JP2005116804A - Metal resistor and method for manufacturing the same - Google Patents

Metal resistor and method for manufacturing the same Download PDF

Info

Publication number
JP2005116804A
JP2005116804A JP2003349569A JP2003349569A JP2005116804A JP 2005116804 A JP2005116804 A JP 2005116804A JP 2003349569 A JP2003349569 A JP 2003349569A JP 2003349569 A JP2003349569 A JP 2003349569A JP 2005116804 A JP2005116804 A JP 2005116804A
Authority
JP
Japan
Prior art keywords
resistance
mass
temperature coefficient
metal resistor
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003349569A
Other languages
Japanese (ja)
Other versions
JP4238689B2 (en
Inventor
Toshiyuki Osako
敏行 大迫
Tetsushi Komukai
哲史 小向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003349569A priority Critical patent/JP4238689B2/en
Publication of JP2005116804A publication Critical patent/JP2005116804A/en
Application granted granted Critical
Publication of JP4238689B2 publication Critical patent/JP4238689B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal resistor several times higher in volume resistivity than conventional metal resistors such as Ni-Cr or Fe-Cr-Al alloys, high in precision or low in temperature coefficient of resistance, and excellent in heat resistance and corrosion resistance. <P>SOLUTION: The metal resistor comprises 10-15 mass% V, 12-16 mass% Al, 1-30 mass% Cr, and Fe as the rest substantially. The alloy for the metal resistor has a temperature coefficient of resistance of ≤200 ppm/°C in absolute value in the range of -25 to 125°C and exhibits a volume resistivity of ≥400 μΩcm. For the formation of a thin film metal resistor, the sputtering target of the same composition is used, the treatment chamber is evacuated to ≤1.0×10<SP>-4</SP>Pa, and sputtering is performed in an Ar atmosphere. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、薄膜抵抗素子などの薄膜抵抗体に用いられる金属抵抗材料に関する。   The present invention relates to a metal resistance material used for a thin film resistor such as a thin film resistance element.

金属抵抗体、金属薄膜抵抗体およびスパッタリングターゲットのような金属抵抗材料は、体積抵抗率が大きく、抵抗温度変化が小さく、また冷熱の繰り返しなどにも比較的強いことが要求される。この金属抵抗材料の中で、Ni−Cr系やFe−Cr−Al系の合金は、比較的大きな体積抵抗率を有し、かつ、抵抗温度係数(TCR)が小さく、耐熱性および耐食性にも優れていることから、電子部品用の薄膜抵抗体として広く用いられている。   Metal resistance materials such as metal resistors, metal thin film resistors, and sputtering targets are required to have a large volume resistivity, a small resistance temperature change, and a relatively strong resistance to repeated cold heat. Among these metal resistance materials, Ni-Cr-based and Fe-Cr-Al-based alloys have a relatively large volume resistivity, a small temperature coefficient of resistance (TCR), and are excellent in heat resistance and corrosion resistance. Since it is excellent, it is widely used as a thin film resistor for electronic parts.

しかし、Ni−Cr系やFe−Cr−Al系合金の体積抵抗率は最大でも150μΩcm程度である。体積抵抗率が比較的小さなこれらの合金で大きな抵抗を得るために、薄膜抵抗体では薄膜化やパターンの微細化などが必要となる。しかしながら、薄膜抵抗体では、薄膜化やパターンの微細化をすると、熱安定性や抵抗精度が悪化したり、定格電力が低下してしまうという問題点がある。   However, the volume resistivity of Ni—Cr and Fe—Cr—Al alloys is at most about 150 μΩcm. In order to obtain a large resistance with these alloys having a relatively small volume resistivity, it is necessary to reduce the thickness of the thin film resistor and make the pattern finer. However, when the thin film resistor is thinned or the pattern is miniaturized, there are problems that thermal stability and resistance accuracy are deteriorated and rated power is lowered.

以上の理由から、Ni−Cr系やFe−Cr−Al系合金の薄膜抵抗体で実現できる抵抗値にはおのずと限界があった。   For the above reasons, the resistance value that can be realized with a Ni—Cr-based or Fe—Cr—Al-based alloy thin film resistor is naturally limited.

最近になって、以下のような高い抵抗を有する材料が見出された。   Recently, materials having the following high resistance have been found.

1)室温で数千μΩcm程度の高抵抗を有するが、大きな負の抵抗温度係数を持ち、Feを主成分として、Vを26.9質量%、およびAlを14.2質量%含み、Fe3 AlのFeの一部をVで置換したホイスラー型の金属間化合物(Fe2 VAl)材料(非特許文献1参照)。 1) It has a high resistance of about several thousand μΩcm at room temperature, but has a large negative resistance temperature coefficient, containing Fe as a main component, 26.9% by mass of V, and 14.2% by mass of Al, Fe 3 A Heusler-type intermetallic compound (Fe 2 VAl) material obtained by substituting a part of Fe of Al with V (see Non-Patent Document 1).

2)低い抵抗温度係数を有するが、室温の比抵抗が200μΩcm程度であり、Feを主成分として、Vを7.9質量%、およびAlを14.1質量%含む金属間化合物(Fe2.7 0.3 Al)材料(非特許文献2参照)。 2) An intermetallic compound (Fe 2.7 V) having a low temperature coefficient of resistivity but having a specific resistance at room temperature of about 200 μΩcm and containing Fe as a main component, V of 7.9% by mass, and Al of 14.1% by mass. 0.3 Al) material (see Non-Patent Document 2).

しかし、これらのFe−V−Al材料を金属抵抗体として用いようとすると、比抵抗および抵抗温度係数において、それぞれ課題があるほか、耐酸化性および耐熱性が低く、よって、こららの材料からは高抵抗の小型電子部品が得られない。   However, when these Fe-V-Al materials are used as metal resistors, there are problems in specific resistance and resistance temperature coefficient, respectively, and oxidation resistance and heat resistance are low. Therefore, from these materials, However, high-resistance small electronic parts cannot be obtained.

以上の状況から、薄膜抵抗体の小型化および薄膜化において、高い比抵抗と低い抵抗温度係数を実現し、かつ、優れた耐熱性および耐食性を持つ金属抵抗材料が求められている。
Physical Review Letters,第79巻,1997年,p.1909−1912 Journal of Physics:condensed Matter,第12巻,2000年,p.1769−1779
From the above situation, there has been a demand for a metal resistance material that achieves a high specific resistance and a low temperature coefficient of resistance and has excellent heat resistance and corrosion resistance in miniaturization and thinning of thin film resistors.
Physical Review Letters, Vol. 79, 1997, p. 1909-1912 Journal of Physics: condensed Matter, Vol. 12, 2000, p. 1769-1779

本発明の目的は、Ni−Cr系やFe−Cr−Al系合金などの従来の金属系抵抗体の数倍の体積抵抗率と、精度の高いすなわち低い抵抗温度係数を持ち、かつ、優れた耐熱性および耐食性を示す金属抵抗体、特に薄膜抵抗体およびその製造方法を提供することにある。   The object of the present invention is to have a volume resistivity several times that of a conventional metal resistor such as a Ni-Cr-based or Fe-Cr-Al-based alloy, a highly accurate or low resistance temperature coefficient, and an excellent An object of the present invention is to provide a metal resistor exhibiting heat resistance and corrosion resistance, particularly a thin film resistor, and a method for producing the same.

本発明に係る金属抵抗体は、V:10〜15質量%、Al:12〜16質量%、Cr:1〜30質量%を含み、残部が実質的にFeからなる合金であり、−25〜125℃における抵抗温度係数の絶対値が200ppm/℃以下であり、かつ、体積抵抗率が400μΩcm以上である。   The metal resistor according to the present invention is an alloy containing V: 10 to 15% by mass, Al: 12 to 16% by mass, Cr: 1 to 30% by mass, and the balance being substantially Fe. The absolute value of the temperature coefficient of resistance at 125 ° C. is 200 ppm / ° C. or less, and the volume resistivity is 400 μΩcm or more.

本発明に係る金属抵抗体は、薄膜の形で有用である。   The metal resistor according to the present invention is useful in the form of a thin film.

本発明に係る薄膜の形の金属抵抗体、すなわち薄膜抵抗体を製造するには、スパッタリングが利用され、そのためのスパッタリングターゲットは、V:10〜15質量%、Al:12〜16質量%、Cr:1〜30質量%を含み、残部が実質的にFeからなる。   In order to manufacture a metal resistor in the form of a thin film according to the present invention, that is, a thin film resistor, sputtering is used, and sputtering targets therefor are: V: 10-15% by mass, Al: 12-16% by mass, Cr : 1 to 30% by mass, with the balance being substantially Fe.

本発明に係る薄膜抵抗体の製造方法は、前記スパッタリングターゲットを用い、スパッタ時に、チャンバー内部を1.0×10-4Pa以下まで排気した後、Ar雰囲気中でスパッタリングを行う。 In the method of manufacturing a thin film resistor according to the present invention, the sputtering target is used, and the inside of the chamber is evacuated to 1.0 × 10 −4 Pa or less during sputtering, and then sputtering is performed in an Ar atmosphere.

本発明による金属抵抗体は、従来のNi−Cr系およびFe−Cr−Al系合金体などと比べて、数倍の高い体積抵抗率を有し、抵抗温度係数が±200ppm/℃以下と高精度であり、かつ、耐熱性および耐食性に優れる。よって、本発明の金属抵抗体を用いることで、従来、実現が困難であった高抵抗の、すなわち、安定して抵抗が高い薄膜抵抗体を、容易に実現することができる。   The metal resistor according to the present invention has a volume resistivity several times higher than conventional Ni—Cr and Fe—Cr—Al alloys and the like, and the temperature coefficient of resistance is as high as ± 200 ppm / ° C. or less. It is accurate and has excellent heat resistance and corrosion resistance. Therefore, by using the metal resistor of the present invention, it is possible to easily realize a thin film resistor having a high resistance, that is, a stable and high resistance, which has conventionally been difficult to realize.

本発明者らは、前記目的を達するために、金属抵抗体に関して、材料組成および製造方法につき、鋭意研究を重ねた結果、特定の材料組成および成膜条件においてのみ、高い比抵抗および低い抵抗温度係数で、かつ、良好な耐熱性および耐食性を有する薄膜抵抗体が得られることを見出し、本発明を完成するに至った。   In order to achieve the above-mentioned object, the present inventors have conducted intensive research on the material composition and the manufacturing method of the metal resistor, and as a result, only at a specific material composition and film formation conditions, a high specific resistance and a low resistance temperature. It has been found that a thin film resistor having a coefficient and good heat resistance and corrosion resistance can be obtained, and the present invention has been completed.

以下、本発明に係る金属抵抗体、薄膜抵抗体、スパッタリングターゲット、およびこれらの製造方法について、抵抗温度係数、体積抵抗率、耐熱性、耐食性、信頼性、熱安定性・抵抗精度などの信頼性に関し、詳細に説明する。   Hereinafter, for the metal resistor, thin film resistor, sputtering target, and manufacturing method thereof according to the present invention, reliability such as resistance temperature coefficient, volume resistivity, heat resistance, corrosion resistance, reliability, thermal stability / resistance accuracy, etc. Will be described in detail.

本発明の金属抵抗体は、Cr:1〜30質量%、V:10〜15質量%、Al:12〜16質量%を含み、残部が実質的にFeからなる合金である。   The metal resistor of the present invention is an alloy containing Cr: 1 to 30% by mass, V: 10 to 15% by mass, Al: 12 to 16% by mass, and the balance being substantially made of Fe.

この組成のFe−V−Al−Cr系合金により、体積抵抗率がNi−Cr系の数倍と高く、かつ、抵抗温度係数が小さく、Ni−Cr系とほぼ同等の信頼性を持つ金属抵抗材料が得られる。   The Fe—V—Al—Cr alloy having this composition has a metal resistivity that is several times higher than that of the Ni—Cr system, has a small resistance temperature coefficient, and has almost the same reliability as the Ni—Cr system. A material is obtained.

すなわち、Cr:1〜30質量%、V:10〜15質量%、Al:12〜16質量%とし、残部を実質的にFeとすることで、体積抵抗率は400μΩcm以上と、従来のNi−Cr系などの数倍になり、−25〜125℃における抵抗温度係数は±200ppm以下と従来のNi−Cr系と同等に小さくすることができる。   That is, Cr: 1 to 30% by mass, V: 10 to 15% by mass, Al: 12 to 16% by mass, and the balance is substantially Fe, so that the volume resistivity is 400 μΩcm or more. The resistance temperature coefficient at −25 to 125 ° C. can be as small as ± 200 ppm or less, which can be as small as that of the conventional Ni—Cr system.

Vは、その添加量が増えると共に抵抗は上昇し、抵抗温度係数は負になり半導体的な電気抵抗挙動を示すようになる。そのため、Vが10質量%未満では、体積抵抗率が400μΩcm以下と小さくなり、また、抵抗温度係数は+200ppm/℃以上になってしまう。また、15質量%を超えてVを添加すると、体積抵抗率は大きくなるものの、抵抗温度係数が−200ppm/℃以下となってしまう。   As the amount of V increases, the resistance increases, the temperature coefficient of resistance becomes negative, and the semiconductor electrical resistance behavior is exhibited. Therefore, when V is less than 10% by mass, the volume resistivity becomes as small as 400 μΩcm or less, and the resistance temperature coefficient becomes +200 ppm / ° C. or more. Moreover, when V is added exceeding 15 mass%, although a volume resistivity will become large, a resistance temperature coefficient will be set to -200 ppm / degrees C or less.

Alは、V程大きく抵抗変化に寄与しないが、Vと同様に抵抗温度係数変化に影響する。Alが12質量%未満では、抵抗温度係数が+200ppm/℃以上となってしまい、16質量%を超えてAlを添加すると、抵抗温度係数が−200ppm/℃以下となってしまう。   Al does not contribute to the resistance change as much as V, but, like V, affects the resistance temperature coefficient change. When Al is less than 12% by mass, the temperature coefficient of resistance becomes +200 ppm / ° C. or more. When Al is added in excess of 16% by mass, the temperature coefficient of resistance becomes −200 ppm / ° C. or less.

Crは、表面に緻密で安定なCr酸化被膜を迅速に形成することで、Alと水分の反応で発生する水素による脆化を抑制し、また雰囲気から材料を保護する。Crが1質量%未満では、十分な脆化抑制効果、および耐食性の向上効果が得られない。また、Crが30質量%を超えると、抵抗温度係数は−200ppm/℃以下となり、やはり温度変化が大きくなってしまう。   Cr rapidly forms a dense and stable Cr oxide film on the surface, thereby suppressing embrittlement due to hydrogen generated by the reaction between Al and moisture and protecting the material from the atmosphere. If Cr is less than 1% by mass, sufficient embrittlement suppressing effect and corrosion resistance improving effect cannot be obtained. On the other hand, when Cr exceeds 30% by mass, the temperature coefficient of resistance becomes −200 ppm / ° C. or less, and the temperature change becomes large.

スパッタリングターゲットを本発明の組成とすることにより、基板上にスパッタ法などで形成した薄膜抵抗体においても、同じ特性が得られる。ただし、スパッタ法により薄膜抵抗体を製造する場合、チャンバー内部を1.0×10-4Pa以下まで排気した後、Ar雰囲気中でスパッタリングする必要がある。これは、Alが非常に酸化しやすいため、チャンバー内の残留酸素量が多いと、スパッタ中にAlが酸化してしまい、目的の抵抗を持つ薄膜抵抗体が得られないからである。 By setting the sputtering target to the composition of the present invention, the same characteristics can be obtained even in a thin film resistor formed on a substrate by sputtering or the like. However, when a thin film resistor is manufactured by sputtering, it is necessary to evacuate the chamber to 1.0 × 10 −4 Pa or less and then perform sputtering in an Ar atmosphere. This is because Al is very easy to oxidize, and if the amount of residual oxygen in the chamber is large, Al is oxidized during sputtering, and a thin film resistor having the desired resistance cannot be obtained.

本発明に係る金属抵抗体は、高温大気中に長時間保持されたときの安定性に優れている。すなわち、Crを添加することで、表面に安定な酸化被膜が形成され酸化による抵抗変化が抑制される。   The metal resistor according to the present invention is excellent in stability when held in a high temperature atmosphere for a long time. That is, by adding Cr, a stable oxide film is formed on the surface, and resistance change due to oxidation is suppressed.

(実施例1〜4、比較例1〜6、従来例1)
99.9%以上の純度のバナジウム、アルミニウム、電解鉄、電解クロムを原料とし、表1に示す実施例1〜4および比較例1〜6の各組成に秤量し、Arプラズマアークで溶解して、約1000gのインゴットを作製した。それぞれに均質化処理を施した後、ワイヤカットで厚み2mm、幅5mm、長さ約40mmのバルク試料を切り出し、これを抵抗測定用試料とした。表1に作製したインゴットの組成分析値を示す。
(Examples 1-4, Comparative Examples 1-6, Conventional Example 1)
Using 99.9% or more pure vanadium, aluminum, electrolytic iron, and electrolytic chromium as raw materials, weigh each composition of Examples 1 to 4 and Comparative Examples 1 to 6 shown in Table 1 and dissolve them in an Ar plasma arc. Approximately 1000 g of ingot was produced. After homogenizing each, a bulk sample having a thickness of 2 mm, a width of 5 mm, and a length of about 40 mm was cut by wire cutting, and this was used as a resistance measurement sample. Table 1 shows the composition analysis values of the ingots produced.

従来例として、Ni−Cr合金についても同様にインゴットを作製し、組成分析を行った。

Figure 2005116804
As a conventional example, an ingot was similarly prepared for a Ni—Cr alloy, and a composition analysis was performed.
Figure 2005116804

切り出した試料について、室温で4端子法により抵抗測定を行い、測定した抵抗値と試料の寸法とから、体積抵抗率を算出した。また、恒温槽中で昇温しながら抵抗測定を行い、−25〜125℃での抵抗温度係数を求めた。結果を、表2に示す。

Figure 2005116804
About the cut-out sample, resistance measurement was performed at room temperature by the 4-terminal method, and the volume resistivity was calculated from the measured resistance value and the dimension of the sample. Moreover, resistance measurement was performed while heating up in a thermostat, and the temperature coefficient of resistance at −25 to 125 ° C. was obtained. The results are shown in Table 2.
Figure 2005116804

測定結果から、本発明で規定している組成範囲にある実施例1〜4は、いずれも400μΩcm以上の体積抵抗率を持ち、Ni−Cr合金の従来例1と同等の抵抗温度係数を示した。   From the measurement results, Examples 1 to 4 in the composition range defined in the present invention all had a volume resistivity of 400 μΩcm or more, and showed a temperature coefficient of resistance equivalent to that of Ni-Cr alloy Conventional Example 1. .

V量の少ない比較例4では、体積抵抗率が低かった。V量の多い実施例3は、体積抵抗率は大きいが、抵抗温度係数が−450ppm/℃と大きかった。Al量が規定した範囲を逸脱している比較例5および6、ないしはAl量およびCr量が規定した範囲を逸脱している比較例2は、いずれもTCRの絶対値が±200ppm/℃を超えた。Cr量が少ないだけである比較例1は、良好な体積抵抗率、抵抗温度係数を示した。   In Comparative Example 4 with a small amount of V, the volume resistivity was low. In Example 3 with a large amount of V, the volume resistivity was large, but the temperature coefficient of resistance was as large as -450 ppm / ° C. In Comparative Examples 5 and 6 in which the Al amount deviates from the specified range, or in Comparative Example 2 in which the Al amount and Cr amount deviate from the specified range, the absolute value of TCR exceeds ± 200 ppm / ° C. It was. Comparative Example 1 with only a small amount of Cr showed good volume resistivity and resistance temperature coefficient.

次に、抵抗測定後の試料を、大気中300℃で30分間加熱し、表面の変化を観察した。   Next, the sample after the resistance measurement was heated in the atmosphere at 300 ° C. for 30 minutes, and the change in the surface was observed.

実施例1〜4、比較例1〜6、および従来例1のうち、比較例1を除いてすべては、加熱後の表面の変化はなく、耐食性および耐酸化性に問題のないことがわかる。Cr量の低い比較例1は、赤黒く変色し、耐食性が不十分であった。   It can be seen that, among Examples 1 to 4, Comparative Examples 1 to 6, and Conventional Example 1, except for Comparative Example 1, there is no change in the surface after heating, and there is no problem in corrosion resistance and oxidation resistance. Comparative Example 1 having a low Cr content turned red and black and had insufficient corrosion resistance.

したがって、本発明で規定した組成範囲でのみ、体積抵抗率、抵抗温度係数、耐熱性および耐食性のすべてが良好で、かつ、安定な抵抗体が得らた。   Therefore, only in the composition range specified in the present invention, a volume resistance, a temperature coefficient of resistance, a heat resistance and a corrosion resistance were all good and a stable resistor was obtained.

次に、薄膜抵抗体を製造するため、実施例1〜4、比較例1、3、4および従来例1のインゴットから、ワイヤカットで厚み3mm、直径80mmの丸板を切り出し、上下面を研削してターゲットとした。これらのターゲットを用い、直流スパッタ装置で、石英ガラス基板に成膜した。成膜は1.0×10-4Pa以下までチャンバー内を真空引きした後、0.9PaのAr雰囲気下で行った。スパッタパワーは350Wとし、膜厚は50〜500nmとした。得られた膜について、表面粗さ計で膜厚を測定し、さらに四探針低抵抗率計ロレスタ−IP(三菱化学製)を用いてシート抵抗を測定し、膜厚とシート抵抗を掛け合わせて体積抵抗率を算出した。また、恒温槽中で昇温しながら抵抗測定を行い、−25〜125℃での抵抗温度係数を求めた。結果を表3に示す。

Figure 2005116804
Next, in order to manufacture a thin film resistor, a round plate having a thickness of 3 mm and a diameter of 80 mm was cut from the ingots of Examples 1 to 4, Comparative Examples 1, 3, 4 and Conventional Example 1 and the upper and lower surfaces were ground. And targeted. Using these targets, a film was formed on a quartz glass substrate with a DC sputtering apparatus. Film formation was performed in an Ar atmosphere of 0.9 Pa after evacuating the chamber to 1.0 × 10 −4 Pa or less. The sputtering power was 350 W and the film thickness was 50 to 500 nm. For the obtained film, measure the film thickness with a surface roughness meter, further measure the sheet resistance using a four-probe low resistivity meter Loresta IP (Mitsubishi Chemical), and multiply the film thickness by the sheet resistance. The volume resistivity was calculated. Moreover, resistance measurement was performed while heating up in a thermostat, and the temperature coefficient of resistance at −25 to 125 ° C. was obtained. The results are shown in Table 3.
Figure 2005116804

製造した薄膜抵抗体の体積抵抗率および抵抗温度係数は、表2に示したバルク試料の特性をほぼそのまま反映していた。実施例1〜3のバルク試料の場合と同様、本発明の実施例1〜4では、従来例1のNi−Cr合金の数倍の体積抵抗率を持ち、本発明により、同等の抵抗温度係数を示す薄膜抵抗体が得られることが分かる。   The volume resistivity and temperature coefficient of resistance of the manufactured thin film resistor almost reflected the characteristics of the bulk sample shown in Table 2. As in the case of the bulk samples of Examples 1 to 3, Examples 1 to 4 of the present invention have a volume resistivity several times that of the Ni—Cr alloy of Conventional Example 1, and according to the present invention, an equivalent resistance temperature coefficient is obtained. It can be seen that a thin film resistor showing

(実施例5〜7)
次に、実施例1のスパッタリングターゲットを用い、スパッタ時の到達真空度を変えて、ガラス基板上に成膜した。得られた膜について、表面粗さ計で膜厚を測定し、四探針法によりシート抵抗を測定し、膜厚とシート抵抗を掛け合わせて体積抵抗率を算出した。また、恒温槽中で昇温しながら抵抗測定を行い、−25〜100℃での抵抗温度係数を求めた。結果を表4に示す。

Figure 2005116804
(Examples 5-7)
Next, using the sputtering target of Example 1, the ultimate vacuum at the time of sputtering was changed to form a film on a glass substrate. About the obtained film | membrane, the film thickness was measured with the surface roughness meter, the sheet resistance was measured by the four-probe method, and the volume resistivity was calculated by multiplying the film thickness and the sheet resistance. Moreover, resistance measurement was performed while heating up in a thermostat, and the temperature coefficient of resistance at −25 to 100 ° C. was obtained. The results are shown in Table 4.
Figure 2005116804

到達真空度が1.0×10-4Paより悪いと、薄膜抵抗体の体積抵抗率は表2に示したバルク試料のそれに比べて、極端に低くなってしまうことが分かる。 It can be seen that when the ultimate vacuum is lower than 1.0 × 10 −4 Pa, the volume resistivity of the thin film resistor is extremely lower than that of the bulk sample shown in Table 2.

(実施例8、9、比較例7、従来例2、3)
薄膜抵抗体の熱安定性および信頼度を比較するために、実施例1、2、比較例1およびNi−Cr合金の従来例のスパッタリングターゲットを用い、メタルマスクにより石英ガラス基板上に10mm幅で成膜後、再度、メタルマスクをして、両端に金を成膜することにより、電極とし、幅10mm、長さ50mmの抵抗パターンを作製した。得られた膜について、表面粗さ計で膜厚を測定し、四端子法で抵抗パターンの抵抗値を測定した。さらに、恒温槽中155℃で500時間保持し、加熱による抵抗変化を測定した。結果を表5に示す。

Figure 2005116804
(Examples 8 and 9, Comparative Example 7, Conventional Examples 2 and 3)
In order to compare the thermal stability and reliability of the thin film resistors, the sputtering targets of Examples 1 and 2 and Comparative Example 1 and a conventional example of Ni—Cr alloy were used, and 10 mm wide on a quartz glass substrate by a metal mask. After the film formation, a metal mask was applied again, and gold was formed on both ends to form a resistance pattern having a width of 10 mm and a length of 50 mm as an electrode. About the obtained film | membrane, the film thickness was measured with the surface roughness meter, and the resistance value of the resistance pattern was measured with the four-terminal method. Furthermore, it hold | maintained at 155 degreeC for 500 hours in the thermostat, and the resistance change by heating was measured. The results are shown in Table 5.
Figure 2005116804

膜厚200nmのパターンでの加熱による抵抗変化を、本発明の実施例と比較例および従来例について、比較調査した。加熱後の抵抗変化を比べると、Cr添加量の少ない比較例7では、抵抗変化が本発明の実施例に比べ、数十倍大きかった。   The resistance change due to heating in a pattern with a film thickness of 200 nm was comparatively investigated for the example of the present invention, the comparative example, and the conventional example. When the resistance change after heating was compared, in Comparative Example 7 in which the amount of Cr added was small, the resistance change was several tens of times larger than in the example of the present invention.

本発明の実施例8および9の変化率は、従来例2、3とほぼ同等であることがわかる。ただし、同じ膜厚では、Ni−Cr合金は体積抵抗率が低いため、約1/4の抵抗値となる。したがって、同じ抵抗値で比較すると、膜厚を50nmまで薄くしなければならず、そのときの抵抗変化率は2倍近く高いことがわかる。   It can be seen that the rate of change of Examples 8 and 9 of the present invention is almost the same as that of Conventional Examples 2 and 3. However, at the same film thickness, the Ni—Cr alloy has a low volume resistivity and therefore has a resistance value of about ¼. Therefore, when compared with the same resistance value, it is found that the film thickness must be reduced to 50 nm, and the resistance change rate at that time is nearly twice as high.

以上から、本発明により、従来のNi−Cr合金に比べて熱安定性も優れ、高抵抗の金属薄膜抵抗体に好適な材料が得られる。   As described above, according to the present invention, a material suitable for a high-resistance metal thin film resistor can be obtained which is superior in thermal stability as compared with a conventional Ni—Cr alloy.

Claims (4)

V:10〜15質量%、Al:12〜16質量%、Cr:1〜30質量%を含み、残部が実質的にFeからなる合金であり、−25〜125℃における抵抗温度係数の絶対値が200ppm/℃以下であり、かつ、体積抵抗率が400μΩcm以上であることを特徴とする金属抵抗体。 V: 10 to 15% by mass, Al: 12 to 16% by mass, Cr: 1 to 30% by mass, the balance being substantially composed of Fe, absolute value of resistance temperature coefficient at −25 to 125 ° C. Is 200 ppm / ° C. or less and has a volume resistivity of 400 μΩcm or more. 薄膜の形になっている請求項1に記載の金属抵抗体。 2. A metal resistor according to claim 1 in the form of a thin film. V:10〜15質量%、Al:12〜16質量%、Cr:1〜30質量%を含み、残部が実質的にFeからなり、請求項1に記載の金属抵抗体を薄膜の形に製造するためのスパッタリングターゲット。 The metal resistor according to claim 1, comprising: V: 10 to 15% by mass, Al: 12 to 16% by mass, Cr: 1 to 30% by mass, and the balance being substantially made of Fe. Sputtering target to do. 請求項3に記載のスパッタリングターゲットを用い、スパッタ時に、チャンバー内部を1.0×10-4Pa以下まで排気した後、Ar雰囲気中でスパッタリングを行い、請求項1に記載の金属抵抗体を薄膜の形に製造することを特徴とする金属抵抗体の製造方法。 The sputtering target according to claim 3 is used, and at the time of sputtering, the inside of the chamber is evacuated to 1.0 × 10 −4 Pa or less, and then sputtering is performed in an Ar atmosphere, and the metal resistor according to claim 1 is formed into a thin film A method for producing a metal resistor, characterized by comprising:
JP2003349569A 2003-10-08 2003-10-08 Metal resistor and manufacturing method thereof Expired - Fee Related JP4238689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003349569A JP4238689B2 (en) 2003-10-08 2003-10-08 Metal resistor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003349569A JP4238689B2 (en) 2003-10-08 2003-10-08 Metal resistor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005116804A true JP2005116804A (en) 2005-04-28
JP4238689B2 JP4238689B2 (en) 2009-03-18

Family

ID=34541401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003349569A Expired - Fee Related JP4238689B2 (en) 2003-10-08 2003-10-08 Metal resistor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4238689B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012064762A (en) * 2010-09-16 2012-03-29 Sumitomo Metal Mining Co Ltd Resistance thin film element with copper conductor layer and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012064762A (en) * 2010-09-16 2012-03-29 Sumitomo Metal Mining Co Ltd Resistance thin film element with copper conductor layer and method of manufacturing the same

Also Published As

Publication number Publication date
JP4238689B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
JP3642449B2 (en) Cr-N-based strain resistance film, manufacturing method thereof, and strain sensor
JP4436064B2 (en) Thermistor material and manufacturing method thereof
WO2013129638A1 (en) Metal nitride material for thermistor, method for producing same, and film thermistor sensor
JP2006270078A (en) Resistance alloy material, resistor, and resistor manufacturing method
JP4622522B2 (en) Metal resistor material, resistance thin film, sputtering target, thin film resistor, and manufacturing method thereof
JPH08264304A (en) Resistance element containing crsi resistance thin film
JP4622946B2 (en) Resistance thin film material, sputtering target for forming resistance thin film, resistance thin film, thin film resistor, and manufacturing method thereof.
JP4380586B2 (en) Thin film resistor and manufacturing method thereof
JP4238689B2 (en) Metal resistor and manufacturing method thereof
JP4775140B2 (en) Sputtering target
JPH0666162B2 (en) Thin film resistor for strain gauge
TW201643262A (en) Alloy thin film resistor
JPH0995751A (en) Chrome base alloy thin film, its production and stain gauge
JP4042714B2 (en) Metal resistor material, sputtering target and resistive thin film
JP6015425B2 (en) Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JP3852446B2 (en) Resistance thin film material and method of manufacturing resistance thin film using the same
JP6708538B2 (en) Thin film alloy for strain sensors with excellent thermal stability
JP2016136609A (en) Metal nitride material for thermistor, manufacturing method for the same and film type thermistor sensor
WO2022210428A1 (en) Cr-si film
JP4136755B2 (en) PTC thermistor made of ternary alloy material
JP4742758B2 (en) Thin film resistor and manufacturing method thereof
JP4895481B2 (en) Resistance thin film and sputtering target for forming the resistance thin film
JP2007019274A (en) Resistance thin film, thin film resistor and its manufacturing method
TWI708856B (en) Method for manufacturing a thin film resistor
JPS6319588B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051107

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081208

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees