WO2005019121A1 - Method and apparatus for treating organic waste - Google Patents

Method and apparatus for treating organic waste Download PDF

Info

Publication number
WO2005019121A1
WO2005019121A1 PCT/JP2003/010910 JP0310910W WO2005019121A1 WO 2005019121 A1 WO2005019121 A1 WO 2005019121A1 JP 0310910 W JP0310910 W JP 0310910W WO 2005019121 A1 WO2005019121 A1 WO 2005019121A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
treatment
organic wastewater
aeration
denitrification
Prior art date
Application number
PCT/JP2003/010910
Other languages
French (fr)
Japanese (ja)
Inventor
Kazutaka Takata
Akira Akashi
Susumu Hasegawa
Original Assignee
Kobelco Eco-Solutions Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco-Solutions Co., Ltd. filed Critical Kobelco Eco-Solutions Co., Ltd.
Priority to AU2003261784A priority Critical patent/AU2003261784A1/en
Publication of WO2005019121A1 publication Critical patent/WO2005019121A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/1221Particular type of activated sludge processes comprising treatment of the recirculated sludge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a method and an apparatus for treatment by biological digestion.
  • Background Art Conventionally, as a method of treating this kind of organic wastewater, an organic sludge is treated by an aerobic or anaerobic microbial decomposition such as an aerobic digestion method called an activated sludge method or an anaerobic methane digestion method.
  • a method of biologically digesting organic components has been adopted. In this method, organic matter is converted into gaseous components such as carbon dioxide gas and gaseous gas, and treated sludge, including microbial biomass generated by biological digestion and excess sludge consisting of untreated residual sludge, is solid-liquid separated in a sedimentation tank. Excess sludge is usually treated by ocean dumping or land reclamation while the treatment liquid is appropriately treated by separation.
  • an organic waste liquid sent from an organic waste liquid storage device is subjected to aerobic biological treatment by an aeration device, and then the treated liquid is solid-liquid separated into treated water and sludge by a solid-liquid separation device.
  • a part of the sludge separated by the liquid separator is returned to the aeration device and separated by the solid-liquid separator.
  • excess sludge is heat-exchanged in a heat exchanger, then solubilized at a high temperature in a solubilizer, and the solubilized processing liquid is returned to the aeration device.
  • the present invention has been made in order to solve such a problem, and it is possible to significantly reduce the amount of excess sludge discharged to the outside of the treatment system and to release the excess sludge to the outside of the treatment system. It is an object of the present invention to provide a method and an apparatus for treating organic wastewater in which the content of nitrogen-containing organic or inorganic nitrogen in the treated water is reduced.
  • the present invention provides a method for biologically treating organic wastewater, which is produced by nitrifying and denitrifying organic wastewater and then nitrifying and denitrifying the wastewater.
  • An object of the present invention is to provide a method for treating organic wastewater that solubilizes sludge.
  • the present invention is also an apparatus for biologically treating organic wastewater, comprising means for nitrifying and denitrifying organic wastewater, and a solubilization tank for solubilizing sludge generated by nitrification and denitrification.
  • the present invention provides a method for treating organic wastewater.
  • the organic wastewater is subjected to nitrification and denitrification, and then the sludge generated by the nitrification and denitrification is dissolved.
  • This has the effect of reducing the amount of nitrogen-containing organic components and nitrogen-containing inorganic components in the treated water released outside the treatment system as compared with the conventional case.
  • the nitrification and denitrification treatment of organic wastewater is performed, for example, batchwise in a reaction tank.
  • the nitrification treatment in this case is performed, for example, by aeration, and denitrification by stopping the aeration. Processing is performed. Returning the solubilized solution to the reaction tank is preferably performed 3 hours to 30 minutes before stopping the aeration, and more preferably 1 hour to 30 minutes.
  • the nitrification and denitrification treatment is performed in a batch system including the nitrification step by aeration, and the solubilization solution is returned to the reaction tank a predetermined time before the aeration is stopped, it is included in the solubilization treatment sludge.
  • the denitrification can be promoted by effectively utilizing the organic matter obtained as a proton source (BOD source) in the denitrification treatment. Therefore, the amount of chemicals such as methanol generally used as a proton source can be reduced, and the cost associated with the amount of chemicals can be reduced.
  • Another aspect of the nitrification and denitrification treatment of the organic wastewater is performed by an anaerobic treatment step, a primary aeration step, a denitrification step in an anoxic tank, and a secondary aeration step.
  • the sludge solid-liquid separated after the secondary aeration step is solubilized.
  • nitrification and denitrification treatment of organic wastewater include a denitrification step in an oxygen-free tank, an anaerobic treatment step, a treatment step in a compatible tank, a denitrification step in an oxygen-free tank, and an aeration step. Done. In this case, the sludge separated into solid and liquid after the aeration step is solubilized. Nitrification is performed in the aeration process, and the nitrified liquid after nitrification is returned to the denitrification process.
  • nitrification and denitrification treatment of the organic wastewater are carried out by an anaerobic treatment step, a denitrification step in an anoxic tank, and an aeration step, and reduce the dissolved oxygen of the treatment liquid after the solubilization treatment. It is done by things. Also in this case, nitrification is performed in the aeration step. The nitrified liquid after nitrification is returned to the denitrification process.
  • nitrification and denitrification treatment of the organic wastewater are performed by an anaerobic treatment step, a denitrification step in an anoxic tank, and an aeration step.
  • these nitrification and denitrification treatments include an aerobic treatment step such as an anaerobic treatment step or an aeration treatment, even when the sludge generated by the nitrification and denitrification treatment contains a phosphorus component, However, phosphorus is released by anaerobic treatment, and phosphorus is taken up by aerobic treatment.
  • an aerobic treatment step such as an anaerobic treatment step or an aeration treatment
  • Another object of the present invention is to reduce the amount of phosphorus components in treated water released outside the treatment system. And a method of treating such organic wastewater.
  • FIG. 1 is a schematic block diagram showing an organic wastewater treatment apparatus as one embodiment.
  • FIG. 2 is a block diagram of a batch processing step performed by the processing apparatus of FIG.
  • FIG. 3 is a block diagram of another example of a batch processing step performed by the processing apparatus of FIG.
  • FIG. 4 is a schematic block diagram showing an organic wastewater treatment apparatus according to another embodiment.
  • FIG. 5 is a schematic block diagram showing an organic wastewater treatment apparatus of another embodiment.
  • FIG. 6 is a schematic block diagram showing an organic wastewater treatment apparatus of another embodiment.
  • FIG. 7 is a schematic block diagram showing an organic wastewater treatment apparatus according to another embodiment.
  • FIG. 8 is a schematic block diagram showing an organic wastewater treatment apparatus of another embodiment.
  • FIG. 9 is a schematic block diagram showing an organic wastewater treatment apparatus according to another embodiment.
  • FIG. 10 is a schematic block diagram showing an organic wastewater treatment apparatus of another embodiment.
  • FIG. 11 is a schematic block diagram showing an organic wastewater treatment apparatus of another embodiment.
  • FIG. 12 is a schematic block diagram showing an organic wastewater treatment apparatus of another embodiment.
  • FIG. 13 is a schematic block diagram showing an organic wastewater treatment apparatus of another embodiment.
  • FIG. 14 is a schematic block diagram showing an organic wastewater treatment apparatus of another embodiment.
  • FIG. 15 is a schematic block diagram showing an organic wastewater treatment apparatus of another embodiment.
  • FIG. 16 is a block diagram of a batch processing step performed by the processing apparatus of FIG.
  • FIG. 17 is a schematic block diagram showing an organic wastewater treatment apparatus of another embodiment.
  • FIG. 18 is a schematic block diagram showing an organic wastewater treatment apparatus according to another embodiment.
  • the organic wastewater treatment apparatus of the present embodiment includes a reaction tank 1 and a solubilization tank 2.
  • the organic wastewater is treated batchwise.
  • sewage was used as the organic wastewater as raw water.
  • the treatment is performed in such a manner that the inflow, the reaction, the sedimentation, the drainage, and the sludge of the raw water are included in one cycle. More specifically, as shown in Fig. 2, the process of aeration, agitation, aeration, agitation, aeration, sedimentation by stopping aeration, solid-liquid separation, and solubilization treatment is performed while receiving the inflow of raw water. become.
  • aeration is an aerobic treatment and agitation is an anaerobic treatment.
  • the steps of repeating aeration and erosion, precipitation, and solid-liquid separation are performed in the reaction tank 1, and the step of solubilization is performed in the solubilization tank 2.
  • the processing time of each process so that a series of wastewater treatments, from the inflow of raw water to the discharge of treated water, is performed several times a day (for example, two to four times).
  • the treatment time of each process may be adjusted so as to perform batch treatment about once a day or about twice a day.
  • the nitrification treatment by the nitrifying bacteria is performed in the aeration step, and the denitrification treatment by the denitrifying bacteria is performed in the stirring step in which the aeration is stopped. Thereafter, the aeration is stopped, and the sludge is settled and separated. The supernatant is discharged, and a part of the settled sludge is held in the reaction tank 1 for the next batch processing, and the remaining part of the sludge is supplied to the solubilization tank 2 to be subjected to fusible treatment. . It is preferable that the liquid solubilized in the solubilization tank 2 is returned to the first-stage stirring step as shown in FIG.
  • the pH is preferably set to 7 or more, particularly preferably 7.0 to 8.0, in order to maintain the nitrification reaction by the nitrifying bacteria.
  • the temperature is preferably 15 ° C. to 35 ° C., and more preferably 25 ° C. to 35 ° C.
  • the solubilized solution should be used 3 to 30 minutes before stopping the first stage aeration, preferably 1 hour to 30 minutes before being returned to reaction tank 1.
  • the number of cycles is determined by the BOD-SS load of the reactor.
  • high-load operation 800-33 load: 0.2-0.413 ⁇ 480 D / kgSS-day
  • BOD-SS load 0.03 to 0.05 kgBOD kgSS-day
  • the solubilization tank 2 is for solubilizing the sludge supplied from the reaction tank 1 as described above, and this solubilization is performed by a solubilizing enzyme such as a protease.
  • This solubilizing enzyme is produced by a thermophilic bacterium, for example, an aerobic thermophilic bacterium such as a bacterium belonging to the genus Bacillus.
  • a thermophilic bacterium may be held in the solubilization tank 2 in advance, may be contained in the sludge supplied to the solubilization tank 2 in advance, or may be newly added in the solubilization tank 2.
  • Bacillus bacteria examples include Bacillus stearothermopilus J, Bacillus thermole QYorans, and Bacillus thermole QYorans.
  • Bacillus (Badllii5) can be used.
  • SPT2-l (FERM P-15 395)
  • Bacillus (Eaemii_s) SPT3 (FERM P-19226)
  • Dionocylus (Geobac) P-08453]
  • Geobacillus (Geobaci11us) SPT7 [FERM P-08455] and the like are preferably used.
  • thermophilic bacterium As described above.
  • thermophilic bacterium As described above.
  • electrolysis thermoalkali decomposition
  • thermoalkali decomposition for example, proteases, lipases, glycosidases, etc. are used alone) Or addition in combination
  • enzymatic decomposition for example, proteases, lipases, glycosidases, etc. are used alone) Or addition in combination
  • the organic sludge is anaerobically or aerobically solubilized under biologically high temperature conditions.
  • inoculated cells thermophilic bacteria
  • anaerobic or aerobic microorganisms used in high-temperature conditions are, for example, obtained from a conventional anaerobic or aerobic digestion tank. It is obtained by culturing an organism.
  • the optimum temperature of the fusible tank 2 is preferably operated under the condition of a temperature range of 50 to 90 ° C., but the organic solid contained in the sludge to be subjected to the high temperature treatment is preferably used.
  • thermophile that decomposes substances.
  • thermophiles isolated from excess sewage sludge the solubilization reaction of microorganisms (thermophilic bacteria) and physicochemical pyrolysis by heat
  • the temperature at elevated temperature is in the range 55-75 ° C, preferably 60-70 ° C, so that both actions can take place efficiently and satisfactorily.
  • the temperature is preferably set to 55 to 70 ° C, more preferably 60 to 65 ° C.
  • the temperature is preferably set to 55 to 65 ° C.
  • the pH is set so as to be in the range of 6 to 9, preferably 7 to 8, depending on the type of microorganism. This is to prevent the soluble solution from affecting the nitrification or denitrification.
  • the solubilization treatment is preferably an aerobic treatment in order to decompose (nitrify) ammonia generated by the decomposition of sludge to some extent.
  • the solubilized sludge is returned to the reaction tank in the first (first) aeration process 3 hours to 30 minutes before, preferably 1 hour to 30 minutes before stopping the aeration process. You.
  • the organic matter contained in the solubilized sludge can be effectively used as a proton source (BOD source) in the denitrification treatment, and the denitrification can be promoted. Therefore, the amount of chemicals such as methanol generally used as a proton source can be reduced, so that the cost associated with the amount of chemicals can be reduced.
  • the solubilization time is preferably 12 to 72 hours, more preferably 18 to 48 hours, and most preferably 20 to 36 hours.
  • the solubilization time is determined by the combination of the wastewater treatment system for nitrification and denitrification of wastewater and the solubilization of sludge. A description will be given for each embodiment.
  • ammonia is generated by solubilization of sludge by thermophilic bacteria.Ammonia contained in solubilized sludge is oxidized to nitrite nitrogen and nitrate nitrogen that can be denitrified in the aeration process. It becomes. As a result, the denitrification treatment is suitably performed, and no harmful nitrogen components are released outside the system.
  • This embodiment is a batch-type treatment method similar to the first embodiment, in which the treatment apparatus is composed of a reaction tank 1 and a soluble ibis tank 2, and aeration is performed while receiving the inflow of raw water.
  • Embodiment 1 is common to Embodiment 1 in that the steps of stirring, aeration, stirring, aeration, precipitation by stopping aeration, solid-liquid separation, and solubilization are performed in a circulating manner. Therefore, also in the present embodiment, nitrification treatment by nitrifying bacteria is performed in the aeration step, and denitrification treatment by denitrifying bacteria is performed in the stirring step in which the aeration is stopped.
  • the solubilized solution is returned to the reaction tank 1 in the denitrification process, the organic matter contained in the solubilized solution is effectively used as a proton source in the denitrification process, and the denitrification is promoted. Is done.
  • the solubilization time is longer than in Embodiment 1, and is preferably 24 to 72 hours, more preferably 36 to 72 hours.
  • the amount of commonly used chemicals such as methanol can be reduced.
  • the cost associated with the amount of the chemical can be reduced.
  • the amount of excess sludge generated can be significantly reduced by combining sludge-soluble treatment with nitrification and denitrification treatment of wastewater, and by optimally setting the conditions of each treatment step when combined.
  • the water quality can be reduced and the quality of the treated water can be maintained well.
  • thermophilic bacterium in particular, various Bacillus (; Bacillus ⁇ bacterium ⁇ ⁇ ⁇ ⁇ ⁇ Bacillus (fieohae ilks) bacterium used in the first embodiment is used. Is preferred.
  • the temperature for the solubilization treatment is preferably in a temperature range of 50 to 90 ° C. as in Embodiment 1, and when an aerobic thermophilic bacterium such as Bacillus bacterium is used, 55
  • the temperature is preferably set to a temperature range of 70 to 70 ° C, and more preferably a temperature range of 60 to 65 ° C.
  • the pH at the time of the solubilization treatment is set to be in the range of pH 6 to 9, preferably 7 to 8, as in the first embodiment.
  • the temperature, pH, and the like in the nitrification step are the same as those in the first embodiment.
  • the organic wastewater treatment apparatus of the present embodiment includes a fermentation liquid storage tank 3, an anaerobic tank 4, a primary aeration tank 5, an oxygen-free tank 6, a secondary aeration tank 7, a sedimentation tank 8, And a solubilization tank 2.
  • a solubilization tank 2 As the liquid to be treated stored in the fermentation liquid storage tank 3, an acid fermentation liquid obtained by gas decomposition (methane fermentation) of fermented rice discharged from a food factory or the like and fermenting is used. Sewage and the like are supplied to the anaerobic tank separately from the liquid to be treated.
  • the anaerobic tank 4 anaerobically decontaminates the sewage and the acid fermentation liquor supplied from the fermentation liquor storage tank 1 and returns sludge when phosphorus is contained in returned sludge or acid fermentation liquor. It has a function of releasing phosphorus in the liquid.
  • the primary aeration tank 5 aerobically biologically treats the treatment liquid subjected to the anaerobic treatment in the anaerobic tank 4 by aeration and agitation, and oxidatively decomposes organic substances in the anaerobic treatment water or nitrifies the inflow ammonia. It is for.
  • This primary aeration tank 5 is basically equipped with aeration means.
  • the aeration means is not limited, but for example, an air diffuser can be used.
  • the aeration is preferably carried out to allow aerobic digestion and degradation.
  • the liquid to be treated is preferably adjusted to pH 5.0 to 8.0, more preferably adjusted to pH 7.0 to 8.0.
  • the anoxic tank 6 is used for denitrifying the treatment liquid that has been aerobically treated in the primary aeration tank 5.
  • the secondary aeration tank 7 is for aerobic biological treatment of the treatment liquid denitrified in the oxygen-free tank 6.
  • the secondary aeration tank 7 is configured in the same manner as the primary aeration tank 3, and biological treatment is similarly performed by aeration and stirring. In this case, the secondary aeration tank 7 has both functions of nitrification and BOD removal. Then, although not shown, a part of the nitrification liquid, which is a treatment liquid in the secondary aeration tank 7, is returned to the oxygen-free tank 6, and nitric acid or nitrous acid in the nitrification liquid is denitrified.
  • the sedimentation tank 8 is for solid-liquid separation of the treatment liquid biologically treated in the secondary aeration tank 7, and the separated liquid is reused or discharged as a treatment liquid, and the separated and precipitated solid is separated. A part of the sludge is supplied to the next solubilization tank 2 and the remaining part is returned to the anaerobic tank 4.
  • the leftovers discharged from food factories are decomposed by gas.
  • This gas decomposition is performed, for example, by acid fermentation and methane fermentation.
  • An acid fermentation solution is obtained by such gas decomposition, and the acid fermentation solution is stored in the fermentation solution storage tank 3.
  • the acid fermentation liquid is supplied to the anaerobic tank 4.
  • Sewage is also supplied to the anaerobic tank 4.
  • the treated water after the anaerobic treatment is supplied to the primary aeration tank 5 in the next step, and is aerobically treated while being aerated and agitated.
  • the nitrification treatment is performed by the aerobic treatment by the aeration and stirring.
  • the treatment liquid aerated in the primary aeration tank 5 is supplied to the oxygen-free tank 6.
  • a denitrification treatment is performed.
  • the acid fermentation liquid is supplied from the fermentation liquid storage tank 3 to the oxygen-free tank 6. This is because the acid fermentation solution is effectively used as a proton source (BOD source) during denitrification and promotes denitrification.
  • BOD source proton source
  • the treatment liquid denitrified in the oxygen-free tank 6 is supplied to the secondary aeration tank 7, where it is aerobically treated while being aerated and agitated.
  • nitrification is performed, and B ⁇ D removal is performed.
  • the treatment liquid that has been aerated in the secondary aeration tank 7 is supplied to the precipitation tank 8.
  • the precipitation tank 8 solid-liquid separation is performed, and the separated liquid is reused or discharged as a treatment liquid, and part of the separated and precipitated solid sludge is supplied to the solubilization tank 2.
  • the sludge is aerobically solubilized by thermophilic bacteria.
  • the remaining part of the settled sludge is returned to the anaerobic tank 4 as returned sludge.
  • the sludge solubilized in the solubilization tank 2 is returned to the anoxic tank 6 and processed again. Then, the denitrification treatment in the oxygen-free tank 6, the aeration treatment in the secondary aeration tank 7, the solid-liquid separation in the precipitation tank 8, and the solubilization treatment in the solubilization tank 2 are circulated and repeated.
  • the sludge is solubilized in a continuous manner, not in a batch manner as in Embodiment 1 described above.
  • the HRT is selected based on the HRT that maximizes the production and secretion of thermophiles.
  • the HRT is preferably set to 12 to 72 hours, and more preferably set to 24 to 72 hours from the viewpoint of oxidizing the ammonia in the solubilizing solution. From the viewpoint of maintaining both of the quality of treated water, it is most preferable to set the time to 36 to 48 hours.
  • HRT of tanks other than solubilization tank 2 is 0.5 to 1.5 hours in anaerobic tank 4, 2 to 6 hours in primary aeration tank 5, 0.5 to 3 hours in oxygen-free tank 6, and 0.5 to 1.5 hours in secondary aeration tank 7. 2 hours, preferably 0.5 to 1 hour in the anaerobic tank 4, 3 to 5 hours in the first primary aeration tank 5, 1-2 hours in the oxygen-free tank 6, and 0.5 to 1.5 hours in the secondary aeration tank 7.
  • thermophilic bacteria in particular, various Bacillus (Eadllus) genus bacteria disclosed in Embodiment 1 and ⁇ ⁇ obacillus (Qeohae illiis) genus bacteria may be used. Is preferred.
  • the temperature for the solubilization treatment is preferably in a temperature range of 50 to 90 ° C. as in Embodiment 1, and when an aerobic thermophilic bacterium such as Bacillus bacterium is used, 55
  • the temperature is preferably set to a temperature range of 70 to 70 ° C, and more preferably a temperature range of 60 to 65 ° C.
  • the pH at the time of the fusibility treatment is also set to be in the range of 6 to 9, preferably 7 to 8, as in the first embodiment.
  • the temperature, pH, and the like in the nitrification step are the same as those in the first embodiment.
  • a concentrator 9 is provided between the sedimentation tank 8 and the solubilization tank 2, that is, in the flow path from the sedimentation tank 8 to the solubilization tank 2.
  • the sludge separated in the sedimentation tank 8 is supplied to the concentrator 9.
  • the sludge is concentrated by, for example, gravity settling.
  • concentration method besides gravity sedimentation, flotation concentration, evaporation concentration, membrane concentration, addition of a flocculant, drum screen type concentration, or concentration method using centrifugal force can also be adopted.
  • the sludge concentration rate is preferably from 99% by weight or less (sludge concentration of 1% by weight or more) from the viewpoint of improving the solubilization rate of thermophilic bacteria and making the solubilization tank compact.
  • the concentrated solution after concentration is acceptable It is supplied to the solubilization tank 2. However, it is preferable that the sludge concentration does not exceed 5% by weight.
  • thermophilic bacterium in particular, various Bacillus genus bacteria disclosed in Embodiment 1 and ⁇ ⁇ obacillus (Oobacillus) bacterium are used. Is preferred.
  • the temperature at the time of the solubilization treatment is desirably in the temperature range of 50 to 90 ° C. as in Embodiment 1, and when an aerobic thermophilic bacterium such as a Bacillus bacterium is used, 55
  • the temperature is preferably set to a temperature range of 70 to 70 ° C, and more preferably a temperature range of 60 to 65 ° C.
  • the pH at the time of the solubilization treatment is in the range of pH 6 to 9 as in the first embodiment, preferably? Set so that it is in the range of ⁇ 8.
  • a nitrification tank 10 is provided between the fusible tank 2 and the oxygen-free tank 6, that is, in the return flow path from the fusible tank 2 to the oxygen-free tank 6.
  • the ammonia contained in the sludge-soluble solution changes to nitrous acid or nitric acid.
  • a part of the sludge is returned from the settling tank 8 to the anaerobic tank 4, and the remaining sludge is also supplied to the nitrification tank 10 via the solubilizing tank 2.
  • the HRT of the solubilization tank is preferably selected based on the HRT that maximizes the production and secretion of the sludge solubilizing enzyme secreted by the thermophile.
  • the HRT is set to 12 to 72 hours, but in this embodiment, since the nitrification tank 10 is provided at the subsequent stage of the solubilization tank, the solubilization treatment liquid is in a state where ammonia remains in the solubilization treatment liquid. Can be put into the nitrification tank 10, and considering this, the HRT is more preferably set to 18 to 48 hours, and most preferably set to 20 to 36 hours.
  • the operating conditions of the nitrification tank 10 are preferably 25 to 35 ° C., and the pH is preferably in the range of 7.0 to 8.0.
  • the HRT in the nitrification tank 10 must oxidize the ammonia contained in the sludge solubilization solution to nitrous acid and nitric acid, and it is necessary to leave organic substances that serve as proton sources in the next step of denitrification. Considering a certain point, the time is preferably set to 30 minutes to 3 hours.
  • Anaerobic treatment in anaerobic tank 4 aeration treatment in primary aeration tank 5, denitrification treatment in anoxic tank 6, aeration treatment in secondary aeration tank 7, solid-liquid separation in sedimentation tank 8, fusible Since the solubilization treatment in the tank 2 is the same as that in the third embodiment, the description is omitted.
  • thermophilic bacterium in particular, various Bacillus ⁇ Bacillus ⁇ ) bacteria disclosed in Embodiment 1, ⁇ diobacillus (Qeohae illus) bacteria are used. Is preferred.
  • the temperature for the solubilization treatment is preferably in a temperature range of 50 to 90 ° C. as in Embodiment 1, and when an aerobic thermophilic bacterium such as Bacillus bacterium is used, 55
  • the temperature is preferably set to a temperature in the range of 70 to 70 ° C, more preferably in the range of 60 to 65 ° C.
  • the pH at the time of the solubilization treatment is also set in the same manner as in the first embodiment: H is set to be in the range of 6 to 9, preferably 7 to 8.
  • the processing apparatus of the present embodiment comprises a front oxygen-free tank 11, an anaerobic tank 4, a compatible tank 12, an oxygen-free tank 6, an aeration tank 13, a sedimentation tank 8, a concentrator 9, and a A soaking tank 2 is provided.
  • the raw water flowing into the anaerobic tank 4 is supplied to the compatible tank 12.
  • the compatibility tank 12 has a function of changing the return route of the sludge and the treatment liquid (nitrification liquid) from the aeration tank 13 depending on the degree of denitrification of the inflow sewage. For example, the degree of denitrification in summer etc. During periods of high levels, the use of anaerobic tanks promotes the phosphorus release reaction of returned sludge under anaerobic conditions, and during periods of low denitrification, such as in winter, the use of raw water and aeration by use of oxygen-free tanks The denitrification reaction of the nitrified liquid returned from the tank 13 to the pre-anoxic tank 11 or the compatible tank 12 is promoted.
  • the raw water is supplied to the anoxic tank 6 to be denitrified, and further supplied to the aeration tank 13 for aerobic biological treatment by aeration and stirring.
  • the mixture is supplied from the aeration tank 13 to the settling tank 8, where solid-liquid separation is performed, and the separated liquid is discharged as appropriate.
  • the sludge separated and precipitated is supplied to the concentrator 9 and supplied to the solubilization tank 2.
  • the aeration tank 13 has a function of removing BOD and nitrification. A portion of the nitrification solution, which is the processing solution in the aeration tank 13,
  • the sludge solubilized in the solubilization tank 2 is returned to the compatible tank 12, and
  • anaerobic tank 6, aeration tank 13, sedimentation tank 8, concentrator 9, and solubilization tank 2 will be circulated.
  • the sludge separated in the sedimentation tank 8 is supplied not only to the concentrator 9 but also to the former oxygen-free tank 11.
  • Sludge is also returned from the anaerobic tank 4 and the compatible tank 12 to the anoxic tank 11, and the HRT of the solubilizing tank 2 is preferably set to 12 to 72 hours as in the third embodiment, and 24 to 72 hours.
  • HRT of tanks other than solubilization tank 2 is preferably 0.5 to 1.5 hours in anoxic tank 11, and 0.5 to 2 hours in anaerobic tank 4.
  • thermophilic bacteria particularly various Bacillug species disclosed in Embodiment 1 and Geobacillus (Geobacillus). Preference is given to using bacteria of the genus illas).
  • the temperature at the time of the solubilization treatment is desirably in the temperature range of 50 to 90 ° C. as in Embodiment 1, and when an aerobic thermophilic bacterium such as a Bacillus bacterium is used, 55
  • the temperature is preferably set to a temperature range of 70 to 70 ° C, and more preferably a temperature range of 60 to 65 ° C.
  • the pH at the time of the solubilization treatment is set so as to be in the range of 6 to 9, preferably 7 to 8, as in the first embodiment.
  • the treatment apparatus of the present embodiment is provided with the concentrator 9, the provision of the concentrator 9 is not an essential condition of the present invention.
  • a nitrification tank 10 is provided on the downstream side of the solubilization tank 2, and this is different from the sixth embodiment in this point.
  • the sludge that has been solubilized in the solubilization tank 2 is supplied to the nitrification tank 10, and the ammonia in the sludge is converted into nitrous acid or nitric acid in the nitrification tank 10, and then the compatible tank 1
  • the sludge separated in the sedimentation tank 8 is supplied to the concentrator 9 as in the sixth embodiment, returned to the oxygen-free tank 11, and is also directly supplied to the nitrification tank 10 in the present embodiment.
  • the HRT of the solubilization tank 2 is preferably set to 12 to 72 hours, more preferably to 18 to 48 hours, and most preferably to 20 to 36 hours, as in the fifth embodiment. It is good.
  • thermophilic bacterium in particular, various Bacillus (Bacillus) ⁇ ⁇ bacteria disclosed in Embodiment 1 ⁇ a bacterium belonging to the genus Geobacillus is used. Is preferred.
  • the temperature for the solubilization treatment is desirably in the temperature range of 50 to 90 ° C. as in Embodiment 1, and when an aerobic thermophilic bacterium such as a bacterium belonging to the genus Bacillus is used, 55 to 7 0 ° C
  • the temperature is preferably set within the range of 60 to 65 ° C.
  • the pH at the time of the solubilization treatment is also set so as to be in the range of 6 to 9, preferably 7 to 8, as in the first embodiment.
  • the treatment apparatus of the present embodiment includes a dissolved oxygen reduction tank 16, an anaerobic tank 4, an anoxic tank 6, an aeration tank 13, a sedimentation tank 8, a concentrator 9, and a solubilization tank 2. ing.
  • the treated water treated to reduce the dissolved oxygen in the dissolved oxygen reducing tank 16 is also anoxic. Supply to tank 6.
  • the treated water supplied to the anoxic tank 6 and subjected to denitrification is further supplied to the aeration tank 13 and aerobically treated by aeration and agitation, and further supplied to the settling tank 8 for solid-liquid separation.
  • the separated liquid is discharged as appropriate, and the separated solid sludge is supplied to the concentrator 9 and a part of the sludge is returned to the aeration tank 13.
  • the nitrification liquid is denitrified.
  • the denitrification efficiency can be stabilized by charging the nitrification liquid into the anoxic tank and reducing the dissolved oxygen in the nitrification liquid.
  • the sludge concentrated by the concentrator 9 is supplied to the solubilization tank 2 to be solubilized, and then returned to the dissolved oxygen reduction tank 16.
  • the sludge supplied to the anoxic tank 6 is also returned to the anaerobic tank 4, and further returned from the anaerobic tank 4 to the dissolved oxygen reducing tank 16.
  • the HRT of the solubilization tank 2 is preferably set to 12 to 72 hours, more preferably to 24 to 72 hours, and most preferably to 36 to 48 hours, as in the third embodiment.
  • the HRT of the tanks other than the dagger tank 2 is 0.15 to 03 hours in the dissolved oxygen reduction tank 16, 0.5 to 2 hours in the anaerobic tank 4, 1-3 hours in the oxygen-free tank 6, and 3 to 6 hours in the aeration tank 13.
  • thermophilic bacteria in particular, various Bacillus (Eadlks) genus bacteria and Diobacillus (Qeohae illus) genus bacteria disclosed in Embodiment 1 may be used. Is preferred.
  • the temperature for the solubilization treatment is preferably in a temperature range of 50 to 90 ° C. as in Embodiment 1, and when an aerobic thermophilic bacterium such as Bacillus bacterium is used, 55
  • the temperature is preferably set to a temperature range of 70 to 70 ° C, and more preferably a temperature range of 60 to 65 ° C.
  • the pH at the time of the solubilization treatment is set to be in the range of 6 to 9, preferably 7 to 8, as in the first embodiment.
  • a nitrification tank 10 is provided downstream of the solubilization tank 2, which is different from the above-described eighth embodiment in this point.
  • the sludge that has been subjected to the solubilizing treatment in the solubilization tank 2 is supplied to the nitrification tank 10, and the ammonia in the sludge is converted to nitrous acid or nitric acid in the nitrification tank 10, and the dissolved oxygen It will be returned to the reduction tank 16. Further, a part of the sludge in the settling tank 8 is supplied to the nitrification tank 10 so that the nitrification treatment is maintained.
  • the HRT of the solubilization tank 2 is preferably set to 12 to 72 hours, more preferably to 18 to 48 hours, and most preferably to 20 to 36 hours, as in the fifth embodiment. .
  • thermophilic bacteria particularly various Bacillus (; Bacillus genus bacteria and Geobac ilks bacteria) disclosed in the first embodiment. It is preferred to use
  • the temperature at the time of the solubilization treatment is in the temperature range of 50 to 90 ° C as in the first embodiment.
  • the temperature is preferably set in the range of 55 to 70 ° C, and more preferably in the range of 60 to 65 ° C.
  • the pH at the time of the solubilization treatment is set to be in the range of pH 6 to 9, preferably 7 to 8, as in the first embodiment.
  • the organic wastewater treatment apparatus of the present embodiment includes an anaerobic tank 4, an anoxic tank 6, an aeration tank 13, a sedimentation tank 8, and a solubilization tank 2.
  • the phosphorus component is supplied to the anoxic tank 6, and the denitrifying treatment is performed in the anoxic tank 6.
  • the treatment liquid denitrified in the anoxic tank 6 is supplied to the aeration tank 13, where the ammonia contained in the sludge is changed to nitrous acid or nitric acid. That is, nitrification treatment is performed in the aeration tank 13.
  • the treatment liquid that has been nitrified in the aeration tank 13 is supplied to the precipitation tank 8.
  • the sedimentation tank 8 solid-liquid separation is performed, and the separated liquid is discharged and the like.
  • a part of the separated and precipitated solid sludge is supplied to the solubilization tank 2, and the rest is returned. Returned to anaerobic tank 4 as sludge.
  • the sludge after solubilization is returned to the anoxic tank 6, denitrification in the anoxic tank 6, treatment in the aeration tank 13, solid-liquid separation in the sedimentation tank 8, and solubilization in the solubilization tank 2. Will be repeated cyclically. A part of the nitrification liquid treated in the aeration tank 13 is returned to the oxygen-free tank 6 or the anaerobic tank 4 and denitrified in the oxygen-free tank 6.
  • the HRT of the solubilization tank 2 is preferably set to 12 to 72 hours, more preferably to 24 to 72 hours, and most preferably to 36 to 48 hours, as in the third embodiment.
  • the HRT for tanks other than 2 should be 0.15 hours for dissolved oxygen reduction tank 16, 0.5 to 2 hours for anaerobic tank 4, 1 to 3 hours for anoxic tank 6, and 3 to 6 hours for aerobic tank 17.
  • thermophilic bacterium in particular, various Bacillus (Bacillus ⁇ genus bacterium ⁇ ⁇ obacillus (Qeohae ilks) genus bacterium disclosed in Embodiment 1) may be used. Is preferred.
  • the temperature at the time of the solubilization treatment is desirably in the temperature range of 50 to 90 ° C. as in Embodiment 1, and when an aerobic thermophilic bacterium such as a Bacillus bacterium is used, 55
  • the temperature is preferably set to a temperature range of 70 to 70 ° C, and more preferably a temperature range of 60 to 65 ° C.
  • the pH at the time of the solubilization treatment is set to be in the range of 6 to 9, preferably 7 to 8, as in the first embodiment.
  • the sludge solubilized in the solubilization tank 2 is returned to the anaerobic tank 4, which is different from the case of Embodiment 10 in which the sludge is returned to the oxygen-free tank 6. .
  • the anaerobic treatment in the anaerobic tank 4, the denitrification treatment in the oxygen-free tank 6, the nitrification treatment in the aeration tank 13, the solid-liquid separation in the precipitation tank 8, and the solubilization treatment in the solubilization tank 2 are described in the embodiment. It is the same as 10 and its explanation is omitted. Also in this embodiment, a part of the nitrification liquid is returned to the anoxic tank 6 or the anaerobic tank 4.
  • the HRT of the solubilization tank 2 is preferably set to 12 to 72 hours, more preferably to 24 to 72 hours, and most preferably to 36 to 48 hours, as in Embodiment 3.
  • a microorganism that produces a solubilizing enzyme for solubilizing E. coli it is preferable to use a thermophilic bacterium, in particular, any of the various bacterium belonging to the genus Bacillus and the genus Oeohae illus disclosed in the first embodiment.
  • the temperature at the time of the fusi-dani treatment is preferably in the temperature range of 50 to 90 ° C. as in Embodiment 1, and when an aerobic thermophilic bacterium such as a Bacillus bacterium is used, It is preferable to set the temperature in the range of 55 to 70 ° C, more preferably in the range of 60 to 65 ° C.
  • the pH at the time of the solubilization treatment is in the range of pH 6 to 9, preferably 7 to 7, as in the first embodiment. Set to be in the range of 8.
  • a nitrification tank 10 is provided downstream of the solubilization tank 2.
  • the sludge treated in the solubilization tank 2 is supplied to the nitrification tank 10, and the ammonia in the sludge is converted into nitrous acid or nitric acid in the nitrification tank 10 and returned to the oxygen-free tank 6. become. Further, sludge is supplied from the settling tank 8 to the nitrification tank 10.
  • the anaerobic treatment in the anaerobic tank 4, the denitrification treatment in the oxygen-free tank 6, the nitrification treatment in the aeration tank 13, the solid-liquid separation in the precipitation tank 8, and the solubilization treatment in the solubilization tank 2 are described in the embodiment. It is the same as 11 and its explanation is omitted.
  • the HRT of the solubilization tank 2 is preferably set to 12 to 72 hours, more preferably to 18 to 48 hours, and most preferably to 20 to 36 hours as in the fifth embodiment. Is also preferred.
  • thermophilic bacterium in particular, various Bacillus (Bacillus) genus bacteria disclosed in Embodiment 1 and ⁇ diobacillus (Qsohae ilks) bacterium are used. Is preferred.
  • the temperature for the solubilization treatment is preferably in a temperature range of 50 to 90 ° C. as in Embodiment 1, and when an aerobic thermophilic bacterium such as Bacillus bacterium is used, 55
  • the temperature is preferably set to a temperature range of 70 to 70 ° C, and more preferably a temperature range of 60 to 65 ° C.
  • the pH at the time of the solubilization treatment is also in the range of pH 6 to 9 as in Embodiment 1, preferably? Set to be in the range of ⁇ 8.
  • the nitrification tank 10 is provided downstream of the solubilization tank 2, and the sludge treated in the nitrification tank 10 is subjected to anaerobic sodium carbonate as shown in FIG. This is different from the case of the twelfth embodiment in which it is returned to the oxygen-free tank 6.
  • the anaerobic treatment in the anaerobic tank 2, the denitrification treatment in the anoxic tank 6, the nitrification treatment in the aeration tank 13, the solid-liquid separation in the precipitation tank 8, and the solubilization treatment in the solubilization tank 2 are described in the embodiment. Same as 10 The description is omitted.
  • the HRT of the fusible tank 2 is preferably set to 12 to 72 hours, more preferably to 18 to 48 hours, and most preferably to 20 to 36 hours, as in the fifth embodiment. Better.
  • thermophilic bacteria in particular, various Bacillus genus bacteria disclosed in Embodiment 1 ⁇ Diobacillus (Qeobae illas) genus bacteria may be used. Is preferred.
  • the temperature at the time of the solubilization treatment is desirably in the temperature range of 50 to 90 ° C. as in Embodiment 1, and when an aerobic thermophilic bacterium such as a Bacillus bacterium is used, 55
  • the temperature is preferably set to a temperature range of 70 to 70 ° C, and more preferably a temperature range of 60 to 65 ° C.
  • the pH at the time of the solubilization treatment is also set to be in the range of pH 6 to 9, preferably 7 to 8, as in the first embodiment.
  • the organic wastewater treatment apparatus of the present embodiment includes a reaction tank 1, a solubilization tank 2, and a storage tank 3.
  • the treatment of the organic wastewater is performed batchwise as in the first embodiment.
  • the process of anaerobic treatment by agitation and the process of aerobic treatment by aeration are repeated three times, and thereafter, the steps of precipitation, solid-liquid separation, and solubilization by stopping the aeration are performed. Is circulated.
  • the process of repetition of anaerobic and aerobic treatment, precipitation, and solid-liquid separation are performed in the reaction tank 1, and the solubilization process is performed in the solubilization tank 2.
  • the batch treatment of a series of wastewater treatments from the inflow of raw water to the discharge of treated water, can be performed several times a day (for example, 2 to 4 times), and the treatment time of each process can be adjusted. About once a day or about twice a day depending on the properties and quantity of The processing time of each step may be adjusted so as to perform the processing.
  • the duration of the wastewater treatment process is, for example, inflow 60 minutes, anaerobic 60 minutes, aerobic 70 minutes, anaerobic 30 minutes, aerobic 80 minutes, anaerobic 20 minutes, aerobic 10 minutes, sedimentation 40 minutes, and discharge 40 minutes. I have.
  • nitrification is performed in the aerobic treatment step, and denitrification treatment is performed in the anaerobic treatment step.
  • the solubilized liquid after the solubilization treatment is returned to the reaction tank 2 in the first (first) aerobic treatment step.
  • the timing of the return is determined in relation to the processing time of the first aerobic treatment step, and is set to 3 to 30 minutes before the aeration stop, preferably 1 to 30 minutes.
  • the first aerobic treatment is performed by temporarily storing the solubilized liquid treated in the solubilization tank 2 in the storage tank 3. This is preferable because the timing and amount of returning the solubilized solution to the reaction tank 2 in the process can be easily adjusted.
  • the HRT of the solubilization tank 2 is preferably 12 to 72 hours, more preferably 18 to 48 hours, and most preferably 20 to 36 hours, as in the first embodiment.
  • thermophilic bacterium in particular, a bacterium belonging to the genus Bacillus (Mmds) belonging to the genus Bacillvs described in Embodiment 1. preferable.
  • the temperature at the time of the solubilization treatment is desirably in the temperature range of 50 to 90 ° C. as in Embodiment 1, and when an aerobic thermophilic bacterium such as a Bacillus bacterium is used, 55
  • the temperature is preferably set to a temperature range of 70 to 70 ° C, and more preferably a temperature range of 60 to 65 ° C.
  • the pH at the time of the solubilization treatment is also in the range of pH 6 to 9 as in Embodiment 1, preferably? Set to be in the range of ⁇ 8.
  • the organic wastewater treatment apparatus of the present embodiment is provided with a storage tank 3 at the subsequent stage of the reaction tank 1 and a solubilization tank 2 at the subsequent stage.
  • the sludge after the nitrification and denitrification treatment is temporarily stored in the storage tank 3, and the required amount to be solubilized Sludge is supplied to the solubilization tank 2.
  • solubilization tank 2 By supplying only the required amount of sludge to be solubilized to the solubilization tank 2 in this way, it is possible to adjust the amount of soluble liquor to be returned to the aerobic treatment process in advance. It becomes. The anaerobic process and the aerobic process are repeated, followed by precipitation and solid-liquid separation, as in the fourteenth embodiment.
  • the HRT of the solubilization tank 2 is preferably 12 to 72 hours, more preferably 18 to 48 hours, and most preferably 20 to 36 hours, as in the first embodiment.
  • thermophilic bacteria particularly various Bacillus (Bacillus ⁇ genus bacteria and Geobacillus genus bacteria disclosed in Embodiment 1). .
  • the temperature at the time of the fusi-dani treatment is preferably in the temperature range of 50 to 90 ° C. as in Embodiment 1, and when an aerobic thermophilic bacterium such as Bacillus bacterium is used, It is preferable to set the temperature in the range of 55 to 70 ° C, more preferably in the range of 60 to 65 ° C. Further, the pH at the time of the solubilization treatment is set to be in the range of 6 to 9, preferably 7 to 8, as in the first embodiment.
  • This embodiment is an embodiment provided with a means for removing phosphorus when sludge generated by biological treatment such as nitrification or denitrification contains phosphorus.
  • a coagulant such as polychlorinated aluminum is added to remove phosphorus by coagulation and sedimentation on the downstream side of the precipitation tank 8 as in each of the above embodiments, or coagulation filtration is performed by providing a filter material. Removes phosphorus.
  • the phosphorus is contained in the sludge in the anaerobic treatment step. Released from microorganisms and taken up by microorganisms in the aerobic treatment process. However, even if phosphorus is released and taken up in this way, if the sludge solubilization treatment is incorporated, the treatment liquid containing phosphorus may be discharged out of the system. The effect of releasing and taking in phosphorus cannot be achieved due to both of the above steps.
  • the phosphorus contained in the treated water or sludge can be positively removed. This applies to both continuous and batch processing.
  • a phosphorus release tank provided with a phosphorus separating means is provided at the subsequent stage of the sedimentation tank 8, and the sludge separated in the sedimentation tank 8 is removed.
  • the phosphorus release tank the phosphorus is released by exposing it to a state in which phosphorus is released from sludge, for example, in an anaerobic state or a heated state, and the released phosphorus is separated into a phosphorus release sludge and a phosphorus eluate to form a phosphorus release liquid It is configured so that it can be removed by adding a coagulant or the like. And the phosphorus release sludge is subjected to solubilization.
  • various tanks as in the above-described embodiments can be provided on the upstream side of the precipitation tank 8. This applies to both continuous and batch processing.
  • iron plate, iron particles, steel wool, etc. are charged into the reaction tank 1, aeration tank 13, nitrification tank 10, solubilization tank 2, oxygen-free tank 6, etc. Is an embodiment in which phosphorus is removed by adhering to iron.
  • the existing reaction tank 1 is installed in the processing apparatus without using a coagulant as in the above-described Embodiment 16 and without separately providing a phosphorus release tank for releasing phosphorus as in the above-described Embodiment 17.
  • the phosphorus component can be attached to the iron material to easily remove the phosphorus.
  • the acid-fermented liquid obtained by gas-decomposing the remaining rice discharged from the food factory and fermenting was used as the liquid to be treated, but the type of the substance to be treated is limited to this It doesn't matter what the type.
  • the provision of the fermentation liquid storage tank 3 is not an essential condition for the present invention as in Embodiments 3, 4, and 5, for example, as shown in FIG. 18, the fermentation liquid storage tank 3 is not provided, and the anaerobic tank is not provided. 4. It is also possible to use a treatment apparatus equipped with a primary aeration tank 5, an oxygen-free tank 6, a secondary aeration tank 7, a precipitation tank 8, and a solubilization tank 2.
  • the treatment apparatus shown in FIG. 18 can be suitably used.
  • exhaust gas may be discharged from the fusible tank 2.
  • exhaust gas By introducing such exhaust gas into the nitrification tank and the aeration tank of the above embodiment, it is possible to remove the odor of the exhaust gas.
  • the temperature of each tank By introducing high-temperature exhaust gas into the nitrification tank and the aeration tank, the temperature of each tank can be higher than that of normal air aeration, thereby increasing the activity of microorganisms and, as a result, increasing the processing efficiency. It is preferred.

Abstract

A method for biologically treating an organic waste, characterized in that it comprises nitrifying the organic waste, followed by denitrification, and then solubilizing the sludge generated by the nitrification and the denitrification treatments; and an apparatus for biologically treating an organic waste, characterized in that it has means for nitrifying an organic waste, followed by denitrification, and for solubilizing the sludge generated by the nitrificaton and the denitrification treatments. The method can be used for biologically treating an organic waste from a sewage drain, feces and urine, or a production process in a food factory, a chemical plant or the like, and allows the marked reduction of the amount of excess sludge discharged out of a treating system and the decrease of the content of nitrogen-containing organic or inorganic components in a treated water discharged out of the treating system.

Description

明 細 書 ― ― ; 有機性廃水の処理方法とその装置 技術分野 本発明は、 有機性物質を含む廃液、 たとえば下水、 屎尿、 食品工場、 化学工場な どの製造プロセスから排出される有機性廃水を生物消化により処理する方法及び装 置に関する。 背景技術 従来より、 この種の有機性廃水を処理する方法としては、 活性汚泥法と呼ばれる 好気性消化法、 嫌気性メタン消化法等の好気性又は嫌気性の微生物分解により、 有 機性汚泥の有機成分を生物消化する方法が採用されている。 この方法では有機物を 炭酸ガス、 メ夕ンガス等のガス成分とするとともに、 生物消化により生じた微生物 ノ ィォマス並びに未処理の残存汚泥からなる余剰汚泥を含んだ処理汚泥を、 沈殿槽 等で固液分離することにより処理液を適宜処理する一方、 余剰汚泥は、 通常、 海洋 投棄又は陸地埋め立てによつて処理されている。  Description--------------------------------------------off--off; The present invention relates to a method and an apparatus for treatment by biological digestion. Background Art Conventionally, as a method of treating this kind of organic wastewater, an organic sludge is treated by an aerobic or anaerobic microbial decomposition such as an aerobic digestion method called an activated sludge method or an anaerobic methane digestion method. A method of biologically digesting organic components has been adopted. In this method, organic matter is converted into gaseous components such as carbon dioxide gas and gaseous gas, and treated sludge, including microbial biomass generated by biological digestion and excess sludge consisting of untreated residual sludge, is solid-liquid separated in a sedimentation tank. Excess sludge is usually treated by ocean dumping or land reclamation while the treatment liquid is appropriately treated by separation.
しかしながら、 海洋に投棄することは、 環境破壊にもつながることになるため、 地球環境保護が叫ばれてる昨今においては、 ほとんど禁止される方向にある。 また 陸地埋立においても、 埋立処分地の確保が年々困難になってきている。  However, dumping into the ocean will also lead to environmental destruction, and in the current era of global environmental protection, it is almost banned. In land reclamation, it is becoming more difficult every year to secure landfill sites.
そこで、 本件特許出願人は、 有機性廃水の生物学的処理により発生する余剰汚泥 の量を低減できる方法として、 曰本国特開平 9一 1 0 7 9 1号公報記載の発明をし て特許出願している。  Accordingly, the present applicant filed a patent application for the method described in Japanese Patent Application Laid-Open No. Hei 9-110791 as a method for reducing the amount of excess sludge generated by biological treatment of organic wastewater. are doing.
この発明は、 有機性廃液貯留装置から送られる有機性廃液を、 曝気装置にて好気 性生物処理をした後、 この処理液を固液分離装置で処理水と汚泥に固液分離し、 固 液分離装置で分離された汚泥の一部を曝気装置に返送し、 固液分離装置で分離され た汚泥のうち、 余剰汚泥を熱交換機で熱交換した後、 可溶化装置にて高温で可溶化 し、 可溶化された処理液を曝気装置に返送する方法である。 According to the present invention, an organic waste liquid sent from an organic waste liquid storage device is subjected to aerobic biological treatment by an aeration device, and then the treated liquid is solid-liquid separated into treated water and sludge by a solid-liquid separation device. A part of the sludge separated by the liquid separator is returned to the aeration device and separated by the solid-liquid separator. In this method, excess sludge is heat-exchanged in a heat exchanger, then solubilized at a high temperature in a solubilizer, and the solubilized processing liquid is returned to the aeration device.
しかし、 生物学的処理により生じた汚泥には一般にタンパク質が含まれているの で、 可溶化装置から曝気装置に返送される液のアンモニア等の窒素化合物が固液分 離装置から排出される処理水とともに外部に放出されていまうという問題がある。 また、 生物学的処理により生じた汚泥には一般にリン成分が含まれているので、 可 溶化装置から曝気装置に返送される液のリン化合物が固液分離装置から排出される 処理水とともに外部に放出されてしまうという問題がある。 発明の開示 本発明は、 このような問題点を解決するためになされたものであって、 処理系外 に排出される余剰汚泥量を大幅に低減することができるとともに、 処理系外に放出 される処理水中の含窒有機分または含窒無機分が少なくなるような有機性廃水の処 理方法及びその装置を提供することを目的とする。  However, since sludge generated by biological treatment generally contains protein, nitrogen compounds such as ammonia in the liquid returned from the solubilization unit to the aeration unit are discharged from the solid-liquid separation unit. There is a problem that it is released outside with water. In addition, since sludge generated by biological treatment generally contains phosphorus components, phosphorus compounds in the liquid returned from the solubilization unit to the aeration unit are discharged to the outside together with the treated water discharged from the solid-liquid separation unit. There is a problem of being released. DISCLOSURE OF THE INVENTION The present invention has been made in order to solve such a problem, and it is possible to significantly reduce the amount of excess sludge discharged to the outside of the treatment system and to release the excess sludge to the outside of the treatment system. It is an object of the present invention to provide a method and an apparatus for treating organic wastewater in which the content of nitrogen-containing organic or inorganic nitrogen in the treated water is reduced.
このような目的を達成するために、 本発明は、 有機性廃水を生物学的に処理する 方法であって、 有機性廃水を硝化及び脱窒処理した後、 硝化及ぴ脱窒処理によって 発生した汚泥を可溶化する有機性廃水の処理方法を提供するものである。  In order to achieve the above object, the present invention provides a method for biologically treating organic wastewater, which is produced by nitrifying and denitrifying organic wastewater and then nitrifying and denitrifying the wastewater. An object of the present invention is to provide a method for treating organic wastewater that solubilizes sludge.
また本発明は、 有機性廃水を生物学的に処理する装置であって、 有機性廃水を硝 化及び脱窒する手段と、 硝化、 脱窒によって発生する汚泥を可溶化する可溶化槽を 具備する有機性廃水の処理方法を提供するものである。  The present invention is also an apparatus for biologically treating organic wastewater, comprising means for nitrifying and denitrifying organic wastewater, and a solubilization tank for solubilizing sludge generated by nitrification and denitrification. The present invention provides a method for treating organic wastewater.
このように、 本発明は、 有機性廃水を硝化及ぴ脱窒処理を行った後、 硝化及び脱 窒処理によって発生した汚泥を可溶ィ匕するため、 硝化及び脱窒処理によって発生す る汚泥を減量化することができ、 しかも処理系外に放出される処理水中の含窒有機 分ゃ含窒無機分を従来に比べて大幅に削減することができるという効果がある。 有機性廃水の硝化及び脱窒処理は、 たとえば反応槽で回分式に行われる。  As described above, according to the present invention, the organic wastewater is subjected to nitrification and denitrification, and then the sludge generated by the nitrification and denitrification is dissolved. This has the effect of reducing the amount of nitrogen-containing organic components and nitrogen-containing inorganic components in the treated water released outside the treatment system as compared with the conventional case. The nitrification and denitrification treatment of organic wastewater is performed, for example, batchwise in a reaction tank.
この場合の硝化処理は、 たとえば曝気によってなされ、 曝気の停止によって脱窒 処理がなされる。可溶化処理液を反応槽へ返送するのは、 曝気を停止する 3時間〜 3 0分前に行うのが好ましく、 1時間〜 30分前に行うのがより好ましい。 The nitrification treatment in this case is performed, for example, by aeration, and denitrification by stopping the aeration. Processing is performed. Returning the solubilized solution to the reaction tank is preferably performed 3 hours to 30 minutes before stopping the aeration, and more preferably 1 hour to 30 minutes.
このように硝化、 脱窒処理を曝気による硝化工程を含む回分式で行い、 その曝気 を停止する所定時間前に可溶化処理液を反応槽へ返送する場合には、 可溶化処理汚 泥に含まれる有機物を、 脱窒処理の際のプロトン源 (B O D源) として有効利用し、 脱窒を促進させることができる。 従って、 プロトン源として一般に使用されるメタ ノール等の薬品量を低減できるので、 その薬品量に伴うコストを低減できるという 効果がある。  If the nitrification and denitrification treatment is performed in a batch system including the nitrification step by aeration, and the solubilization solution is returned to the reaction tank a predetermined time before the aeration is stopped, it is included in the solubilization treatment sludge. The denitrification can be promoted by effectively utilizing the organic matter obtained as a proton source (BOD source) in the denitrification treatment. Therefore, the amount of chemicals such as methanol generally used as a proton source can be reduced, and the cost associated with the amount of chemicals can be reduced.
また、 有機性廃水の硝化及び脱窒処理の他の態様は、 嫌気処理工程、 一次曝気ェ 程、 無酸素槽での脱窒工程、 二次曝気工程によってなされる。 この場合、 二次曝気 工程後に固液分離された汚泥が可溶化処理される。  Another aspect of the nitrification and denitrification treatment of the organic wastewater is performed by an anaerobic treatment step, a primary aeration step, a denitrification step in an anoxic tank, and a secondary aeration step. In this case, the sludge solid-liquid separated after the secondary aeration step is solubilized.
さらに、 有機性廃水の硝化及ぴ脱窒処理の他の態様は、 無酸素槽での脱窒工程、 嫌気処理工程、 互換槽での処理工程、 無酸素槽での脱窒工程、 曝気工程によってな される。 この場合は、 曝気工程後に固液分離された汚泥が可溶化処理される。 また 硝化は曝気工程で行われ、 硝化後の硝化液は脱窒工程へ返送されることとなる。 さらに、 有機性廃水の硝化及び脱窒処理の他の態様は、 嫌気処理工程、 無酸素槽 での脱窒工程、 曝気工程によってなされるとともに、 可溶化処理後の処理液の溶存 酸素を低減することによってなされる。 この場合も硝化は曝気工程で行われる。硝 化後の硝化液は脱窒工程へ返送されることとなる。  Further, other aspects of the nitrification and denitrification treatment of organic wastewater include a denitrification step in an oxygen-free tank, an anaerobic treatment step, a treatment step in a compatible tank, a denitrification step in an oxygen-free tank, and an aeration step. Done. In this case, the sludge separated into solid and liquid after the aeration step is solubilized. Nitrification is performed in the aeration process, and the nitrified liquid after nitrification is returned to the denitrification process. Further, other aspects of the nitrification and denitrification treatment of the organic wastewater are carried out by an anaerobic treatment step, a denitrification step in an anoxic tank, and an aeration step, and reduce the dissolved oxygen of the treatment liquid after the solubilization treatment. It is done by things. Also in this case, nitrification is performed in the aeration step. The nitrified liquid after nitrification is returned to the denitrification process.
さらに、 有機性廃水の硝化及び脱窒処理の他の態様は、 嫌気処理工程、 無酸素槽 での脱窒工程、 曝気工程によってなされる。  Further, other aspects of the nitrification and denitrification treatment of the organic wastewater are performed by an anaerobic treatment step, a denitrification step in an anoxic tank, and an aeration step.
これらの硝化及ぴ脱窒処理として、 嫌気処理工程や曝気処理等の好気的処理工程 を含む場合には、 硝化及び脱窒処理で発生する汚泥等にリン成分が含有されている 場合にも、 嫌気処理でリンの放出、 好気処理でリンの取り込みがなされることとな る。  When these nitrification and denitrification treatments include an aerobic treatment step such as an anaerobic treatment step or an aeration treatment, even when the sludge generated by the nitrification and denitrification treatment contains a phosphorus component, However, phosphorus is released by anaerobic treatment, and phosphorus is taken up by aerobic treatment.
また本発明の他の目的は、 処理系外に放出される処理水中のリン成分が少なくな るような有機性廃水の処理方法及びその装置を提供することである。 Another object of the present invention is to reduce the amount of phosphorus components in treated water released outside the treatment system. And a method of treating such organic wastewater.
このような目的を達成するために、 本発明は、 上記のように硝化及び脱窒処理に よって発生した汚泥中のリンを除去する手段を具備させた有機性廃水の処理方法及 びその装置を提供する。 かかるリン除去手段を設けることで、 リン成分の系外への 排出を好適に防止することができるという効果がある。 図面の簡単な説明 図 1は一実施形態としての有機性廃水の処理装置を示す概略プロヅク図である。 図 2は、 図 1の処理装置で行う回分式処理工程のプロック図である。  In order to achieve such an object, the present invention provides a method and an apparatus for treating organic wastewater provided with a means for removing phosphorus in sludge generated by nitrification and denitrification as described above. I do. By providing such a phosphorus removing means, there is an effect that discharge of the phosphorus component out of the system can be suitably prevented. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic block diagram showing an organic wastewater treatment apparatus as one embodiment. FIG. 2 is a block diagram of a batch processing step performed by the processing apparatus of FIG.
図 3は、 図 1の処理装置で行う他の例の回分式処理工程のブロック図である。 図 4は、 他実施形態の有機性廃水の処理装置を示す概略プロック図である。 図 5は、 他実施形態の有機性廃水の処理装置を示す概略プロック図である。 図 6は、 他実施形態の有機性廃水の処理装置を示す概略プロック図である。 図 7は、 他実施形態の有機性廃水の処理装置を示す概略プロック図である。 図 8は、 他実施形態の有機性廃水の処理装置を示す概略ブロック図である。 図 9は、 他実施形態の有機性廃水の処理装置を示す概略プロヅク図である。 図 1 0は、 他実施形態の有機性廃水の処理装置を示す概略ブロック図である。 図 1 1は、 他実施形態の有機性廃水の処理装置を示す概略ブロック図である。 図 1 2は、 他実施形態の有機性廃水の処理装置を示す概略ブロック図である。 図 1 3は、 他実施形態の有機性廃水の処理装置を示す概略プロック図である。 図 1 4は、 他実施形態の有機性廃水の処理装置を示す概略ブロック図である。 図 1 5は、 他実施形態の有機性廃水の処理装置を示す概略ブロック図である。 図 1 6は、 図 15の処理装置で行う回分式処理工程のブロック図である。  FIG. 3 is a block diagram of another example of a batch processing step performed by the processing apparatus of FIG. FIG. 4 is a schematic block diagram showing an organic wastewater treatment apparatus according to another embodiment. FIG. 5 is a schematic block diagram showing an organic wastewater treatment apparatus of another embodiment. FIG. 6 is a schematic block diagram showing an organic wastewater treatment apparatus of another embodiment. FIG. 7 is a schematic block diagram showing an organic wastewater treatment apparatus according to another embodiment. FIG. 8 is a schematic block diagram showing an organic wastewater treatment apparatus of another embodiment. FIG. 9 is a schematic block diagram showing an organic wastewater treatment apparatus according to another embodiment. FIG. 10 is a schematic block diagram showing an organic wastewater treatment apparatus of another embodiment. FIG. 11 is a schematic block diagram showing an organic wastewater treatment apparatus of another embodiment. FIG. 12 is a schematic block diagram showing an organic wastewater treatment apparatus of another embodiment. FIG. 13 is a schematic block diagram showing an organic wastewater treatment apparatus of another embodiment. FIG. 14 is a schematic block diagram showing an organic wastewater treatment apparatus of another embodiment. FIG. 15 is a schematic block diagram showing an organic wastewater treatment apparatus of another embodiment. FIG. 16 is a block diagram of a batch processing step performed by the processing apparatus of FIG.
図 1 7は、 他実施形態の有機性廃水の処理装置を示す概略プロック図である。 図 1 8は、 他実施形態の有機性廃水の処理装置を示す概略プロック図である。 発明を実施するための最良の形態 FIG. 17 is a schematic block diagram showing an organic wastewater treatment apparatus of another embodiment. FIG. 18 is a schematic block diagram showing an organic wastewater treatment apparatus according to another embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施形態について、 図面に従って説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(実施形態 1 ) (Embodiment 1)
本実施形態の有機性廃水の処理装置は、 図 1に示すように、 反応槽 1と、 可溶化 槽 2とで構成されている。 反応槽 1では回分式に有機性廃水の処理がなされる。 原 水である有機性廃水として、 本実施形態では下水を用いた。  As shown in FIG. 1, the organic wastewater treatment apparatus of the present embodiment includes a reaction tank 1 and a solubilization tank 2. In the reaction tank 1, the organic wastewater is treated batchwise. In this embodiment, sewage was used as the organic wastewater as raw water.
本実施形態においては、 原水の流入、 反応、 沈殿、 排水、 排泥等を 1サイクルと して処理がなされる。 より具体的には、 図 2に示すように、 原水の流入受け入れ中 に曝気、 攪拌、 曝気、 攪拌、 曝気、 曝気停止による沈殿、 固液分離、 可溶化処理の 工程が循環してなされることになる。 この場合、 曝気は好気的処理であり、 攪拌は 嫌気的処理である。 曝気と攙抻の繰り返し工程、 沈殿、 固液分離の工程は反応槽 1 でなされ、 可溶化処理の工程は可溶化槽 2でなされる。 原水の流入受け入れから処 理水の排出の一連の廃水処理の回分処理は、 1日複数回 (たとえば 2〜4回) 行な うように各工程の処理時間を調整することが可能であるが、 廃水の性状や量等によ つては 1日に 1回程度、 或いは 3日に 2回程度の回分処理を行なうように各工程の 処理時間が調整されていてもよい。  In the present embodiment, the treatment is performed in such a manner that the inflow, the reaction, the sedimentation, the drainage, and the sludge of the raw water are included in one cycle. More specifically, as shown in Fig. 2, the process of aeration, agitation, aeration, agitation, aeration, sedimentation by stopping aeration, solid-liquid separation, and solubilization treatment is performed while receiving the inflow of raw water. become. In this case, aeration is an aerobic treatment and agitation is an anaerobic treatment. The steps of repeating aeration and erosion, precipitation, and solid-liquid separation are performed in the reaction tank 1, and the step of solubilization is performed in the solubilization tank 2. It is possible to adjust the processing time of each process so that a series of wastewater treatments, from the inflow of raw water to the discharge of treated water, is performed several times a day (for example, two to four times). Depending on the properties and amount of the wastewater, the treatment time of each process may be adjusted so as to perform batch treatment about once a day or about twice a day.
本実施形態では、 曝気の工程で硝化菌による硝化処理がなされ、 曝気を停止した 攪拌の工程で脱窒菌による脱窒処理がなされる。 その後、 曝気の停止によって、 汚 泥が沈降し、 分離される。 上澄みは放流等され、 沈降した汚泥の一部は、 次の回分 処理のために反応槽 1に保持され、 汚泥の残りの一部は可溶化槽 2へ供給されて可 溶ィ匕処理される。 可溶化槽 2で可溶化処理された液は、 図 2に示すように、 第一段 階の攪拌の工程へ返送されるのが好ましい。 尚、 硝化工程では、 硝化菌による硝化 反応を維持するために、 p Hを 7以上にするのが好ましく、特に p H7.0〜8.0とする のが好ましい。 また、 温度は 15°C〜35°Cとするのが好ましく、 25°C〜35°Cとするの がより好ましい。  In the present embodiment, the nitrification treatment by the nitrifying bacteria is performed in the aeration step, and the denitrification treatment by the denitrifying bacteria is performed in the stirring step in which the aeration is stopped. Thereafter, the aeration is stopped, and the sludge is settled and separated. The supernatant is discharged, and a part of the settled sludge is held in the reaction tank 1 for the next batch processing, and the remaining part of the sludge is supplied to the solubilization tank 2 to be subjected to fusible treatment. . It is preferable that the liquid solubilized in the solubilization tank 2 is returned to the first-stage stirring step as shown in FIG. In the nitrification step, the pH is preferably set to 7 or more, particularly preferably 7.0 to 8.0, in order to maintain the nitrification reaction by the nitrifying bacteria. Further, the temperature is preferably 15 ° C. to 35 ° C., and more preferably 25 ° C. to 35 ° C.
可溶化処理液は、 第一段階の曝気を停止する前の 3時間から 30分前、 好ましくは 、 1時間から 30分前に反応槽 1に返送される。 サイクル数は、 反応槽の B O D— S S負荷により決定される。 一般に、 高負荷運転 (8 00— 3 3負荷:0.2〜0.41¾8 0 D/kgSS -日) の場合は、 曝気及び攪拌の硝化脱窒処理サイクルが 3〜4サイクル で運転されるのが好ましい。 また、 低負荷運転 (B O D— S S負荷: 0.03〜0.05kgB O D kgSS -日) の場合は、 硝化脱窒処理サイクルが、 2〜3サイクルで運転する のが好ましい。 The solubilized solution should be used 3 to 30 minutes before stopping the first stage aeration, preferably 1 hour to 30 minutes before being returned to reaction tank 1. The number of cycles is determined by the BOD-SS load of the reactor. Generally, in the case of high-load operation (800-33 load: 0.2-0.41¾80 D / kgSS-day), it is preferable to operate the nitrification and denitrification treatment cycle of aeration and stirring in three to four cycles. In the case of low load operation (BOD-SS load: 0.03 to 0.05 kgBOD kgSS-day), it is preferable to operate the nitrification and denitrification treatment cycle in 2 to 3 cycles.
可溶化槽 2は、 上述のように反応槽 1から供給される汚泥を可溶化させるための ものであり、 この可溶化はプロテアーゼ等の可溶化酵素によってなされる。 この可 溶化酵素は、 好熱菌、 たとえばバチルス (Bacillus)属細菌等の好気性好熱菌によつ て産生されるものである。 このような好熱菌は、 可溶化槽 2に予め保持されるか、 可溶化槽 2に供給される汚泥に予め含有されており、 若しくは可溶化槽 2で新たに 添加されてもよい。  The solubilization tank 2 is for solubilizing the sludge supplied from the reaction tank 1 as described above, and this solubilization is performed by a solubilizing enzyme such as a protease. This solubilizing enzyme is produced by a thermophilic bacterium, for example, an aerobic thermophilic bacterium such as a bacterium belonging to the genus Bacillus. Such a thermophilic bacterium may be held in the solubilization tank 2 in advance, may be contained in the sludge supplied to the solubilization tank 2 in advance, or may be newly added in the solubilization tank 2.
バチルス (; Bacillus)属細菌としては、 たとえばバチルス 'ステアロザ一モフイラ ス (Bacillus stearothermop ilus J 、 ノ チノレス .サ一モレ;? Γボフンス (Bacillus thermole QYorans) 等を使用することができ、 とりわけバチルス (Badllii5)SPT2-l 〔FERM P-15 395〕 、 バチルス (Eaemii_s)SPT3〔FERM P-19226) 、 ジオノ チルス (Geobac】'】l )SPT4 (PERM P-08452 、 ジオノ、 'チルス (Geobacillus)SPT5〔FERM P-08453〕、 ジォバチル ス (Geobadllus)SPT6〔FERM P-08454〕 、 ジォバチルス (Geobaci11us)SPT7〔FERM P-0 8455〕等を使用するのが好ましい。  Examples of Bacillus bacteria include Bacillus stearothermopilus J, Bacillus thermole QYorans, and Bacillus thermole QYorans. In particular, Bacillus (Badllii5) can be used. ) SPT2-l (FERM P-15 395), Bacillus (Eaemii_s) SPT3 (FERM P-19226), Dionocylus (Geobac) P-08453], Geobacillus (Geobadllus) SPT6 [FERM P-08454], Geobacillus (Geobaci11us) SPT7 [FERM P-08455] and the like are preferably used.
可溶化槽 2では、 このように好熱菌によって汚泥の分解が行われるが、 オゾン分 解、 電気分解、 熱アルカリ分解、 酵素分解 (例えば、 プロテア一ゼ、 リパ一ゼ、 グ リコシダーゼなどを単独または組み合わせて添加) など、 従来より知られた種々の 方法と組み合わせて実施してもよい。  In the solubilization tank 2, sludge is decomposed by the thermophilic bacterium as described above. However, ozone decomposition, electrolysis, thermoalkali decomposition, and enzymatic decomposition (for example, proteases, lipases, glycosidases, etc. are used alone) Or addition in combination) may be carried out in combination with conventionally known various methods.
可溶化槽 2では、 生物学的に高温条件で嫌気的もしくは好気的に有機性汚泥の可 溶化が行われる。 この場合、 高温条件において用いられる嫌気性もしくは好気性微 生物の接種菌体 (好熱菌) は、 例えば、 従来の嫌気性もしくは好気性消化槽から微 生物を培養することによって得られるものである。 また、 可溶ィ匕槽 2の最適温度は、 好ましくは、 5 0〜9 0 °Cの温度範囲となるような条件で操作するが、 その高温処 理対象である汚泥に含まれる有機性固形物を分解する好熱菌の種類によって異なる ものであり、 例えば下水余剰汚泥から分離した好熱菌の場合には、 微生物 (好熱菌 ) による可溶化反応と熱による物理化学的な熱分解の両作用が同時に効率よく十分 に生じうるように、 高温条件における温度を 5 5〜7 5 °Cの範囲、 好ましくは 6 0 〜7 0 °Cで操作するようにする。 In the solubilization tank 2, the organic sludge is anaerobically or aerobically solubilized under biologically high temperature conditions. In this case, inoculated cells (thermophilic bacteria) of anaerobic or aerobic microorganisms used in high-temperature conditions are, for example, obtained from a conventional anaerobic or aerobic digestion tank. It is obtained by culturing an organism. The optimum temperature of the fusible tank 2 is preferably operated under the condition of a temperature range of 50 to 90 ° C., but the organic solid contained in the sludge to be subjected to the high temperature treatment is preferably used. It depends on the type of thermophile that decomposes substances.For example, in the case of thermophiles isolated from excess sewage sludge, the solubilization reaction of microorganisms (thermophilic bacteria) and physicochemical pyrolysis by heat The temperature at elevated temperature is in the range 55-75 ° C, preferably 60-70 ° C, so that both actions can take place efficiently and satisfactorily.
いずれにしても、 微生物 (好熱菌) による可溶化反応と熱による物理化学的な熱 分解の両作用が同時に効率よく十分に生じうるように、 微生物の種類に応じて、 5 0〜 9 0 °Cの温度範囲になるように設定するのが望ましい。 特に、 好気性好熱菌の バチルス属細菌を用いる場合には、 5 5〜7 0 °Cの温度範囲に設定するのが好まし く、 特に 6 0〜6 5 °Cの範囲がより好ましい。 また、 好気性好熱菌のジォバチルス 属細菌を用いる場合には、 5 5〜6 5 °Cの温度範囲に設定するのが好ましい。  In any case, depending on the type of microorganism, 50 to 90 so that both the solubilization reaction by the microorganism (thermophilic bacterium) and the physicochemical thermal decomposition by heat can be generated efficiently and sufficiently simultaneously. It is desirable to set the temperature to be in a temperature range of ° C. In particular, when a Bacillus bacterium, which is an aerobic thermophilic bacterium, is used, the temperature is preferably set to 55 to 70 ° C, more preferably 60 to 65 ° C. In addition, when using a bacterium belonging to the genus Diobacillus, which is an aerobic thermophilic bacterium, the temperature is preferably set to 55 to 65 ° C.
また、 p Hは微生物の種類に応じて、 p H 6〜9の範囲、 好ましくは 7〜 8の範 囲になるように設定する。 これは可溶ィヒ処理液が、 硝化或いは脱窒処理に悪影響を 及ぼさないようにするためである。 さらに、 可溶化処理は、 汚泥の分解により生じ るアンモニアをある程度分解 (硝化) させておくために、 好気性処理が好ましい。 本実施形態においては、 曝気処理を停止する前の 3時間〜 30分前、 好ましくは 1 時間〜 30分前に可溶化処理汚泥が第一の (最初の) 曝気処理工程における反応槽に 返送される。 これによつて、 可溶化処理汚泥に含まれる有機物を、 脱窒処理の際の プロトン源 (B O D源) として有効利用し、 脱窒を促進させることができる。 従つ て、 プロトン源として一般に使用されるメタノール等の薬品量を低減できるので、 その薬品量に伴うコストを低減できることとなる。  The pH is set so as to be in the range of 6 to 9, preferably 7 to 8, depending on the type of microorganism. This is to prevent the soluble solution from affecting the nitrification or denitrification. Further, the solubilization treatment is preferably an aerobic treatment in order to decompose (nitrify) ammonia generated by the decomposition of sludge to some extent. In the present embodiment, the solubilized sludge is returned to the reaction tank in the first (first) aeration process 3 hours to 30 minutes before, preferably 1 hour to 30 minutes before stopping the aeration process. You. As a result, the organic matter contained in the solubilized sludge can be effectively used as a proton source (BOD source) in the denitrification treatment, and the denitrification can be promoted. Therefore, the amount of chemicals such as methanol generally used as a proton source can be reduced, so that the cost associated with the amount of chemicals can be reduced.
この場合の可溶化処理時間は 12〜72時間が好ましく、 18〜48時間がより好ましく 、 20〜36時間が最も好ましい。 尚、 可溶化処理時間は、 廃水の硝化及び脱窒処理を 行う廃水処理系と汚泥可溶化との組み合わせ方法によって設定されるため、 以後も 各実施形態毎に説明する。 In this case, the solubilization time is preferably 12 to 72 hours, more preferably 18 to 48 hours, and most preferably 20 to 36 hours. The solubilization time is determined by the combination of the wastewater treatment system for nitrification and denitrification of wastewater and the solubilization of sludge. A description will be given for each embodiment.
また、 好熱菌による汚泥の可溶化によりアンモニアが生じることになるが、 可溶 化処理汚泥に含まれるアンモニアは、 曝気工程において脱窒可能な亜硝酸態窒素や 硝酸態窒素まで酸化されることとなる。 この結果、 脱窒処理が好適になされること になり、 系外に有害な窒素成分が放出されることがない。  In addition, ammonia is generated by solubilization of sludge by thermophilic bacteria.Ammonia contained in solubilized sludge is oxidized to nitrite nitrogen and nitrate nitrogen that can be denitrified in the aeration process. It becomes. As a result, the denitrification treatment is suitably performed, and no harmful nitrogen components are released outside the system.
本実施形態では、 曝気工程において、 有機物は残存させつつ、 アンモニアを亜硝 酸や硝酸まで酸化することが重要となるので、 可溶化処理汚泥が第一の曝気処理工 程における反応槽に返送されるタイミング及び可溶化処理時間の設定が重要である。 (実施形態 2 )  In this embodiment, in the aeration step, it is important to oxidize ammonia to nitrous acid and nitric acid while leaving organic matter, so that the solubilized sludge is returned to the reaction tank in the first aeration step. It is important to set the timing and the solubilization time. (Embodiment 2)
本実施形態は、 上記実施形態 1と同様に回分式の処理方法であり、 処理装置が反 応槽 1と可溶イビ槽 2とで構成されている点、 及び原水の流入受け入れ中に曝気、 攪 拌、 曝気、 攪拌、 曝気、 曝気停止による沈殿、 固液分離、 可溶化処理の工程が循環 してなされる点で実施形態 1と共通する。 従って、 本実施形態においても曝気のェ 程で硝化菌による硝化処理がなされ、 曝気を停止した攪拌の工程で脱窒菌による脱 窒処理がなされる。  This embodiment is a batch-type treatment method similar to the first embodiment, in which the treatment apparatus is composed of a reaction tank 1 and a soluble ibis tank 2, and aeration is performed while receiving the inflow of raw water. Embodiment 1 is common to Embodiment 1 in that the steps of stirring, aeration, stirring, aeration, precipitation by stopping aeration, solid-liquid separation, and solubilization are performed in a circulating manner. Therefore, also in the present embodiment, nitrification treatment by nitrifying bacteria is performed in the aeration step, and denitrification treatment by denitrifying bacteria is performed in the stirring step in which the aeration is stopped.
ただし本実施形態では、 図 3に示すように、 可溶化処理後の処理液が第一の (最 初の) 攪拌工程へ返送され、 この点で曝気の工程へ返送される実施形態 1の場合と 相違する。  However, in the present embodiment, as shown in FIG. 3, in the case of the first embodiment in which the treatment liquid after the solubilization treatment is returned to the first (first) stirring step, and is returned to the aeration step at this point. Is different.
本実施形態においても、 可溶化処理液が脱窒工程における反応槽 1に返送される ので、 可溶化処理液に含まれる有機物は脱窒処理の際のプロトン源として有効利用 され、 脱窒が促進される。 この場合、 可溶ィヒ処理汚泥に含まれるアンモニアを低減 するために、 可溶化処理にお 、て脱窒可能な亜硝酸態窒素や硝酸態窒素まで酸化さ せるのが好ましく、 具体的には可溶化処理時間を実施形態 1よりも長くすることが 考えられ、 24〜72時間が好ましく、 36〜72時間がより好ましい。  Also in this embodiment, since the solubilized solution is returned to the reaction tank 1 in the denitrification process, the organic matter contained in the solubilized solution is effectively used as a proton source in the denitrification process, and the denitrification is promoted. Is done. In this case, in order to reduce the ammonia contained in the treated sludge, it is preferable to oxidize to nitrite nitrogen or nitrate nitrogen which can be denitrified in the solubilization treatment. It is conceivable that the solubilization time is longer than in Embodiment 1, and is preferably 24 to 72 hours, more preferably 36 to 72 hours.
特に本実施形態では、 プロトン源としての有機物が直接脱窒処理工程に返送され ることになるので、一般に使用されるメタノール等の薬品量を低減することができ、 その薬品量に伴うコストを低減することができるという効果がある。上述のように、 廃水の硝化及び脱窒処理に汚泥可溶ィヒ処理を組み合わせること、 また、 組み合わせ たときの各処理工程の条件を最適に設定することにより、 余剰汚泥の発生量を大幅 に低減できるとともに、処理水質を良好に維持することができるという効果がある。 尚、 汚泥を可溶化するための可溶化酵素を産生させる微生物としては、 好熱菌、 特に実施形態 1に開示した各種のバチルス (; Bacillus^属細菌ゃジォバチルス (fieohae ilks)属細菌を使用するのが好ましい。 In particular, in this embodiment, since the organic matter as the proton source is directly returned to the denitrification treatment step, the amount of commonly used chemicals such as methanol can be reduced. There is an effect that the cost associated with the amount of the chemical can be reduced. As described above, the amount of excess sludge generated can be significantly reduced by combining sludge-soluble treatment with nitrification and denitrification treatment of wastewater, and by optimally setting the conditions of each treatment step when combined. There is an effect that the water quality can be reduced and the quality of the treated water can be maintained well. As the microorganism that produces a solubilizing enzyme for solubilizing sludge, a thermophilic bacterium, in particular, various Bacillus (; Bacillus ^ bacterium ゃ ォ バ ゃ チ ル Bacillus (fieohae ilks) bacterium used in the first embodiment is used. Is preferred.
また、 可溶化処理の際の温度は実施形態 1と同様に 5 0〜9 0 °Cの温度範囲が望 ましく、 バチルス属細菌のような好気性好熱菌を用いる場合には、 5 5〜7 0 °Cの 温度範囲に設定するのが好ましく、 特に 6 0〜6 5 °Cの範囲がより好ましい。 また、 可溶化処理の際の p Hも実施形態 1と同様に p H 6 ~ 9の範囲、 好ましくは 7〜 8 の範囲になるように設定する。  Further, the temperature for the solubilization treatment is preferably in a temperature range of 50 to 90 ° C. as in Embodiment 1, and when an aerobic thermophilic bacterium such as Bacillus bacterium is used, 55 The temperature is preferably set to a temperature range of 70 to 70 ° C, and more preferably a temperature range of 60 to 65 ° C. Also, the pH at the time of the solubilization treatment is set to be in the range of pH 6 to 9, preferably 7 to 8, as in the first embodiment.
その他、 硝化工程の温度、 p H等も実施形態 1と同様である。  In addition, the temperature, pH, and the like in the nitrification step are the same as those in the first embodiment.
(実施形態 3 )  (Embodiment 3)
本実施形態の有機性廃水の処理装置は、 図 4に示すように、 発酵液貯留槽 3、 嫌 気槽 4、 一次曝気槽 5、 無酸素槽 6、 二次曝気槽 7、 沈殿槽 8、 及び可溶化槽 2を 具備している。 発酵液貯留槽 3に貯留される被処理液としては、 本実施形態では、 食品工場等から排出される残飯をガス分解 (メタン発酵) し、 発酵させた酸発酵液 が用いられる。 また前記被処理液とは別に、 下水等が嫌気槽に供給されるようにな つている。  As shown in Fig. 4, the organic wastewater treatment apparatus of the present embodiment includes a fermentation liquid storage tank 3, an anaerobic tank 4, a primary aeration tank 5, an oxygen-free tank 6, a secondary aeration tank 7, a sedimentation tank 8, And a solubilization tank 2. In the present embodiment, as the liquid to be treated stored in the fermentation liquid storage tank 3, an acid fermentation liquid obtained by gas decomposition (methane fermentation) of fermented rice discharged from a food factory or the like and fermenting is used. Sewage and the like are supplied to the anaerobic tank separately from the liquid to be treated.
嫌気槽 4は、 下水及び前記発酵液貯留槽 1から供給される酸発酵液を嫌気的に消 化するとともに、 返送汚泥や、 酸発酵液中の汚泥にリンが含有されている場合、 汚 泥中のリンを液中に放出する機能を有するものである。  The anaerobic tank 4 anaerobically decontaminates the sewage and the acid fermentation liquor supplied from the fermentation liquor storage tank 1 and returns sludge when phosphorus is contained in returned sludge or acid fermentation liquor. It has a function of releasing phosphorus in the liquid.
一次曝気槽 5は、 前記嫌気槽 4で嫌気処理された処理液を、 曝気攪拌によって好 気的に生物処理し、 嫌気処理された処理水中の有機物を酸化分解し、 或いは流入ァ ンモニァを硝化するためのものである。 この一次曝気槽 5は、 要は曝気手段を具備 するものであればよく、 その曝気手段は問うものではないが、 たとえば散気管等を 用いることができる。 曝気処理は、 好気性消化分解が許容されるよう、 好ましくは、The primary aeration tank 5 aerobically biologically treats the treatment liquid subjected to the anaerobic treatment in the anaerobic tank 4 by aeration and agitation, and oxidatively decomposes organic substances in the anaerobic treatment water or nitrifies the inflow ammonia. It is for. This primary aeration tank 5 is basically equipped with aeration means. The aeration means is not limited, but for example, an air diffuser can be used. The aeration is preferably carried out to allow aerobic digestion and degradation.
0 . 1〜0 . 5 v vmの通気量で室温下にて実施されるが、 負荷によっては、 これ を上回る通気量で、 より高温で処理してもよい。 被処理液は、 好ましくは P H 5 . 0〜8 . 0に調整され、 より好ましくは p H 7 . 0〜8 . 0に調整される。 It is carried out at room temperature with a ventilation of 0.1 to 0.5 v vm, but depending on the load, it may be processed at a higher ventilation with a higher ventilation. The liquid to be treated is preferably adjusted to pH 5.0 to 8.0, more preferably adjusted to pH 7.0 to 8.0.
無酸素槽 6は、 前記一次曝気槽 5で好気処理された処理液を、 脱窒処理するため のものである。  The anoxic tank 6 is used for denitrifying the treatment liquid that has been aerobically treated in the primary aeration tank 5.
二次曝気槽 7は、 前記無酸素槽 6で脱窒処理された処理液を、 好気的に生物処理 するためのものである。 この二次曝気槽 7では、 前記一次曝気槽 3と同様に構成さ れ、 同様に曝気攪拌によって生物処理が行われる。 この場合の二次曝気槽 7は、 硝 化と B O D除去との両方の機能を有する。 そして、 二次曝気槽 7での処理液である 硝化液の一部は、 図示しないが、 無酸素槽 6へ返送され、 硝化液中の硝酸或いは亜 硝酸が脱窒されることとなる。  The secondary aeration tank 7 is for aerobic biological treatment of the treatment liquid denitrified in the oxygen-free tank 6. The secondary aeration tank 7 is configured in the same manner as the primary aeration tank 3, and biological treatment is similarly performed by aeration and stirring. In this case, the secondary aeration tank 7 has both functions of nitrification and BOD removal. Then, although not shown, a part of the nitrification liquid, which is a treatment liquid in the secondary aeration tank 7, is returned to the oxygen-free tank 6, and nitric acid or nitrous acid in the nitrification liquid is denitrified.
沈殿槽 8は、 前記二次曝気槽 7で生物処理された処理液を固液分離するためのも のであり、 分離された液分は処理液として再利用若しくは放流され、 分離、 沈殿し た固形分である汚泥の一部は、 次の可溶化槽 2へ供給されるとともに、 残りの一部 は嫌気槽 4へ返送される。  The sedimentation tank 8 is for solid-liquid separation of the treatment liquid biologically treated in the secondary aeration tank 7, and the separated liquid is reused or discharged as a treatment liquid, and the separated and precipitated solid is separated. A part of the sludge is supplied to the next solubilization tank 2 and the remaining part is returned to the anaerobic tank 4.
次に、 上記のような構成からなる処理装置によって、 下水と食品工場等から排出 される残飯の両方を処理する処理方法の実施形態について説明する。  Next, an embodiment of a processing method for processing both sewage and sewage discharged from a food factory or the like by the processing apparatus having the above configuration will be described.
先ず、 食品工場等から排出される残飯は、 ガス分解される。 このガス分解は、 た とえば酸発酵とメタン発酵によってなされる。 このようなガス分解によって、 酸発 酵液が得られ、 その酸発酵液が発酵液貯留槽 3で貯留される。 この発酵液貯留槽 3 から、 酸発酵液が嫌気槽 4へ供給される。 また嫌気槽 4へは下水も供給される。 そして嫌気処理後の処理水は、 次工程の一次曝気槽 5に供給されて曝気攪拌され つつ好気的に処理されることとなる。 この曝気攪拌による好気的な処理によって硝 化処理がなされることとなる。 次に、 一次曝気槽 5で曝気処理された処理液は、 無酸素槽 6へ供給される。 この 無酸素槽 6では脱窒処理がなされる。 First of all, the leftovers discharged from food factories are decomposed by gas. This gas decomposition is performed, for example, by acid fermentation and methane fermentation. An acid fermentation solution is obtained by such gas decomposition, and the acid fermentation solution is stored in the fermentation solution storage tank 3. From this fermentation liquid storage tank 3, the acid fermentation liquid is supplied to the anaerobic tank 4. Sewage is also supplied to the anaerobic tank 4. Then, the treated water after the anaerobic treatment is supplied to the primary aeration tank 5 in the next step, and is aerobically treated while being aerated and agitated. The nitrification treatment is performed by the aerobic treatment by the aeration and stirring. Next, the treatment liquid aerated in the primary aeration tank 5 is supplied to the oxygen-free tank 6. In the anoxic tank 6, a denitrification treatment is performed.
また、 発酵液貯留槽 3から、 酸発酵液が無酸素槽 6へ供給される。 これは、 酸発 酵液が脱窒の際のプロトン源 (B O D源) として有効利用され、 脱窒を促進させる ためである。  Further, the acid fermentation liquid is supplied from the fermentation liquid storage tank 3 to the oxygen-free tank 6. This is because the acid fermentation solution is effectively used as a proton source (BOD source) during denitrification and promotes denitrification.
無酸素槽 6で脱窒処理された処理液は二次曝気槽 7へ供給され、 曝気攪拌されつ つ好気的に処理される。 この二次曝気槽 7での曝気処理によって硝化がなされ、 B 〇D除去がなされる。  The treatment liquid denitrified in the oxygen-free tank 6 is supplied to the secondary aeration tank 7, where it is aerobically treated while being aerated and agitated. By the aeration treatment in the secondary aeration tank 7, nitrification is performed, and B〇D removal is performed.
次に、 二次曝気槽 7で曝気処理された処理液は、 沈殿槽 8へ供給される。 この沈 殿槽 8では固液分離がされ、 分離された液分は処理液として再利用若しくは放流さ れ、 また分離、 沈殿した固形分である汚泥の一部は、 可溶化槽 2へ供給され、 好熱 菌により好気的に汚泥が可溶化される。  Next, the treatment liquid that has been aerated in the secondary aeration tank 7 is supplied to the precipitation tank 8. In the settling tank 8, solid-liquid separation is performed, and the separated liquid is reused or discharged as a treatment liquid, and part of the separated and precipitated solid sludge is supplied to the solubilization tank 2. The sludge is aerobically solubilized by thermophilic bacteria.
また、 沈殿した汚泥の残りの一部は、 嫌気槽 4へ返送汚泥として返送される。 可溶化槽 2で可溶化処理された汚泥は、 前記無酸素槽 6へ返送され、 再度処理さ れる。 そして、 無酸素槽 6での脱窒処理、 二次曝気槽 7での曝気処理、 沈殿槽 8で の固液分離、 可溶化槽 2での可溶化処理が循環して繰り返されることとなる。 本実施形態では、 上記実施形態 1のような回分式ではなく、 連続式で汚泥の可溶 化が行われるが、 このように連続式で汚泥の可溶化を行う場合、 流入液量と反応槽 の有効容量に基づいて H R Tが求められる。 すなわち、 H R T (水力学的滞留時間 ) = V/Q (V:反応槽容量、 Q:流入液量) の式に基づいて、 H R Tを算出する ことができる。  The remaining part of the settled sludge is returned to the anaerobic tank 4 as returned sludge. The sludge solubilized in the solubilization tank 2 is returned to the anoxic tank 6 and processed again. Then, the denitrification treatment in the oxygen-free tank 6, the aeration treatment in the secondary aeration tank 7, the solid-liquid separation in the precipitation tank 8, and the solubilization treatment in the solubilization tank 2 are circulated and repeated. In the present embodiment, the sludge is solubilized in a continuous manner, not in a batch manner as in Embodiment 1 described above. HRT is required based on the effective capacity of That is, HRT can be calculated based on the following equation: HRT (hydraulic residence time) = V / Q (V: reaction tank volume, Q: influent volume).
可溶化が所望の程度達成される限りにおいて、 H R Tが短縮されるほど反応槽の 容積を縮小することが可能となることは言うまでもない。 従って、 H R Tに基づい て可溶化時間を決定することで、 冗長な可溶ィ匕処理が回避される。  It goes without saying that as long as the desired degree of solubilization is achieved, the volume of the reaction vessel can be reduced as the HRT is shortened. Therefore, by determining the solubilization time based on the HRT, redundant solubilization processing is avoided.
H R Tは、 好熱菌の生成および分泌量が最大となる H R Tに基づいて選択するこ とが好ましい。 このように H R Tを設定すれば、 生成及び分泌された汚泥可溶化酵 素による反応を効率的に利用できる。通常、 H R Tは 12〜72時間に設定するのが好 ましく、 可溶化液中のアンモニアを酸ィ匕する観点からは 24〜72時間に設定するのが より好ましく、 可溶化装置のコンパクト化及び処理水質の向上の両方を維持する観 点からは、 36〜48時間に設定するのが最も好ましい。 Preferably, the HRT is selected based on the HRT that maximizes the production and secretion of thermophiles. By setting the HRT in this way, the generated and secreted sludge solubilizing enzymes Elemental reactions can be used efficiently. Normally, the HRT is preferably set to 12 to 72 hours, and more preferably set to 24 to 72 hours from the viewpoint of oxidizing the ammonia in the solubilizing solution. From the viewpoint of maintaining both of the quality of treated water, it is most preferable to set the time to 36 to 48 hours.
また、 可溶化槽 2以外の槽の H R Tは、 嫌気槽 4で 0.5〜1.5時間、 一次曝気槽 5 で 2〜6時間、 無酸素槽 6で 0.5〜 3時間、 二次曝気槽 7で 0.5〜2時間、 好ましく は嫌気槽 4で 0.5〜 1時間、 一次 1曝気槽 5で 3 ~ 5時間、 無酸素槽 6で 1〜 2時間 、 二次曝気槽 7で 0.5~1.5時間である。  HRT of tanks other than solubilization tank 2 is 0.5 to 1.5 hours in anaerobic tank 4, 2 to 6 hours in primary aeration tank 5, 0.5 to 3 hours in oxygen-free tank 6, and 0.5 to 1.5 hours in secondary aeration tank 7. 2 hours, preferably 0.5 to 1 hour in the anaerobic tank 4, 3 to 5 hours in the first primary aeration tank 5, 1-2 hours in the oxygen-free tank 6, and 0.5 to 1.5 hours in the secondary aeration tank 7.
尚、 汚泥を可溶化するための可溶化酵素を産生させる微生物としては、 好熱菌、 特に実施形態 1に開示した各種のバチルス (Eadllus)属細菌ゃジォバチルス (Qeohae illiis)属細菌を使用するのが好ましい。  As the microorganism that produces a solubilizing enzyme for solubilizing sludge, thermophilic bacteria, in particular, various Bacillus (Eadllus) genus bacteria disclosed in Embodiment 1 and ゃ ゃ obacillus (Qeohae illiis) genus bacteria may be used. Is preferred.
また、 可溶化処理の際の温度は実施形態 1と同様に 5 0〜9 0 °Cの温度範囲が望 ましく、 バチルス属細菌のような好気性好熱菌を用いる場合には、 5 5〜7 0 °Cの 温度範囲に設定するのが好ましく、 特に 6 0〜6 5 °Cの範囲がより好ましい。 また、 可溶ィ匕処理の際の p Hも実施形態 1と同様に p H 6〜9の範囲、 好ましくは 7〜8 の範囲になるように設定する。  Further, the temperature for the solubilization treatment is preferably in a temperature range of 50 to 90 ° C. as in Embodiment 1, and when an aerobic thermophilic bacterium such as Bacillus bacterium is used, 55 The temperature is preferably set to a temperature range of 70 to 70 ° C, and more preferably a temperature range of 60 to 65 ° C. Further, the pH at the time of the fusibility treatment is also set to be in the range of 6 to 9, preferably 7 to 8, as in the first embodiment.
その他、 硝化工程の温度、 p H等も実施形態 1と同様である。  In addition, the temperature, pH, and the like in the nitrification step are the same as those in the first embodiment.
(実施形態 4 )  (Embodiment 4)
本実施形態では、 図 5に示すように、 沈殿槽 8と可溶化槽 2間、 すなわち沈殿槽 8から可溶化槽 2へ至る流路中に、 濃縮機 9が設けられている。  In the present embodiment, as shown in FIG. 5, a concentrator 9 is provided between the sedimentation tank 8 and the solubilization tank 2, that is, in the flow path from the sedimentation tank 8 to the solubilization tank 2.
本実施形態では、 沈殿槽 8で分離された汚泥が濃縮機 9に供給される。 濃縮機 9 ではたとえば重力沈降により汚泥が濃縮される。 濃縮法としては、 重力沈降以外に 浮上濃縮、 蒸発濃縮、 膜濃縮、 凝集剤添加、 ドラムスクリーン型濃縮、 または遠心 力を利用した濃縮法を採用することもできる。 汚泥の濃縮率は、 好熱菌による汚泥 可溶化率を向上させ、 可溶化槽をコンパクト化させる観点から、 含水率 9 9重量% 以下 (汚泥濃度 1重量%以上) まで濃縮するのが好ましい。 濃縮後の濃縮液は、 可 溶化槽 2に供給される。 ただし、 汚泥濃度は 5重量%を超えないことが好ましい。 In the present embodiment, the sludge separated in the sedimentation tank 8 is supplied to the concentrator 9. In the concentrator 9, the sludge is concentrated by, for example, gravity settling. As the concentration method, besides gravity sedimentation, flotation concentration, evaporation concentration, membrane concentration, addition of a flocculant, drum screen type concentration, or concentration method using centrifugal force can also be adopted. The sludge concentration rate is preferably from 99% by weight or less (sludge concentration of 1% by weight or more) from the viewpoint of improving the solubilization rate of thermophilic bacteria and making the solubilization tank compact. The concentrated solution after concentration is acceptable It is supplied to the solubilization tank 2. However, it is preferable that the sludge concentration does not exceed 5% by weight.
5重量%を超えるとポンプでの送り出しが困難となるとともに、 可溶化槽での好気 処理による汚泥の発泡が著しくなるからである。  If the content exceeds 5% by weight, it becomes difficult to send out by a pump, and sludge foaming due to aerobic treatment in the solubilization tank becomes remarkable.
嫌気槽 4での嫌気処理、 一次曝気槽 5での曝気処理、 無酸素槽 6での脱窒処理、 二次曝気槽 7での曝気処理、 沈殿槽 8での固液分離、 可溶化槽 2での可溶化処理は、 実施形態 3と同じであるため、 その説明は省略する。  Anaerobic treatment in anaerobic tank 4, aeration treatment in primary aeration tank 5, denitrification treatment in anoxic tank 6, aeration treatment in secondary aeration tank 7, solid-liquid separation in sedimentation tank 8, solubilization tank 2 The solubilization process in is the same as in the third embodiment, and a description thereof will be omitted.
尚、 汚泥を可溶化するための可溶化酵素を産生させる微生物としては、 好熱菌、 特に実施形態 1に開示した各種のバチルス (Bacillus)属細菌ゃジォバチルス (Oobac illus)属細菌を使用するのが好ましい。  As the microorganism that produces a solubilizing enzyme for solubilizing sludge, a thermophilic bacterium, in particular, various Bacillus genus bacteria disclosed in Embodiment 1 and ォ バ obacillus (Oobacillus) bacterium are used. Is preferred.
また、 可溶化処理の際の温度は実施形態 1と同様に 5 0〜 9 0 °Cの温度範囲が望 ましく、 バチルス属細菌のような好気性好熱菌を用いる場合には、 5 5〜7 0 °Cの 温度範囲に設定するのが好ましく、 特に 6 0〜6 5 °Cの範囲がより好ましい。 また、 可溶化処理の際の p Hも実施形態 1と同様に p H 6〜 9の範囲、 好ましくは?〜 8 の範囲になるように設定する。  Further, the temperature at the time of the solubilization treatment is desirably in the temperature range of 50 to 90 ° C. as in Embodiment 1, and when an aerobic thermophilic bacterium such as a Bacillus bacterium is used, 55 The temperature is preferably set to a temperature range of 70 to 70 ° C, and more preferably a temperature range of 60 to 65 ° C. Further, the pH at the time of the solubilization treatment is in the range of pH 6 to 9 as in the first embodiment, preferably? Set so that it is in the range of ~ 8.
(実施形態 5 )  (Embodiment 5)
本実施形態では、 図 6に示すように、 可溶ィ匕槽 2と無酸素槽 6間、 すなわち可溶 ィ匕槽 2から無酸素槽 6へ至る返送流路中に、 硝化槽 10が設けられている。 このよう な硝化槽 10を設けることで、汚泥可溶ィ匕液に含まれるアンモニアが亜硝酸や硝酸ま で変化することになる。  In the present embodiment, as shown in FIG. 6, a nitrification tank 10 is provided between the fusible tank 2 and the oxygen-free tank 6, that is, in the return flow path from the fusible tank 2 to the oxygen-free tank 6. Has been. By providing such a nitrification tank 10, the ammonia contained in the sludge-soluble solution changes to nitrous acid or nitric acid.
また、 本実施形態では、 沈殿槽 8から汚泥の一部が嫌気槽 4へ返送される他、 残 りの汚泥は可溶化槽 2を経て硝化槽 10へも供給されることになる。  Further, in the present embodiment, a part of the sludge is returned from the settling tank 8 to the anaerobic tank 4, and the remaining sludge is also supplied to the nitrification tank 10 via the solubilizing tank 2.
本実施形態での可溶化槽の H R Tは、 好熱菌が分泌する汚泥可溶化酵素の生成お よび分泌量が最大となる H R Tに基づいて選択することが好ましい。 このように H R Tを設定すれば、 生成及び分泌された汚泥可溶化酵素による反応を効率的に利用 できる。通常、 H R Tは 12〜72時間に設定するが、 本実施形態では可溶化槽の後段 に硝化槽 10があるために可溶化処理液にアンモニアが残存する状態で可溶化処理液 を硝化槽 10に投入することができ、 このことを考慮すると H R Tは 18〜48時間に 設定するのがより好ましく、 20〜36時間に設定するのが最も好ましい。 In the present embodiment, the HRT of the solubilization tank is preferably selected based on the HRT that maximizes the production and secretion of the sludge solubilizing enzyme secreted by the thermophile. By setting the HRT in this way, the reaction of the generated and secreted sludge solubilizing enzymes can be used efficiently. Normally, the HRT is set to 12 to 72 hours, but in this embodiment, since the nitrification tank 10 is provided at the subsequent stage of the solubilization tank, the solubilization treatment liquid is in a state where ammonia remains in the solubilization treatment liquid. Can be put into the nitrification tank 10, and considering this, the HRT is more preferably set to 18 to 48 hours, and most preferably set to 20 to 36 hours.
また硝化槽 10の運転条件は、 25〜35°Cで、 p Hは 7.0〜8.0の範囲が好ましい。硝 化槽 10の H R Tは、 汚泥可溶化液中に含まれるアンモニアを亜硝酸や硝酸に酸化さ せる点、 及ぴ次の工程である脱窒処理のプロトン源となる有機物を残存させておく 必要がある点を考慮すると、 30分〜 3時間とするのが好ましい。  The operating conditions of the nitrification tank 10 are preferably 25 to 35 ° C., and the pH is preferably in the range of 7.0 to 8.0. The HRT in the nitrification tank 10 must oxidize the ammonia contained in the sludge solubilization solution to nitrous acid and nitric acid, and it is necessary to leave organic substances that serve as proton sources in the next step of denitrification. Considering a certain point, the time is preferably set to 30 minutes to 3 hours.
嫌気槽 4での嫌気処理、 一次曝気槽 5での曝気処理、 無酸素槽 6での脱窒処理、 二次曝気槽 7での曝気処理、 沈殿槽 8での固液分離、 可溶ィ匕槽 2での可溶化処理は、 実施形態 3と同じであるため、 その説明は省略する。  Anaerobic treatment in anaerobic tank 4, aeration treatment in primary aeration tank 5, denitrification treatment in anoxic tank 6, aeration treatment in secondary aeration tank 7, solid-liquid separation in sedimentation tank 8, fusible Since the solubilization treatment in the tank 2 is the same as that in the third embodiment, the description is omitted.
尚、 汚泥を可溶化するための可溶化酵素を産生させる微生物としては、 好熱菌、 特に実施形態 1に開示した各種のバチルス ^ Bacillus^)属細菌ゃジォバチルス (Qeohae illus)属細菌を使用するのが好ましい。  As the microorganism that produces a solubilizing enzyme for solubilizing sludge, a thermophilic bacterium, in particular, various Bacillus ^ Bacillus ^) bacteria disclosed in Embodiment 1, ゃ diobacillus (Qeohae illus) bacteria are used. Is preferred.
また、 可溶化処理の際の温度は実施形態 1と同様に 5 0〜9 0 °Cの温度範囲が望 ましく、 バチルス属細菌のような好気性好熱菌を用いる場合には、 5 5 ~ 7 0 °Cの 温度範囲に設定するのが好ましく、 特に 6 0〜6 5 °Cの範囲がより好ましい。 また、 可溶化処理の際の p Hも実施形態 1と同様に: H 6〜 9の範囲、 好ましくは 7〜 8 の範囲になるように設定する。  Further, the temperature for the solubilization treatment is preferably in a temperature range of 50 to 90 ° C. as in Embodiment 1, and when an aerobic thermophilic bacterium such as Bacillus bacterium is used, 55 The temperature is preferably set to a temperature in the range of 70 to 70 ° C, more preferably in the range of 60 to 65 ° C. Further, the pH at the time of the solubilization treatment is also set in the same manner as in the first embodiment: H is set to be in the range of 6 to 9, preferably 7 to 8.
(実施形態 6 )  (Embodiment 6)
本実施形態では、 無酸素槽が 2槽設けられているとともに、 曝気槽は 1槽のみ設 けられ、 この点で上記実施形態 3乃至 5と相違している。  In this embodiment, two anoxic tanks are provided, and only one aeration tank is provided. This is different from the third to fifth embodiments.
すなわち、 本実施形態の処理装置は、 図 7に示すように、 前無酸素槽 11、 嫌気槽 4、 互換槽 12、 無酸素槽 6、 曝気槽 13、 沈殿槽 8、 濃縮機 9、 及び可溶化槽 2を具 備している。  That is, as shown in FIG. 7, the processing apparatus of the present embodiment comprises a front oxygen-free tank 11, an anaerobic tank 4, a compatible tank 12, an oxygen-free tank 6, an aeration tank 13, a sedimentation tank 8, a concentrator 9, and a A soaking tank 2 is provided.
本実施形態では、 嫌気槽 4に流入された原水は互換槽 12に供給される。  In the present embodiment, the raw water flowing into the anaerobic tank 4 is supplied to the compatible tank 12.
この互換槽 12では、 流入下水の脱窒程度によって曝気槽 13からの汚泥及び処理液 (硝化液) の返送の経路を変更する機能が奏される。 たとえば夏期等の脱窒の程度 が高い時期では、 嫌気槽として活用することにより嫌気状態での返送汚泥のリン放 出反応が促進され、 冬期等の脱窒の程度が低い時期では、 無酸素槽として活用する ことにより原水及び曝気槽 13から前無酸素槽 11或いは互換槽 12に返送される硝化 液の脱窒反応が促進されることとなる。 The compatibility tank 12 has a function of changing the return route of the sludge and the treatment liquid (nitrification liquid) from the aeration tank 13 depending on the degree of denitrification of the inflow sewage. For example, the degree of denitrification in summer etc. During periods of high levels, the use of anaerobic tanks promotes the phosphorus release reaction of returned sludge under anaerobic conditions, and during periods of low denitrification, such as in winter, the use of raw water and aeration by use of oxygen-free tanks The denitrification reaction of the nitrified liquid returned from the tank 13 to the pre-anoxic tank 11 or the compatible tank 12 is promoted.
このように互換槽 12での処理が行われた後、 原水は無酸素槽 6に供給されて脱窒 処理され、 さらに曝気槽 13に供給されて曝気攪拌により好気的に生物処理される。 次に曝気槽 13から沈殿槽 8に供給され、 この沈殿槽 8では固液分離がされ、 分離さ れた液分は適宜放流される。 また分離、 沈殿した固形分である汚泥は、 濃縮機 9へ 供給され、 可溶化槽 2へ供給される。 この場合、 曝気槽 13は、 B O Dの除去と硝化 の機能を有するものである。 曝気槽 13の処理液である硝化液一部は、 前無酸素槽 1 After the treatment in the interchangeable tank 12 as described above, the raw water is supplied to the anoxic tank 6 to be denitrified, and further supplied to the aeration tank 13 for aerobic biological treatment by aeration and stirring. Next, the mixture is supplied from the aeration tank 13 to the settling tank 8, where solid-liquid separation is performed, and the separated liquid is discharged as appropriate. The sludge separated and precipitated is supplied to the concentrator 9 and supplied to the solubilization tank 2. In this case, the aeration tank 13 has a function of removing BOD and nitrification. A portion of the nitrification solution, which is the processing solution in the aeration tank 13,
1、 好ましくは (図示しないが)無酸素槽 6へ返送される。 1, preferably (not shown) returned to anoxic tank 6.
さらに、 可溶化槽 2で可溶化処理された汚泥は、 互換槽 12へ返送され、 互換槽 1 Further, the sludge solubilized in the solubilization tank 2 is returned to the compatible tank 12, and
2、 無酸素槽 6、 曝気槽 13、 沈殿槽 8、 濃縮機 9、 可溶化槽 2を循環することとなる 。 尚、 沈殿槽 8で分離された汚泥は、 濃縮機 9へ供給される他、 前無酸素槽 11へも 返送される。 また前無酸素槽 11へは、 嫌気槽 4や互換槽 12からも汚泥が返送され 可溶化槽 2の H R Tは実施形態 3と同様に 12〜72時間に設定するのが好ましく、 24〜72時間に設定するのがより好ましく、 36〜48時間に設定するのが最も好ましい 可溶化槽 2以外の槽の H R Tは、 前無酸素槽 11で 0.5〜: 1.5時間、 嫌気槽 4で 0.5 〜 2時間、 互換槽 12で 0.5〜 1時間、 無酸素槽 6で 1〜 3時間、 曝気槽 13で 3〜 6 時間とするのが好ましく、 前無酸素槽 11で 0.5〜 1時間、 嫌気槽 4で 0.5〜1時間、 互換槽 12で 0.5〜 1時間、 無酸素槽 6で 1〜 2時間、 曝気槽 13で 3.5〜 5時間とす るのがより好ましい。 2, anaerobic tank 6, aeration tank 13, sedimentation tank 8, concentrator 9, and solubilization tank 2 will be circulated. The sludge separated in the sedimentation tank 8 is supplied not only to the concentrator 9 but also to the former oxygen-free tank 11. Sludge is also returned from the anaerobic tank 4 and the compatible tank 12 to the anoxic tank 11, and the HRT of the solubilizing tank 2 is preferably set to 12 to 72 hours as in the third embodiment, and 24 to 72 hours. HRT of tanks other than solubilization tank 2 is preferably 0.5 to 1.5 hours in anoxic tank 11, and 0.5 to 2 hours in anaerobic tank 4. , 0.5 to 1 hour in the compatible tank 12, 1 to 3 hours in the anoxic tank 6, 3 to 6 hours in the aeration tank 13, 0.5 to 1 hour in the anoxic tank 11 and 0.5 in the anaerobic tank 4. More preferably, it is set to 1 hour, 0.5 to 1 hour in the compatible tank 12, 1 to 2 hours in the anoxic tank 6, and 3.5 to 5 hours in the aeration tank 13.
尚、 汚泥を可溶ィヒするための可溶化酵素を産生させる微生物としては、 好熱菌、 特に実施形態 1に開示した各種のバチルス (Bacillug)属細茼やジォバチルス (Geobac illas)属細菌を使用するのが好ましい。 Examples of microorganisms that produce a solubilizing enzyme for solubilizing sludge include thermophilic bacteria, particularly various Bacillug species disclosed in Embodiment 1 and Geobacillus (Geobacillus). Preference is given to using bacteria of the genus illas).
また、 可溶化処理の際の温度は実施形態 1と同様に 5 0〜 9 0 °Cの温度範囲が望 ましく、 バチルス属細菌のような好気性好熱菌を用いる場合には、 5 5〜7 0 °Cの 温度範囲に設定するのが好ましく、 特に 6 0〜6 5 °Cの範囲がより好ましい。 また、 可溶化処理の際の p Hも実施形態 1と同様に p H 6〜 9の範囲、 好ましくは 7〜 8 の範囲になるように設定する。  Further, the temperature at the time of the solubilization treatment is desirably in the temperature range of 50 to 90 ° C. as in Embodiment 1, and when an aerobic thermophilic bacterium such as a Bacillus bacterium is used, 55 The temperature is preferably set to a temperature range of 70 to 70 ° C, and more preferably a temperature range of 60 to 65 ° C. Further, the pH at the time of the solubilization treatment is set so as to be in the range of 6 to 9, preferably 7 to 8, as in the first embodiment.
尚, 本実施形態の処理装置には濃縮機 9を具備させたが、 濃縮機 9を具備させる ことは本発明に必須の条件ではない。  Although the treatment apparatus of the present embodiment is provided with the concentrator 9, the provision of the concentrator 9 is not an essential condition of the present invention.
(実施形態 7 )  (Embodiment 7)
本実施形態では、 図 8に示すように、 可溶化槽 2の後段側に硝化槽 10が設けられ ており、 この点で上記実施形態 6と相違している。  In the present embodiment, as shown in FIG. 8, a nitrification tank 10 is provided on the downstream side of the solubilization tank 2, and this is different from the sixth embodiment in this point.
すなわち、 本実施形態では、 可溶化槽 2で可溶化処理された汚泥が硝化槽 10へ供 給され、 硝化槽 10で汚泥中のアンモニアが亜硝酸や硝酸に変換された上で互換槽 1 That is, in the present embodiment, the sludge that has been solubilized in the solubilization tank 2 is supplied to the nitrification tank 10, and the ammonia in the sludge is converted into nitrous acid or nitric acid in the nitrification tank 10, and then the compatible tank 1
2へ返送されることになる。 尚、 沈殿槽 8で分離された汚泥は、実施形態 6と同様に 濃縮機 9へ供給され、 前無酸素槽 11へ返送される他、 本実施形態では硝化槽 10へ も直接供給される。 Will be sent back to 2. The sludge separated in the sedimentation tank 8 is supplied to the concentrator 9 as in the sixth embodiment, returned to the oxygen-free tank 11, and is also directly supplied to the nitrification tank 10 in the present embodiment.
その他の構成及び処理手順については実施形態 6と同様であるため、 その説明は 省略する。  Other configurations and processing procedures are the same as those in the sixth embodiment, and a description thereof will not be repeated.
尚、 可溶化槽 2の H R Tは、 実施形態 5と同様に 12〜72時間に設定するのが好ま しく、 18〜48時間に設定するのがより好ましく、 20〜36時間に設定するのが最も好 ましい。  Incidentally, the HRT of the solubilization tank 2 is preferably set to 12 to 72 hours, more preferably to 18 to 48 hours, and most preferably to 20 to 36 hours, as in the fifth embodiment. It is good.
また、 汚泥を可溶化するための可溶化酵素を産生させる微生物としては、 好熱菌、 特に実施形態 1に開示した各種のバチルス (Bacillus)厲鉀菌ゃジォバチルス (Geobac illus)属細菌を使用するのが好ましい。  Further, as a microorganism that produces a solubilizing enzyme for solubilizing sludge, a thermophilic bacterium, in particular, various Bacillus (Bacillus) 厲 鉀 bacteria disclosed in Embodiment 1 細菌 a bacterium belonging to the genus Geobacillus is used. Is preferred.
さらに、 可溶化処理の際の温度は実施形態 1と同様に 5 0〜9 0 °Cの温度範囲が 望ましく、 バチルス属細菌のような好気性好熱菌を用いる場合には、 5 5 ~ 7 0 °C の温度範囲に設定するのが好ましく、 特に 6 0〜6 5 °Cの範囲がより好ましい。 ま た、 可溶化処理の際の p Hも実施形態 1と同様に p H 6〜9の範囲、 好ましくは 7 〜 8の範囲になるように設定する。 Further, the temperature for the solubilization treatment is desirably in the temperature range of 50 to 90 ° C. as in Embodiment 1, and when an aerobic thermophilic bacterium such as a bacterium belonging to the genus Bacillus is used, 55 to 7 0 ° C The temperature is preferably set within the range of 60 to 65 ° C. Further, the pH at the time of the solubilization treatment is also set so as to be in the range of 6 to 9, preferably 7 to 8, as in the first embodiment.
(実施形態 8 )  (Embodiment 8)
本実施形態の処理装置は、 図 9に示すように、 溶存酸素低減槽 16、 嫌気槽 4、 無 酸素槽 6、 曝気槽 13、 沈殿槽 8、 濃縮機 9、 及び可溶化槽 2を具備している。 本実 施形態では、 嫌気槽 2で嫌気処理された処理水を無酸素槽 4に供給する他、 溶存酸 素低減槽 16で、 溶存酸素が低減するように処理された処理水をも無酸素槽 6に供給 する。  As shown in FIG. 9, the treatment apparatus of the present embodiment includes a dissolved oxygen reduction tank 16, an anaerobic tank 4, an anoxic tank 6, an aeration tank 13, a sedimentation tank 8, a concentrator 9, and a solubilization tank 2. ing. In this embodiment, in addition to supplying the anaerobic treated water in the anaerobic tank 2 to the anoxic tank 4, the treated water treated to reduce the dissolved oxygen in the dissolved oxygen reducing tank 16 is also anoxic. Supply to tank 6.
無酸素槽 6に供給されて脱窒処理された処理水は、 さらに曝気槽 13に供給されて 曝気攪拌により好気的に処理され、 さらに沈殿槽 8に供給されて固液分離される。 分離された液分は適宜放流等され、 分離された固形分である汚泥は濃縮機 9へ供給 されるとともに、 汚泥の一部は曝気槽 13へ返送される。  The treated water supplied to the anoxic tank 6 and subjected to denitrification is further supplied to the aeration tank 13 and aerobically treated by aeration and agitation, and further supplied to the settling tank 8 for solid-liquid separation. The separated liquid is discharged as appropriate, and the separated solid sludge is supplied to the concentrator 9 and a part of the sludge is returned to the aeration tank 13.
また、 曝気槽 13の処理液、 すなわち硝化液の一部を、 溶存酸素低減槽 16を経て 無酸素槽 6に返送することにより、 硝化液が脱窒処理される。硝化液を無酸素槽へ 投入し、 硝化液の溶存酸素を低減させることにより、 脱窒効率を安定させることが できる。  In addition, by returning a part of the treatment liquid in the aeration tank 13, that is, a part of the nitrification liquid, to the oxygen-free tank 6 through the dissolved oxygen reduction tank 16, the nitrification liquid is denitrified. The denitrification efficiency can be stabilized by charging the nitrification liquid into the anoxic tank and reducing the dissolved oxygen in the nitrification liquid.
さらに、 濃縮機 9で濃縮された汚泥は可溶化槽 2へ供給されて可溶化処理され、 その後に溶存酸素低減槽 16に返送される。  Further, the sludge concentrated by the concentrator 9 is supplied to the solubilization tank 2 to be solubilized, and then returned to the dissolved oxygen reduction tank 16.
尚、 無酸素槽 6へ供給された汚泥は嫌気槽 4へも返送され、 さらに嫌気槽 4から 溶存酸素低減槽 16に返送される。  The sludge supplied to the anoxic tank 6 is also returned to the anaerobic tank 4, and further returned from the anaerobic tank 4 to the dissolved oxygen reducing tank 16.
可溶化槽 2の H R Tは実施形態 3と同様に 12〜72時間に設定するのが好ましく、 24〜72時間に設定するのがより好ましく、 36〜48時間に設定するのが最も好ましい 可溶ィ匕槽 2以外の槽の H R Tは、 溶存酸素低減槽 16で 0.15〜03時間、 嫌気槽 4 で 0.5〜2時間、 無酸素槽 6で 1〜3時間、 曝気槽 13で 3 ~ 6時間とするのが好ま しく、 溶存酸素低減槽 16で 0.17〜0.25時間、 嫌気槽 4で 1〜: 1.5時間、 無酸素槽 6 で 1〜 2時間、 曝気槽 13で 3.5〜 5時間とするのがより好ましい。 The HRT of the solubilization tank 2 is preferably set to 12 to 72 hours, more preferably to 24 to 72 hours, and most preferably to 36 to 48 hours, as in the third embodiment. The HRT of the tanks other than the dagger tank 2 is 0.15 to 03 hours in the dissolved oxygen reduction tank 16, 0.5 to 2 hours in the anaerobic tank 4, 1-3 hours in the oxygen-free tank 6, and 3 to 6 hours in the aeration tank 13. Prefer It is more preferable to set the dissolved oxygen reduction tank 16 to 0.17 to 0.25 hours, the anaerobic tank 4 to 1 to 1.5 hours, the anoxic tank 6 to 1 to 2 hours, and the aeration tank 13 to 3.5 to 5 hours.
尚、 汚泥を可溶化するための可溶化酵素を産生させる微生物としては、 好熱菌、 特に実施形態 1に開示した各種のバチルス (Eadlks)属細菌やジォバチルス (Qeohae illus)属細菌を使用するのが好ましい。  As the microorganism that produces a solubilizing enzyme for solubilizing sludge, thermophilic bacteria, in particular, various Bacillus (Eadlks) genus bacteria and Diobacillus (Qeohae illus) genus bacteria disclosed in Embodiment 1 may be used. Is preferred.
また、 可溶化処理の際の温度は実施形態 1と同様に 5 0〜9 0 °Cの温度範囲が望 ましく、 バチルス属細菌のような好気性好熱菌を用いる場合には、 5 5〜7 0 °Cの 温度範囲に設定するのが好ましく、 特に 6 0〜6 5 °Cの範囲がより好ましい。 さら に可溶化処理の際の p Hも実施形態 1と同様に p H 6〜 9の範囲、 好ましくは 7〜 8の範囲になるように設定する。  Further, the temperature for the solubilization treatment is preferably in a temperature range of 50 to 90 ° C. as in Embodiment 1, and when an aerobic thermophilic bacterium such as Bacillus bacterium is used, 55 The temperature is preferably set to a temperature range of 70 to 70 ° C, and more preferably a temperature range of 60 to 65 ° C. Further, the pH at the time of the solubilization treatment is set to be in the range of 6 to 9, preferably 7 to 8, as in the first embodiment.
(実施形態 9 )  (Embodiment 9)
本実施形態では、 図 10に示すように、 可溶化槽 2の後段側に硝化槽 10が設けら れており、 この点で上記実施形態 8と相違している。  In the present embodiment, as shown in FIG. 10, a nitrification tank 10 is provided downstream of the solubilization tank 2, which is different from the above-described eighth embodiment in this point.
すなわち、 本実施形態では、 可溶化槽 2で可溶ィヒ処理された汚泥が硝化槽 10へ供 給され、硝化槽 10で汚泥中のアンモニアが亜硝酸や硝酸に変換された上で溶存酸素 低減槽 16へ返送されることになる。 また、 沈殿槽 8の汚泥の一部を硝化槽 10に供 給し、 硝化処理が維持されるようになっている。  That is, in the present embodiment, the sludge that has been subjected to the solubilizing treatment in the solubilization tank 2 is supplied to the nitrification tank 10, and the ammonia in the sludge is converted to nitrous acid or nitric acid in the nitrification tank 10, and the dissolved oxygen It will be returned to the reduction tank 16. Further, a part of the sludge in the settling tank 8 is supplied to the nitrification tank 10 so that the nitrification treatment is maintained.
その他の構成及び処理手順については実施形態 8と同様であるため、 その説明は 省略する。  Other configurations and processing procedures are the same as those in the eighth embodiment, and a description thereof will not be repeated.
尚、 可溶化槽 2の H R Tは、 実施形態 5と同様に 12〜72時間に設定する のが好ましく、 18〜48時間に設定するのがより好ましく、 20〜36時間に設定するの が最も好ましい。  Incidentally, the HRT of the solubilization tank 2 is preferably set to 12 to 72 hours, more preferably to 18 to 48 hours, and most preferably to 20 to 36 hours, as in the fifth embodiment. .
また、 汚泥を可溶ィ匕するための可溶ィ匕酵素を産生させる微生物としては、 好熱菌、 特に実施形態 1に開示した各種のバチルス (; Bacillus 属細菌ゃジォバチルス (Geobac ilks)属細菌を使用するのが好ましい。  Examples of microorganisms that produce a soluble enzyme for solubilizing sludge include thermophilic bacteria, particularly various Bacillus (; Bacillus genus bacteria and Geobac ilks bacteria) disclosed in the first embodiment. It is preferred to use
さらに、 可溶化処理の際の温度は実施形態 1と同様に 5 0〜 9 0 °Cの温度範囲が 望ましく、 バチルス属細菌のような好気性好熱菌を用いる場合には、 5 5〜7 0 °C の温度範囲に設定するのが好ましく、 特に 6 0〜 6 5 °Cの範囲がより好ましい。 ま た、 可溶化処理の際の p Hも実施形態 1と同様に p H 6〜 9の範囲、 好ましくは 7 〜 8の範囲になるように設定する。 Further, the temperature at the time of the solubilization treatment is in the temperature range of 50 to 90 ° C as in the first embodiment. Desirably, when an aerobic thermophilic bacterium such as a bacterium belonging to the genus Bacillus is used, the temperature is preferably set in the range of 55 to 70 ° C, and more preferably in the range of 60 to 65 ° C. Further, the pH at the time of the solubilization treatment is set to be in the range of pH 6 to 9, preferably 7 to 8, as in the first embodiment.
(実施形態 10)  (Embodiment 10)
本実施形態の有機性廃水の処理装置は、 図 11に示すように、 嫌気槽 4、 無酸素槽 6、 曝気槽 13、 沈殿槽 8、 及び可溶化槽 2を具備している。  As shown in FIG. 11, the organic wastewater treatment apparatus of the present embodiment includes an anaerobic tank 4, an anoxic tank 6, an aeration tank 13, a sedimentation tank 8, and a solubilization tank 2.
本実施形態では、 嫌気槽 4で原水の嫌気処理がなされ汚泥中のリン成分が放出さ れた後、 無酸素槽 6へ供給され、 無酸素槽 6で脱窒処理がなされる。 無酸素槽 6で 脱窒処理された処理液は曝気槽 13へ供給され、 曝気槽 13で汚泥に含まれるアンモ ニァが亜硝酸や硝酸まで変化する。 すなわち、 曝気槽 13では硝化処理がなされてい るのである。  In the present embodiment, after the anaerobic treatment of the raw water is performed in the anaerobic tank 4 and the phosphorus component in the sludge is released, the phosphorus component is supplied to the anoxic tank 6, and the denitrifying treatment is performed in the anoxic tank 6. The treatment liquid denitrified in the anoxic tank 6 is supplied to the aeration tank 13, where the ammonia contained in the sludge is changed to nitrous acid or nitric acid. That is, nitrification treatment is performed in the aeration tank 13.
次に、 曝気槽 13で硝化処理された処理液は、 沈殿槽 8へ供給される。 この沈殿槽 8では固液分離がされ、 分離された液分は放流等され、 また分離、 沈殿した固形分 である汚泥の一部は、'可溶化槽 2へ供給されるとともに、 残りは返送汚泥として嫌 気槽 4に返送される。  Next, the treatment liquid that has been nitrified in the aeration tank 13 is supplied to the precipitation tank 8. In the sedimentation tank 8, solid-liquid separation is performed, and the separated liquid is discharged and the like. A part of the separated and precipitated solid sludge is supplied to the solubilization tank 2, and the rest is returned. Returned to anaerobic tank 4 as sludge.
可溶化処理後の汚泥は、 無酸素槽 6へ返送され、 無酸素槽 6での脱窒処理、 曝気 槽 13での処理、 沈殿槽 8での固液分離、 可溶化槽 2で可溶化処理が循環して繰り返 されることとなる。 また、 曝気槽 13で処理された硝化液の一部は、 無酸素槽 6又は 嫌気槽 4に返送され、 無酸素槽 6で脱窒処理される。  The sludge after solubilization is returned to the anoxic tank 6, denitrification in the anoxic tank 6, treatment in the aeration tank 13, solid-liquid separation in the sedimentation tank 8, and solubilization in the solubilization tank 2. Will be repeated cyclically. A part of the nitrification liquid treated in the aeration tank 13 is returned to the oxygen-free tank 6 or the anaerobic tank 4 and denitrified in the oxygen-free tank 6.
可溶化槽 2の H R Tは実施形態 3と同様に 12〜72時間に設定するのが好ましく、 24-72時間に設定するのがより好ましく、 36〜48時間に設定するのが最も好ましい 可溶化槽 2以外の槽の H R Tは、 溶存酸素低減槽 16で 0.15〜 時間、 嫌気槽 4 で 0.5〜2時間、 無酸素槽 6で 1〜3時間、 好気槽 17で 3〜6時間とするのが好ま しく、 溶存酸素低減槽 16で 0.17〜0.25時間、 嫌気槽 4で 1〜1.5時間、 無酸素槽 6 で 1〜 2時間、 好気槽 17で 3.5〜 5時間とするのがより好ましい。 The HRT of the solubilization tank 2 is preferably set to 12 to 72 hours, more preferably to 24 to 72 hours, and most preferably to 36 to 48 hours, as in the third embodiment. The HRT for tanks other than 2 should be 0.15 hours for dissolved oxygen reduction tank 16, 0.5 to 2 hours for anaerobic tank 4, 1 to 3 hours for anoxic tank 6, and 3 to 6 hours for aerobic tank 17. Preferably, 0.17 to 0.25 hours in dissolved oxygen reduction tank 16, 1 to 1.5 hours in anaerobic tank 4, anoxic tank 6 More preferably, it is 1 to 2 hours, and the aerobic tank 17 is 3.5 to 5 hours.
尚、 汚泥を可溶化するための可溶化酵素を産生させる微生物としては、 好熱菌、 特に実施形態 1に開示した各種のバチルス (Bacillus^属細菌ゃジォバチルス (Qeohae ilks)属細菌を使用するのが好ましい。  As the microorganism that produces a solubilizing enzyme for solubilizing sludge, a thermophilic bacterium, in particular, various Bacillus (Bacillus ^ genus bacterium ゃ ゃ obacillus (Qeohae ilks) genus bacterium disclosed in Embodiment 1) may be used. Is preferred.
また、 可溶化処理の際の温度は実施形態 1と同様に 5 0〜 9 0 °Cの温度範囲が望 ましく、 バチルス属細菌のような好気性好熱菌を用いる場合には、 5 5〜7 0 °Cの 温度範囲に設定するのが好ましく、 特に 6 0〜6 5 °Cの範囲がより好ましい。 さら に可溶化処理の際の p Hも実施形態 1と同様に p H 6〜 9の範囲、 好ましくは 7〜 8の範囲になるように設定する。  Further, the temperature at the time of the solubilization treatment is desirably in the temperature range of 50 to 90 ° C. as in Embodiment 1, and when an aerobic thermophilic bacterium such as a Bacillus bacterium is used, 55 The temperature is preferably set to a temperature range of 70 to 70 ° C, and more preferably a temperature range of 60 to 65 ° C. Further, the pH at the time of the solubilization treatment is set to be in the range of 6 to 9, preferably 7 to 8, as in the first embodiment.
(実施形態 11)  (Embodiment 11)
本実施形態では、 図 12に示すように可溶化槽 2で可溶化処理された汚泥が嫌気槽 4へ返送され、 この点で無酸素槽 6へ返送していた実施形態 10の場合と相違する。 嫌気槽 4での嫌気処理、 無酸素槽 6での脱窒処理、 曝気槽 13での硝化処理、 沈殿 槽 8での固液分離、 可溶化槽 2での可溶化処理の工程は、 実施形態 10と同じであり 、 その説明は省略する。 本実施形態でも、 硝化液の一部は無酸素槽 6又は嫌気槽 4 へ返送される。  In the present embodiment, as shown in FIG. 12, the sludge solubilized in the solubilization tank 2 is returned to the anaerobic tank 4, which is different from the case of Embodiment 10 in which the sludge is returned to the oxygen-free tank 6. . The anaerobic treatment in the anaerobic tank 4, the denitrification treatment in the oxygen-free tank 6, the nitrification treatment in the aeration tank 13, the solid-liquid separation in the precipitation tank 8, and the solubilization treatment in the solubilization tank 2 are described in the embodiment. It is the same as 10 and its explanation is omitted. Also in this embodiment, a part of the nitrification liquid is returned to the anoxic tank 6 or the anaerobic tank 4.
II溶化槽 2の H R Tは実施形態 3と同様に 12〜72時間に設定するのが好ましく、 24〜72時間に設定するのがより好ましく、 36〜48時間に設定するのが最も好ましい 尚、 汚泥を可溶化するための可溶化酵素を産生させる微生物としては、 好熱菌、 特に実施形態 1に開示した各種のバチルス (Bacillus 属細菌ゃジォバチルス (Oeohae illus)属細菌を使用するのが好ましい。  II The HRT of the solubilization tank 2 is preferably set to 12 to 72 hours, more preferably to 24 to 72 hours, and most preferably to 36 to 48 hours, as in Embodiment 3. As a microorganism that produces a solubilizing enzyme for solubilizing E. coli, it is preferable to use a thermophilic bacterium, in particular, any of the various bacterium belonging to the genus Bacillus and the genus Oeohae illus disclosed in the first embodiment.
また、 可溶ィ匕処理の際の温度は実施形態 1と同様に 5 0〜9 0 °Cの温度範囲が望 ましく、 バチルス属細菌のような好気性好熱菌を用いる場合には、 5 5 ~ 7 0 °Cの 温度範囲に設定するのが好ましく、 特に 6 0〜6 5 °Cの範囲がより好ましい。 さら に可溶化処理の際の P Hも実施形態 1と同様に p H 6〜 9の範囲、 好ましくは 7〜 8の範囲になるように設定する。 Further, the temperature at the time of the fusi-dani treatment is preferably in the temperature range of 50 to 90 ° C. as in Embodiment 1, and when an aerobic thermophilic bacterium such as a Bacillus bacterium is used, It is preferable to set the temperature in the range of 55 to 70 ° C, more preferably in the range of 60 to 65 ° C. Further, the pH at the time of the solubilization treatment is in the range of pH 6 to 9, preferably 7 to 7, as in the first embodiment. Set to be in the range of 8.
(実施形態 12)  (Embodiment 12)
本実施形態では、 図 13に示すように可溶化槽 2の後段に硝化槽 10が設けられて いる。 本実施形態では、 可溶化槽 2で処理された汚泥が硝化槽 10へ供給され、 硝化 槽 10で汚泥中のアンモニアが亜硝酸や硝酸に変換された上で無酸素槽 6へ返送され ることになる。 また、 硝化槽 10へは、 沈殿槽 8から汚泥が供給される。  In the present embodiment, as shown in FIG. 13, a nitrification tank 10 is provided downstream of the solubilization tank 2. In the present embodiment, the sludge treated in the solubilization tank 2 is supplied to the nitrification tank 10, and the ammonia in the sludge is converted into nitrous acid or nitric acid in the nitrification tank 10 and returned to the oxygen-free tank 6. become. Further, sludge is supplied from the settling tank 8 to the nitrification tank 10.
嫌気槽 4での嫌気処理、 無酸素槽 6での脱窒処理、 曝気槽 13での硝化処理、 沈殿 槽 8での固液分離、 可溶化槽 2での可溶化処理の工程は、 実施形態 11と同じであり 、 その説明は省略する。  The anaerobic treatment in the anaerobic tank 4, the denitrification treatment in the oxygen-free tank 6, the nitrification treatment in the aeration tank 13, the solid-liquid separation in the precipitation tank 8, and the solubilization treatment in the solubilization tank 2 are described in the embodiment. It is the same as 11 and its explanation is omitted.
ただし、 可溶化槽 2の HR Tは、 実施形態 5と同様に 12〜72時間に設定するのが 好ましく、 18〜48時間に設定するのがより好ましく、 20〜36時間に設定するのが最 も好ましい。  However, the HRT of the solubilization tank 2 is preferably set to 12 to 72 hours, more preferably to 18 to 48 hours, and most preferably to 20 to 36 hours as in the fifth embodiment. Is also preferred.
尚、 汚泥を可溶化するための可溶化酵素を産生させる微生物としては、 好熱菌、 特に実施形態 1に開示した各種のバチルス (Bacillus)属細菌ゃジォバチルス (Qsohae ilks)属細菌を使用するのが好ましい。  In addition, as a microorganism that produces a solubilizing enzyme for solubilizing sludge, a thermophilic bacterium, in particular, various Bacillus (Bacillus) genus bacteria disclosed in Embodiment 1 and ゃ diobacillus (Qsohae ilks) bacterium are used. Is preferred.
また、 可溶化処理の際の温度は実施形態 1と同様に 5 0〜9 0 °Cの温度範囲が望 ましく、 バチルス属細菌のような好気性好熱菌を用いる場合には、 5 5〜7 0 °Cの 温度範囲に設定するのが好ましく、 特に 6 0〜6 5 °Cの範囲がより好ましい。 さら に可溶化処理の際の p Hも実施形態 1と同様に p H 6〜 9の範囲、 好ましくは?〜 8の範囲になるように設定する。  Further, the temperature for the solubilization treatment is preferably in a temperature range of 50 to 90 ° C. as in Embodiment 1, and when an aerobic thermophilic bacterium such as Bacillus bacterium is used, 55 The temperature is preferably set to a temperature range of 70 to 70 ° C, and more preferably a temperature range of 60 to 65 ° C. Further, the pH at the time of the solubilization treatment is also in the range of pH 6 to 9 as in Embodiment 1, preferably? Set to be in the range of ~ 8.
(実施形態 13)  (Embodiment 13)
本実施形態においても、 実施形態 12と同様に可溶化槽 2の後段に硝化槽 10が設 けられているが、 その硝化槽 10での処理後の汚泥が図 14に示すように嫌気ネ曹 4へ 返送され、 この点で無酸素槽 6へ返送していた実施形態 12の場合と相違する。  In this embodiment, as in the twelfth embodiment, the nitrification tank 10 is provided downstream of the solubilization tank 2, and the sludge treated in the nitrification tank 10 is subjected to anaerobic sodium carbonate as shown in FIG. This is different from the case of the twelfth embodiment in which it is returned to the oxygen-free tank 6.
嫌気槽 2での嫌気処理、 無酸素槽 6での脱窒処理、 曝気槽 13での硝化処理、 沈殿 槽 8での固液分離、 可溶化槽 2での可溶化処理の工程は、 実施形態 10と同じであり 、 その説明は省略する。 The anaerobic treatment in the anaerobic tank 2, the denitrification treatment in the anoxic tank 6, the nitrification treatment in the aeration tank 13, the solid-liquid separation in the precipitation tank 8, and the solubilization treatment in the solubilization tank 2 are described in the embodiment. Same as 10 The description is omitted.
可溶ィ匕槽 2の H R Tは、 実施形態 5と同様に 12〜72時間に設定するのが好ましく 、 18〜48時間に設定するのがより好ましく、 20〜36時間に設定するのが最も好まし い。  The HRT of the fusible tank 2 is preferably set to 12 to 72 hours, more preferably to 18 to 48 hours, and most preferably to 20 to 36 hours, as in the fifth embodiment. Better.
本実施形態においても、 実施形態 12と同様に、 硝化槽 10へは、 沈殿槽 8から汚 泥の供給が必要となる。  Also in this embodiment, similarly to Embodiment 12, the supply of sludge from the settling tank 8 to the nitrification tank 10 is required.
尚、 汚泥を可溶化するための可溶化酵素を産生させる微生物としては、 好熱菌、 特に実施形態 1に開示した各種のバチルス (Bacillus)属細菌ゃジォバチルス (Qeobae illas)属細菌を使用するのが好ましい。  In addition, as a microorganism that produces a solubilizing enzyme for solubilizing sludge, thermophilic bacteria, in particular, various Bacillus genus bacteria disclosed in Embodiment 1 ゃ Diobacillus (Qeobae illas) genus bacteria may be used. Is preferred.
また、 可溶化処理の際の温度は実施形態 1と同様に 5 0〜 9 0 °Cの温度範囲が望 ましく、 バチルス属細菌のような好気性好熱菌を用いる場合には、 5 5〜7 0 °Cの 温度範囲に設定するのが好ましく、 特に 6 0〜6 5 °Cの範囲がより好ましい。 さら に可溶化処理の際の p Hも実施形態 1と同様に p H 6 ~ 9の範囲、 好ましくは 7〜 8の範囲になるように設定する。  Further, the temperature at the time of the solubilization treatment is desirably in the temperature range of 50 to 90 ° C. as in Embodiment 1, and when an aerobic thermophilic bacterium such as a Bacillus bacterium is used, 55 The temperature is preferably set to a temperature range of 70 to 70 ° C, and more preferably a temperature range of 60 to 65 ° C. Further, the pH at the time of the solubilization treatment is also set to be in the range of pH 6 to 9, preferably 7 to 8, as in the first embodiment.
(実施形態 14)  (Embodiment 14)
本実施形態の有機性廃水の処理装置は、 図 15に示すように、 反応槽 1と、 可溶化 槽 2と、 貯留槽 3とで構成されている。 反応槽 1では実施形態 1と同様に回分式に 有機性廃水の処理がなされる。  As shown in FIG. 15, the organic wastewater treatment apparatus of the present embodiment includes a reaction tank 1, a solubilization tank 2, and a storage tank 3. In the reaction tank 1, the treatment of the organic wastewater is performed batchwise as in the first embodiment.
本実施形態においては、 図 16に示すように、 攪拌による嫌気処理と曝気による好 気処理の工程が 3回ずつ繰り返され、 その後に、 曝気の停止による沈殿、 固液分離、 可溶化処理の工程が循環してなされることになる。 嫌気処理と好気処理の繰り返し 工程、 沈殿、 固液分離の工程は反応槽 1でなされ、 可溶化処理の工程は可溶化槽 2 でなされる。  In this embodiment, as shown in FIG. 16, the process of anaerobic treatment by agitation and the process of aerobic treatment by aeration are repeated three times, and thereafter, the steps of precipitation, solid-liquid separation, and solubilization by stopping the aeration are performed. Is circulated. The process of repetition of anaerobic and aerobic treatment, precipitation, and solid-liquid separation are performed in the reaction tank 1, and the solubilization process is performed in the solubilization tank 2.
原水の流入受け入れから処理水の排出の一連の廃水処理の回分処理は、 1日複数 回 (たとえば 2〜4回) 行なうように各工程の処理時間を調整することが可能であ るが、 廃水の性状や量等によっては 1日に 1回程度、 或いは 3日に 2回程度の回分 処理を行なうように各工程の処理時間が調整されていてもよい。 The batch treatment of a series of wastewater treatments, from the inflow of raw water to the discharge of treated water, can be performed several times a day (for example, 2 to 4 times), and the treatment time of each process can be adjusted. About once a day or about twice a day depending on the properties and quantity of The processing time of each step may be adjusted so as to perform the processing.
廃水処理の工程の時間は、 たとえば流入 60分、 嫌気 60分、 好気 70分、 嫌気 30 分、 好気 80分、 嫌気 20分、 好気 10分、 沈殿 40分、 排出 40分とされている。  The duration of the wastewater treatment process is, for example, inflow 60 minutes, anaerobic 60 minutes, aerobic 70 minutes, anaerobic 30 minutes, aerobic 80 minutes, anaerobic 20 minutes, aerobic 10 minutes, sedimentation 40 minutes, and discharge 40 minutes. I have.
本実施形態においては、 好気処理工程で硝化が行われ、 嫌気処理工程で脱窒処理 が行われる。  In the present embodiment, nitrification is performed in the aerobic treatment step, and denitrification treatment is performed in the anaerobic treatment step.
可溶化処理後の可溶化液は、 第一の (最初の) 好気処理工程で反応槽 2に返送さ れる。 その返送のタイミングは第一の好気処理工程の処理時間との関係で定められ るが、 曝気停止の 3時間から 30分前、 好ましくは 1時間前から 30分前とする。 本実施形態では、 可溶化槽 2の後段に貯留槽 3が設けられているので、 可溶化槽 2で処理された可溶化液を貯留槽 3で一旦貯留することで、 第一の好気処理工程で 反応槽 2へ可溶化液を返送するタイミングゃ量等を容易に調整することができるの で好ましい。  The solubilized liquid after the solubilization treatment is returned to the reaction tank 2 in the first (first) aerobic treatment step. The timing of the return is determined in relation to the processing time of the first aerobic treatment step, and is set to 3 to 30 minutes before the aeration stop, preferably 1 to 30 minutes. In the present embodiment, since the storage tank 3 is provided after the solubilization tank 2, the first aerobic treatment is performed by temporarily storing the solubilized liquid treated in the solubilization tank 2 in the storage tank 3. This is preferable because the timing and amount of returning the solubilized solution to the reaction tank 2 in the process can be easily adjusted.
可溶化槽 2の H R Tは、実施形態 1と同様に 12〜72時間が好ましく、 18〜48時間 がより好ましく、 20〜36時間が最も好ましい。  The HRT of the solubilization tank 2 is preferably 12 to 72 hours, more preferably 18 to 48 hours, and most preferably 20 to 36 hours, as in the first embodiment.
汚泥を可溶化するための可溶化酵素を産生させる微生物としては、 好熱菌、 特に 実施形態 1に閧示した各種のバチルス (Bacillvs)属細菌ゃジォバチルス (Mmd s) 属細菌を使用するのが好ましい。  As a microorganism that produces a solubilizing enzyme for solubilizing sludge, it is preferable to use a thermophilic bacterium, in particular, a bacterium belonging to the genus Bacillus (Mmds) belonging to the genus Bacillvs described in Embodiment 1. preferable.
また、 可溶化処理の際の温度は実施形態 1と同様に 5 0〜 9 0 °Cの温度範囲が望 ましく、 バチルス属細菌のような好気性好熱菌を用いる場合には、 5 5〜7 0 °Cの 温度範囲に設定するのが好ましく、 特に 6 0〜6 5 °Cの範囲がより好ましい。 さら に可溶化処理の際の p Hも実施形態 1と同様に p H 6〜 9の範囲、 好ましくは?〜 8の範囲になるように設定する。  Further, the temperature at the time of the solubilization treatment is desirably in the temperature range of 50 to 90 ° C. as in Embodiment 1, and when an aerobic thermophilic bacterium such as a Bacillus bacterium is used, 55 The temperature is preferably set to a temperature range of 70 to 70 ° C, and more preferably a temperature range of 60 to 65 ° C. Further, the pH at the time of the solubilization treatment is also in the range of pH 6 to 9 as in Embodiment 1, preferably? Set to be in the range of ~ 8.
(実施形態 15)  (Embodiment 15)
本実施形態の有機性廃水の処理装置は、 図 17に示すように、 反応槽 1の後段に貯 留槽 3が設けられ、 さらにその後段に可溶化槽 2が設けられている。 本実施形態で は、 硝化, 脱窒処理後の汚泥が一旦貯留槽 3に貯留され、 可溶化処理すべき必要量 の汚泥が可溶化槽 2へ供給される。 As shown in FIG. 17, the organic wastewater treatment apparatus of the present embodiment is provided with a storage tank 3 at the subsequent stage of the reaction tank 1 and a solubilization tank 2 at the subsequent stage. In the present embodiment, the sludge after the nitrification and denitrification treatment is temporarily stored in the storage tank 3, and the required amount to be solubilized Sludge is supplied to the solubilization tank 2.
このように可溶化処理すべき必要量の汚泥のみを可溶化槽 2へ供給しておくこと で、好気処理工程へ返送する可溶ィヒ液の量も事前に調整しておくことが可能となる。 嫌気処理と好気処理の工程が繰り返され、 その後に、 沈殿、 固液分離がなされる 点は実施形態 14と同様である。  By supplying only the required amount of sludge to be solubilized to the solubilization tank 2 in this way, it is possible to adjust the amount of soluble liquor to be returned to the aerobic treatment process in advance. It becomes. The anaerobic process and the aerobic process are repeated, followed by precipitation and solid-liquid separation, as in the fourteenth embodiment.
可溶化槽 2の H R Tは、実施形態 1と同様に 12〜72時間が好ましく、 18〜48時間 がより好ましく、 20〜36時間が最も好ましい。  The HRT of the solubilization tank 2 is preferably 12 to 72 hours, more preferably 18 to 48 hours, and most preferably 20 to 36 hours, as in the first embodiment.
汚泥を可溶化するための可溶化酵素を産生させる微生物としては、 好熱菌、 特に 実施形態 1に開示した各種のバチルス (Bacillus^ 属鉀菌やジォバチルス (Geobacillus) 属細菌を使用するのが好ましい。  As a microorganism that produces a solubilizing enzyme for solubilizing sludge, it is preferable to use thermophilic bacteria, particularly various Bacillus (Bacillus ^ genus bacteria and Geobacillus genus bacteria disclosed in Embodiment 1). .
また、 可溶ィ匕処理の際の温度は実施形態 1と同様に 5 0〜9 0 °Cの温度範囲が望 ましく、 バチルス属細菌のような好気性好熱菌を用いる場合には、 5 5〜7 0 °Cの 温度範囲に設定するのが好ましく、 特に 6 0〜6 5 °Cの範囲がより好ましい。 さら に可溶化処理の際の p Hも実施形態 1と同様に p H 6〜 9の範囲、 好ましくは 7〜 8の範囲になるように設定する。  Further, the temperature at the time of the fusi-dani treatment is preferably in the temperature range of 50 to 90 ° C. as in Embodiment 1, and when an aerobic thermophilic bacterium such as Bacillus bacterium is used, It is preferable to set the temperature in the range of 55 to 70 ° C, more preferably in the range of 60 to 65 ° C. Further, the pH at the time of the solubilization treatment is set to be in the range of 6 to 9, preferably 7 to 8, as in the first embodiment.
(実施形態 16)  (Embodiment 16)
本実施形態は、 上記硝化, 脱窒等の生物処理によって発生する汚泥にリンが含ま れている場合に、 そのリンを除去する手段を備えた実施形態である。  This embodiment is an embodiment provided with a means for removing phosphorus when sludge generated by biological treatment such as nitrification or denitrification contains phosphorus.
本実施形態では、 上記各実施形態のような沈殿槽 8の後段側で、 ポリ塩ィ匕アルミ ニゥム等の凝集剤が添加されて凝集沈殿によってリンが除去され、 或いは濾過材を 設けて凝集濾過によりリンが除去される。  In the present embodiment, a coagulant such as polychlorinated aluminum is added to remove phosphorus by coagulation and sedimentation on the downstream side of the precipitation tank 8 as in each of the above embodiments, or coagulation filtration is performed by providing a filter material. Removes phosphorus.
上記各実施形態のうち、 嫌気処理工程と好気処理工程 (曝気処理工程) を備えた 実施形態では、 処理水や汚泥にリンが含まれていると、 そのリンは嫌気処理工程で 汚泥中の微生物から放出され、 好気処理工程で微生物に取り込まれる。 ところが、 このようにリンの放出と取り込みがなされていても、 汚泥の可溶化処理を組み込む とリンを含む処理液が系外に排出されるおそれもあり、 嫌気処理工程と好気処理ェ 程との双方によりリンの放出と取り込みをなす機能の実効が図れない。 In the above-mentioned embodiments, in the embodiment having the anaerobic treatment step and the aerobic treatment step (aeration treatment step), if the treated water or the sludge contains phosphorus, the phosphorus is contained in the sludge in the anaerobic treatment step. Released from microorganisms and taken up by microorganisms in the aerobic treatment process. However, even if phosphorus is released and taken up in this way, if the sludge solubilization treatment is incorporated, the treatment liquid containing phosphorus may be discharged out of the system. The effect of releasing and taking in phosphorus cannot be achieved due to both of the above steps.
そこで、 上記のようなリン除去手段を設けることで、 処理水や汚泥に含まれてい たリンを、 積極的に除去することができる。 これは、 連続処理及び回分処理の両方 に適用できる。  Therefore, by providing the phosphorus removing means as described above, the phosphorus contained in the treated water or sludge can be positively removed. This applies to both continuous and batch processing.
(実施形態 17)  (Embodiment 17)
本実施形態は、 リン除去手段として、 上記凝集剤等を用いる手段に変えて、 沈殿 槽 8の後段側に、 リン分離手段を備えたリン放出槽を設け、 沈殿槽 8で分離された 汚泥を、 そのリン放出槽でたとえば嫌気状態、 加熱状態等の汚泥からリンが放出す る状態にさらしてリンを放出させ、 放出されたリンをリン放出汚泥とリン溶出液に 分離してリン放出液に凝集剤等を添加することにより除去しうるように構成されて いる。 そして、 リン放出汚泥は可溶化処理が施される。  In the present embodiment, instead of the means using the flocculant or the like as the phosphorus removing means, a phosphorus release tank provided with a phosphorus separating means is provided at the subsequent stage of the sedimentation tank 8, and the sludge separated in the sedimentation tank 8 is removed. In the phosphorus release tank, the phosphorus is released by exposing it to a state in which phosphorus is released from sludge, for example, in an anaerobic state or a heated state, and the released phosphorus is separated into a phosphorus release sludge and a phosphorus eluate to form a phosphorus release liquid It is configured so that it can be removed by adding a coagulant or the like. And the phosphorus release sludge is subjected to solubilization.
従って、 本実施形態においても、 沈殿槽 8の前段側には、 上記各実施形態のよう な種々の槽を具備させることができる。 これは連続処理及び回分処理の両方に適用 できる。  Therefore, also in the present embodiment, various tanks as in the above-described embodiments can be provided on the upstream side of the precipitation tank 8. This applies to both continuous and batch processing.
(実施形態 18)  (Embodiment 18)
本実施形態においては、 鉄板、 鉄の粒子、 スチールウール等を、 上記各実施形態 の反応槽 1、 曝気槽 13、 硝化槽 10、 可溶化槽 2、 無酸素槽 6等に投入し、 リン成分 を鉄に付着させてリンを除去する実施形態である。  In the present embodiment, iron plate, iron particles, steel wool, etc. are charged into the reaction tank 1, aeration tank 13, nitrification tank 10, solubilization tank 2, oxygen-free tank 6, etc. Is an embodiment in which phosphorus is removed by adhering to iron.
本実施形態では、 上記実施形態 16のような凝集剤を使用することなく、 また上記 実施形態 17のようなリン放出のためのリン放出槽を別途設けることなく、処理装置 に既設の反応槽 1、 曝気槽 13、 可溶化槽 2、 無酸素槽 6等に鉄素材を投入するだけ で、 その鉄素材にリン成分を付着させて容易にリンを除去することができる。 (その他の実施形態)  In the present embodiment, the existing reaction tank 1 is installed in the processing apparatus without using a coagulant as in the above-described Embodiment 16 and without separately providing a phosphorus release tank for releasing phosphorus as in the above-described Embodiment 17. By simply charging the iron material into the aeration tank 13, the solubilization tank 2, the oxygen-free tank 6, etc., the phosphorus component can be attached to the iron material to easily remove the phosphorus. (Other embodiments)
尚、 上記実施形態 3、 4、 5等においては、 被処理液として、 食品工場から排出 される残飯をガス分解し、 発酵させた酸発酵液を用いたが、 被処理の種類はこれに 限定されるものでななく、 その種類は問わない。 また、 該実施形態 3、 4、 5のように、 発酵液貯留槽 3を設けることは本発明に 必須の条件ではなく、 たとえば図 18に示すように、 発酵液貯留槽 3がなく、 嫌気槽 4、 一次曝気槽 5、 無酸素槽 6、 二次曝気槽 7、 沈殿槽 8、 及び可溶化槽 2を具備 する処理装置を用いることも可能である。 たとえば下水処理場からの下水のみを処 理する場合には、 この図 18に示す処理装置を好適に使用することができる。 In the above-described Embodiments 3, 4, and 5, etc., the acid-fermented liquid obtained by gas-decomposing the remaining rice discharged from the food factory and fermenting was used as the liquid to be treated, but the type of the substance to be treated is limited to this It doesn't matter what the type. Also, the provision of the fermentation liquid storage tank 3 is not an essential condition for the present invention as in Embodiments 3, 4, and 5, for example, as shown in FIG. 18, the fermentation liquid storage tank 3 is not provided, and the anaerobic tank is not provided. 4. It is also possible to use a treatment apparatus equipped with a primary aeration tank 5, an oxygen-free tank 6, a secondary aeration tank 7, a precipitation tank 8, and a solubilization tank 2. For example, when treating only sewage from a sewage treatment plant, the treatment apparatus shown in FIG. 18 can be suitably used.
さらに、 可溶ィ匕槽 2から排ガスが排出されることがあるが、 このような排ガスを 上記実施形態の硝化槽ゃ曝気槽に導入することで、 排ガスの臭気を除去することが できるとともに、 高温の排ガスを硝化槽ゃ曝気槽に導入することで、 各槽の温度を 通常の空気による曝気よりも高くでき、 それによつて微生物の活性を高め、 その結 果、 処理効率を上げることができるので好ましい。  Furthermore, exhaust gas may be discharged from the fusible tank 2. By introducing such exhaust gas into the nitrification tank and the aeration tank of the above embodiment, it is possible to remove the odor of the exhaust gas, By introducing high-temperature exhaust gas into the nitrification tank and the aeration tank, the temperature of each tank can be higher than that of normal air aeration, thereby increasing the activity of microorganisms and, as a result, increasing the processing efficiency. It is preferred.
さらに、 処理すべき有機性廃水の種類も問わない。  Furthermore, the type of organic wastewater to be treated does not matter.

Claims

請 求 の 範 囲 The scope of the claims
1 . 有機性廃水を生物学的に処理する方法であって、 有機性廃水を硝化及び脱窒処 理した後、 硝化及び脱窒処理により発生した汚泥を可溶化することを特徴とする有 機性廃水の処理方法。 1. A method for biologically treating organic wastewater, which comprises nitrifying and denitrifying organic wastewater and then solubilizing sludge generated by nitrification and denitrification. Wastewater treatment method.
2 . 有機性廃水の硝化及ぴ脱窒処理が、 反応槽 1内で回分式に行われる請求項 1記 載の有機性廃水の処理方法。  2. The method for treating organic wastewater according to claim 1, wherein the nitrification and denitrification of the organic wastewater are performed batchwise in the reaction tank 1.
3 . 硝化処理が、 曝気によってなされ、 曝気の停止によって脱窒処理がなされる請 求項 2記載の有機性廃水の処理方法。  3. The method for treating organic wastewater according to claim 2, wherein the nitrification treatment is performed by aeration, and the denitrification treatment is performed by stopping the aeration.
4 . 曝気を停止する 3時間〜 30分前に、 可溶化処理液が反応槽 1へ返送される請求 項 2又は 3記載の有機性廃水の処理方法。 4. The method for treating organic wastewater according to claim 2 or 3, wherein the solubilized solution is returned to the reaction tank 1 from 3 hours to 30 minutes before stopping the aeration.
5 . 曝気を停止する 1時間〜 30分前に、 可溶化処理液が反応槽 1へ返送される請求 項 2又は 3記載の有機性廃水の処理方法。  5. The method for treating organic wastewater according to claim 2, wherein the solubilized solution is returned to the reaction tank 1 from 1 hour to 30 minutes before stopping the aeration.
6 . 有機性廃水の硝化及び脱窒処理が、 嫌気処理工程、 一次曝気工程、 無酸素槽で の脱窒工程、二次曝気工程によってなされる請求項 1記載の有機性廃水の処理方法。 6. The method for treating organic wastewater according to claim 1, wherein the nitrification and denitrification treatment of the organic wastewater is performed by an anaerobic treatment step, a primary aeration step, a denitrification step in an oxygen-free tank, and a secondary aeration step.
7 . 有機性廃水の硝化及び脱窒処理が、 無酸素槽での脱窒工程、 嫌気処理工程、 互 換槽での処理工程、 無酸素槽での脱窒工程、 曝気工程によってなされる請求項 1記 載の有機性廃水の処理方法。 7. The nitrification and denitrification treatment of organic wastewater is performed by a denitrification process in an anoxic tank, an anaerobic treatment step, a treatment step in an exchange tank, a denitrification step in an anoxic tank, and an aeration step. The organic wastewater treatment method described in 1.
8 . 可溶化処理後に硝化がなされる請求項 6又は 7記載の有機性廃水の処理方法。 9 . 有機性廃水の硝化及び脱窒処理が、 嫌気処理工程、 無酸素槽での脱窒工程、 曝 気工程によってなされるとともに、 可溶化処理後の処理液の溶存酸素を低減する請 求項 1記載の有機性廃水の処理方法。  8. The method for treating organic wastewater according to claim 6, wherein nitrification is performed after the solubilization treatment. 9. A request for nitrification and denitrification of organic wastewater by an anaerobic treatment step, a denitrification step in an anoxic tank, and an aeration step, and to reduce the dissolved oxygen in the treatment liquid after the solubilization treatment. The method for treating organic wastewater according to 1.
1 0 . 有機性廃水の硝化及び脱窒処理が、 嫌気処理工程、 無酸素槽での脱窒工程、 曝気工程によってなされる請求項 1記載の有機性廃水の処理方法。  10. The method for treating organic wastewater according to claim 1, wherein the nitrification and denitrification treatment of the organic wastewater is performed by an anaerobic treatment step, a denitrification step in an anoxic tank, and an aeration step.
1 1 . 可溶化処理前に汚泥が濃縮される請求項 1乃至 10のいずれかに記載の有機性 廃水の処理方法。 11. The organic matter according to any one of claims 1 to 10, wherein the sludge is concentrated before the solubilization treatment. Wastewater treatment method.
1 2 .汚泥の可溶化が好気性好熱菌によってなされる請求項 1乃至 11のいずれかに 記載の有機性廃水の処理方法。  12. The method for treating organic wastewater according to any one of claims 1 to 11, wherein the solubilization of the sludge is performed by an aerobic thermophilic bacterium.
1 3 . 好気性好熱菌がバチルス (Bacillus)属微生物である請求項 12記載の有機性 廃水の処理方法。  13. The method for treating organic wastewater according to claim 12, wherein the aerobic thermophilic bacterium is a microorganism of the genus Bacillus.
1 4 . 硝化及び脱窒処理により発生した汚泥中のリンを除去する工程を具備する請 求項 1乃至 13のいずれかに記載の有機性廃水の処理方法。  14. The method for treating organic wastewater according to any one of claims 1 to 13, further comprising a step of removing phosphorus in sludge generated by nitrification and denitrification.
1 5 . 有機性廃水を生物学的に処理する装置であって、 有機性廃水を硝化及び脱窒 する手段と、 硝化、 脱窒により発生した汚泥を可溶化する可溶化槽を具備すること を特徴とする有機性廃水の処理装置。  15. An apparatus for biologically treating organic wastewater, comprising: means for nitrifying and denitrifying organic wastewater; and a solubilization tank for solubilizing sludge generated by nitrification and denitrification. Organic wastewater treatment equipment characterized.
1 6 . 有機性廃水を硝化及び脱窒する手段が、 回分式の反応槽 1で硝化、 脱窒する 手段である請求項 15記載の有機性廃水の処理装置。  16. The organic wastewater treatment apparatus according to claim 15, wherein the means for nitrifying and denitrifying the organic wastewater is a means for nitrifying and denitrifying in the batch type reaction tank 1.
1 7 . 有機性廃水を硝化及び脱窒する手段が、 嫌気槽 4、 一次曝気槽 5、 無酸素槽 6、 二次曝気槽 7によつて硝化、 脱窒する手段である請求項 15記載の有機性廃水の 処理装置。  17. The method according to claim 15, wherein the means for nitrifying and denitrifying the organic wastewater is means for nitrifying and denitrifying by the anaerobic tank 4, the primary aeration tank 5, the oxygen-free tank 6, and the secondary aeration tank 7. Organic wastewater treatment equipment.
1 8 . 有機性廃水を硝化及び脱窒する手段が、 前無酸素槽 11、 嫌気槽 4、 互換槽 12、 無酸素槽 6、 曝気槽 13によって硝化、 脱窒する手段である請求項 15記載の有機性 廃水の処理装置。  18. The method according to claim 15, wherein the means for nitrifying and denitrifying the organic wastewater is a means for nitrifying and denitrifying by the former oxygen-free tank 11, the anaerobic tank 4, the compatible tank 12, the oxygen-free tank 6, and the aeration tank 13. Organic wastewater treatment equipment.
1 9 . 有機性廃水を硝化及び脱窒する手段が、 嫌気槽 4、 無酸素槽 6、 曝気槽 13に よって硝化、 脱窒する手段であり、 可溶化処理後の処理液の溶存酸素を低減する溶 存酸素低減槽 16が設けられている請求項 15記載の有機性廃水の処理装置。  1 9. Means for nitrifying and denitrifying organic wastewater are means for nitrifying and denitrifying by anaerobic tank 4, anoxic tank 6, and aeration tank 13, reducing the dissolved oxygen in the treated liquid after solubilization. The organic wastewater treatment apparatus according to claim 15, further comprising a dissolved oxygen reduction tank (16).
2 0 . 有機性廃水を硝化及び脱窒する手段が、 嫌気槽 4、 無酸素槽 6、 曝気槽 13に よって硝化、 脱窒する手段である請求項 15記載の有機性廃水の処理装置。  20. The organic wastewater treatment apparatus according to claim 15, wherein the means for nitrifying and denitrifying the organic wastewater is a means for nitrifying and denitrifying by the anaerobic tank 4, the anoxic tank 6, and the aeration tank 13.
2 1 . 硝化及ぴ脱窒処理により発生した汚泥中のリンを除去する手段が具備されて いる請求項 15乃至 20のいずれかに記載の有機性廃水の処理装置。  21. The organic wastewater treatment apparatus according to any one of claims 15 to 20, further comprising means for removing phosphorus in sludge generated by nitrification and denitrification.
PCT/JP2003/010910 2003-08-22 2003-08-28 Method and apparatus for treating organic waste WO2005019121A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003261784A AU2003261784A1 (en) 2003-08-22 2003-08-28 Method and apparatus for treating organic waste

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-208429 2003-08-22
JP2003208429A JP2005066381A (en) 2003-08-22 2003-08-22 Method and apparatus for treating organic waste water

Publications (1)

Publication Number Publication Date
WO2005019121A1 true WO2005019121A1 (en) 2005-03-03

Family

ID=34208977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010910 WO2005019121A1 (en) 2003-08-22 2003-08-28 Method and apparatus for treating organic waste

Country Status (6)

Country Link
JP (1) JP2005066381A (en)
KR (1) KR100546991B1 (en)
CN (1) CN1326786C (en)
AU (1) AU2003261784A1 (en)
TW (1) TW200516056A (en)
WO (1) WO2005019121A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106916756A (en) * 2017-04-10 2017-07-04 北京绿安创华环保科技股份有限公司 Fungal bacterial strain, microbial bacterial agent, stalk soil-repairing agent and its application
EP2011579B1 (en) * 2006-03-31 2021-05-12 Toyota Jidosha Kabushiki Kaisha Method of treating biomass, compost, mulching material for livestock and agent for treating biomass

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5315587B2 (en) * 2005-12-27 2013-10-16 栗田工業株式会社 Apparatus and method for treating wastewater containing organic matter
EA024049B1 (en) 2009-12-01 2016-08-31 Цзиньминь Ли Sludge treatment method and apparatus and application of said method and apparatus for wastewater bio-treatment
KR101126871B1 (en) * 2010-02-05 2012-03-23 금강엔지니어링 주식회사 Advanced treatment system of wastewater having a plasma discharging tank
TWI555708B (en) * 2011-01-17 2016-11-01 財團法人工業技術研究院 System and method for treating simultaneously wastewater containing organic and inorganic pollutants
KR101456395B1 (en) 2012-04-03 2014-10-31 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Cubic boron nitride sintered body tool
US11377390B2 (en) 2019-12-16 2022-07-05 Sumitomo Electric Industries, Ltd. Cubic boron nitride sintered material
WO2021124400A1 (en) 2019-12-16 2021-06-24 住友電気工業株式会社 Cubic boron nitride sintered compact
JP6940110B1 (en) 2019-12-27 2021-09-22 住友電工ハードメタル株式会社 Cubic boron nitride sintered body and its manufacturing method
EP4190470A4 (en) 2020-07-31 2024-01-03 Sumitomo Electric Industries Cubic boron nitride sintered body and cutting tool including same
KR20230043853A (en) 2020-07-31 2023-03-31 스미토모덴키고교가부시키가이샤 Cubic boron nitride sintered body and cutting tool containing the same
CN116056823A (en) 2020-07-31 2023-05-02 住友电气工业株式会社 Cubic boron nitride sintered body and cutting tool comprising same
CN116348625A (en) 2020-11-04 2023-06-27 住友电气工业株式会社 Cubic boron nitride sintered body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000263091A (en) * 1999-03-19 2000-09-26 Hitachi Kiden Kogyo Ltd Sewage and sludge treatment method
JP2003053384A (en) * 2001-08-23 2003-02-25 Nippon Steel Corp Method for removing nitrogen and phosphorus from waste water and facility therefor
JP2003071487A (en) * 2001-08-30 2003-03-11 Ebara Corp Method and apparatus for treating organic wastewater

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716595A (en) * 1993-06-30 1995-01-20 Meidensha Corp Operation control method in modified method for circulating active sludge
JP3845515B2 (en) * 1998-06-23 2006-11-15 株式会社タクマ System and method for removing nitrogen and phosphorus in waste water
JP3212969B2 (en) * 1999-05-18 2001-09-25 神鋼パンテツク株式会社 Method and apparatus for treating organic wastewater
JP3955478B2 (en) * 2002-01-25 2007-08-08 株式会社荏原製作所 Nitrogen and phosphorus-containing wastewater treatment method and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000263091A (en) * 1999-03-19 2000-09-26 Hitachi Kiden Kogyo Ltd Sewage and sludge treatment method
JP2003053384A (en) * 2001-08-23 2003-02-25 Nippon Steel Corp Method for removing nitrogen and phosphorus from waste water and facility therefor
JP2003071487A (en) * 2001-08-30 2003-03-11 Ebara Corp Method and apparatus for treating organic wastewater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2011579B1 (en) * 2006-03-31 2021-05-12 Toyota Jidosha Kabushiki Kaisha Method of treating biomass, compost, mulching material for livestock and agent for treating biomass
CN106916756A (en) * 2017-04-10 2017-07-04 北京绿安创华环保科技股份有限公司 Fungal bacterial strain, microbial bacterial agent, stalk soil-repairing agent and its application
CN106916756B (en) * 2017-04-10 2020-05-19 北京绿安创华环保科技有限公司 Fungus strain, microbial agent, straw soil remediation agent and application thereof

Also Published As

Publication number Publication date
AU2003261784A1 (en) 2005-03-10
CN1326786C (en) 2007-07-18
CN1688513A (en) 2005-10-26
TW200516056A (en) 2005-05-16
KR20050088258A (en) 2005-09-05
JP2005066381A (en) 2005-03-17
KR100546991B1 (en) 2006-01-26

Similar Documents

Publication Publication Date Title
Hongwei et al. Nitrite accumulation during the denitrification process in SBR for the treatment of pre-treated landfill leachate
JP3821011B2 (en) Wastewater treatment method and treatment apparatus
JPS637839B2 (en)
WO2005019121A1 (en) Method and apparatus for treating organic waste
JPH09122682A (en) Method for treating waste water
JP2000093998A (en) Method and apparatus for treating high-concentration waste water
JPH05277486A (en) Anaerobic treatment of organic waste water
KR20020079029A (en) A zero-sludge -discharging membrane bioreactor(Z-MBR) activated sludge process
JP2001162297A (en) Method and apparatus for treating organic waste water
JP2002361279A (en) Method and apparatus for treating waste water
JP3900796B2 (en) Method and apparatus for treating organic wastewater
JP3645513B2 (en) Organic wastewater treatment method and apparatus
KR20100102818A (en) Advanced wastewater treatment apparatus for water reuse with sludge reduction in the process and wastewater treatment method using the same
JP2003334589A (en) Wastewater treatment method and treatment apparatus therefor
JP2002210489A (en) Treating method of waste water containing polyethylene glycol and apparatus therefor
KR100440811B1 (en) Method and apparatus of treating organic waste water
JP2003039098A (en) Acclimation method for microorganisms and sludge volume reduction method using the same
JP2002136989A (en) Method and apparatus for treating organic waste liquid
JP2006075779A (en) Sludge volume reduction device and method, and organic waste water treatment system
KR100378228B1 (en) System for treating sewage and wastewater
JP2005211715A (en) Organic waste liquid treatment method and its treatment apparatus
JPH0483594A (en) Biological treatment of organic sewage
JPH047099A (en) Waste water treatment apparatus for simultaneously removing organic matter, nitrogen and phosphorus
JP3697900B2 (en) Wastewater treatment method and apparatus therefor
JP2003340485A (en) Method for treating organic waste water and apparatus therefor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1020037015380

Country of ref document: KR

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 20038242850

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase