JP2005125170A - Method for restraining generation of excess sludge - Google Patents

Method for restraining generation of excess sludge Download PDF

Info

Publication number
JP2005125170A
JP2005125170A JP2003361430A JP2003361430A JP2005125170A JP 2005125170 A JP2005125170 A JP 2005125170A JP 2003361430 A JP2003361430 A JP 2003361430A JP 2003361430 A JP2003361430 A JP 2003361430A JP 2005125170 A JP2005125170 A JP 2005125170A
Authority
JP
Japan
Prior art keywords
sludge
generation
tank
biodegradable plastic
biological treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003361430A
Other languages
Japanese (ja)
Inventor
Akira Hiraishi
明 平石
Masahiro Eguchi
正浩 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2003361430A priority Critical patent/JP2005125170A/en
Publication of JP2005125170A publication Critical patent/JP2005125170A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for restraining the generation of excess sludge, which can be executed effectively at a low cost without causing such a problem of the conventional method when organic waste water is treated biologically that the quality of the treated water is deteriorated, the load to be imposed on a biological treatment tank is increased and the equipment cost is expensive. <P>SOLUTION: This method for restraining the generation of excess sludge comprises a step to bring a biodegradable plastic into contact with the sludge in an aerobic microbe treatment tank or a precipitation tank when organic waste water is treated in the aerobic microbe treatment tank. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、下水や工場から流出する有機性排水を活性汚泥などで生物処理する方法における、余剰汚泥の発生を抑制する方法に関する。   The present invention relates to a method for suppressing the generation of excess sludge in a method of biologically treating organic wastewater flowing out from sewage or a factory with activated sludge.

下水や産業排水の有機性排水は、活性汚泥などの生物処理により処理されるが、その際に増殖した微生物を主体とした余剰汚泥が発生する。この余剰汚泥は、産業廃棄物の半分程度を占めるとされているが、埋め立て処分場が逼迫していることから汚泥を減量化することが急務となっている。   Organic wastewater such as sewage and industrial wastewater is treated by biological treatment such as activated sludge, but surplus sludge mainly composed of microorganisms grown at that time is generated. This excess sludge is said to occupy about half of industrial waste, but it is an urgent task to reduce sludge because the landfill site is tight.

近年、生物処理から発生する余剰汚泥を減量化する方法として、汚泥をオゾン、酸化剤、超音波、機械的破砕などの手段で可溶化後に、生物処理槽に戻して無機化することで汚泥を減らす手法が実用化されている。   In recent years, as a method of reducing excess sludge generated from biological treatment, sludge is solubilized by means of ozone, oxidant, ultrasonic, mechanical crushing, etc., and then returned to the biological treatment tank for mineralization. A technique for reducing the number has been put into practical use.

しかしながら、汚泥を可溶化後に生物処理槽で無機化する手法においては、汚泥の可溶化設備費が高くランニングコストも高い、既設の生物処理槽の負荷に余裕がないと汚泥減量化処理装置を導入できない、生物処理水質(COD、窒素、リンなど)が悪化するなどの問題点があった。   However, in the method of mineralizing in the biological treatment tank after solubilization of the sludge, the sludge solubilization equipment cost is high and the running cost is high, and if the load of the existing biological treatment tank is not enough, the sludge reduction treatment equipment is introduced. The problem is that the quality of biologically treated water (COD, nitrogen, phosphorus, etc.) is deteriorated.

一方、最近、窒素含有排水の水素供与体として、メタノールなどの代わりに生分解性固形材料が利用できることが明らかになっており、窒素含有排水の脱窒素処理の水素供与体としての報告例がいくつかある。たとえば特許文献1には、窒素を含む有機性排水を嫌気性処理及び好気性処理で脱窒素処理する際の水素供与体として生分解性プラスチックを利用できることが記載されている。   On the other hand, recently, it has become clear that biodegradable solid materials can be used in place of methanol as a hydrogen donor for nitrogen-containing wastewater, and there are several examples of reports as hydrogen donors for denitrification of nitrogen-containing wastewater. There is. For example, Patent Document 1 describes that a biodegradable plastic can be used as a hydrogen donor when an organic wastewater containing nitrogen is denitrified by anaerobic treatment and aerobic treatment.

また、脱窒素処理に関しては、特許文献2に、炭素数6以上のカルボン酸を主成分とする固体の脱窒素促進剤を有機系排水の好気性生物処理で利用できることが記載されている。   Regarding denitrification treatment, Patent Document 2 describes that a solid denitrification accelerator mainly composed of a carboxylic acid having 6 or more carbon atoms can be used for aerobic biological treatment of organic wastewater.

しかし上記特許文献1、特許文献2は、いずれも窒素含有排水の脱窒素処理についての技術を記載したものである。従来、有機性排水を好気性生物処理で処理する方法において、好気性生物処理槽内の汚泥、または沈殿槽で固液分離した汚泥に生分解性プラスチックを接触させることで、生物処理で発生する余剰汚泥を抑制することを示唆した報告は見当たらない。
特開2000−153293号公報 特許第3298562号公報
However, Patent Document 1 and Patent Document 2 both describe techniques for denitrification treatment of nitrogen-containing wastewater. Conventionally, in a method of treating organic wastewater by aerobic biological treatment, it occurs in biological treatment by bringing biodegradable plastic into contact with sludge in an aerobic biological treatment tank or solid-liquid separated in a sedimentation tank. There are no reports that suggest controlling excess sludge.
JP 2000-153293 A Japanese Patent No. 3298562

そこで本発明の課題は、とくに有機性排水の生物処理における余剰汚泥の抑制に着目し、上記のような汚泥を可溶化後に生物処理槽で無機化する従来の手法における、処理水質の悪化、生物処理槽の負荷上昇、イニシャルコスト、ランニングコストが高いといった問題を伴うことなく、効果的にかつ安価に実施できる余剰汚泥の発生抑制方法を提供することにある。   Therefore, the object of the present invention is to pay attention to the suppression of excess sludge in the biological treatment of organic wastewater, and in the conventional method in which the above sludge is solubilized and then mineralized in the biological treatment tank, An object of the present invention is to provide a surplus sludge generation suppression method that can be carried out effectively and inexpensively without problems such as an increase in load on the treatment tank, initial cost, and high running cost.

本発明者らは、好気性生物処理に関する検討、実験を進めるに際し、従来手法のように脱窒素処理に着目するのではなく、余剰汚泥の減量に着目して、生分解性プラスチックを投入した活性汚泥の実験を進めた結果、生分解性プラスチックを投入した系においては汚泥発生量を非常に少なくすることができることを見出し、本発明を完成するに至った。前述の如く、従来、生分解性プラスチックを脱窒素の水素供与体として用いることは行われていたが、生分解性プラスチックを用いることで余剰汚泥の発生を減少、抑制できることに関する示唆や報告はない。したがって、本発明は生分解性プラスチックの新たな用途としても非常に価値の高い発明である。   The inventors of the present invention, when proceeding with the examination and experiment on the aerobic biological treatment, do not pay attention to denitrification treatment as in the conventional method, but pay attention to the reduction of excess sludge and activate the biodegradable plastic. As a result of advancing sludge experiments, it was found that the amount of sludge generated in a system charged with biodegradable plastic can be extremely reduced, and the present invention has been completed. As described above, conventionally, biodegradable plastics have been used as a hydrogen donor for denitrification, but there is no suggestion or report regarding the use of biodegradable plastics to reduce or suppress the generation of excess sludge. . Therefore, the present invention is very valuable as a new application of biodegradable plastics.

すなわち、前記課題を解決するために、本発明に係る余剰汚泥の発生抑制方法は、有機性排水を好気性生物処理槽で処理する方法において、好気性生物処理槽内に存在する汚泥に対して生分解性プラスチックを接触させることを特徴とする方法からなる。   That is, in order to solve the above-mentioned problem, the method for suppressing the generation of surplus sludge according to the present invention is a method for treating organic wastewater in an aerobic biological treatment tank, with respect to sludge present in the aerobic biological treatment tank. The method comprises contacting a biodegradable plastic.

好気性生物処理としては、活性汚泥、接触酸化、固定床式、流動床式生物処理のいずれも適用可能である。このとき、上記好気性生物処理槽内の溶存酸素濃度が3mg/L以下、好ましくは0.5〜2.5mg/Lの好気性条件下で生分解性プラスチックと汚泥を接触させることが好ましい。このような好気性条件は、ばっ気を行うことによってコントロール可能である。   As the aerobic biological treatment, any of activated sludge, catalytic oxidation, fixed bed type and fluidized bed type biological treatment can be applied. At this time, it is preferable that the biodegradable plastic and the sludge are brought into contact with each other under an aerobic condition in which the dissolved oxygen concentration in the aerobic biological treatment tank is 3 mg / L or less, preferably 0.5 to 2.5 mg / L. Such aerobic conditions can be controlled by performing aeration.

また、生分解性プラスチックと汚泥の接触は、上記好気性生物処理槽内に生分解性プラスチックを投入し、該好気性生物処理槽自身の内部で行うことは勿論のこと、上記好気性生物処理槽内の汚泥含有有機性排水の一部を反応槽に循環させ、該反応槽内で生分解性プラスチックと汚泥を接触させるようにすることもできる。後者の場合には、反応槽内の溶存酸素濃度が1mg/L以下の条件下で生分解性プラスチックと汚泥を接触させることが好ましく、該反応槽内の条件は、好気性、嫌気性のいずれも可能である。なお、一般に、溶存酸素濃度が0.1mg/L以上であれば好気性条件になるとされている。   In addition, the biodegradable plastic and the sludge are brought into contact with the aerobic biological treatment tank as well as the aerobic biological treatment tank itself. A part of the sludge-containing organic waste water in the tank can be circulated in the reaction tank so that the biodegradable plastic and the sludge are brought into contact with each other in the reaction tank. In the latter case, the biodegradable plastic is preferably brought into contact with sludge under a condition where the dissolved oxygen concentration in the reaction tank is 1 mg / L or less. The conditions in the reaction tank are either aerobic or anaerobic. Is also possible. In general, an aerobic condition is assumed when the dissolved oxygen concentration is 0.1 mg / L or more.

また、本発明に係る余剰汚泥の発生抑制方法は、有機性排水を好気性生物処理槽と沈殿槽で処理する方法において、沈殿槽で固液分離された汚泥の少なくとも一部を生分解性プラスチックと接触させることを特徴とする方法からなる。すなわち、沈殿槽で固液分離された汚泥に生分解性プラスチックを接触させる方が、より溶存酸素濃度がより低い条件で汚泥と生分解性プラスチックを反応させることが可能なため、汚泥の発生をより効率よく抑制することが可能になる。   The surplus sludge generation suppressing method according to the present invention is a method of treating organic wastewater in an aerobic biological treatment tank and a sedimentation tank, wherein at least a part of the sludge separated into solid and liquid in the sedimentation tank is biodegradable plastic. The method characterized by making it contact with. In other words, it is possible to react sludge and biodegradable plastics under conditions where the dissolved oxygen concentration is lower when the biodegradable plastic is brought into contact with sludge that has been solid-liquid separated in the sedimentation tank. It becomes possible to suppress more efficiently.

この場合にも、溶存酸素濃度が1mg/L以下の条件下で生分解性プラスチックと汚泥を接触させることが好ましく、接触反応させる条件は、好気性、嫌気性のいずれも可能である。   Also in this case, it is preferable to contact the biodegradable plastic and the sludge under a condition where the dissolved oxygen concentration is 1 mg / L or less, and the conditions for the contact reaction can be either aerobic or anaerobic.

また、生分解性プラスチックと汚泥の接触は、上記沈殿槽内に生分解性プラスチックを投入し、該沈殿槽自身の内部で行うこともできるし、沈殿槽で固液分離された汚泥の少なくとも一部を反応槽に引き抜き、該反応槽内で生分解性プラスチックと汚泥を接触させるようにすることもできる。   The biodegradable plastic and sludge can be brought into contact with the biodegradable plastic in the settling tank and at least one of the sludge solid-liquid separated in the settling tank itself. It is also possible to pull out the part into the reaction tank and bring the biodegradable plastic and sludge into contact in the reaction tank.

上記のような本発明に係る余剰汚泥の発生抑制方法においては、生分解性プラスチックと接触された汚泥を前記好気性生物処理槽に戻すことができる。したがって、たとえば上記沈殿槽を設ける態様にあっては、沈殿槽内で生分解性プラスチックと接触反応された汚泥を前記好気性生物処理槽に戻すか、その返送ラインに沈殿槽で固液分離された汚泥の少なくとも一部を引き抜く反応槽を設けておき、該反応槽内で生分解性プラスチックと接触反応された汚泥を前記好気性生物処理槽に戻すようにすることができる。   In the surplus sludge generation suppression method according to the present invention as described above, the sludge that has come into contact with the biodegradable plastic can be returned to the aerobic biological treatment tank. Therefore, for example, in the embodiment in which the settling tank is provided, the sludge that has been contact-reacted with the biodegradable plastic in the settling tank is returned to the aerobic biological treatment tank or is solid-liquid separated in the return line in the settling tank. It is possible to provide a reaction tank for extracting at least a part of the sludge, and return the sludge contacted and reacted with the biodegradable plastic in the reaction tank to the aerobic biological treatment tank.

また、生分解性プラスチックと汚泥が接触される槽内のpHは6〜9の範囲内、好ましくは6.5〜8の範囲内とすることが望ましい。とくに、pHが5以下の場合、著しい効果が確認されなくなるおそれがある。   Further, the pH in the tank where the biodegradable plastic and the sludge are contacted is preferably in the range of 6 to 9, and preferably in the range of 6.5 to 8. In particular, when the pH is 5 or less, there is a possibility that a remarkable effect may not be confirmed.

また、生分解性プラスチックと汚泥の接触時の水温はとくに限定されないが、余剰汚泥の発生抑制効果をより確実に得るためには、水温が15〜40℃、好ましくは20〜30℃で生分解性プラスチックと汚泥を接触させることが望ましい。   In addition, the water temperature at the time of contact between the biodegradable plastic and the sludge is not particularly limited, but in order to more reliably obtain the effect of suppressing the generation of excess sludge, the water temperature is 15 to 40 ° C, preferably 20 to 30 ° C. It is desirable to make the contact between the functional plastic and sludge.

なお、本発明において用いる生分解性プラスチックもとくに限定されないが、コストや効率の点から、生分解性プラスチックの素材として、ポリヒドロキシブチレート、ポリヒドロキシブチレートとポリヒドロキシバリレートの共重合体、ポリブチレンサクシネート、ポリカプロラクトン、ポリ乳酸のいずれかを用いることが好ましい。   The biodegradable plastic used in the present invention is not particularly limited, but from the viewpoint of cost and efficiency, as a raw material of the biodegradable plastic, polyhydroxybutyrate, a copolymer of polyhydroxybutyrate and polyhydroxyvalylate, It is preferable to use any one of polybutylene succinate, polycaprolactone, and polylactic acid.

このような本発明に係る余剰汚泥の発生抑制方法において、余剰汚泥の発生を抑制するための詳細なメカニズムは、まだ未解明であるが、生分解性プラスチック添加により菌体転換率の低い菌相に推移すること、または、脱窒率の向上に伴う異化反応や自己酸化の促進することなどの作用で効果が出るものと想定される。   In such a method for suppressing the generation of excess sludge according to the present invention, the detailed mechanism for suppressing the generation of excess sludge is not yet elucidated, but the fungus having a low cell conversion rate due to the addition of biodegradable plastics. It is assumed that the effect will be obtained by the action of transitioning to the above, or by promoting catabolism or autooxidation accompanying the improvement of the denitrification rate.

本発明に係る余剰汚泥の発生抑制方法によれば、適切な場所に生分解性プラスチックを投入して適切な条件下で汚泥と接触させるだけで余剰汚泥の発生を抑制でき、したがって、実質的に既設の生物処理装置に生分解性プラスチックを投入するだけで汚泥を減量することができ、従来の汚泥可溶化処理における導入設備費(イニシャルコスト)およびランニングコストが高いこと、生物処理槽の負荷が上昇するため既設の生物処理槽の負荷に余裕がないと装置を導入できないこと、生物処理水質(COD、窒素など)が悪化することなどの問題を伴うことなく、効果的にかつ安価に余剰汚泥の発生を抑制できる。特に、比較的小規模な工場等において、汚泥を減らしたいが設備費用が高く装置を導入できないケース、COD総量規制があり装置が導入できなかったケース、既設の生物処理のBOD負荷に余裕がなく装置を導入できなかったケース等に対して、有効な汚泥減量手法を提供することが可能となり、本発明の実用性は極めて高い。   According to the surplus sludge generation suppression method according to the present invention, it is possible to suppress the generation of surplus sludge by simply putting biodegradable plastic into an appropriate place and bringing it into contact with the sludge under appropriate conditions. Sludge can be reduced simply by putting biodegradable plastic into existing biological treatment equipment, the introduction equipment cost (initial cost) and running cost in conventional sludge solubilization treatment are high, and the load on the biological treatment tank is high. Excess sludge effectively and inexpensively without problems such as the fact that the equipment cannot be introduced unless there is a margin in the load of the existing biological treatment tank due to the rise and the quality of biological treatment water (COD, nitrogen, etc.) deteriorates Can be suppressed. In particular, in relatively small factories, etc., when it is necessary to reduce sludge but the equipment cost is high and the equipment cannot be installed, there is a COD total amount regulation and the equipment cannot be introduced, and there is no allowance for the existing biological treatment BOD load. It is possible to provide an effective sludge reduction method for cases where the apparatus cannot be introduced, and the utility of the present invention is extremely high.

以下に、本発明の望ましい実施の形態について、図面を参照しながら説明する。
図1は、本発明の一実施態様に係る余剰汚泥の発生抑制方法を実施するための汚泥処理システムの概略構成を示している。本実施態様に係る汚泥処理システム1においては、原水としての有機性排水がポンプ2により好気性生物処理槽3に送られ、好気性生物処理槽3では、ブロワ4からの給気によりばっ気手段5を用いてばっ気が行われて生物処理される。好気性生物処理槽3からの汚泥含有排水は、沈殿槽6に送られて固液分離され、分離された水は処理水として、放流されるか、あるいは所定の行き先に送られる。固液分離された汚泥は、ポンプ7を介して好気性生物処理槽3に返送される。通常、沈殿槽6で固液分離された沈殿汚泥(活性汚泥の濃度:MLSSとして6,000〜15,000mg/L程度)は生物処理槽3に返送され、生物処理槽3内の汚泥濃度はMLSSとして2,000〜6,000mg/L程度に維持される。しかし、原水中の有機物を生物処理する際に、菌体が増殖することで余剰汚泥が発生し、汚泥引き抜きを行いながら濃度を一定になるように調整を行っている。ここまでの構成は従来方法と変わらない。したがって、従来方法に係る汚泥処理システム100は、図7に示すようになる。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a schematic configuration of a sludge treatment system for carrying out a surplus sludge generation suppressing method according to an embodiment of the present invention. In the sludge treatment system 1 according to the present embodiment, organic waste water as raw water is sent to the aerobic biological treatment tank 3 by the pump 2, and the aerobic biological treatment tank 3 is aerated by supplying air from the blower 4. Aeration is performed using 5 and biological treatment is performed. The sludge-containing wastewater from the aerobic biological treatment tank 3 is sent to the precipitation tank 6 for solid-liquid separation, and the separated water is discharged as treated water or sent to a predetermined destination. The sludge subjected to solid-liquid separation is returned to the aerobic biological treatment tank 3 via the pump 7. Usually, the precipitated sludge separated into solid and liquid in the sedimentation tank 6 (concentration of activated sludge: about 6,000 to 15,000 mg / L as MLSS) is returned to the biological treatment tank 3, and the sludge concentration in the biological treatment tank 3 is The MLSS is maintained at about 2,000 to 6,000 mg / L. However, when the organic matter in the raw water is biologically treated, surplus sludge is generated due to the growth of the bacterial cells, and the concentration is adjusted to be constant while extracting the sludge. The configuration so far is not different from the conventional method. Therefore, the sludge treatment system 100 according to the conventional method is as shown in FIG.

本発明の一実施態様に係る余剰汚泥の発生抑制方法による汚泥処理システム1では、図1に示すように、沈殿槽6で固液分離された沈殿汚泥の少なくとも一部が、ポンプ8を介して反応槽9に送られ、該反応槽9内で生分解性プラスチック10(たとえば、ポリカプロラクタン)と接触された後に、ばっ気槽としての好気性生物処理槽3に返送される。この生分解性プラスチック反応槽9には、汚泥と生分解性プラスチック10との接触を促進するために、攪拌機11が設けられている。汚泥と生分解性プラスチック10の反応時間は5分以上、好ましくは30分〜6時間程度とされる。また、反応pHは6〜9、好ましくは6.5〜8.5とされる。また、反応槽9内での溶存酸素濃度は1mg/L以下、好ましくは0.5mg/L以下とする。また、生分解性プラスチック10の投入量は反応槽9中のMLSS濃度に対して0.5〜2倍程度とすることが好ましい。   In the sludge treatment system 1 by the surplus sludge generation suppressing method according to an embodiment of the present invention, as shown in FIG. 1, at least a part of the precipitated sludge separated in the solid-liquid separation in the settling tank 6 is supplied via a pump 8. After being sent to the reaction tank 9 and in contact with the biodegradable plastic 10 (for example, polycaprolactan) in the reaction tank 9, it is returned to the aerobic biological treatment tank 3 as an aeration tank. The biodegradable plastic reaction tank 9 is provided with a stirrer 11 in order to promote contact between the sludge and the biodegradable plastic 10. The reaction time between the sludge and the biodegradable plastic 10 is 5 minutes or longer, preferably about 30 minutes to 6 hours. The reaction pH is 6 to 9, preferably 6.5 to 8.5. The dissolved oxygen concentration in the reaction tank 9 is 1 mg / L or less, preferably 0.5 mg / L or less. Further, the input amount of the biodegradable plastic 10 is preferably about 0.5 to 2 times the MLSS concentration in the reaction tank 9.

図1に示した本発明による汚泥処理システム1での処理における実験データを示す。生物処理槽3の条件は、MLSSは3,000mg/L、溶存酸素濃度は1.5mg/L、pHは7とした。容量25Lの生物処理槽3に、BODが400mg/Lの有機性排水からなる原水を1.3L/hrの流量で供給した。また、生分解性プラスチック反応槽9の条件は、汚泥濃度12g/Lに対しポリカプロラクタン投入量を24g/L、反応時間を4時間、溶存酸素濃度は0.5mg/L、pHを7〜8とした。脱窒素反応を確認するために、図2に、生分解性プラスチック反応槽9での硝酸濃度変化を示した。本テストをスタートしてから、徐々に脱窒素活性が認められ、30日後には反応槽9の出口での硝酸は0.5mg/L以下となり、生分解性プラスチック10を炭素源として脱窒素反応が進行していることがわかる。しかし、この脱窒素反応の進行と、本発明で着目している汚泥の低減の進行度合とは、タイミングがずれる。図3に、従来法と上記テストによる本発明実施時における汚泥発生量の変化を示す。本発明においては、通水開始3週間後から汚泥の増加割合が減少し始め、その後においては5割程度の汚泥が減量する効果が得られることを確認できた。この差が、系外に排出される余剰汚泥の減少量となるので、本発明により余剰汚泥の発生量が大幅に抑制されていることを確認できた。この抑制効果に関する詳細なメカニズムは解明できていないが、生分解性プラスチック添加により菌体転換率が低い菌相に推移、脱窒率の向上に伴う異化反応や自己酸化の促進作用で効果が出たものと推定される。ただし、上述の如く、本発明による余剰汚泥の発生抑制は、脱窒素反応そのものとは異なるものであり、発生量抑制のタイミングは脱窒素反応に対してかなりずれた(かなり遅れた)ものとなる。したがって、たとえ脱窒素反応が汚泥発生量抑制に寄与しているとしても、それは複合的要因の中の一要因にすぎないと推定される。   The experimental data in the process in the sludge processing system 1 by this invention shown in FIG. 1 are shown. The conditions of the biological treatment tank 3 were as follows: MLSS was 3,000 mg / L, dissolved oxygen concentration was 1.5 mg / L, and pH was 7. Raw water consisting of organic wastewater having a BOD of 400 mg / L was supplied to the biological treatment tank 3 having a capacity of 25 L at a flow rate of 1.3 L / hr. In addition, the biodegradable plastic reaction vessel 9 was prepared under the conditions of a sludge concentration of 12 g / L, a polycaprolactan input amount of 24 g / L, a reaction time of 4 hours, a dissolved oxygen concentration of 0.5 mg / L, and a pH of 7 It was set to ~ 8. In order to confirm the denitrification reaction, FIG. 2 shows the change in nitric acid concentration in the biodegradable plastic reaction tank 9. After the start of this test, the denitrification activity was gradually recognized, and after 30 days, the nitric acid at the outlet of the reaction tank 9 became 0.5 mg / L or less, and the denitrification reaction was performed using the biodegradable plastic 10 as a carbon source. It can be seen that is progressing. However, the progress of the denitrification reaction and the progress of the sludge reduction focused in the present invention are out of timing. FIG. 3 shows changes in the amount of sludge generated when the present invention is carried out according to the conventional method and the above test. In the present invention, it was confirmed that the increase rate of sludge began to decrease after 3 weeks from the start of water flow, and after that about 50% of the sludge was reduced. Since this difference becomes a reduction amount of the excess sludge discharged outside the system, it was confirmed that the generation amount of the excess sludge was greatly suppressed by the present invention. Although the detailed mechanism regarding this inhibitory effect has not been elucidated, the addition of biodegradable plastics has shifted to a microflora with a low cell conversion rate, and the effect is enhanced by the catabolism reaction and autooxidation promotion effect accompanying the improvement of the denitrification rate. Estimated. However, as described above, the suppression of excess sludge generation according to the present invention is different from the denitrification reaction itself, and the generation suppression timing is considerably shifted (substantially delayed) from the denitrification reaction. . Therefore, even if the denitrification reaction contributes to the reduction of sludge generation, it is estimated that it is only one factor among the complex factors.

本発明においては、生分解性プラスチックの投入場所に関して、種々の態様を採り得る。図4に、本発明の別の実施形態を示す。本実施態様は、沈殿槽6内に生分解性プラスチック10を吊るして配置し、固液分離された沈殿槽6内の濃縮汚泥に、生分解性プラスチック10が接触するようにして、本発明を実施する構成を示している。   In this invention, various aspects can be taken regarding the input place of biodegradable plastics. FIG. 4 shows another embodiment of the present invention. In the present embodiment, the biodegradable plastic 10 is suspended in the sedimentation tank 6 and the biodegradable plastic 10 is brought into contact with the concentrated sludge in the sedimentation tank 6 that has been subjected to solid-liquid separation. The structure to implement is shown.

図5に、本発明のさらに別の実施形態を示す。ばっき槽としての好気性生物処理槽3内に生分解性プラスチック10を投入し、溶存酸素濃度を3mg/L以下、好ましくは0.5〜1mg/Lに調整し、本発明を実施することもできる。   FIG. 5 shows still another embodiment of the present invention. The biodegradable plastic 10 is put into the aerobic biological treatment tank 3 as a tank, and the dissolved oxygen concentration is adjusted to 3 mg / L or less, preferably 0.5 to 1 mg / L, and the present invention is carried out. You can also.

図6に、本発明のさらに別の実施形態を示す。ばっき槽としての好気性生物処理槽3内から汚泥の一部を引き抜き、反応槽12内に導入してそこに投入した生分解性プラスチック10と汚泥を反応させた後に、ばっき槽に返送するようにして本発明を実施することもできる。この際、生分解性プラスチック反応槽12の溶存酸素濃度を1mg/L以下、好ましくは0.5mg/L以下に調整し、本発明を実施することが好ましい。   FIG. 6 shows still another embodiment of the present invention. A part of the sludge is pulled out from the aerobic biological treatment tank 3 as an aeration tank, introduced into the reaction tank 12 and reacted with the biodegradable plastic 10 introduced therein, and then returned to the aeration tank. Thus, the present invention can be implemented. At this time, it is preferable to adjust the dissolved oxygen concentration of the biodegradable plastic reaction tank 12 to 1 mg / L or less, preferably 0.5 mg / L or less, and to carry out the present invention.

本発明に係る余剰汚泥の発生抑制方法は、有機性排水を生物処理するあらゆる用途に適用でき、系外への排出汚泥の量を大幅に低減して、処理費用の低減は元より、環境負荷の低減に対しても多大に貢献することができる。   The method for suppressing the generation of excess sludge according to the present invention can be applied to all uses for biological treatment of organic wastewater, greatly reducing the amount of sludge discharged outside the system, and reducing the treatment cost as well as the environmental load. It can also contribute greatly to the reduction of

本発明の一実施態様に係る余剰汚泥の発生抑制方法による汚泥処理システムの概略構成図である。It is a schematic block diagram of the sludge processing system by the generation | occurrence | production suppression method of the excess sludge which concerns on one embodiment of this invention. 図1のシステムによる硝酸濃度変化の一例を示す特性図である。It is a characteristic view which shows an example of nitric acid concentration change by the system of FIG. 図1のシステムによる汚泥発生量と従来方法による汚泥発生量との比較特性図である。It is a comparative characteristic view of the sludge generation amount by the system of FIG. 1 and the sludge generation amount by the conventional method. 本発明の別の実施態様に係る余剰汚泥の発生抑制方法による汚泥処理システムの概略構成図である。It is a schematic block diagram of the sludge processing system by the generation | occurrence | production suppression method of the excess sludge which concerns on another embodiment of this invention. 本発明のさらに別の実施態様に係る余剰汚泥の発生抑制方法による汚泥処理システムの概略構成図である。It is a schematic block diagram of the sludge treatment system by the generation | occurrence | production suppression method of the excess sludge which concerns on another embodiment of this invention. 本発明のさらに別の実施態様に係る余剰汚泥の発生抑制方法による汚泥処理システムの概略構成図である。It is a schematic block diagram of the sludge treatment system by the generation | occurrence | production suppression method of the excess sludge which concerns on another embodiment of this invention. 従来方法による汚泥処理システムの概略構成図である。It is a schematic block diagram of the sludge processing system by the conventional method.

符号の説明Explanation of symbols

1 汚泥処理システム
2、7、8 ポンプ
3 好気性生物処理槽
4 ブロワ
5 ばっ気手段
6 沈殿槽
9、12 生分解性プラスチック反応槽
10 生分解性プラスチック
11 攪拌機
1 Sludge treatment system 2, 7, 8 Pump 3 Aerobic biological treatment tank 4 Blower 5 Aeration means 6 Sedimentation tank 9, 12 Biodegradable plastic reaction tank 10 Biodegradable plastic 11 Stirrer

Claims (10)

有機性排水を好気性生物処理槽で処理する方法において、好気性生物処理槽内に存在する汚泥に対して生分解性プラスチックを接触させることを特徴とする余剰汚泥の発生抑制方法。   In a method for treating organic wastewater in an aerobic biological treatment tank, a method for suppressing the generation of surplus sludge, wherein biodegradable plastic is brought into contact with sludge present in the aerobic biological treatment tank. 前記好気性生物処理槽内の溶存酸素濃度が3mg/L以下の好気性条件下で生分解性プラスチックと汚泥を接触させる、請求項1の余剰汚泥の発生抑制方法。   The method for suppressing the generation of excess sludge according to claim 1, wherein the biodegradable plastic and sludge are brought into contact under aerobic conditions where the dissolved oxygen concentration in the aerobic biological treatment tank is 3 mg / L or less. 前記好気性生物処理槽内の汚泥含有有機性排水の一部を反応槽に循環させ、該反応槽内で生分解性プラスチックと汚泥を接触させる、請求項1の余剰汚泥の発生抑制方法。   The surplus sludge generation suppression method according to claim 1, wherein a part of the sludge-containing organic waste water in the aerobic biological treatment tank is circulated to the reaction tank, and the biodegradable plastic and the sludge are contacted in the reaction tank. 前記反応槽内の溶存酸素濃度が1mg/L以下の条件下で生分解性プラスチックと汚泥を接触させる、請求項3の余剰汚泥の発生抑制方法。   The surplus sludge generation suppressing method according to claim 3, wherein the biodegradable plastic and the sludge are brought into contact with each other under a condition that the dissolved oxygen concentration in the reaction tank is 1 mg / L or less. 有機性排水を好気性生物処理槽と沈澱槽で処理する方法において、沈殿槽で固液分離された汚泥の少なくとも一部を生分解性プラスチックと接触させることを特徴とする余剰汚泥の発生抑制方法。   In a method of treating organic wastewater in an aerobic biological treatment tank and a sedimentation tank, a method for suppressing the generation of excess sludge, wherein at least a part of the sludge separated into solid and liquid in the precipitation tank is brought into contact with a biodegradable plastic . 溶存酸素濃度が1mg/L以下の条件下で生分解性プラスチックと汚泥を接触させる、請求項5の余剰汚泥の発生抑制方法。   The method for suppressing the generation of excess sludge according to claim 5, wherein the biodegradable plastic and the sludge are brought into contact under a condition where the dissolved oxygen concentration is 1 mg / L or less. 沈殿槽で固液分離された汚泥の少なくとも一部を反応槽に引き抜き、該反応槽内で生分解性プラスチックと汚泥を接触させる、請求項5または6の余剰汚泥の発生抑制方法。   The method for suppressing the generation of excess sludge according to claim 5 or 6, wherein at least part of the sludge solid-liquid separated in the sedimentation tank is drawn into the reaction tank, and the biodegradable plastic and the sludge are contacted in the reaction tank. 生分解性プラスチックと接触された汚泥を前記好気性生物処理槽に戻す、請求項1〜7のいずれかに記載の余剰汚泥の発生抑制方法。   The generation | occurrence | production suppression method of the excess sludge in any one of Claims 1-7 which returns the sludge contacted with the biodegradable plastic to the said aerobic biological treatment tank. 生分解性プラスチックと汚泥が接触される槽内のpHを6〜9とする、請求項1〜8のいずれかに記載の余剰汚泥の発生抑制方法。   The generation | occurrence | production suppression method of the excess sludge in any one of Claims 1-8 which makes pH in the tank with which biodegradable plastic and sludge contact 6-9. 生分解性プラスチックの素材として、ポリヒドロキシブチレート、ポリヒドロキシブチレートとポリヒドロキシバリレートの共重合体、ポリブチレンサクシネート、ポリカプロラクトン、ポリ乳酸のいずれかを用いる、請求項1〜9のいずれかに記載の余剰汚泥の発生抑制方法。   Any one of polyhydroxybutyrate, a copolymer of polyhydroxybutyrate and polyhydroxyvalylate, polybutylene succinate, polycaprolactone, and polylactic acid is used as a biodegradable plastic material. The surplus sludge generation | occurrence | production suppression method of crab.
JP2003361430A 2003-10-22 2003-10-22 Method for restraining generation of excess sludge Pending JP2005125170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003361430A JP2005125170A (en) 2003-10-22 2003-10-22 Method for restraining generation of excess sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003361430A JP2005125170A (en) 2003-10-22 2003-10-22 Method for restraining generation of excess sludge

Publications (1)

Publication Number Publication Date
JP2005125170A true JP2005125170A (en) 2005-05-19

Family

ID=34641380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003361430A Pending JP2005125170A (en) 2003-10-22 2003-10-22 Method for restraining generation of excess sludge

Country Status (1)

Country Link
JP (1) JP2005125170A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008068179A (en) * 2006-09-13 2008-03-27 Murota Kogyosho:Kk Nitrogen compound removal system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008068179A (en) * 2006-09-13 2008-03-27 Murota Kogyosho:Kk Nitrogen compound removal system
JP4521384B2 (en) * 2006-09-13 2010-08-11 有限会社室田工業所 Nitrogen compound removal equipment

Similar Documents

Publication Publication Date Title
EP0543457B1 (en) Method for the treatment of sewage
JP4892917B2 (en) Biological treatment method and apparatus for organic wastewater
JP2008284427A (en) Apparatus and method for treating waste water
JP4649911B2 (en) Treatment of organic matter and nitrogen-containing wastewater
JP2003245689A (en) Method and apparatus for treating wastewater
JPH09122682A (en) Method for treating waste water
JP4017657B1 (en) Treatment method of wastewater containing organic matter
JP5869208B2 (en) Waste water treatment method and waste water treatment apparatus
JP2006305488A (en) Method of treating organic sludge
WO2005019121A1 (en) Method and apparatus for treating organic waste
EP1244601A1 (en) Waste treatment process
JP4404976B2 (en) Organic wastewater treatment method and organic wastewater treatment apparatus
JP4590756B2 (en) Organic drainage treatment method and organic drainage treatment apparatus
JP2002301500A (en) Water treatment method and apparatus using acid fermentation
JP2002172399A (en) Denitrification treatment method
JP4248375B2 (en) Organic sludge treatment method and apparatus
KR20060056447A (en) Modified starch wastewater treatment system
JP2005125170A (en) Method for restraining generation of excess sludge
JP5199794B2 (en) Nitrogen-containing organic wastewater treatment method
JP4581174B2 (en) Biological treatment method
JP2946163B2 (en) Wastewater treatment method
JPH11347588A (en) Methane fermentation treatment apparatus and method
JPH04341397A (en) Methane fermentation treatment apparatus and methane fermentation method
JP2005193122A (en) Anaerobic hydrogen fermentation treatment system
KR100318367B1 (en) Waste water treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090417