JP4127377B2 - Wiring board and manufacturing method thereof - Google Patents

Wiring board and manufacturing method thereof Download PDF

Info

Publication number
JP4127377B2
JP4127377B2 JP2002304716A JP2002304716A JP4127377B2 JP 4127377 B2 JP4127377 B2 JP 4127377B2 JP 2002304716 A JP2002304716 A JP 2002304716A JP 2002304716 A JP2002304716 A JP 2002304716A JP 4127377 B2 JP4127377 B2 JP 4127377B2
Authority
JP
Japan
Prior art keywords
wiring conductor
wiring
insulating
insulating substrate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002304716A
Other languages
Japanese (ja)
Other versions
JP2004140243A (en
Inventor
征一 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002304716A priority Critical patent/JP4127377B2/en
Publication of JP2004140243A publication Critical patent/JP2004140243A/en
Application granted granted Critical
Publication of JP4127377B2 publication Critical patent/JP4127377B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子等の電子部品を搭載するために用いられる配線基板およびその製造方法に関する。
【0002】
【従来の技術】
一般に、現在の電子機器は、移動体通信機器に代表されるように小型・薄型・軽量・高性能・高機能・高品質・高信頼性が要求されてきており、このような電子機器に搭載される電子装置も小型・高密度化が要求されるようになってきている。そのため、電子装置を構成する配線基板にも小型・薄型・多端子化が求められてきており、それを実現するために信号導体等を含む配線導体層の幅を細くするとともにその間隔を狭くし、さらに配線導体層の多層化により高密度配線化が図られている。
【0003】
このような高密度配線が可能な配線基板として、ビルドアップ法を採用して製作された配線基板が知られている。このビルドアップ配線基板は、例えば、次に述べる方法により製作される。
【0004】
まず、ガラスクロスやアラミド不布織等の補強材に耐熱性や耐薬品性を有するエポキシ樹脂やアリル変性ポリフェニレンエーテル樹脂に代表される熱硬化性樹脂を含浸させた絶縁シートに金属箔から成る配線導体を埋入し、しかる後これを加熱硬化して絶縁基板に配線導体が埋入して成るコア基板を得る。
【0005】
次に、コア基板にエポキシ樹脂等の熱硬化性樹脂から成る樹脂フィルムを貼着し加熱硬化して、厚みが20〜200μmの絶縁樹脂層を形成する。次に、配線導体上の絶縁樹脂層に径が50〜200μmの貫通孔をレーザで穿設し、さらに絶縁樹脂層の表面および貫通孔の内面を過マンガン酸カリウム溶液等の粗化液で化学粗化し、次にセミアディティブ法を用いて絶縁樹脂層の表面および貫通孔の内面に銅めっきから成る導体膜を被着して配線導体層および貫通導体を形成する。そして、この上に絶縁樹脂層や貫通導体・配線導体層の形成を複数回繰り返すことによって、ビルドアップ配線基板が製作される。
【0006】
【特許文献1】
特開2002−261451号公報
【0007】
【発明が解決しようとする課題】
しかしながら、上述の配線基板は、絶縁基板の熱膨張係数が10×10-6〜15×10-6/℃、銅箔から成る配線導体の熱膨張係数が15×10-6〜20×10-6/℃であり絶縁基板の熱膨張係数と配線導体の熱膨張係数が異なることから、配線基板に電子部品を搭載した後に長期の熱履歴が繰り返し印加されると、絶縁基板と配線導体の熱膨張差により発生する熱応力が絶縁基板と配線導体との境界に集中して配線導体の側面と絶縁基板との間に隙間が発生し、その隙間を起点として絶縁樹脂層にクラックが生じるとともに配線導体層を切断して断線不良を発生させてしまうことがあるという問題点を有していた。
【0008】
また、コア基板にアリル変性ポリフェニレンエーテル樹脂を用いた場合、アリル変性ポリフェニレンエーテル樹脂が化学的に安定で粗化することが困難であり、コア基板の表面にエポキシ樹脂を含む絶縁樹脂層を積層した場合、コア基板のアリル変性ポリフェニレンエーテル樹脂と絶縁樹脂層のエポキシ樹脂とが強固に結合することができず、その結果、コア基板とその上に積層された絶縁樹脂層との密着力が弱いものとなってしまい、例えば配線基板の表面に電子部品を実装する際に、配線基板に急激な温度変化が加わったりあるいは電子部品を実装した後に電子部品が作動する際に発生する熱や外部環境による熱等が長期間にわたり繰返し加わったりすると、絶縁樹脂層とコア基板との間で膨れや剥がれが発生してしまうことがあるという問題点も有していた。
【0009】
他方、上述の配線基板の製造方法は、配線導体を絶縁基板に埋入することによって、および絶縁樹脂層を絶縁基板に被着することによって配線基板を製作することから、絶縁基板と配線導体および絶縁樹脂層との密着が弱く、配線基板に電子部品を搭載した後に長期の熱履歴が繰り返し印加されると、絶縁基板と配線導体および絶縁樹脂層との熱膨張差により発生する熱応力が絶縁基板と配線導体との境界および絶縁基板と絶縁樹脂層との境界に集中して、配線導体の側面と絶縁基板との間に隙間が発生し、その隙間を起点として絶縁樹脂層にクラックが生じるとともに配線導体層を切断して断線不良を発生させてしまう、あるいは絶縁樹脂層が絶縁基板から剥離してしまうことがあるという問題点を有していた。
【0010】
本発明は、かかる従来技術の問題点に鑑み完成されたものであり、その目的は、電子部品を搭載した配線基板において、長期の熱履歴を繰り返し印加しても、熱応力に充分耐え、断線等が生じない接続信頼性の高い配線基板を提供することにある。
【0011】
【課題を解決するための手段】
本発明の配線基板は、耐熱性繊維基材にアリル変性ポリフェニレンエーテル樹脂を含浸させた絶縁基板に銅箔から成る配線導体をその表面が前記絶縁基板の表面と同一面をなすように埋入して成るコア基板の前記配線導体を埋入した表面に、エポキシ樹脂を含む絶縁層と銅めっきから成る配線導体層とを交互に複数層積層して成る配線基板において、前記配線導体はその側面が粗化されており、かつ前記絶縁基板に前記側面と前記絶縁基板との間に前記エポキシ樹脂を介在させて埋入されていることを特徴とするものである。
【0012】
本発明の配線基板によれば、配線導体はその側面が粗化されており、かつ絶縁基板に側面と絶縁基板との間にエポキシ樹脂を介在させて埋入されていることから、配線導体の側面と絶縁基板との間に介在させたエポキシ樹脂が接着材の機能を果たして配線導体の側面とエポキシ樹脂とが強固に接着し、配線導体と絶縁基板とが強固に接着した配線基板とすることができる。そしてその結果、配線基板に電子部品を搭載した後に配線基板に長期の熱履歴が繰り返し印加され、絶縁基板と配線導体との熱膨張差により発生する熱応力が絶縁基板と配線導体との境界に集中したとしても、配線導体の側面と絶縁基板との間に隙間が発生することはなく、その隙間を起点として絶縁層にクラックが生じたり、このクラックが配線導体層を切断して断線不良を発生させてしまうということはない。
【0013】
また、本発明の配線基板によれば、絶縁基板と絶縁層とが配線導体の側面と絶縁基板との間に介在させたエポキシ樹脂のアンカー効果により強固に接合し、その結果、配線基板に電子部品を搭載した後に長期の熱履歴が繰り返し印加され、絶縁基板と絶縁層の熱膨張差により発生する熱応力が両者の境界に集中したとしても、絶縁層が絶縁基板から剥離してしまうということもない。
【0014】
本発明の配線基板の製造方法は、耐熱性繊維基材にアリル変性ポリフェニレンエーテル樹脂を含浸させた絶縁基板に銅箔から成る配線導体をその表面が前記絶縁基板の表面と同一面をなすように埋入して成るコア基板を準備する工程と、このコア基板の前記配線導体を埋入した表面にプラズマを照射して前記コア基板の表面およびその近傍に位置する前記アリル変性ポリフェニレンエーテル樹脂を収縮させることによって前記配線導体の側面と前記絶縁基板との間に隙間を形成する工程と、この隙間内に露出した前記配線導体の前記側面を粗化する工程と、前記コア基板の前記配線導体を埋入した表面にエポキシ樹脂を含む絶縁層を被着するとともに前記隙間の内部に前記エポキシ樹脂を充填する工程と、前記絶縁層の表面に銅めっきから成る配線導体層を被着する工程とを具備することを特徴とするものである。
【0015】
本発明の配線基板の製造方法によれば、コア基板の配線導体を埋入した表面にプラズマを照射してコア基板の表面およびその近傍に位置するアリル変性ポリフェニレンエーテル樹脂を収縮させることによって配線導体の側面と絶縁基板との間に隙間を形成し、次にこの隙間内に露出した配線導体の側面を粗化し、次にコア基板の配線導体を埋入した表面にエポキシ樹脂を含む絶縁層を被着するとともに隙間の内部にエポキシ樹脂を充填することから、配線導体の側面と絶縁基板との間に介在させたエポキシ樹脂が接着材の機能を果たすとともに配線導体の側面とエポキシ樹脂とが強固に接着し、配線導体と絶縁基板とが強固に接着した配線基板を提供することができる。また、絶縁基板と絶縁層とが配線導体の側面と絶縁基板との間に介在させたエポキシ樹脂のアンカー効果により強固に接合するので、絶縁基板と絶縁層との接合が強固な配線基板を提供することができる。
【0016】
【発明の実施の形態】
次に、本発明の配線基板を添付の図面に基づいて詳細に説明する。
図1は、本発明の配線基板の実施の形態の一例を示す断面図であり、図2は、図1の要部拡大断面図である。これらの図において、1は絶縁基板、2は配線導体、2aは配線導体2の側面、3は絶縁基板1と配線導体2とから成るコア基板、4は絶縁層、5は配線導体層で、主にこれらで本発明の配線基板が構成されている。
【0017】
コア基板3を構成する絶縁基板1は、例えば耐熱性繊維基材であるガラス繊維を縦横に織り込んだガラスクロスにアリル変性ポリフェニレンエーテル樹脂を含浸させて成る厚みが0.15〜1.5mmの略四角形状の基板であり、配線導体2および絶縁層4の支持体としての機能を有するとともに配線基板に強度を付与する機能を有する。絶縁基板1は、その厚みが0.15mm未満であると配線基板の剛性が低下し、反りが発生し易くなる傾向があり、1.5mmを超えると配線基板が不要に厚いものとなり配線基板を軽量化することが困難となる傾向がある。従って、絶縁基板1の厚みは0.15〜1.5mmの範囲が好ましい。
【0018】
また、絶縁基板1の表面には銅箔から成る配線導体2がその表面が絶縁基板1の表面と同一面をなすように埋入されている。
このような銅箔から成る配線導体2は、その幅が20〜200μm、厚みが5〜50μmであり、配線導体層5とともに搭載する半導体素子等の電子部品(図示せず)の各電極を外部電気回路基板(図示せず)に電気的に接続する導電路の一部としての機能する。配線導体2は、その幅が20μm未満となると配線導体2の変形や断線が発生しやすくなる傾向があり、200μmを超えると高密度配線が形成できなくなる傾向がある。また、配線導体2の厚みが5μm未満になると配線導体2の強度が低下し変形や断線が発生しやすくなる傾向があり、50μmを超えると絶縁基板1への埋入が困難となる傾向がある。従って、配線導体2は、その幅を20〜200μm、厚みを5〜50μmの範囲とすることが好ましい。
【0019】
なお、上下に位置する配線導体2同士を、絶縁基板1に形成した貫通導体(図示せず)により電気的に接続してもよい。このような貫通導体は、その直径が30〜100μmであり、例えば、絶縁基板1に設けた貫通孔(図示せず)の内部に銅や銀・錫合金等の金属粉末とトリアジン系熱硬化性樹脂等とから成る導体を埋め込むことにより形成される。貫通導体を設ける場合、その直径が30μm未満になると貫通導体の形成が困難となる傾向があり、100μmを超えると高密度配線が形成できなくなる傾向がある。従って、貫通導体を設ける場合、その直径は30〜100μmの範囲とすることが好ましい。
【0020】
また、コア基板3の配線導体2を埋入した表面には、エポキシ樹脂を含有する絶縁層4と銅めっきから成る配線導体層5とが交互に積層されている。絶縁層4は、銅めっきから成る配線導体層5の支持体としての機能を有し、その厚みが10〜80μmであり、エポキシ樹脂と平均粒径が0.01〜2μmで含有量が10〜50重量%のシリカやアルミナ・窒化アルミニウム等の無機絶縁フィラーとから成る。
【0021】
無機絶縁フィラーは、絶縁層4の熱膨張係数を調整し配線導体層5の熱膨脹係数と整合させるとともに、絶縁層4の表面に適度な凹凸を形成し、配線導体層5と絶縁層4との密着性を良好となす機能を有する。なお、無機絶縁フィラーは、その平均粒径が0.01μm未満であると、無機絶縁フィラー同士が凝集して均一な厚みの絶縁層4を形成することが困難となる傾向があり、2μmを超えると絶縁層4の表面の凹凸が大きなものとなり過ぎて配線導体層5と絶縁層4との密着性を低下させてしまう傾向がある。従って、無機絶縁フィラーの平均粒径は、0.01〜2μmの範囲が好ましい。
【0022】
また、無機絶縁フィラーの含有量が10重量%未満であると、絶縁層4の熱膨張係数を調整する作用が小さくなる傾向があり、50重量%を超えると絶縁層4の樹脂量が減少し絶縁層4を成形することが困難となる傾向がある。従って、無機絶縁フィラーの含有量は、10〜50重量%の範囲が好ましい。
【0023】
また、絶縁層4には、レーザ加工によりビア孔6が形成されており、このビア孔6の内部に銅めっきから成る配線導体層5の一部を充填させることにより絶縁層4を挟んで上下に位置する配線導体2と配線導体層5、および配線導体層5同士が電気的に接続されている。なお、配線導体層5は、その幅が20〜200μmであり、その厚みが1〜2μmの無電解銅めっき層と厚みが10〜30μmの電解銅めっき層とから成り、配線基板に搭載される半導体素子等の電子部品の各電極を外部電気回路基板に電気的に接続する導電路としての機能を有する。
【0024】
配線導体層5は、その幅が20μm未満となると配線導体層5の変形や断線が発生しやすくなる傾向があり、200μmを超えると高密度配線が形成できなくなる傾向がある。また、配線導体層5の厚みが11μm未満になると配線導体層5の強度が低下し変形や断線が発生しやすくなる傾向があり、32μmを超えると配線導体層5の形成に長時間を要してしまう傾向がある。従って、配線導体層5は、その幅を20〜200μm、厚みを11〜32μmの範囲とすることが好ましい。
【0025】
そして、本発明の配線基板においては、配線導体2はその側面2aが粗化されており、かつ絶縁基板1に配線導体2の側面2aと絶縁基板1との間に絶縁層4を構成するエポキシ樹脂を介在させて埋入されており、また、このことが重要である。
【0026】
本発明の配線基板によれば、配線導体2はその側面2aが粗化されており、かつ絶縁基板1に側面2aと絶縁基板1との間に絶縁層4を構成するエポキシ樹脂を介在させて埋入されていることから、配線導体2の側面2aと絶縁基板1との間に介在させたエポキシ樹脂が接着材の機能を果たし、配線導体2の側面2aとエポキシ樹脂とが強固に接着し、配線導体2と絶縁基板1とが強固に接着した配線基板とすることができる。そしてその結果、配線基板に電子部品を搭載した後に配線基板に長期の熱履歴が繰り返し印加され、絶縁基板1と配線導体2の熱膨張差により発生する熱応力が絶縁基板1と配線導体2との境界に集中したとしても、配線導体2の側面2aと絶縁基板1との間に隙間が発生することはなく、その隙間を起点として絶縁層4にクラックが生じて配線導体層5を切断して断線不良を発生させてしまうということもない。
【0027】
また、本発明の配線基板によれば、絶縁基板1と絶縁層4とが配線導体2の側面2aと絶縁基板1との間に介在させた絶縁層4を構成するエポキシ樹脂のアンカー効果により強固に接合し、その結果、配線基板に電子部品を搭載した後に長期の熱履歴が繰り返し印加され、絶縁基板1と絶縁層4の熱膨張差により発生する熱応力が両者の境界に集中したとしても、絶縁層4が絶縁基板1から剥離してしまうということもない。
【0028】
なお、配線導体2の側面2aと絶縁基板1との間隔が1μm未満であると、配線導体2の側面2aを粗化すること、および配線導体2の側面2aと絶縁基板1との間にエポキシ樹脂を充填することが困難となる傾向にあり、5μmを超えると、このような大きな間隔を形成するのが困難となる傾向がある。従って、配線導体2の側面2aと絶縁基板1との間隔は1〜5μmであることが好ましい。
【0029】
また、配線導体2の側面2aは、その算術平均粗さRaが0.1μm未満の場合、配線導体2の側面2aと絶縁基板1との間に介在させたエポキシ樹脂との接合が弱いものとなる傾向にあり、他方、2μmを超える場合、そのような粗面を形成するのに長時間を要し、形成することが困難となる傾向にある。従って、配線導体2の側面2aは、その算術平均粗さRaを0.1〜2μmの範囲とすることが好ましい。
【0030】
なお、配線導体2の側面2aの粗化、および配線導体2を絶縁基板1へ配線導体2の側面2aと絶縁基板1との間にエポキシ樹脂を介在させての埋入は、次に述べる方法により行なわれる。
【0031】
まず、コア基板3の配線導体2を埋入した表面にプラズマを、出力が0.5〜3kw、酸素/四弗化炭素=1/1のガス比率の条件で、300〜500秒間照射することによって、絶縁基板1の表面およびその近傍に位置するアリル変性ポリフェニレンエーテル樹脂を収縮させ、配線導体2の側面2aと絶縁基板1との間に幅が1〜5μmの隙間7を形成し、次に、隙間7を形成したコア基板3を温度が約25℃の蟻酸・銅イオン溶液に数分間浸漬することにより、隙間7内に露出した配線導体2aの側面2aを算術平均粗さが0.1〜2μmの凹凸を有するように粗化し、しかる後、コア基板3の配線導体2を埋入した表面にエポキシ樹脂から成り絶縁層4と成るフィルムを貼着するとともに150〜180℃で数時間熱硬化することによりコア基板3の配線導体2を埋入した表面に絶縁層4を被着形成するとともに隙間7内に絶縁層4のエポキシ樹脂を充填することにより行なわれる。
【0032】
かくして、本発明の配線基板によれば、配線導体2はその側面2aが粗化されており、かつ絶縁基板1に側面2aと絶縁基板1との間にエポキシ樹脂を介在させて埋入されていることから、配線導体2の側面2aと絶縁基板1との間に介在させたエポキシ樹脂が接着材の機能を果たして配線導体2の側面2aとエポキシ樹脂とが強固に接着し、配線導体2と絶縁基板1とが強固に接着した配線基板とすることができる。
【0033】
なお、本発明は上述の実施の形態の一例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能であり、本実施例では、絶縁基板を1層から成るものとした例を示したが、絶縁基板を2層以上から成るものとし、内部に配線導体や、上下に位置するこれらの配線導体間を電気的に接続する貫通導体を複数形成してもよい。
【0034】
次に、本発明の配線基板の製造方法を、図3に基づいて詳細に説明する。
図3(a)〜(f)は、本発明の配線基板の製造方法を説明するための各工程毎の要部断面図であり、11は転写用シート基材、12は転写用シートである。なお、図3において、図1および図2と同じ部材、箇所には同じ符合を付した。
【0035】
まず、耐熱性繊維基材にアリル変性ポリフェニレンエーテル樹脂を含浸させた絶縁基板1に銅箔から成る配線導体2をその表面が絶縁基板1の表面と同一面をなすように埋入して成るコア基板3を準備する。このようなコア基板3は、次に述べる方法により製作される。
【0036】
まず、図3(a)に示すように、耐熱性樹脂から成る転写用シート基材11に銅箔から成る配線導体2を被着して成る転写用シート12と、耐熱性繊維に未硬化のアリル変性ポリフェニレンエーテル樹脂を含浸させて成る絶縁基板1と成る前駆体シート1aとを用意する。
【0037】
転写用シート基材11は、ポリエチレンテレフタレート(PET)樹脂やポリカーボネート(PC)等の耐熱性樹脂が用いられ、銅箔をエッチングして配線導体2を形成する際の支持体、および配線導体2を転写する際の支持体としての機能を有する。
【0038】
転写用シート基材11は、その厚みが20〜50μmであることが好ましく、厚みが20μm未満であると剛性が低下し銅箔をエッチングする際に配線導体2が変形し易くなる傾向にあり、50μmを超えると柔軟性が低下し絶縁基板1から剥離し難くなる傾向にある。従って、転写用シート基材11の厚みは20〜50μmが好ましい。
【0039】
また、配線導体2は、その厚みは5〜50μmが好ましく、さらには10〜20μmが好ましい。配線導体2の厚みが5μm未満になると配線導体2の強度が低下し変形や断線が発生しやすくなる傾向があり、50μmを超えると前駆体シート1aへの埋入が困難となる傾向がある。従って、配線導体2aの厚みは5〜50μmが好ましい。
【0040】
このような転写用シート12は、例えば厚みが25μm程度のポリエチレンテレフタレート等の耐熱性樹脂から成る転写シート基材11の一方の主面全体に接着材を介して厚みが12μm程度の銅箔を剥離可能に接着した後、銅箔上にフィルム状感光性レジストを被着するとともにこのレジストを露光・現像して配線導体2のパターンに対応するパターンのエッチングマスクを形成し、しかる後、塩化第二鉄溶液中に浸漬して銅箔の非パターン部をエッチング除去し、最後に、感光性レジストを剥離除去してパターン状の配線導体2を形成することにより製作される。
【0041】
他方、絶縁基板1と成る前駆体シート1aは、ガラスクロスやアラミド繊維等の耐熱性繊維にアリル変性ポリフェニレンエーテル樹脂を含浸させて半硬化させたものから成り、その表面は配線導体2を埋入可能な程度の可塑性を備えている。
【0042】
次に、前駆体シート1aの表面に転写用シート12を積層するとともにそれらを加熱加圧して配線導体2を前駆体シート1aに熱圧着した後、前駆体シート1aから転写用シート基材11を剥離して、前駆体シート1aにその表面が前駆体シート1aの表面と同一面をなすように配線導体2を転写埋入してする。
【0043】
熱圧着は、熱プレス機を用いて温度が100〜150℃、圧力が0.5〜5MPaの条件で数分間加圧することにより行なわれる。なお、熱圧着は加熱に先行して加圧のみを行なう方が良い。加熱を先に行なうと熱によって転写用シート12が伸び、配線導体2を所望の位置に正確に埋入することが困難となってしまう危険性がある。従って、熱圧着は加熱に先行して加圧を行なうことが好ましい。
【0044】
さらに、それらを加熱加圧して前駆体シート1aのアリル変性ポリフェニレンエーテル樹脂を熱硬化して、絶縁基板1にその表面が絶縁基板1の表面と同一面をなすように配線導体2を埋入した、図3(b)に断面図で示すようなコア基板3を得る。なお、加熱処理にあたっては、前駆体シート1aをフッ素系樹脂などから成る離型性シートで上下から挟みこみ、1〜5MPaの圧力で150〜240℃の温度で熱処理することにより、前駆体シート1aの熱硬化性樹脂を熱硬化させる。
【0045】
次に、図3(c)に断面図で示すように、コア基板3にプラズマを、出力が0.5〜3kw、酸素/四弗化炭素=1/1のガス比率の条件で、300〜500秒間照射することによって絶縁基板1の配線導体2を埋入した表面およびその近傍に位置するアリル変性ポリフェニレンエーテル樹脂を収縮させ、配線導体2の側面2aと絶縁基板1との間に幅が1〜5μmの隙間7を形成する。なお、コア基板3にプラズマを照射することによって、絶縁基板1の表面に算術平均粗さRaが0.5〜3μmの凹凸が形成される。この凹凸により絶縁基板1と絶縁層4との接着力を向上させることができる。
【0046】
次に、図3(d)に断面図で示すように、プラズマを照射したコア基板3を約25℃の温度の蟻酸・銅イオン溶液に数分間浸漬することにより、隙間7内に露出した配線導体2aの側面2aを算術平均粗さが0.1〜2μmの凹凸を有するように粗化する。
【0047】
次に、図3(e)に断面図で示すように、コア基板3の配線導体2を埋入した表面にエポキシ樹脂から成り絶縁層4と成るフィルムを貼着するとともに150〜180℃で数時間熱硬化することによりコア基板3の配線導体2を埋入した表面に絶縁層4を被着するとともに隙間4内に絶縁層4のエポキシ樹脂を充填する。なお、絶縁層4用のフィルムは、熱硬化の際に一旦、溶融軟化するのでその際に絶縁層3のエポキシ樹脂が隙間7の内部に良好に充填される。そして、隙間7内に充填されたエポキシ樹脂により絶縁基板1の表面に埋入された配線導体2と絶縁基板1とが強固に接着される。
【0048】
本発明の配線基板の製造方法によれば、コア基板3の配線導体2を埋入した表面にプラズマを照射して表面およびその近傍に位置するアリル変性ポリフェニレンエーテル樹脂を収縮させることによって配線導体2の側面2aと絶縁基板1との間に隙間7を形成し、次にこの隙間7内に露出した配線導体2の側面2aを粗化し、次にコア基板3の配線導体2を埋入した表面にエポキシ樹脂を含む絶縁層4を被着するとともに隙間7の内部にエポキシ樹脂を充填したことから、配線導体2の側面2aと絶縁基板1との間に介在させたエポキシ樹脂が接着材の機能を果たすとともに、配線導体2の側面2aが粗化されていることから配線導体2の側面2aとエポキシ樹脂とが強固に接着し、配線導体2と絶縁基板1とが強固に接着した配線基板を提供することができる。また、絶縁基板1と絶縁層4とが配線導体2の側面2aと絶縁基板1との間に介在させたエポキシ樹脂のアンカー効果により強固に接合するので、絶縁基板1と絶縁層4との接合が強固な配線基板を提供することができる。
【0049】
なお、絶縁層4は、その厚みが10〜80μmであり、エポキシ樹脂と平均粒径が0.01〜2μmで含有量が10〜50重量%のシリカやアルミナ・窒化アルミニウム等の無機絶縁フィラーとから成る。
【0050】
次に、図3(f)に断面図で示すように、絶縁層3の上面に銅めっきから成る配線導体層5を被着させる。さらに必要に応じてその上に次層の絶縁層4および配線導体層5を積層することによって配線基板が完成する。
【0051】
なお、絶縁層4の表面に銅めっきから成る配線導体層5を被着させるには、まず、絶縁層4の表面を過マンガン酸塩類水溶液等の粗化液に浸漬して粗化した後、無電解めっき用パラジウム触媒の水溶液中に浸漬し表面にパラジウム触媒を付着させ、さらに、硫酸銅・ホルマリン・EDTAナトリウム塩・安定剤等から成る無電解銅めっき液に約30分間浸漬して厚みが1〜2μm程度の無電解銅めっき層を析出させる。次に、無電解銅めっき層の表面に耐めっき樹脂層を被着し露光・現像により銅めっきの配線導体層5のパターン形状に、電解銅めっき層を被着させるための開口部を複数形成し、さらに、硫酸・硫酸銅5水和物・塩素・光沢剤等から成る電解銅めっき液に数A/dm2の電流を印加しながら数時間浸漬することにより開口部および貫通孔の内面に厚みが10〜30μm程度の電解銅めっき層を被着させる。しかる後、耐めっき樹脂層を水酸化ナトリウムで剥離し、さらに、耐めっき樹脂層を剥離したことにより露出する無電解銅めっき層を硫酸と過酸化水素水の混合物等の硫酸系水溶液によりエッチング除去することにより形成される。
【0052】
かくして、本発明の配線基板の製造方法によれば、配線導体2の側面2aと絶縁基板1との間に介在させたエポキシ樹脂が接着材の機能を果たすとともに、配線導体2の側面2aが粗化されていることから配線導体2の側面2aとエポキシ樹脂とが強固に接着し、配線導体2と絶縁基板1とが強固に接着した配線基板を提供することができる。また、絶縁基板1と絶縁層4とが配線導体2の側面2aと絶縁基板1との間に介在させたエポキシ樹脂のアンカー効果により強固に接合するので、絶縁基板1と絶縁層4との接合が強固な配線基板を提供することができる。
【0053】
なお、本発明は、上述の実施の形態の一例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能である。
【0054】
【発明の効果】
本発明の配線基板によれば、配線導体はその側面が粗化されており、かつ絶縁基板に側面と絶縁基板との間にエポキシ樹脂を介在させて埋入されていることから、配線導体の側面と絶縁基板との間に介在させたエポキシ樹脂が接着材の機能を果たして配線導体の側面とエポキシ樹脂とが強固に接着し、配線導体と絶縁基板とが強固に接着した配線基板とすることができる。そしてその結果、配線基板に電子部品を搭載した後に配線基板に長期の熱履歴が繰り返し印加され、絶縁基板と配線導体との熱膨張差により発生する熱応力が絶縁基板と配線導体との境界に集中したとしても、配線導体の側面と絶縁基板との間に隙間が発生することはなく、その隙間を起点として絶縁層にクラックが生じたり、このクラックが配線導体層を切断して断線不良を発生させてしまうということはない。
【0055】
また、本発明の配線基板によれば、絶縁基板と絶縁層とが配線導体の側面と絶縁基板との間に介在させたエポキシ樹脂のアンカー効果により強固に接合し、その結果、配線基板に電子部品を搭載した後に長期の熱履歴が繰り返し印加され、絶縁基板と絶縁層の熱膨張差により発生する熱応力が両者の境界に集中したとしても、絶縁層が絶縁基板から剥離してしまうということもない。
【0056】
本発明の配線基板の製造方法によれば、コア基板の配線導体を埋入した表面にプラズマを照射してコア基板の表面およびその近傍に位置するアリル変性ポリフェニレンエーテル樹脂を収縮させることによって配線導体の側面と絶縁基板との間に隙間を形成し、次にこの隙間内に露出した配線導体の側面を粗化し、次にコア基板の配線導体を埋入した表面にエポキシ樹脂を含む絶縁層を被着するとともに隙間の内部にエポキシ樹脂を充填することから、配線導体の側面と絶縁基板との間に介在させたエポキシ樹脂が接着材の機能を果たすとともに配線導体の側面とエポキシ樹脂とが強固に接着し、配線導体と絶縁基板とが強固に接着した配線基板を提供することができる。また、絶縁基板と絶縁層とが配線導体の側面と絶縁基板との間に介在させたエポキシ樹脂のアンカー効果により強固に接合するので、絶縁基板と絶縁層との接合が強固な配線基板を提供することができる。
【図面の簡単な説明】
【図1】本発明の配線基板の実施の形態の一例を示す断面図である。
【図2】図1の要部拡大断面図である。
【図3】(a)〜(f)は、本発明の配線基板の製造方法を説明するための各工程毎の要部断面図である。
【符号の説明】
1・・・・・・・・・・絶縁基板
2・・・・・・・・・・配線導体
2a・・・・・・・・・配線導体の側面
3・・・・・・・・・・コア基板
4・・・・・・・・・・絶縁層
5・・・・・・・・・・配線導体層
7・・・・・・・・・・隙間
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wiring board used for mounting an electronic component such as a semiconductor element and a manufacturing method thereof.
[0002]
[Prior art]
In general, current electronic devices are required to be small, thin, lightweight, high performance, high functionality, high quality, and high reliability, as represented by mobile communication devices. Electronic devices to be used are also required to be small and high density. For this reason, the wiring board constituting the electronic device is also required to be small, thin, and multi-terminal. To realize this, the width of the wiring conductor layer including the signal conductor is reduced and the interval is reduced. Further, high-density wiring is achieved by increasing the number of wiring conductor layers.
[0003]
As a wiring board capable of such high-density wiring, a wiring board manufactured by adopting a build-up method is known. This build-up wiring board is manufactured, for example, by the method described below.
[0004]
First, a wiring made of metal foil on an insulating sheet impregnated with a heat-resistant or chemical-resistant epoxy resin or a thermosetting resin typified by an allyl-modified polyphenylene ether resin on a reinforcing material such as glass cloth or aramid non-woven fabric A core substrate is obtained by embedding a conductor and then heating and curing it to embed a wiring conductor in an insulating substrate.
[0005]
Next, a resin film made of a thermosetting resin such as an epoxy resin is attached to the core substrate and cured by heating to form an insulating resin layer having a thickness of 20 to 200 μm. Next, a through hole with a diameter of 50 to 200 μm is drilled in the insulating resin layer on the wiring conductor with a laser, and the surface of the insulating resin layer and the inner surface of the through hole are chemically treated with a roughening solution such as a potassium permanganate solution. Next, using a semi-additive method, a conductor film made of copper plating is deposited on the surface of the insulating resin layer and the inner surface of the through hole using a semi-additive method to form a wiring conductor layer and a through conductor. A build-up wiring board is manufactured by repeating the formation of the insulating resin layer and the through conductor / wiring conductor layer a plurality of times.
[0006]
[Patent Document 1]
JP 2002-261451 A
[0007]
[Problems to be solved by the invention]
However, the above wiring board has a thermal expansion coefficient of 10 × 10 10 for the insulating substrate. -6 ~ 15 × 10 -6 / ℃, the thermal expansion coefficient of the wiring conductor made of copper foil is 15 × 10 -6 ~ 20 × 10 -6 Because the thermal expansion coefficient of the insulating substrate and the thermal expansion coefficient of the wiring conductor are different, the thermal expansion of the insulating substrate and the wiring conductor will occur if a long-term thermal history is repeatedly applied after mounting electronic components on the wiring substrate. The thermal stress generated by the difference is concentrated at the boundary between the insulating substrate and the wiring conductor, and a gap is generated between the side surface of the wiring conductor and the insulating substrate. There is a problem that the layer may be cut to cause disconnection failure.
[0008]
In addition, when an allyl-modified polyphenylene ether resin is used for the core substrate, the allyl-modified polyphenylene ether resin is chemically stable and difficult to roughen, and an insulating resin layer containing an epoxy resin is laminated on the surface of the core substrate. In this case, the allyl-modified polyphenylene ether resin of the core substrate and the epoxy resin of the insulating resin layer cannot be firmly bonded, and as a result, the adhesion between the core substrate and the insulating resin layer laminated thereon is weak. For example, when an electronic component is mounted on the surface of the wiring board, a rapid temperature change is applied to the wiring board, or heat generated when the electronic component is operated after mounting the electronic component or due to the external environment If heat or the like is repeatedly applied over a long period of time, swelling or peeling may occur between the insulating resin layer and the core substrate. Also it had problems.
[0009]
On the other hand, the above-described method for manufacturing a wiring board manufactures a wiring board by embedding a wiring conductor in an insulating substrate and depositing an insulating resin layer on the insulating substrate. If the adhesion with the insulating resin layer is weak and long-term thermal history is repeatedly applied after mounting electronic components on the wiring board, the thermal stress generated by the thermal expansion difference between the insulating board, the wiring conductor and the insulating resin layer is insulated. Concentrating on the boundary between the substrate and the wiring conductor and the boundary between the insulating substrate and the insulating resin layer, a gap is generated between the side surface of the wiring conductor and the insulating substrate, and a crack occurs in the insulating resin layer starting from the clearance. At the same time, the wiring conductor layer is cut to cause disconnection failure, or the insulating resin layer may be peeled off from the insulating substrate.
[0010]
The present invention has been completed in view of the problems of the prior art, and its purpose is to sufficiently withstand thermal stress even when a long-term thermal history is repeatedly applied to a wiring board on which electronic components are mounted, and the wire breaks. An object of the present invention is to provide a wiring board with high connection reliability that does not cause the above.
[0011]
[Means for Solving the Problems]
In the wiring board of the present invention, a wiring conductor made of a copper foil is embedded in an insulating board in which an allyl-modified polyphenylene ether resin is impregnated in a heat-resistant fiber base so that the surface thereof is flush with the surface of the insulating board. In the wiring board formed by alternately laminating an insulating layer containing epoxy resin and a wiring conductor layer made of copper plating on the surface of the core board embedded in the wiring board, the side surface of the wiring conductor is It is roughened and embedded in the insulating substrate with the epoxy resin interposed between the side surface and the insulating substrate.
[0012]
According to the wiring board of the present invention, the wiring conductor has a roughened side surface and is embedded in the insulating substrate with the epoxy resin interposed between the side surface and the insulating substrate. An epoxy resin interposed between the side surface and the insulating substrate serves as an adhesive, and the side surface of the wiring conductor and the epoxy resin are firmly bonded to each other so that the wiring conductor and the insulating substrate are firmly bonded. Can do. As a result, after mounting electronic components on the wiring board, a long-term thermal history is repeatedly applied to the wiring board, and thermal stress generated by the thermal expansion difference between the insulating board and the wiring conductor is generated at the boundary between the insulating board and the wiring conductor. Even if concentrated, there is no gap between the side surface of the wiring conductor and the insulating substrate, and cracks are generated in the insulating layer starting from the gap, or this crack cuts the wiring conductor layer and causes disconnection failure. It never happens.
[0013]
Further, according to the wiring board of the present invention, the insulating substrate and the insulating layer are firmly bonded by the anchor effect of the epoxy resin interposed between the side surface of the wiring conductor and the insulating substrate, and as a result, the electronic circuit is connected to the wiring substrate. Even if a long-term thermal history is repeatedly applied after mounting a component and the thermal stress generated by the difference in thermal expansion between the insulating substrate and the insulating layer is concentrated at the boundary between them, the insulating layer will be peeled off from the insulating substrate. Nor.
[0014]
The method for manufacturing a wiring board according to the present invention is such that a wiring conductor made of copper foil is formed on an insulating substrate impregnated with an allyl-modified polyphenylene ether resin on a heat-resistant fiber base so that the surface thereof is flush with the surface of the insulating substrate. A step of preparing an embedded core substrate; and the surface of the core substrate on which the wiring conductor is embedded is irradiated with plasma to shrink the surface of the core substrate and the allyl-modified polyphenylene ether resin located in the vicinity thereof Forming a gap between the side surface of the wiring conductor and the insulating substrate, roughening the side surface of the wiring conductor exposed in the gap, and the wiring conductor of the core substrate. A process of depositing an insulating layer containing an epoxy resin on the buried surface and filling the gap with the epoxy resin, and forming a copper plating on the surface of the insulating layer. The wiring conductor layer is characterized in that it comprises the step of depositing.
[0015]
According to the method for manufacturing a wiring substrate of the present invention, the surface of the core substrate on which the wiring conductor is embedded is irradiated with plasma to shrink the allyl-modified polyphenylene ether resin located on the surface of the core substrate and in the vicinity thereof. A gap is formed between the side surface of the wiring board and the insulating substrate, and then the side surface of the wiring conductor exposed in the gap is roughened, and then an insulating layer containing epoxy resin is embedded on the surface of the core board where the wiring conductor is embedded. The epoxy resin interposed between the side surface of the wiring conductor and the insulating substrate serves as an adhesive, and the side surface of the wiring conductor and the epoxy resin are strong. A wiring board in which the wiring conductor and the insulating substrate are firmly bonded can be provided. In addition, since the insulating substrate and the insulating layer are firmly bonded by the anchor effect of the epoxy resin interposed between the side surface of the wiring conductor and the insulating substrate, a wiring substrate having a strong bonding between the insulating substrate and the insulating layer is provided. can do.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Next, the wiring board of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a cross-sectional view showing an example of an embodiment of a wiring board according to the present invention, and FIG. 2 is an enlarged cross-sectional view of a main part of FIG. In these drawings, 1 is an insulating substrate, 2 is a wiring conductor, 2a is a side surface of the wiring conductor 2, 3 is a core substrate composed of the insulating substrate 1 and the wiring conductor 2, 4 is an insulating layer, 5 is a wiring conductor layer, These mainly constitute the wiring board of the present invention.
[0017]
The insulating substrate 1 constituting the core substrate 3 has a substantially rectangular shape with a thickness of 0.15 to 1.5 mm formed by impregnating an allyl-modified polyphenylene ether resin into a glass cloth in which glass fibers, which are heat-resistant fiber base materials, are woven vertically and horizontally, for example. It is a board | substrate, and has a function which provides intensity | strength to a wiring board while it has a function as a support body of the wiring conductor 2 and the insulating layer 4. FIG. If the thickness of the insulating substrate 1 is less than 0.15 mm, the rigidity of the wiring substrate tends to decrease and warpage tends to occur. If the thickness exceeds 1.5 mm, the wiring substrate becomes unnecessarily thick and the wiring substrate is lightened. Tend to be difficult to do. Therefore, the thickness of the insulating substrate 1 is preferably in the range of 0.15 to 1.5 mm.
[0018]
A wiring conductor 2 made of copper foil is embedded in the surface of the insulating substrate 1 so that the surface thereof is flush with the surface of the insulating substrate 1.
The wiring conductor 2 made of such copper foil has a width of 20 to 200 μm and a thickness of 5 to 50 μm. Each electrode of an electronic component (not shown) such as a semiconductor element mounted together with the wiring conductor layer 5 is externally provided. It functions as a part of a conductive path electrically connected to an electric circuit board (not shown). If the width of the wiring conductor 2 is less than 20 μm, the wiring conductor 2 tends to be easily deformed or disconnected, and if it exceeds 200 μm, a high-density wiring tends not to be formed. Further, when the thickness of the wiring conductor 2 is less than 5 μm, the strength of the wiring conductor 2 tends to be reduced and deformation or disconnection tends to occur, and when it exceeds 50 μm, embedding in the insulating substrate 1 tends to be difficult. . Therefore, the wiring conductor 2 preferably has a width of 20 to 200 μm and a thickness of 5 to 50 μm.
[0019]
Note that the upper and lower wiring conductors 2 may be electrically connected by a through conductor (not shown) formed in the insulating substrate 1. Such a through conductor has a diameter of 30 to 100 μm. For example, a metal powder such as copper or silver / tin alloy and a triazine-based thermosetting material inside a through hole (not shown) provided in the insulating substrate 1. It is formed by embedding a conductor made of resin or the like. When the through conductor is provided, if the diameter is less than 30 μm, formation of the through conductor tends to be difficult, and if it exceeds 100 μm, high-density wiring tends to be unable to be formed. Accordingly, when the through conductor is provided, the diameter is preferably in the range of 30 to 100 μm.
[0020]
In addition, insulating layers 4 containing epoxy resin and wiring conductor layers 5 made of copper plating are alternately stacked on the surface of the core substrate 3 where the wiring conductors 2 are embedded. The insulating layer 4 functions as a support for the wiring conductor layer 5 made of copper plating, has a thickness of 10 to 80 μm, an epoxy resin and an average particle size of 0.01 to 2 μm, and a content of 10 to 50 weight. % Of inorganic insulating filler such as silica, alumina and aluminum nitride.
[0021]
The inorganic insulating filler adjusts the thermal expansion coefficient of the insulating layer 4 to match the thermal expansion coefficient of the wiring conductor layer 5, and forms appropriate irregularities on the surface of the insulating layer 4, so that the wiring conductor layer 5 and the insulating layer 4 Has the function of improving the adhesion. In addition, when the average particle diameter of the inorganic insulating filler is less than 0.01 μm, the inorganic insulating fillers tend to aggregate to form an insulating layer 4 having a uniform thickness, and when the average particle diameter exceeds 2 μm. There is a tendency that the unevenness of the surface of the insulating layer 4 becomes too large and the adhesion between the wiring conductor layer 5 and the insulating layer 4 is lowered. Therefore, the average particle size of the inorganic insulating filler is preferably in the range of 0.01 to 2 μm.
[0022]
Further, if the content of the inorganic insulating filler is less than 10% by weight, the effect of adjusting the thermal expansion coefficient of the insulating layer 4 tends to be small, and if it exceeds 50% by weight, the resin amount of the insulating layer 4 decreases. It tends to be difficult to mold the insulating layer 4. Therefore, the content of the inorganic insulating filler is preferably in the range of 10 to 50% by weight.
[0023]
Further, via holes 6 are formed in the insulating layer 4 by laser processing, and the via holes 6 are filled with a part of the wiring conductor layer 5 made of copper plating so that the insulating layer 4 is sandwiched between the upper and lower sides. The wiring conductor 2, the wiring conductor layer 5, and the wiring conductor layers 5 that are located in the are electrically connected. The wiring conductor layer 5 has a width of 20 to 200 μm, a thickness of 1 to 2 μm, an electroless copper plating layer and a thickness of 10 to 30 μm, and is mounted on a wiring board. It has a function as a conductive path for electrically connecting each electrode of an electronic component such as a semiconductor element to an external electric circuit board.
[0024]
If the width of the wiring conductor layer 5 is less than 20 μm, the wiring conductor layer 5 tends to be deformed or disconnected, and if it exceeds 200 μm, high-density wiring tends not to be formed. Further, when the thickness of the wiring conductor layer 5 is less than 11 μm, the strength of the wiring conductor layer 5 tends to decrease and deformation and disconnection tend to occur. When the thickness exceeds 32 μm, it takes a long time to form the wiring conductor layer 5. There is a tendency to end up. Therefore, the wiring conductor layer 5 preferably has a width of 20 to 200 μm and a thickness of 11 to 32 μm.
[0025]
In the wiring board of the present invention, the side surface 2a of the wiring conductor 2 is roughened, and the insulating layer 4 is formed on the insulating substrate 1 between the side surface 2a of the wiring conductor 2 and the insulating substrate 1. It is embedded through resin, and this is important.
[0026]
According to the wiring board of the present invention, the side surface 2a of the wiring conductor 2 is roughened, and an epoxy resin constituting the insulating layer 4 is interposed between the side surface 2a and the insulating substrate 1 in the insulating substrate 1. Since it is embedded, the epoxy resin interposed between the side surface 2a of the wiring conductor 2 and the insulating substrate 1 serves as an adhesive, and the side surface 2a of the wiring conductor 2 and the epoxy resin are firmly bonded. In addition, a wiring board in which the wiring conductor 2 and the insulating substrate 1 are firmly bonded can be obtained. As a result, after mounting electronic components on the wiring board, a long-term thermal history is repeatedly applied to the wiring board, and thermal stress generated due to a difference in thermal expansion between the insulating board 1 and the wiring conductor 2 is generated between the insulating board 1 and the wiring conductor 2. Even if concentrated on the boundary, no gap is generated between the side surface 2a of the wiring conductor 2 and the insulating substrate 1, and a crack is generated in the insulating layer 4 starting from the gap and the wiring conductor layer 5 is cut. This does not cause a disconnection failure.
[0027]
In addition, according to the wiring board of the present invention, the insulating substrate 1 and the insulating layer 4 are strengthened by the anchor effect of the epoxy resin constituting the insulating layer 4 interposed between the side surface 2 a of the wiring conductor 2 and the insulating substrate 1. As a result, long-term thermal history is repeatedly applied after mounting electronic components on the wiring board, and thermal stress generated by the difference in thermal expansion between the insulating substrate 1 and the insulating layer 4 is concentrated on the boundary between the two. The insulating layer 4 is not peeled off from the insulating substrate 1.
[0028]
When the distance between the side surface 2a of the wiring conductor 2 and the insulating substrate 1 is less than 1 μm, the side surface 2a of the wiring conductor 2 is roughened and the epoxy is interposed between the side surface 2a of the wiring conductor 2 and the insulating substrate 1. It tends to be difficult to fill the resin, and when it exceeds 5 μm, it tends to be difficult to form such a large interval. Therefore, the distance between the side surface 2a of the wiring conductor 2 and the insulating substrate 1 is preferably 1 to 5 μm.
[0029]
Further, when the arithmetic mean roughness Ra of the side surface 2a of the wiring conductor 2 is less than 0.1 μm, the bonding between the side surface 2a of the wiring conductor 2 and the epoxy resin interposed between the insulating substrate 1 is weak. On the other hand, if it exceeds 2 μm, it takes a long time to form such a rough surface, and it tends to be difficult to form. Therefore, the side surface 2a of the wiring conductor 2 preferably has an arithmetic average roughness Ra in the range of 0.1 to 2 μm.
[0030]
The roughening of the side surface 2a of the wiring conductor 2 and the embedding of the wiring conductor 2 in the insulating substrate 1 with an epoxy resin interposed between the side surface 2a of the wiring conductor 2 and the insulating substrate 1 are the methods described below. It is done by.
[0031]
First, by irradiating the surface on which the wiring conductor 2 of the core substrate 3 is embedded with plasma at an output of 0.5 to 3 kw and a gas ratio of oxygen / carbon tetrafluoride = 1/1 for 300 to 500 seconds, The allyl-modified polyphenylene ether resin located on the surface of the insulating substrate 1 and in the vicinity thereof is shrunk to form a gap 7 having a width of 1 to 5 μm between the side surface 2a of the wiring conductor 2 and the insulating substrate 1, and then the gap 7 is immersed in a formic acid / copper ion solution having a temperature of about 25 ° C. for several minutes, so that the side surface 2a of the wiring conductor 2a exposed in the gap 7 has an arithmetic mean roughness of 0.1 to 2 μm. After that, a film made of an epoxy resin and forming an insulating layer 4 is attached to the surface of the core substrate 3 where the wiring conductors 2 are embedded, and thermosetting at 150 to 180 ° C. for several hours. Fill the wiring conductor 2 of the core substrate 3 It carried out by filling the epoxy resin of the insulating layer 4 into the gap 7 while the deposited forming the insulating layer 4 on the surface.
[0032]
Thus, according to the wiring board of the present invention, the side surface 2a of the wiring conductor 2 is roughened and embedded in the insulating substrate 1 with the epoxy resin interposed between the side surface 2a and the insulating substrate 1. Therefore, the epoxy resin interposed between the side surface 2a of the wiring conductor 2 and the insulating substrate 1 serves as an adhesive, and the side surface 2a of the wiring conductor 2 and the epoxy resin are firmly bonded to each other. A wiring substrate firmly bonded to the insulating substrate 1 can be obtained.
[0033]
Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention. In this embodiment, the insulating substrate is formed from one layer. Although an example in which the insulating substrate is formed is shown, the insulating substrate is composed of two or more layers, and a plurality of through conductors that electrically connect the wiring conductors and the wiring conductors located above and below may be formed inside. Good.
[0034]
Next, the manufacturing method of the wiring board of this invention is demonstrated in detail based on FIG.
3 (a) to 3 (f) are cross-sectional views of main parts for each step for explaining the method of manufacturing a wiring board according to the present invention, wherein 11 is a transfer sheet base material, and 12 is a transfer sheet. . In FIG. 3, the same members and portions as those in FIGS. 1 and 2 are denoted by the same reference numerals.
[0035]
First, a core formed by embedding a wiring conductor 2 made of copper foil in an insulating substrate 1 impregnated with an allyl-modified polyphenylene ether resin in a heat resistant fiber base so that the surface thereof is flush with the surface of the insulating substrate 1 A substrate 3 is prepared. Such a core substrate 3 is manufactured by the method described below.
[0036]
First, as shown in FIG. 3 (a), a transfer sheet 12 made by adhering a wiring conductor 2 made of a copper foil to a transfer sheet base material 11 made of a heat resistant resin, and uncured heat resistant fibers. A precursor sheet 1a to be an insulating substrate 1 impregnated with an allyl-modified polyphenylene ether resin is prepared.
[0037]
The transfer sheet base 11 is made of a heat-resistant resin such as polyethylene terephthalate (PET) resin or polycarbonate (PC), and a support for forming the wiring conductor 2 by etching the copper foil and the wiring conductor 2 are used. It has a function as a support when transferring.
[0038]
The transfer sheet base material 11 preferably has a thickness of 20 to 50 μm, and if the thickness is less than 20 μm, the rigidity decreases and the wiring conductor 2 tends to be easily deformed when the copper foil is etched. If it exceeds 50 μm, the flexibility tends to decrease and it tends to be difficult to peel off from the insulating substrate 1. Accordingly, the thickness of the transfer sheet substrate 11 is preferably 20 to 50 μm.
[0039]
The thickness of the wiring conductor 2 is preferably 5 to 50 μm, and more preferably 10 to 20 μm. If the thickness of the wiring conductor 2 is less than 5 μm, the strength of the wiring conductor 2 tends to be reduced and deformation or disconnection tends to occur, and if it exceeds 50 μm, embedding in the precursor sheet 1a tends to be difficult. Therefore, the thickness of the wiring conductor 2a is preferably 5 to 50 μm.
[0040]
Such a transfer sheet 12 is formed by peeling a copper foil having a thickness of about 12 μm through an adhesive on one main surface of a transfer sheet substrate 11 made of a heat resistant resin such as polyethylene terephthalate having a thickness of about 25 μm. After bonding, the film-like photosensitive resist is deposited on the copper foil, and the resist is exposed and developed to form an etching mask having a pattern corresponding to the pattern of the wiring conductor 2. It is manufactured by dipping in an iron solution to remove the non-patterned portion of the copper foil by etching, and finally removing the photosensitive resist to form a patterned wiring conductor 2.
[0041]
On the other hand, the precursor sheet 1a which becomes the insulating substrate 1 is made of a heat-resistant fiber such as glass cloth or aramid fiber impregnated with an allyl-modified polyphenylene ether resin and semi-cured, and its surface is embedded with a wiring conductor 2 Has as much plasticity as possible.
[0042]
Next, after laminating the transfer sheet 12 on the surface of the precursor sheet 1a and heat-pressing them, the wiring conductor 2 is thermocompression bonded to the precursor sheet 1a, and then the transfer sheet substrate 11 is transferred from the precursor sheet 1a. After peeling, the wiring conductor 2 is transferred and embedded in the precursor sheet 1a so that the surface thereof is flush with the surface of the precursor sheet 1a.
[0043]
Thermocompression bonding is performed by applying pressure for several minutes using a hot press machine under conditions of a temperature of 100 to 150 ° C. and a pressure of 0.5 to 5 MPa. In thermocompression bonding, it is better to perform only pressurization prior to heating. If the heating is performed first, the transfer sheet 12 is stretched by the heat, and there is a risk that it is difficult to accurately embed the wiring conductor 2 in a desired position. Accordingly, it is preferable that the thermocompression bonding is performed prior to heating.
[0044]
Furthermore, they were heated and pressurized to thermally cure the allyl-modified polyphenylene ether resin of the precursor sheet 1a, and the wiring conductor 2 was embedded in the insulating substrate 1 so that the surface thereof was flush with the surface of the insulating substrate 1. A core substrate 3 as shown in a sectional view in FIG. In the heat treatment, the precursor sheet 1a is sandwiched from above and below by a releasable sheet made of a fluororesin or the like, and is heat-treated at a pressure of 1 to 5 MPa at a temperature of 150 to 240 ° C. The thermosetting resin is thermally cured.
[0045]
Next, as shown in a cross-sectional view in FIG. 3C, plasma is applied to the core substrate 3 for 300 to 500 seconds under the conditions of an output of 0.5 to 3 kW and a gas ratio of oxygen / carbon tetrafluoride = 1/1. By irradiation, the surface of the insulating substrate 1 where the wiring conductor 2 is embedded and the allyl-modified polyphenylene ether resin located in the vicinity thereof are contracted, and the width between the side surface 2a of the wiring conductor 2 and the insulating substrate 1 is 1 to 5 μm. The gap 7 is formed. In addition, by irradiating the core substrate 3 with plasma, irregularities having an arithmetic average roughness Ra of 0.5 to 3 μm are formed on the surface of the insulating substrate 1. This unevenness can improve the adhesive force between the insulating substrate 1 and the insulating layer 4.
[0046]
Next, as shown in a cross-sectional view in FIG. 3D, the core substrate 3 irradiated with plasma is immersed in a formic acid / copper ion solution at a temperature of about 25 ° C. for several minutes, thereby exposing the wiring exposed in the gap 7. The side surface 2a of the conductor 2a is roughened so as to have irregularities with an arithmetic average roughness of 0.1 to 2 μm.
[0047]
Next, as shown in a cross-sectional view in FIG. 3 (e), a film made of an epoxy resin and serving as an insulating layer 4 is attached to the surface of the core substrate 3 where the wiring conductors 2 are embedded, and several times at 150 to 180 ° C. The insulating layer 4 is deposited on the surface of the core substrate 3 in which the wiring conductor 2 is embedded by time-curing, and the epoxy resin of the insulating layer 4 is filled in the gap 4. The film for the insulating layer 4 is once melted and softened at the time of thermosetting, so that the epoxy resin of the insulating layer 3 is satisfactorily filled in the gap 7 at that time. Then, the wiring conductor 2 embedded in the surface of the insulating substrate 1 and the insulating substrate 1 are firmly bonded by the epoxy resin filled in the gap 7.
[0048]
According to the method for manufacturing a wiring board of the present invention, the surface of the core board 3 in which the wiring conductor 2 is embedded is irradiated with plasma to shrink the allyl-modified polyphenylene ether resin located on the surface and in the vicinity of the wiring conductor 2. The surface 7a is formed between the side surface 2a and the insulating substrate 1, and then the side surface 2a of the wiring conductor 2 exposed in the clearance 7 is roughened, and then the wiring conductor 2 of the core substrate 3 is embedded. The epoxy resin interposed between the side surface 2a of the wiring conductor 2 and the insulating substrate 1 functions as an adhesive because the insulating layer 4 containing the epoxy resin is deposited on the gap 7 and the inside of the gap 7 is filled with the epoxy resin. In addition, since the side surface 2a of the wiring conductor 2 is roughened, the side surface 2a of the wiring conductor 2 and the epoxy resin are firmly bonded, and the wiring substrate 2 and the insulating substrate 1 are firmly bonded. Offer It can be. Further, since the insulating substrate 1 and the insulating layer 4 are firmly bonded by the anchor effect of the epoxy resin interposed between the side surface 2a of the wiring conductor 2 and the insulating substrate 1, the bonding between the insulating substrate 1 and the insulating layer 4 is achieved. Can provide a strong wiring board.
[0049]
The insulating layer 4 has a thickness of 10 to 80 μm, and is composed of an epoxy resin and an inorganic insulating filler such as silica, alumina, and aluminum nitride having an average particle diameter of 0.01 to 2 μm and a content of 10 to 50% by weight. .
[0050]
Next, as shown in a sectional view in FIG. 3F, a wiring conductor layer 5 made of copper plating is deposited on the upper surface of the insulating layer 3. Further, if necessary, the next insulating layer 4 and the wiring conductor layer 5 are laminated thereon to complete the wiring board.
[0051]
In order to deposit the wiring conductor layer 5 made of copper plating on the surface of the insulating layer 4, first, the surface of the insulating layer 4 is roughened by immersing it in a roughening solution such as a permanganate aqueous solution, Immerse in an aqueous solution of palladium catalyst for electroless plating to attach the palladium catalyst to the surface, and further immerse in electroless copper plating solution consisting of copper sulfate, formalin, EDTA sodium salt, stabilizer, etc. for about 30 minutes to make the thickness An electroless copper plating layer of about 1 to 2 μm is deposited. Next, a plating-resistant resin layer is deposited on the surface of the electroless copper plating layer, and a plurality of openings for depositing the electrolytic copper plating layer are formed in the pattern shape of the copper plating wiring conductor layer 5 by exposure and development. Furthermore, several A / dm for electrolytic copper plating solution consisting of sulfuric acid, copper sulfate pentahydrate, chlorine, brightener, etc. 2 Then, an electrolytic copper plating layer having a thickness of about 10 to 30 μm is deposited on the inner surface of the opening and the through hole by immersing for several hours while applying the current. Thereafter, the plating-resistant resin layer is peeled off with sodium hydroxide, and the electroless copper plating layer exposed by peeling off the plating-resistant resin layer is etched away with a sulfuric acid-based aqueous solution such as a mixture of sulfuric acid and hydrogen peroxide solution. It is formed by doing.
[0052]
Thus, according to the method for manufacturing a wiring board of the present invention, the epoxy resin interposed between the side surface 2a of the wiring conductor 2 and the insulating substrate 1 functions as an adhesive, and the side surface 2a of the wiring conductor 2 is rough. Therefore, it is possible to provide a wiring board in which the side surface 2a of the wiring conductor 2 and the epoxy resin are firmly bonded, and the wiring conductor 2 and the insulating substrate 1 are firmly bonded. Further, since the insulating substrate 1 and the insulating layer 4 are firmly bonded by the anchor effect of the epoxy resin interposed between the side surface 2a of the wiring conductor 2 and the insulating substrate 1, the bonding between the insulating substrate 1 and the insulating layer 4 is achieved. Can provide a strong wiring board.
[0053]
Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.
[0054]
【The invention's effect】
According to the wiring board of the present invention, the wiring conductor has a roughened side surface and is embedded in the insulating substrate with the epoxy resin interposed between the side surface and the insulating substrate. An epoxy resin interposed between the side surface and the insulating substrate serves as an adhesive, and the side surface of the wiring conductor and the epoxy resin are firmly bonded to each other so that the wiring conductor and the insulating substrate are firmly bonded. Can do. As a result, after mounting electronic components on the wiring board, a long-term thermal history is repeatedly applied to the wiring board, and thermal stress generated by the thermal expansion difference between the insulating board and the wiring conductor is generated at the boundary between the insulating board and the wiring conductor. Even if concentrated, there is no gap between the side surface of the wiring conductor and the insulating substrate, and cracks are generated in the insulating layer starting from the gap, or this crack cuts the wiring conductor layer and causes disconnection failure. It never happens.
[0055]
Further, according to the wiring board of the present invention, the insulating substrate and the insulating layer are firmly bonded by the anchor effect of the epoxy resin interposed between the side surface of the wiring conductor and the insulating substrate, and as a result, the electronic circuit is connected to the wiring substrate. Even if a long-term thermal history is repeatedly applied after mounting a component and the thermal stress generated by the difference in thermal expansion between the insulating substrate and the insulating layer is concentrated at the boundary between them, the insulating layer will be peeled off from the insulating substrate. Nor.
[0056]
According to the method for manufacturing a wiring substrate of the present invention, the surface of the core substrate on which the wiring conductor is embedded is irradiated with plasma to shrink the allyl-modified polyphenylene ether resin located on the surface of the core substrate and in the vicinity thereof. A gap is formed between the side surface of the wiring board and the insulating substrate, and then the side surface of the wiring conductor exposed in the gap is roughened, and then an insulating layer containing epoxy resin is embedded on the surface of the core board where the wiring conductor is embedded. The epoxy resin interposed between the side surface of the wiring conductor and the insulating substrate serves as an adhesive, and the side surface of the wiring conductor and the epoxy resin are strong. A wiring board in which the wiring conductor and the insulating substrate are firmly bonded can be provided. In addition, since the insulating substrate and the insulating layer are firmly bonded by the anchor effect of the epoxy resin interposed between the side surface of the wiring conductor and the insulating substrate, a wiring substrate having a strong bonding between the insulating substrate and the insulating layer is provided. can do.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an embodiment of a wiring board according to the present invention.
FIG. 2 is an enlarged cross-sectional view of a main part of FIG.
FIGS. 3A to 3F are cross-sectional views of main parts for each step for explaining a method of manufacturing a wiring board according to the present invention. FIGS.
[Explanation of symbols]
1 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Insulated substrate
2 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Wiring conductor
2a ・ ・ ・ ・ ・ ・ ・ ・ ・ Side of wiring conductor
3 ... Core substrate
4 ・ ・ ・ ・ ・ Insulation layer
5 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Wiring conductor layer
7: Clearance

Claims (2)

耐熱性繊維基材にアリル変性ポリフェニレンエーテル樹脂を含浸させた絶縁基板に銅箔から成る配線導体をその表面が前記絶縁基板の表面と同一面をなすように埋入して成るコア基板の前記配線導体を埋入した表面に、エポキシ樹脂を含む絶縁層と銅めっきから成る配線導体層とを交互に複数層積層して成る配線基板において、前記配線導体はその側面が粗化されており、かつ前記絶縁基板に前記側面と前記絶縁基板との間に前記エポキシ樹脂を介在させて埋入されていることを特徴とする配線基板。The wiring of the core substrate in which a wiring conductor made of copper foil is embedded in an insulating substrate impregnated with an allyl-modified polyphenylene ether resin in a heat-resistant fiber base so that the surface thereof is flush with the surface of the insulating substrate In the wiring board formed by alternately laminating a plurality of layers of insulating layers containing epoxy resin and wiring conductor layers made of copper plating on the surface where the conductor is embedded, the side surface of the wiring conductor is roughened, and A wiring board, wherein the insulating substrate is embedded with the epoxy resin interposed between the side surface and the insulating substrate. 耐熱性繊維基材にアリル変性ポリフェニレンエーテル樹脂を含浸させた絶縁基板に銅箔から成る配線導体をその表面が前記絶縁基板の表面と同一面をなすように埋入して成るコア基板を準備する工程と、該コア基板の前記配線導体を埋入した表面にプラズマを照射して前記コア基板の表面およびその近傍に位置する前記アリル変性ポリフェニレンエーテル樹脂を収縮させることによって前記配線導体の側面と前記絶縁基板との間に隙間を形成する工程と、該隙間内に露出した前記配線導体の前記側面を粗化する工程と、前記コア基板の前記配線導体を埋入した表面にエポキシ樹脂を含む絶縁層を被着するとともに前記隙間の内部に前記エポキシ樹脂を充填する工程と、前記絶縁層の表面に銅めっきから成る配線導体層を被着する工程とを具備することを特徴とする配線基板の製造方法。A core substrate is prepared by embedding a wiring conductor made of copper foil in an insulating substrate impregnated with an allyl-modified polyphenylene ether resin in a heat-resistant fiber base so that the surface thereof is flush with the surface of the insulating substrate. A step of irradiating plasma on the surface of the core substrate in which the wiring conductor is embedded to shrink the allyl-modified polyphenylene ether resin located on and near the surface of the core substrate and the side surface of the wiring conductor; A step of forming a gap between the insulating substrate, a step of roughening the side surface of the wiring conductor exposed in the gap, and an insulation containing an epoxy resin on the surface of the core substrate embedded with the wiring conductor And a step of filling the gap with the epoxy resin and a step of depositing a wiring conductor layer made of copper plating on the surface of the insulating layer. Method for manufacturing a wiring substrate characterized by Rukoto.
JP2002304716A 2002-10-18 2002-10-18 Wiring board and manufacturing method thereof Expired - Fee Related JP4127377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002304716A JP4127377B2 (en) 2002-10-18 2002-10-18 Wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002304716A JP4127377B2 (en) 2002-10-18 2002-10-18 Wiring board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004140243A JP2004140243A (en) 2004-05-13
JP4127377B2 true JP4127377B2 (en) 2008-07-30

Family

ID=32452058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002304716A Expired - Fee Related JP4127377B2 (en) 2002-10-18 2002-10-18 Wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4127377B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7318932B2 (en) 2017-08-18 2023-08-01 エルジー エナジー ソリューション リミテッド Customized BMS module and its design method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5046481B2 (en) * 2004-09-27 2012-10-10 日立電線株式会社 Semiconductor device and manufacturing method thereof
US11206734B1 (en) * 2020-06-08 2021-12-21 Roger Huang Electronic device and wiring structure thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7318932B2 (en) 2017-08-18 2023-08-01 エルジー エナジー ソリューション リミテッド Customized BMS module and its design method

Also Published As

Publication number Publication date
JP2004140243A (en) 2004-05-13

Similar Documents

Publication Publication Date Title
JP4846258B2 (en) Wiring board and manufacturing method thereof
JP5027193B2 (en) Wiring board and manufacturing method thereof
JP3037662B2 (en) Multilayer wiring board and method of manufacturing the same
JP2008300819A (en) Printed circuit board and method for manufacturing the same
JP2004179545A (en) Wiring board
JP4127377B2 (en) Wiring board and manufacturing method thereof
JP3940617B2 (en) Wiring board and manufacturing method thereof
JP2004193168A (en) Wiring board and its manufacturing method
JP2004207338A (en) Wiring board
JP2004165321A (en) Wiring board and its manufacturing method
JP4742409B2 (en) Method for manufacturing printed wiring board
JP2004152780A (en) Wiring board
JP2004193505A (en) Wiring board
JP2004179440A (en) Wiring board and manufacturing method therefor
JP2012015334A (en) Wiring board and its manufacturing method
JP2003249761A (en) Manufacturing method for multilayer printed-wiring board
JP2004152781A (en) Wiring board and its manufacturing method
JP2003283135A (en) Wiring board
JP2007048948A (en) Wiring board and manufacturing method thereof
JP2005136176A (en) Wiring substrate
JP2004165573A (en) Method of manufacturing wiring board
JP2023155032A (en) Method for manufacturing wiring board
JP2003078247A (en) Wiring substrate and method of manufacturing the same
JP2011071358A (en) Method of manufacturing wiring board
JP2004165575A (en) Method of manufacturing wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees