask side and the side surface 2a becomes 45 to 60 degrees, and the cross-sectional shape in the width direction is obtained. It is manufactured by forming the wiring conductor 2 having a trapezoidal shape.
[0039]
On the other hand, the precursor sheet 13 serving as the insulating substrate 1 is made of a heat-resistant fiber such as glass cloth or aramid fiber impregnated with an allyl-modified polyphenylene ether resin and semi-cured, and has a surface on which the wiring conductor 2 is embedded. It has as much plasticity as possible. Further, a through-hole 1a is pierced by a laser in the precursor sheet 13 serving as the insulating substrate 1, and the through-hole 1a is filled with a conductive material made of a metal powder to form a through conductor 1b.
[0040]
Next, as shown in FIG. 3 (b), the transfer sheet 12 is laminated on the surface of the precursor sheet 13 so that the through conductor 1b and the wiring conductor 2 are joined, and they are heated and pressed to form the wiring conductor 2. Is thermocompressed to the precursor sheet 13 and embedded so that the bottom side of the shorter side of the wiring conductor 2 and the surface of the precursor sheet 13 are flush with each other. At this time, since the cross-sectional shape of the wiring conductor 2 is a trapezoidal shape in which the length of the base on the precursor sheet 13 side is opposite to the length of the base opposite thereto, that is, the length of the base on the transfer sheet 12 side. When the wiring conductor 2 is embedded in the precursor sheet 13, a gap 7 having a wedge-shaped cross section in the width direction of the wiring conductor 2 is formed between the side surface 2 a of the wiring conductor 2 and the precursor sheet 13. .
[0041]
Such thermocompression bonding is performed by using a hot press machine at a temperature of 100 to 150 ° C. and a pressure of 0.5 to 5 MPa for several minutes. In the thermocompression bonding, it is better to perform only pressurization prior to heating. If the heating is performed first, the heat causes the transfer sheet 11 to expand, and there is a risk that it becomes difficult to accurately embed the wiring conductor 2 at a desired position. Therefore, in thermocompression bonding, it is preferable to apply pressure prior to heating.
[0042]
Further, they are heated and pressurized to thermally cure the allyl-modified polyphenylene ether resin of the precursor sheet 13 to produce the core substrate 3. In the heat treatment, the precursor sheet 13 is sandwiched from above and below with a release sheet made of a fluorine-based resin or the like, and heat-treated at a pressure of 1 to 5 MPa at a temperature of 150 to 240 ° C. The thermosetting resin is thermoset.
[0043]
Next, the exposed portions of the wiring conductors 2 are immersed in an aqueous solution of formic acid / copper ion at a temperature of about 25 ° C. for several minutes so that the exposed portions of the wiring conductors 2 have irregularities with an arithmetic average roughness of 0.1 to 2 μm. Become Thereafter, a film made of an epoxy resin and serving as an insulating resin layer 4 is attached to the main surface of the core substrate 3 and thermally cured at 150 to 180 ° C. for several hours, as shown in a sectional view of FIG. Then, the insulating resin layer 4 is attached to the main surface of the core substrate 3 and the epoxy resin of the insulating resin layer 4 is filled in the gap 7. Note that the film for the insulating resin layer 4 once melts and softens during thermosetting, so that the epoxy resin of the insulating resin layer 4 is favorably filled into the gap 7 at that time. Then, the wiring conductor 2 embedded in the surface of the insulating substrate 1 and the insulating substrate 1 are firmly bonded by the epoxy resin filled in the gap 7.
[0044]
As described above, according to the method for manufacturing a wiring board of the present invention, the insulating substrate 1 in which the heat-resistant fiber base material is impregnated with the allyl-modified polyphenylene ether resin is made of a metal foil and has a trapezoidal cross-sectional shape in the width direction. The conductor 2 is embedded such that the surface on the bottom side having a shorter length is flush with the surface of the insulating substrate 1 and that a gap 7 is formed between the side surface 2 a of the wiring conductor 2 and the insulating substrate 1. A core substrate 3 is prepared, and an insulating resin layer 4 containing epoxy resin is applied to the surface of the core substrate 3 in which the wiring conductor 2 is embedded, and the inside of the gap 7 is filled with epoxy resin. The epoxy resin serves as an adhesive, and a wiring board in which the wiring conductor 2 and the insulating substrate 1 are firmly bonded can be provided. Further, since the insulating substrate 1 and the insulating resin layer 4 are firmly joined by the anchor effect of the epoxy resin interposed between the side surface 2a of the wiring conductor 2 and the insulating substrate 1, the insulating substrate 1 and the insulating resin layer 4 To provide a wiring board having a strong bond.
[0045]
The insulating resin layer 4 has a thickness of 10 to 80 μm, an epoxy resin and an inorganic insulating filler such as silica or alumina / aluminum nitride having an average particle diameter of 0.01 to 2 μm and a content of 10 to 50% by weight. Consisting of
[0046]
Next, as shown in the sectional view of FIG. 3D, a wiring conductor layer 5 made of copper plating is applied to the upper surface of the insulating resin layer 3. Further, if necessary, the next insulating resin layer 4 and the wiring conductor layer 5 are laminated thereon to complete the wiring board.
[0047]
In order to apply the wiring conductor layer 5 made of copper plating on the upper surface of the insulating resin layer 4, first, the surface of the insulating resin layer 4 was roughened by immersing it in a roughening solution such as an aqueous solution of permanganate. Then, immersed in an aqueous solution of a palladium catalyst for electroless plating to adhere the palladium catalyst to the surface, and further immersed in an electroless copper plating solution composed of copper sulfate, formalin, sodium EDTA, a stabilizer, etc. for about 30 minutes. An electroless copper plating layer having a thickness of about 1 to 2 μm is deposited. Next, a plating-resistant resin layer is deposited on the upper surface of the electroless copper plating layer, and a plurality of openings for depositing the electrolytic copper plating layer are formed in the pattern shape of the copper-plated wiring conductor layer 5 by exposure and development. Further, the inner surface of the opening and the via hole 6 is immersed in an electrolytic copper plating solution comprising sulfuric acid / copper sulfate pentahydrate / chlorine / brightener for several hours while applying a current of several A / dm 2. Is applied with an electrolytic copper plating layer having a thickness of about 10 to 30 μm. Thereafter, the plating-resistant resin layer is peeled off with sodium hydroxide, and the electroless copper plating layer exposed by peeling the plating-resistant resin layer is removed by etching with a sulfuric acid-based aqueous solution such as a mixture of sulfuric acid and hydrogen peroxide solution. It is formed by doing.
[0048]
Thus, according to the method for manufacturing a wiring board of the present invention, it is possible to provide a wiring board in which the adhesion between the wiring conductor 2 and the insulating substrate 1 is strong and the bonding between the insulating substrate 1 and the insulating resin layer 4 is strong. Can be.
[0049]
Note that the present invention is not limited to the above-described embodiment, and various changes can be made without departing from the scope of the present invention.
[0050]
【The invention's effect】
According to the wiring board of the present invention, the wiring conductor has a trapezoidal cross-sectional shape in the width direction in which the length of the base on the insulating substrate side is longer than the length of the opposing base, and between the side surface and the insulating substrate. The epoxy resin interposed between the side of the wiring conductor and the insulating substrate serves as an adhesive, and the insulating substrate and the side of the wiring conductor are firmly bonded. As a result, a long-term heat history is repeatedly applied to the wiring board after the electronic components are mounted on the wiring board, and the thermal stress generated due to a difference in thermal expansion between the insulating substrate and the wiring conductor is generated at the boundary between the insulating substrate and the wiring conductor. Even if the wiring conductor layer is concentrated, there is no gap between the side surface of the wiring conductor and the insulating substrate, and cracks occur in the insulating resin layer starting from the gap, and the crack cuts the wiring conductor layer to break the wire. Cause defects It does not that put away.
[0051]
Further, according to the wiring board of the present invention, the insulating substrate and the insulating resin layer are firmly joined to each other by the anchor effect of the epoxy resin interposed between the side surface of the wiring conductor and the insulating substrate. Even after long-term thermal history is repeatedly applied after mounting electronic components, even if the thermal stress generated due to the difference in thermal expansion between the insulating substrate and the insulating resin layer concentrates on the boundary between them, the insulating resin layer peels off from the insulating substrate. It doesn't even happen.
[0052]
Furthermore, according to the method for manufacturing a wiring board of the present invention, a wiring conductor made of metal foil and having a trapezoidal cross section in the width direction is formed on an insulating substrate in which a heat-resistant fiber base material is impregnated with an allyl-modified polyphenylene ether resin. Prepare a core substrate which is embedded so that the surface on the bottom side having a shorter length is flush with the surface of the insulating substrate and forms a gap between the side surface of the wiring conductor and the insulating substrate. The epoxy resin acts as an adhesive because the insulating resin layer containing epoxy resin is applied to the surface of the core substrate with the wiring conductor embedded and the gap is filled with epoxy resin. It is possible to provide a wiring board in which a conductor and an insulating substrate are firmly bonded. In addition, since the insulating substrate and the insulating resin layer are firmly joined by the anchor effect of the epoxy resin interposed between the side surface of the wiring conductor and the insulating substrate, the bonding between the insulating substrate and the insulating resin layer is strong. A substrate can be provided.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an example of an embodiment of a wiring board of the present invention.
FIG. 2 is an enlarged sectional view of a main part of FIG.
FIGS. 3A to 3D are main-portion cross-sectional views of each process for describing the method of manufacturing a wiring board according to the present invention;
[Explanation of symbols]
1 Insulating substrate 2 Wiring conductor 2a Side surface 3 of wiring conductor・ Core substrate 4 ・ ・ ・ ・ ・ ・ ・ ・ ・ Insulating resin layer 5 ・ ・ ・ ・ ・ ・ ・ ・ ・ Wiring conductor layer 7 ・ ・ ・ ・ ・ ・ ・ ・ ・ Gap

Claims (2)

耐熱性繊維基材にアリル変性ポリフェニレンエーテル樹脂を含浸させた絶縁基板に金属箔から成る配線導体をその表面が前記絶縁基板の表面と同一面をなすように埋入して成るコア基板の前記配線導体を埋入した表面に、エポキシ樹脂を含む絶縁樹脂層と配線導体層とを交互に複数層積層して成る配線基板において、前記配線導体は、その幅方向の断面形状が前記絶縁基板側の底辺の長さが対向する底辺の長さより長い台形状であり、かつその側面と前記絶縁基板との間に前記エポキシ樹脂を介在させて埋入されていることを特徴とする配線基板。A wiring conductor made of metal foil embedded in an insulating substrate in which an allyl-modified polyphenylene ether resin is impregnated in a heat-resistant fiber base material so that the surface thereof is flush with the surface of the insulating substrate; In a wiring board formed by alternately laminating a plurality of insulating resin layers containing epoxy resin and wiring conductor layers on a surface in which a conductor is embedded, the wiring conductor has a cross-sectional shape in the width direction on the insulating substrate side. A wiring board having a trapezoidal shape whose bottom side is longer than the length of the opposing bottom side, and embedded between the side surface and the insulating substrate with the epoxy resin interposed therebetween. 耐熱性繊維基材にアリル変性ポリフェニレンエーテル樹脂を含浸させた絶縁基板に、金属箔から成り、幅方向の断面形状が台形状の配線導体を、長さが短い底辺側の表面が前記絶縁基板の表面と同一面をなすように、かつ前記配線導体の側面と前記絶縁基板との間に隙間を形成するように埋入して成るコア基板を準備する工程と、該コア基板の前記配線導体を埋入した表面にエポキシ樹脂を含む絶縁樹脂層を被着するとともに前記隙間の内部に前記エポキシ樹脂を充填する工程と、前記絶縁樹脂層の表面に配線導体層を被着する工程とを具備することを特徴とする配線基板の製造方法。An insulating substrate impregnated with an allyl-modified polyphenylene ether resin in a heat-resistant fiber substrate, a wiring conductor made of metal foil and having a trapezoidal cross-section in the width direction, and a short bottom surface of the insulating substrate having a shorter length. A step of preparing a core substrate embedded so as to be flush with the front surface and to form a gap between the side surface of the wiring conductor and the insulating substrate; and A step of applying an insulating resin layer containing an epoxy resin to the embedded surface and filling the interior of the gap with the epoxy resin, and a step of applying a wiring conductor layer to a surface of the insulating resin layer. A method for manufacturing a wiring board, comprising:
JP2002355854A 2002-12-06 2002-12-06 Wiring board and its manufacturing method Pending JP2004193168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002355854A JP2004193168A (en) 2002-12-06 2002-12-06 Wiring board and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002355854A JP2004193168A (en) 2002-12-06 2002-12-06 Wiring board and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004193168A true JP2004193168A (en) 2004-07-08

Family

ID=32756422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002355854A Pending JP2004193168A (en) 2002-12-06 2002-12-06 Wiring board and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004193168A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112535A1 (en) * 2005-04-18 2006-10-26 Seiren Co., Ltd. Transparent electrically conductive film and process for producing the same
JP2007189031A (en) * 2006-01-12 2007-07-26 Allied Material Corp Semiconductor device mounting member, semiconductor device and light emitting diode using the same
JP2009088022A (en) * 2007-09-27 2009-04-23 Kyocera Corp Wiring board, and manufacturing method therefor, and electronic device
CN108700965A (en) * 2016-03-30 2018-10-23 株式会社藤仓 Wiring body, circuit board and touch sensor
US10349521B2 (en) 2016-11-10 2019-07-09 At & S Austria Technologie & Systemtechnik Aktiengesellschaft Component carrier with adhesion promoting shape of wiring structure
JP2022511878A (en) * 2018-12-13 2022-02-01 エルジー イノテック カンパニー リミテッド Printed circuit board

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112535A1 (en) * 2005-04-18 2006-10-26 Seiren Co., Ltd. Transparent electrically conductive film and process for producing the same
US7883837B2 (en) 2005-04-18 2011-02-08 Seiren Co., Ltd. Transparent electrically conductive film and process for producing the same
KR101200349B1 (en) * 2005-04-18 2012-11-12 세이렌가부시끼가이샤 Transparent electrically conductive film and process for producing the same
JP2007189031A (en) * 2006-01-12 2007-07-26 Allied Material Corp Semiconductor device mounting member, semiconductor device and light emitting diode using the same
JP2009088022A (en) * 2007-09-27 2009-04-23 Kyocera Corp Wiring board, and manufacturing method therefor, and electronic device
CN108700965A (en) * 2016-03-30 2018-10-23 株式会社藤仓 Wiring body, circuit board and touch sensor
US10349521B2 (en) 2016-11-10 2019-07-09 At & S Austria Technologie & Systemtechnik Aktiengesellschaft Component carrier with adhesion promoting shape of wiring structure
US11044812B2 (en) 2016-11-10 2021-06-22 At&S Austria Technologie & Systemtechnik Aktiengesellschaft Component carrier with adhesion promoting shape of wiring structure
JP2022511878A (en) * 2018-12-13 2022-02-01 エルジー イノテック カンパニー リミテッド Printed circuit board
US11528801B2 (en) 2018-12-13 2022-12-13 Lg Innotek Co., Ltd. Printed circuit board

Similar Documents

Publication Publication Date Title
JP5598212B2 (en) Hybrid core substrate and manufacturing method thereof, semiconductor integrated circuit package, build-up substrate and manufacturing method thereof
US9951434B2 (en) Printed wiring board, semiconductor package and method for manufacturing printed wiring board
JPWO2010074121A1 (en) Method for manufacturing printed wiring board
JP4691763B2 (en) Method for manufacturing printed wiring board
JP6033872B2 (en) Manufacturing method of component-embedded substrate
JP2000077800A (en) Wiring board and manufacture thereof
JP2015170769A (en) Printed wiring board and manufacturing method of the same
JP2000077850A (en) Multilayer wiring board and its manufacture
JP2004193168A (en) Wiring board and its manufacturing method
JP3940617B2 (en) Wiring board and manufacturing method thereof
JP2004179545A (en) Wiring board
JP2000133916A (en) Formation material for wiring pattern transfer, manufacture of formation material for wiring pattern transfer, wiring board using formation material for wiring pattern transfer and manufacture thereof
JP2004207338A (en) Wiring board
JP4127377B2 (en) Wiring board and manufacturing method thereof
TW202112197A (en) Circuit board, method for manufacturing circuit board, and electronic device
JP4780857B2 (en) Wiring board manufacturing method
JP4742409B2 (en) Method for manufacturing printed wiring board
JP4160765B2 (en) Wiring board manufacturing method
JP2002185139A (en) Printed wiring board and its manufacturing method
JP2004241427A (en) Method of manufacturing wiring board
JP2004179440A (en) Wiring board and manufacturing method therefor
JP2004193505A (en) Wiring board
JP2004165321A (en) Wiring board and its manufacturing method
JP2004152780A (en) Wiring board
JP2012015334A (en) Wiring board and its manufacturing method