JP2005116604A - Substrate with built-in electronic component, and method for manufacturing the same - Google Patents

Substrate with built-in electronic component, and method for manufacturing the same Download PDF

Info

Publication number
JP2005116604A
JP2005116604A JP2003345502A JP2003345502A JP2005116604A JP 2005116604 A JP2005116604 A JP 2005116604A JP 2003345502 A JP2003345502 A JP 2003345502A JP 2003345502 A JP2003345502 A JP 2003345502A JP 2005116604 A JP2005116604 A JP 2005116604A
Authority
JP
Japan
Prior art keywords
lower electrode
capacitor
capacitor lower
forming
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003345502A
Other languages
Japanese (ja)
Other versions
JP4453325B2 (en
Inventor
Mitsuteru Endo
充輝 遠藤
Kenji Kawamoto
憲治 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2003345502A priority Critical patent/JP4453325B2/en
Publication of JP2005116604A publication Critical patent/JP2005116604A/en
Application granted granted Critical
Publication of JP4453325B2 publication Critical patent/JP4453325B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate with a built-in electronic component which includes an accurate capacitor. <P>SOLUTION: In the substrate with a built-in electronic component, the capacitor is included in a multilayer printed wiring board in which insulator layers and conductor layers are formed alternately. In the capacitor, a capacitor lower electrode is arranged on a part of any one of insulators which form the multilayer printed wiring board. In the substrate, a dielectric layer is arranged so as to cover the capacitor lower electrode, and a capacitor upper electrode whose area is larger than that of the capacitor lower electrode is arranged at an upper part of the dielectric layer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は多層プリント配線板に電子部品をあらかじめ作りこんだ電子部品内蔵基板及びその製造方法に関するものである。   The present invention relates to an electronic component built-in substrate in which electronic components are pre-fabricated on a multilayer printed wiring board and a method for manufacturing the same.

近年、電子機器の高性能化、小型化の要求に伴い回路部品の高密度化、高機能化が強まっている。そのため、プリント配線板に電子部品を実装する場合においてはその実装効率を高めるためにコンデンサ(C)、レジスタ(R)、インダクタ(L)等の受動部品を基板内に内蔵した構造のプリント配線板が注目されている。   In recent years, with the demand for higher performance and smaller size of electronic devices, the density and functionality of circuit components are increasing. Therefore, when mounting electronic components on a printed wiring board, a printed wiring board having a structure in which passive components such as a capacitor (C), a resistor (R), and an inductor (L) are built in the substrate in order to increase the mounting efficiency. Is attracting attention.

例えば、プリント基板に設けた透孔内にリードレスの回路部品を埋設する方法(例えば、特許文献1参照。)、絶縁基板に設けた貫通孔内にセラミックコンデンサ等の受動部品を埋設する方法(例えば、特許文献2参照。)、半導体素子のバイパスコンデンサをプリント基板の孔に埋設する方法(例えば特許文献3及び4参照。)等が開示されている。   For example, a method of embedding a leadless circuit component in a through hole provided in a printed circuit board (for example, refer to Patent Document 1), and a method of embedding a passive component such as a ceramic capacitor in a through hole provided in an insulating substrate ( For example, refer to Patent Document 2), and a method of embedding a bypass capacitor of a semiconductor element in a hole of a printed circuit board (for example, refer to Patent Documents 3 and 4).

しかしながら、上記の方法によりあらかじめ大容量が確保されているチップコンデンサ等を貫通孔へ埋設、実装する場合は、現行で最小サイズの0603チップを用いたとしても0.3mmあるいは0.6mmの層厚みが伴うため、薄い多層基板を実現するのは困難である他、絶縁樹脂とチップ部品との熱膨張率の差によりクラックが発生することが懸念される。   However, when embedding and mounting a chip capacitor having a large capacity in advance by the above method in a through-hole, the layer thickness is 0.3 mm or 0.6 mm even if the smallest size 0603 chip is used at present. Therefore, it is difficult to realize a thin multilayer substrate, and there is a concern that cracks may occur due to a difference in thermal expansion coefficient between the insulating resin and the chip component.

また、プリント配線板内にコンデンサを作り込む手法も多数考案されており、粗面処理された2枚の導電性フォイルによる電極と1枚の誘電体シートによりコンデンサを形成し、このコンデンサをプリント配線板に内蔵する提案(例えば、特許文献5参照。)がなされている。導電性フォイル表面のうち、粗さの程度が小さくなるように処理された一方の面(バレル面)は、内側の誘電体シートに接触し、より粗く粗面化処理された他方の面(マット面)は、外側の部材に接しアンカー効果により強固に取り付けられる。   In addition, many methods have been devised for making capacitors in printed wiring boards. Capacitors are formed from two conductive foil-coated electrodes and a dielectric sheet, and these capacitors are printed wiring. There has been a proposal (for example, see Patent Document 5) that is built in the plate. Of the conductive foil surface, one surface (barrel surface) that has been treated to reduce the degree of roughness is in contact with the inner dielectric sheet, and the other surface (matte) that has been roughened and roughened. The surface) contacts the outer member and is firmly attached by the anchor effect.

しかしながら、特許文献5にみられるような基板の全面に誘電体層を形成してコンデンサを形成する手法の場合、コンデンサ電極間以外の部分にも誘電体が存在することになる。プリント基板の回路におけるインピーダンスマッチングの観点から言うと不必要な場所にこのような高誘電率の材料が存在するのは好ましいことではない。このような問題点を回避する手法として、内層コア基材側に形成されたコンデンサ下部電極上にスクリーン印刷法等により誘電体を部分的に形成し、この誘電体上にコンデンサ上部電極を形成することによりコンデンサとする手法が知られているが、上下電極の不整合、スクリーン印刷による誘電体形成精度の問題により精度に優れたコンデンサを形成するのは難しかった。上下電極の不整合の問題について、特許文献6では、上部電極を下部電極よりも小さく作り、上部電極面積により静電容量を規定することで、上下電極の不整合による容量減少を解決していた。
特開昭54−38561号公報 特公昭60−41480号公報 特開平4−73992号公報 特開平5−218615号公報 特許第27389590号 特開2003−45742号公報
However, in the method of forming a capacitor by forming a dielectric layer on the entire surface of the substrate as shown in Patent Document 5, a dielectric is present in a portion other than between the capacitor electrodes. From the viewpoint of impedance matching in the circuit of the printed circuit board, it is not preferable that such a high dielectric constant material exists in an unnecessary place. As a technique for avoiding such problems, a dielectric is partially formed on the capacitor lower electrode formed on the inner layer core substrate side by screen printing or the like, and the capacitor upper electrode is formed on the dielectric. However, it has been difficult to form a capacitor having excellent accuracy due to the mismatch between the upper and lower electrodes and the problem of dielectric formation accuracy by screen printing. Regarding the problem of mismatch between the upper and lower electrodes, in Patent Document 6, the upper electrode is made smaller than the lower electrode, and the capacitance is defined by the upper electrode area, thereby solving the capacity reduction due to the mismatch between the upper and lower electrodes. .
JP-A-54-38561 Japanese Patent Publication No. 60-41480 JP-A-4-73992 JP-A-5-218615 Japanese Patent No. 27389590 JP 2003-45742 A

しかしながら、スクリーン印刷による誘電体形成精度には限界があり、コンデンサの静電容量公差に影響を与えていた。   However, the accuracy of dielectric formation by screen printing is limited, which affects the capacitance tolerance of the capacitor.

さらに、コンデンサ電極及び誘電体層を精度良く製作しても、コンデンサ電極に接続される配線上にもわずかながら誘電体層が積層されてしまうため(図4)、この誘電体層が静電容量を持ち、特にサイズの小さいコンデンサを精度良く形成するのは難しかった。   Furthermore, even if the capacitor electrode and the dielectric layer are accurately manufactured, the dielectric layer is slightly laminated on the wiring connected to the capacitor electrode (FIG. 4). In particular, it was difficult to accurately form a small size capacitor.

上記目的を達成するためになされた請求項1に係る第1の発明は、絶縁層と導体層を交互に形成してなる多層プリント配線板にコンデンサを内蔵した電子部品内蔵基板であって、該コンデンサが、
多層プリント配線板を形成するいずれかの絶縁層上の一部にコンデンサ下部電極が設けられ、
該コンデンサ下部電極を覆うように誘電体層が設けられ、
該誘電体層の上部には該コンデンサ下部電極より広い面積のコンデンサ上部電極が設けられていることを特徴とする電子部品内蔵基板である。
In order to achieve the above object, a first invention according to claim 1 is an electronic component built-in substrate in which a capacitor is built in a multilayer printed wiring board formed by alternately forming insulating layers and conductor layers, Capacitor is
A capacitor lower electrode is provided on a part of any of the insulating layers forming the multilayer printed wiring board,
A dielectric layer is provided so as to cover the capacitor lower electrode,
An electronic component-embedded substrate, wherein a capacitor upper electrode having a larger area than the capacitor lower electrode is provided on the dielectric layer.

この発明によれば、コンデンサ下部電極面積を正確に作成することで、電極面積に由来するコンデンサ容量公差を抑えることができる。またコンデンサ下部電極を覆うように誘電体層を形成するため、コンデンサ下部電極上での誘電体層の厚みが均一となる。またこの発明によれば、誘電体層及びコンデンサ上部電極の面積に高精度の正確さは求められないため、誘電体層及びコンデンサ上部電極の形成法には印刷法などの効率のよい方法を用いることが可能で、誘電体層の形成に使用できる誘電性樹脂に選択の自由が生じ、誘電体層中の高誘電フィラーの充填率を90wt%以上と高くすることも可能である。   According to the present invention, the capacitor capacity tolerance derived from the electrode area can be suppressed by accurately creating the capacitor lower electrode area. Further, since the dielectric layer is formed so as to cover the capacitor lower electrode, the thickness of the dielectric layer on the capacitor lower electrode becomes uniform. Further, according to the present invention, since the accuracy of the area of the dielectric layer and the capacitor upper electrode is not required, an efficient method such as a printing method is used for forming the dielectric layer and the capacitor upper electrode. The dielectric resin that can be used for forming the dielectric layer can be freely selected, and the filling rate of the high dielectric filler in the dielectric layer can be increased to 90 wt% or more.

請求項2に係る第2の発明は、前記下部電極が絶縁層より下層の配線回路と導通をとるために形成したビア上に前記コンデンサ下部電極が形成されていることを特徴とする請求項1記載の電子部品内蔵基板である。   A second invention according to claim 2 is characterized in that the capacitor lower electrode is formed on a via formed so that the lower electrode is electrically connected to a wiring circuit below the insulating layer. It is an electronic component built-in board of description.

この発明によれば、コンデンサ下部電極の導通を、コンデンサ下部電極直下にビアを配置してとるようにすることにより、コンデンサ上下の電極サイズを変えて電極面積を規定しても配線部の影響を無くすことを可能にした。   According to the present invention, the conduction of the capacitor lower electrode is made by arranging a via directly under the capacitor lower electrode, so that the influence of the wiring portion is affected even if the electrode area is defined by changing the electrode size above and below the capacitor. It became possible to lose.

請求項3に係る第3の発明は、前記コンデンサ下部電極の周囲には前記誘電体層を形成する誘電材料の流れ止め防止のためのパターンが形成されていることを特徴とする請求項1または2記載の電子部品内蔵基板である。   A third invention according to claim 3 is characterized in that a pattern for preventing flow of the dielectric material forming the dielectric layer is formed around the capacitor lower electrode. 2. The electronic component built-in substrate according to 2.

コンデンサ下部電極周囲に誘電材料の流れ止め防止パターンを設けることにより、誘電体層の厚みを均一とするために粘度の低い誘電材料を用いても、所定領域外への誘電材料の流出を防止でき、かつコンデンサ下部電極上の誘電体層の厚みの精度を高いものとすることができる。   By providing an anti-flow prevention pattern for the dielectric material around the capacitor lower electrode, it is possible to prevent the dielectric material from flowing out of a predetermined area even when a low viscosity dielectric material is used to make the thickness of the dielectric layer uniform. In addition, the accuracy of the thickness of the dielectric layer on the capacitor lower electrode can be increased.

請求項4に係る第4の発明は、絶縁層と導体層を交互に形成してなる多層プリント配線板にコンデンサを内蔵した電子部品内蔵基板の製造方法であって、以下の工程を含むことを特徴とする電子部品内蔵基板の製造方法である。
a.多層プリント配線板を形成するいずれかの絶縁層上の一部にコンデンサ下部電極を設ける工程、
b.該絶縁層上の一部に前記コンデンサ下部電極を覆うように熱硬化性樹脂を主成分とする高誘電樹脂ペーストをスクリーン印刷して誘電体層を設ける工程、
c.前記コンデンサ下部電極よりも広い面積を占めるコンデンサ上部電極と該コンデンサ上部電極と前記多層プリント配線板内の配線回路との接続部を導電性ペーストによって形成する工程。
A fourth invention according to claim 4 is a method of manufacturing a substrate with built-in electronic components in which a capacitor is incorporated in a multilayer printed wiring board formed by alternately forming insulating layers and conductor layers, and includes the following steps: It is a manufacturing method of the electronic component built-in board | substrate characterized.
a. Providing a capacitor lower electrode on a part of any insulating layer forming the multilayer printed wiring board;
b. A step of providing a dielectric layer by screen printing a high dielectric resin paste mainly composed of a thermosetting resin so as to cover the capacitor lower electrode on a part of the insulating layer;
c. Forming a capacitor upper electrode occupying a larger area than the capacitor lower electrode, and a connecting portion between the capacitor upper electrode and the wiring circuit in the multilayer printed wiring board by a conductive paste;

この発明によれば、コンデンサ下部電極面積を正確に作成することで、電極面積に由来するコンデンサ容量公差を抑えることができる。またコンデンサ下部電極を覆うように誘電体層を形成するため、コンデンサ下部電極上での誘電体層の厚みが均一となる。またこの発明によれば、誘電体層の形成に効率の良いスクリーン印刷法を用いることが可能で、生産性の向上が期待でき、かつ誘電体層の形成に使用できる誘電性樹脂に選択の自由が生じ、誘電体層中の高誘電フィラーの充填率を90wt%以上と高くすることも可能である。さらにコンデンサ上部電極及び多層プリント配線板内の配線回路との接続部を導電性ペーストで形成するため、印刷法のように効率のよい方法を採ることができる。   According to the present invention, the capacitor capacity tolerance derived from the electrode area can be suppressed by accurately creating the capacitor lower electrode area. Further, since the dielectric layer is formed so as to cover the capacitor lower electrode, the thickness of the dielectric layer on the capacitor lower electrode becomes uniform. Further, according to the present invention, an efficient screen printing method can be used for forming the dielectric layer, and an improvement in productivity can be expected, and the dielectric resin that can be used for forming the dielectric layer can be freely selected. It is possible to increase the filling rate of the high dielectric filler in the dielectric layer to 90 wt% or more. Furthermore, since the connection portion between the capacitor upper electrode and the wiring circuit in the multilayer printed wiring board is formed of a conductive paste, an efficient method such as a printing method can be adopted.

請求項5に係る第5の発明は、請求項4記載の工程aのかわりに、以下の2工程を含むことを特徴とする請求項4記載の電子部品内蔵基板の製造方法である。
d.多層プリント配線板を形成するいずれかの絶縁層に、該絶縁層より下層の配線回路と導通をとるためのビアホールを形成する工程、
および
e.前記ビアホールにフィルドビアめっきを施し、前記下層の配線回路と導通のとれたビア及びコンデンサ下部電極を形成する工程、
この発明によれば、コンデンサ下部電極の導通を、コンデンサ下部電極直下にビアを配置してとるようにすることにより、コンデンサ上下の電極サイズを変えて電極面積を規定しても配線部の影響を無くすことができる。また、コンデンサの導通部を形成するのと同一工程で正確な面積を有するコンデンサ下部電極を形成することができる。ビアの形成、及びフィルドビアメッキという従来のプリント配線板の製造手法を用いることができるため、新しい設備の必要がなく生産性がよい。
A fifth aspect of the invention according to claim 5 is the method of manufacturing an electronic component built-in substrate according to claim 4, which includes the following two steps instead of step a according to claim 4.
d. A step of forming a via hole for establishing electrical connection with a wiring circuit below the insulating layer in any insulating layer forming the multilayer printed wiring board;
And e. Applying via filling to the via hole and forming a via and a capacitor lower electrode that are electrically connected to the lower wiring circuit;
According to the present invention, the conduction of the capacitor lower electrode is made by arranging a via directly under the capacitor lower electrode, so that the influence of the wiring portion is affected even if the electrode area is defined by changing the electrode size above and below the capacitor. It can be lost. In addition, a capacitor lower electrode having an accurate area can be formed in the same process as that for forming the conduction portion of the capacitor. Since a conventional printed wiring board manufacturing method such as via formation and filled via plating can be used, there is no need for new equipment and productivity is good.

請求項6に係る第6の発明は、請求項4記載の工程bと工程cの間に、
f.前記誘電体層の機械研磨を行う工程、
が含まれることを特徴とする請求項4または5記載の電子部品内蔵基板の製造方法である。
According to a sixth aspect of the present invention, between the step b and the step c according to the fourth aspect,
f. Performing mechanical polishing of the dielectric layer;
The method of manufacturing a substrate with built-in electronic components according to claim 4 or 5, wherein

機械研磨を行うことで、コンデンサ上部電極の精度を向上させることができる。   By performing mechanical polishing, the accuracy of the capacitor upper electrode can be improved.

請求項7に係る第7の発明は、請求項4記載の工程aの前、または請求項5記載の工程dの前に、
g.配線回路が形成された絶縁性基板上に熱硬化性樹脂を主成分とする絶縁樹脂シートを積層し絶縁層を形成する工程、
が含まれることを特徴とする請求項4から6のいずれかに記載の電子部品内蔵基板の製造方法である。
According to a seventh aspect of the present invention, before the step a according to the fourth aspect or before the step d according to the fifth aspect,
g. Forming an insulating layer by laminating an insulating resin sheet mainly composed of a thermosetting resin on an insulating substrate on which a wiring circuit is formed;
The method for manufacturing a substrate with built-in electronic components according to claim 4, wherein:

一定厚みで形成された絶縁樹脂シートを用いることにより、安定した品質の電子部品内蔵基板を効率よく製造することができる。   By using an insulating resin sheet formed with a constant thickness, it is possible to efficiently manufacture a substrate with a built-in electronic component having a stable quality.

請求項8に係る第8の発明は、請求項4記載の工程aのかわりに、
h.多層プリント配線板を形成するいずれかの絶縁層の一部にコンデンサ下部電極を設け、該コンデンサ下部電極の周囲に誘電体層の流れ止め防止パターンを形成する工程、
を含むことを特徴とする請求項4記載の電子部品内蔵基板の製造方法である。
According to an eighth aspect of the invention, instead of the step a of the fourth aspect,
h. A step of providing a capacitor lower electrode on a part of any of the insulating layers forming the multilayer printed wiring board, and forming a dielectric layer anti-flow pattern around the capacitor lower electrode;
The method of manufacturing a substrate with built-in electronic components according to claim 4, wherein

コンデンサ下部電極周囲に誘電材料の流れ止め防止パターンを設けることにより、誘電体層の厚みを均一とするために粘度の低い誘電材料を用いても、所定領域外への誘電材料の流出を防止でき、かつコンデンサ下部電極上の誘電体層の厚みの精度を高いものとすることができる。   By providing an anti-flow prevention pattern for the dielectric material around the capacitor lower electrode, it is possible to prevent the dielectric material from flowing out of a predetermined area even when a low viscosity dielectric material is used to make the thickness of the dielectric layer uniform. In addition, the accuracy of the thickness of the dielectric layer on the capacitor lower electrode can be increased.

請求項9に係る第9の発明は、請求項5記載の工程eのかわりに、
i.前記ビアホールにフィルドビアめっきを施し、前記下層の配線回路と導通のとれたビア及びコンデンサ下部電極と、該コンデンサ下部電極の周囲に誘電体層の流れ止め防止パターンを形成する工程、
を含むことを特徴とする請求項5記載の電子部品内蔵基板の製造方法である。
According to a ninth aspect of the present invention, in place of the step e of the fifth aspect,
i. Applying via filling to the via hole, forming a via and a capacitor lower electrode conductive with the lower wiring circuit, and forming a dielectric layer anti-flow pattern around the capacitor lower electrode;
The method for manufacturing an electronic component built-in substrate according to claim 5, comprising:

この発明によれば、コンデンサの導通部を形成するのと同一工程で正確な面積を有するコンデンサ下部電極及び誘電体層の流れ止め防止パターンを形成することができる。コンデンサ下部電極と流れ止め防止パターンが同じ厚みで形成できるので、それらの上に形成される誘電体層の平滑化により効果的である。また、ビアの形成、及びフィルドビアメッキという従来のプリント配線板の製造手法を用いることができるため、新しい設備の必要がなく生産性がよい。   According to the present invention, it is possible to form the capacitor lower electrode and the dielectric layer anti-flow pattern having the correct area in the same process as the formation of the conductive portion of the capacitor. Since the capacitor lower electrode and the anti-flow prevention pattern can be formed with the same thickness, it is more effective for smoothing the dielectric layer formed thereon. Further, since a conventional printed wiring board manufacturing method such as via formation and filled via plating can be used, there is no need for new equipment and productivity is good.

この発明によれば、コンデンサ下部電極面積を正確に作成することで、電極面積に由来するコンデンサ容量公差を抑えることができる。またコンデンサ下部電極を覆うように誘電体層を形成するため、コンデンサ下部電極上での誘電体層の厚みが均一となる。さらに、誘電体層及びコンデンサ上部電極の面積に高精度の正確さは求められないため、誘電体層及びコンデンサ上部電極の形成法には印刷法などの効率のよい方法を用いることが可能で、誘電体層の形成に使用できる誘電性樹脂に選択の自由が生じ、誘電体層中の高誘電フィラーの充填率を90wt%以上と高くすることも可能である。誘電体層に機械研磨を施すことで、その上に積層されるコンデンサ上部電極も平滑に形成することができる。コンデンサ下部電極を形成することになる絶縁層を、一定厚みで形成された絶縁樹脂シートを用いて積層することにより、安定した品質の電子部品内蔵基板を効率よく製造することができる。   According to the present invention, the capacitor capacity tolerance derived from the electrode area can be suppressed by accurately creating the capacitor lower electrode area. Further, since the dielectric layer is formed so as to cover the capacitor lower electrode, the thickness of the dielectric layer on the capacitor lower electrode becomes uniform. Furthermore, since accurate accuracy is not required for the area of the dielectric layer and the capacitor upper electrode, it is possible to use an efficient method such as a printing method for forming the dielectric layer and the capacitor upper electrode. The dielectric resin that can be used to form the dielectric layer is free to be selected, and the filling rate of the high dielectric filler in the dielectric layer can be increased to 90 wt% or more. By subjecting the dielectric layer to mechanical polishing, the capacitor upper electrode laminated thereon can also be formed smoothly. By laminating the insulating layer that will form the capacitor lower electrode using an insulating resin sheet formed with a constant thickness, it is possible to efficiently manufacture a substrate with a built-in electronic component having a stable quality.

また、コンデンサ下部電極の導通を、コンデンサ下部電極直下にビアを配置してとるようにすることにより、コンデンサ上下の電極サイズを変えて電極面積を規定しても配線部の影響を無くすことを可能にすることができた。この発明においては、コンデンサの導通部を形成するのと同一工程で正確な面積を有するコンデンサ下部電極を形成することができる。ビアの形成、及びフィルドビアメッキという従来のプリント配線板の製造手法を用いることができるため、新しい設備の必要がなく生産性がよい。   In addition, it is possible to eliminate the influence of the wiring part even if the electrode area is defined by changing the electrode size above and below the capacitor by placing vias directly under the capacitor lower electrode to conduct the capacitor lower electrode. I was able to. In the present invention, the capacitor lower electrode having an accurate area can be formed in the same process as that for forming the conductive portion of the capacitor. Since a conventional printed wiring board manufacturing method such as via formation and filled via plating can be used, there is no need for new equipment and productivity is good.

さらにコンデンサ下部電極周囲に誘電材料の流れ止め防止パターンを設けることにより、誘電体層の厚みを均一とするために粘度の低い誘電材料を用いても、所定領域外への誘電材料の流出を防止でき、かつコンデンサ下部電極上の誘電体層の厚みの精度を高いものとすることができた。   In addition, by providing a dielectric material flow prevention pattern around the capacitor lower electrode, even if a low viscosity dielectric material is used to make the thickness of the dielectric layer uniform, the dielectric material is prevented from flowing out of the specified area. In addition, the accuracy of the thickness of the dielectric layer on the capacitor lower electrode could be increased.

したがって本発明によれば、信頼性に優れた高精度・高容量のコンデンサを内蔵した電子部品内蔵基板を安価に提供することが可能となる。   Therefore, according to the present invention, it is possible to provide an inexpensive electronic component built-in board incorporating a highly accurate and high-capacitance capacitor with excellent reliability.

本発明の電子部品内蔵基板の製造方法について簡単に説明する。まず、絶縁層上に配線回路を形成し、この上にさらに絶縁層を積層する。図1では、配線回路(11)の形成されたコア基材(10)(図1(a))に、絶縁樹脂シートを真空ラミネーターによりラミネートし、所定の温度に設定した熱風炉中で硬化させて絶縁層(12)を形成する場合について示している(図1(b))。この絶縁層上でコンデンサ電極が形成される所定の位置にUV−YAGレーザーにより下層の配線回路に到達するビアホール(13)を形成(図1(c))した後、フィルドビアめっきにより、ビアの電気的接続及び穴埋めと導体層の形成を行い、エッチングにより下層の配線回路と導通をとるためのビア(14)及びコンデンサ下部電極(15)を形成する(図1(c))。以下、各コンデンサの対向する電極のうち、絶縁層上に形成される小さい電極をコンデンサ下部電極とし、もう一方の大きい電極をコンデンサ上部電極と呼ぶことにする。ビアの接続・穴埋めの方法は通常のプリント配線板の製造方法で用いられているものであれば特に限定されるものではない。   The manufacturing method of the electronic component built-in substrate of the present invention will be briefly described. First, a wiring circuit is formed on an insulating layer, and an insulating layer is further laminated thereon. In FIG. 1, an insulating resin sheet is laminated with a vacuum laminator on the core substrate (10) (FIG. 1 (a)) on which the wiring circuit (11) is formed, and cured in a hot air oven set at a predetermined temperature. The case where the insulating layer (12) is formed is shown (FIG. 1B). Via holes (13) that reach the lower wiring circuit are formed by UV-YAG laser at predetermined positions on the insulating layer where capacitor electrodes are formed (FIG. 1 (c)), and then via electrical via plating is performed. The vias (14) and the capacitor lower electrodes (15) for conducting electrical connection with the lower wiring circuit are formed by etching, filling the holes and forming the conductor layer (FIG. 1 (c)). Hereinafter, among the electrodes facing each capacitor, the small electrode formed on the insulating layer is referred to as a capacitor lower electrode, and the other large electrode is referred to as a capacitor upper electrode. There are no particular limitations on the via connection / hole filling method as long as it is used in an ordinary printed wiring board manufacturing method.

このようにして形成された絶縁層(12)上のコンデンサ下部電極(15)上に熱硬化性樹脂と高誘電率フィラーより成る高誘電樹脂ペーストをパターン形成する。スクリーン印刷法であると適度の精度と生産性を有し好ましい。基板上の必要部分に積層された高誘電樹脂ペーストは、加熱硬化されることで各電極上に誘電体層(16)を形成する(図1(d))。この後、誘電体表面をバフ等で研磨して表面を平滑にした後(図示せず)、誘電体上に導電性ペーストをスクリーン印刷してコンデンサ上部電極(17)及びコンデンサ上部電極と配線との接続部(18)を形成する(図1(e))。この後、再度絶縁樹脂フィルムをラミネート・熱硬化させて絶縁層(12)を形成し、ビア加工、めっき処理を行い所定の配線回路パターンを形成する。以上の工程を複数回繰り返すことで、所望の電子部品内蔵基板を得ることができる(図1(f))。   A high dielectric resin paste made of a thermosetting resin and a high dielectric constant filler is patterned on the capacitor lower electrode (15) on the insulating layer (12) thus formed. The screen printing method is preferable because it has moderate accuracy and productivity. The high dielectric resin paste laminated on the necessary part on the substrate is heated and cured to form a dielectric layer (16) on each electrode (FIG. 1 (d)). Thereafter, the surface of the dielectric is polished with a buff or the like to smooth the surface (not shown), and then a conductive paste is screen-printed on the dielectric to form the capacitor upper electrode (17), the capacitor upper electrode and the wiring. The connecting portion (18) is formed (FIG. 1E). Thereafter, the insulating resin film is again laminated and thermally cured to form an insulating layer (12), and via processing and plating are performed to form a predetermined wiring circuit pattern. By repeating the above steps a plurality of times, a desired electronic component built-in substrate can be obtained (FIG. 1 (f)).

本発明における絶縁層を構成する材料としては、熱硬化性樹脂を主成分とする絶縁樹脂が挙げられる。このような熱硬化性樹脂としては例えば、エポキシ樹脂、シアネート樹脂類、ビスマレイミド類とジアミンとの付加重合物、フェノール樹脂、レゾール樹脂、イソシアネート、トリアリルイソシアヌレート、トリアリルシアヌレート及びビニル基含有ポリオレフィン化合物等があげられるが、これらに限定されない。これら熱硬化性樹脂の中でも耐熱性、絶縁性等の性能とコストとのバランスからエポキシ樹脂、特に多官能エポキシ樹脂が好ましい。   Examples of the material constituting the insulating layer in the present invention include an insulating resin mainly composed of a thermosetting resin. Examples of such thermosetting resins include epoxy resins, cyanate resins, addition polymers of bismaleimides and diamines, phenol resins, resole resins, isocyanates, triallyl isocyanurates, triallyl cyanurates, and vinyl groups. Examples include, but are not limited to, polyolefin compounds. Among these thermosetting resins, an epoxy resin, particularly a polyfunctional epoxy resin is preferable from the viewpoint of balance between performance such as heat resistance and insulation and cost.

本発明で使用されるエポキシ樹脂は公知のものを用いることができる。例えばフェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、トリスヒドロキシフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエンフェノール型エポキシ樹脂等の芳香族環を含むエポキシ類化合物の水素添加化合物、脂環式エポキシ樹脂やシクロヘキセンオキシドの各種誘導体、テトラブロモビスフェノールA型エポキシ樹脂等の含ハロゲンエポキシ樹脂等があげられ、これらを単独もしくは混合して用いることができる。   Known epoxy resins can be used in the present invention. For example, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, biphenyl novolac type epoxy resin, trishydroxyphenylmethane type epoxy resin, Hydrogenated compounds of epoxy compounds containing aromatic rings such as tetraphenylethane type epoxy resins, dicyclopentadiene phenol type epoxy resins, alicyclic epoxy resins and various derivatives of cyclohexene oxide, tetrabromobisphenol A type epoxy resins, etc. Examples thereof include halogen-containing epoxy resins, and these can be used alone or in combination.

本発明にて用いられる硬化剤は、特に限定されるものではないが、熱硬化性樹脂の選択によってそれに対応する硬化剤を選ぶことができる。例えば熱硬化性樹脂としてエポキシ樹脂を用いる場合には、公知のエポキシ樹脂硬化剤を用いることができる。このようなエポキシ樹脂硬化剤として、例えばフェノールノボラック等の多価フェノール類、ジシアンジアミド、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等のアミン系硬化剤、無水ピロメリット酸、無水トリメリット酸、ベンゾフェノンテトラカルボン酸等の酸無水物硬化剤またはこれらの混合物等が挙げられる。中でも、低吸水性の点からフェノールノボラック等の多価フェノール類の使用が特に好ましい。   The curing agent used in the present invention is not particularly limited, but a curing agent corresponding to the curing agent can be selected by selecting a thermosetting resin. For example, when an epoxy resin is used as the thermosetting resin, a known epoxy resin curing agent can be used. Examples of such epoxy resin curing agents include polyhydric phenols such as phenol novolak, amine curing agents such as dicyandiamide, diaminodiphenylmethane, and diaminodiphenylsulfone, pyromellitic anhydride, trimellitic anhydride, benzophenonetetracarboxylic acid, and the like. An acid anhydride curing agent or a mixture thereof may be used. Among these, the use of polyhydric phenols such as phenol novolac is particularly preferable from the viewpoint of low water absorption.

エポキシ樹脂硬化剤の配合割合は、エポキシ樹脂との組み合わせで任意の割合で使用することができるが、通常はTgが高くなるようにその配合比が決定される。例えば、エポキシ樹脂硬化剤としてフェノールノボラックを用いる場合は、エポキシ当量と水酸基当量が1:1になるように配合するのが好ましい。   The blending ratio of the epoxy resin curing agent can be used in any ratio in combination with the epoxy resin, but the blending ratio is usually determined so that Tg becomes high. For example, when phenol novolac is used as the epoxy resin curing agent, it is preferable that the epoxy equivalent and the hydroxyl equivalent be 1: 1.

所定の溶媒に溶解させた既述の絶縁樹脂を主成分とするワニスをロールコーター等で支持体に塗布した後、乾燥させて半硬化状態とすることで半硬化状態(Bステージ)の絶縁樹脂シートを作製することができる。この絶縁樹脂ワニスを適度な粘度に調整し、直接、配線回路上に印刷や塗布などの方法によって積層してもよいが、本発明においては、絶縁層の形成を半硬化状態の絶縁樹脂シートを積層することで行うことが好ましい。絶縁樹脂シートの支持体としては、ポリエチレン、ポリ塩化ビニル等のポリオレフィン、PET等のポリエステル、ポリカーボネート、離型紙等が挙げられる。なかでも、価格・耐熱性・寸法安定性等の点においてポリエステル系フィルムを使用することが特に好ましい。支持体の厚みとしては10〜150μmが一般的である。なお、支持体にはマット処理、エンボス加工の他、離型処理が施してあっても良い。さらに必要に応じて、絶縁樹脂シートの支持体が無い面を保護フィルムで覆い、ロール状に巻き取って保存することもできる。保護フィルムとしては、ポリエチレン、ポリ塩化ビニル等のポリオレフィン、PET等のポリエステル、さらには離型紙等が挙げられる。保護フィルムの厚みとしては10〜100μmが一般的である。また、保護フィルムにはマット処理、エンボス加工の他、離型処理を施してあっても良い。   A semi-cured insulating resin (B stage) is obtained by applying a varnish mainly composed of the above-described insulating resin dissolved in a predetermined solvent to a support with a roll coater or the like, and then drying to a semi-cured state. A sheet can be produced. The insulating resin varnish may be adjusted to an appropriate viscosity and directly laminated on the wiring circuit by a method such as printing or coating, but in the present invention, the insulating resin sheet is formed in a semi-cured state. It is preferable to carry out by laminating. Examples of the support for the insulating resin sheet include polyolefins such as polyethylene and polyvinyl chloride, polyesters such as PET, polycarbonate, and release paper. Among these, it is particularly preferable to use a polyester film in terms of price, heat resistance, dimensional stability, and the like. The thickness of the support is generally 10 to 150 μm. Note that the support may be subjected to a release treatment in addition to the matting and embossing. Furthermore, if necessary, the surface of the insulating resin sheet without the support can be covered with a protective film, and wound into a roll and stored. Examples of the protective film include polyolefins such as polyethylene and polyvinyl chloride, polyesters such as PET, and release paper. The thickness of the protective film is generally 10 to 100 μm. Further, the protective film may be subjected to a releasing treatment in addition to the matting and embossing.

本発明において、絶縁樹脂シートを真空ラミネーターによりラミネートする方法としては、減圧下、バッチ式であってもロールでの連続式であってもよく、両面同時にラミネートするのが好ましい。ラミネート条件は絶縁樹脂の熱時溶融粘度、樹脂厚、内層回路基板のパターン面積等により異なるが、一般的に圧着温度が70−200℃、圧着圧力が1〜10kgf/cmであって、20Torr以下の減圧下において良好にラミネートすることができる。 In the present invention, the method of laminating the insulating resin sheet with a vacuum laminator may be a batch type or a continuous type with a roll under reduced pressure, and it is preferable to laminate both surfaces simultaneously. Lamination conditions differ depending on the hot melt viscosity of the insulating resin, the resin thickness, the pattern area of the inner layer circuit board, etc., but generally the pressure bonding temperature is 70-200 ° C., the pressure bonding pressure is 1-10 kgf / cm 2 , and 20 Torr. The laminate can be satisfactorily laminated under the following reduced pressure.

本発明にて絶縁層形成のために用いられる絶縁樹脂ワニスには、機械的、熱的、または電気的性質の改質を目的として公知の無機または有機フィラーを加えることができる。ファインパターンを形成するためにはこれらのフィラーの平均粒径が小さいもの程好ましく、平均粒径3μm以下のものが使用される。また、その配合比は熱硬化性樹脂の選択によって異なり、絶縁層全体に対して5〜40wt%の範囲内であることが好ましい。有機フィラーとしては、エポキシ樹脂粉末、メラミン樹脂粉末、尿素樹脂粉末、グアナミン樹脂粉末、ポリエステル樹脂粉末等を、無機フィラーとしては、シリカ、アルミナ、酸化チタン等を挙げることができる。なかでも、シリカフィラーは誘電率が低いこと、線膨張率が低いこと、表面粗化処理により絶縁層を構成する絶縁性樹脂中から脱離してアンカーを形成しやすいことなどからより好んで用いられている。   A known inorganic or organic filler can be added to the insulating resin varnish used for forming the insulating layer in the present invention for the purpose of modifying mechanical, thermal, or electrical properties. In order to form a fine pattern, those fillers having a smaller average particle diameter are preferred, and those having an average particle diameter of 3 μm or less are used. The blending ratio varies depending on the selection of the thermosetting resin, and is preferably in the range of 5 to 40 wt% with respect to the entire insulating layer. Examples of the organic filler include epoxy resin powder, melamine resin powder, urea resin powder, guanamine resin powder, and polyester resin powder, and examples of the inorganic filler include silica, alumina, and titanium oxide. Among these, silica fillers are more preferred because they have a low dielectric constant, a low coefficient of linear expansion, and are easy to form anchors by detaching from the insulating resin constituting the insulating layer by surface roughening. ing.

本発明にて絶縁層形成のために用いられる絶縁樹脂ワニスには、熱可塑性樹脂を添加することができる。熱可塑性樹脂の添加の目的は、特に樹脂の強靱性を向上させ、絶縁層に粘り強さを持たせるためである。通常エポキシ樹脂等の熱硬化性樹脂は銅とのめっき密着性や耐熱性に優れるが、固くて脆い特性を有しており、冷熱衝撃試験での樹脂クラック等の不具合を生じることがある。本発明ではポリエーテルスルホン、フェノキシ樹脂、ポリイミド等の熱可塑性樹脂を加えることにより、信頼性に優れた絶縁層を形成することができる。このような熱可塑性樹脂としては、上述した熱硬化性樹脂、硬化剤と同一の溶媒に溶解させ混合できることが望ましい。また、熱可塑性樹脂の配合比は全樹脂固形分の10〜40%の範囲であることが好ましい。これは、熱可塑性樹脂の含量が全樹脂固形分の10重量%以下では熱可塑性樹脂による靱性効果があまり得られない傾向があり、また40重量%以上では充分なめっき密着性が得られない傾向にあるためである。   A thermoplastic resin can be added to the insulating resin varnish used for forming the insulating layer in the present invention. The purpose of adding the thermoplastic resin is to improve the toughness of the resin and to give the insulating layer a tenacity. Usually, a thermosetting resin such as an epoxy resin is excellent in plating adhesion with copper and heat resistance, but has a hard and brittle characteristic and may cause problems such as a resin crack in a thermal shock test. In the present invention, an insulating layer with excellent reliability can be formed by adding a thermoplastic resin such as polyethersulfone, phenoxy resin, or polyimide. As such a thermoplastic resin, it is desirable that it can be dissolved and mixed in the same solvent as the above-mentioned thermosetting resin and curing agent. The blending ratio of the thermoplastic resin is preferably in the range of 10 to 40% of the total resin solid content. This is because when the thermoplastic resin content is 10% by weight or less of the total resin solid content, the toughness effect by the thermoplastic resin tends not to be obtained so much, and when it is 40% by weight or more, sufficient plating adhesion tends not to be obtained. Because it is in.

本発明におけるコンデンサ下部電極(15)は、めっきにより形成されることが好ましい。コンデンサ下部電極(15)上に形成される誘電体層(16)の厚さやコンデンサ下部電極自体のサイズにもよるが、コンデンサ下部電極の厚さは18μm以下であることが好ましい。コンデンサ下部電極厚さが18μm以上あると、誘電体層をコンデンサ下部電極上にコンデンサ下部電極の面積よりも広く形成するため、コンデンサ下部電極エッジ上の誘電体層に大きな段差ができてしまい、誘電体層表面を研磨しても充分に平滑とする事ができず、誘電体層上に形成されるコンデンサ上部電極(17)の接続信頼性に不安が残る。   The capacitor lower electrode (15) in the present invention is preferably formed by plating. Although depending on the thickness of the dielectric layer (16) formed on the capacitor lower electrode (15) and the size of the capacitor lower electrode itself, the thickness of the capacitor lower electrode is preferably 18 μm or less. When the capacitor lower electrode thickness is 18 μm or more, the dielectric layer is formed on the capacitor lower electrode so as to be larger than the area of the capacitor lower electrode, so that a large step is formed in the dielectric layer on the capacitor lower electrode edge. Even if the surface of the body layer is polished, the surface cannot be sufficiently smoothed, and there remains concern about the connection reliability of the capacitor upper electrode (17) formed on the dielectric layer.

本発明では、コンデンサ下部電極への電気的導通は、コンデンサ下部電極の下からビア(14)によってとることが好ましい。この構造によれば、配線回路上の誘電体層の影響による静電容量の公差を考慮することなく、コンデンサ下部電極のみで正確にコンデンサの静電容量が規定されることになるためである。具体的には、コンデンサ下部電極より下層の配線回路に到達するビアホール(13)を設け、これにフィルドビアめっきを施して下層の配線回路と導通をとるとともにコンデンサ下部電極(15)を形成する。   In the present invention, electrical continuity to the capacitor lower electrode is preferably taken from below the capacitor lower electrode by a via (14). This is because, according to this structure, the capacitance of the capacitor is accurately defined only by the capacitor lower electrode without considering the tolerance of the capacitance due to the influence of the dielectric layer on the wiring circuit. Specifically, a via hole (13) that reaches the lower wiring circuit from the capacitor lower electrode is provided, and filled via plating is applied to the via hole (13) to establish conduction with the lower wiring circuit and to form the capacitor lower electrode (15).

また本発明では、図2及び図3に示すようにコンデンサ下部電極(15)の周囲に誘電材料の流れ止め防止パターン(19)を形成すると、コンデンサ下部電極上及びその周囲に積層された、誘電体層(16)となる高誘電率樹脂ペーストが均一な厚みで積層されるため好ましい。この誘電材料の流れ止め防止パターン(19)は、コンデンサ下部電極周囲に設けられ、配線回路と導通がとれていない、コンデンサの静電容量に影響を及ぼさない材料、または構造のものであれば特に制限はないが、コンデンサ下部電極の形成と同一工程でフィルドビアめっきにより形成されると(図2(c))、工程が簡略でかつ厚みもコンデンサ下部電極と同じにすることができるため流れ止め防止効果が大きく好ましい。   Further, in the present invention, when the anti-flow prevention pattern (19) of the dielectric material is formed around the capacitor lower electrode (15) as shown in FIGS. 2 and 3, the dielectric layer laminated on and around the capacitor lower electrode is formed. Since the high dielectric constant resin paste used as the body layer (16) is laminated with a uniform thickness, it is preferable. This dielectric material anti-flow pattern (19) is provided around the capacitor lower electrode, especially if it is a material or structure that is not electrically connected to the wiring circuit and does not affect the capacitance of the capacitor. Although there is no limitation, when filled via plating is performed in the same process as the formation of the capacitor lower electrode (FIG. 2C), the flow is prevented because the process is simple and the thickness can be the same as that of the capacitor lower electrode. The effect is large and preferable.

本発明で誘電体層(16)の形成に用いる高誘電樹脂ペーストは熱硬化性樹脂と硬化剤及び高誘電率フィラーを主成分として成る。熱硬化性樹脂及び硬化剤には絶縁樹脂ワニスで使用されているものと同様のものを使用することができる。また、高誘電率フィラーとしては、例えばチタン酸バリウム,チタン酸ストロンチウム,チタン酸カルシウム,チタン酸マグネシウム,チタン酸亜鉛,チタン酸鉛等のチタン酸塩、あるいはジルコン酸カルシウム,ジルコン酸バリウム,ジルコン酸鉛等のジルコン酸塩等を主成分とした種々の誘電体セラミック組成物を使用することができる。   The high dielectric resin paste used for forming the dielectric layer (16) in the present invention is composed mainly of a thermosetting resin, a curing agent and a high dielectric constant filler. As the thermosetting resin and the curing agent, those similar to those used in the insulating resin varnish can be used. Examples of the high dielectric constant filler include titanates such as barium titanate, strontium titanate, calcium titanate, magnesium titanate, zinc titanate and lead titanate, or calcium zirconate, barium zirconate and zirconate. Various dielectric ceramic compositions mainly composed of a zirconate such as lead can be used.

本発明では、コンデンサの誘電体層(16)はコンデンサ下部電極(15)を覆うように形成される。このとき、コンデンサ下部電極の形成されている絶縁層(12)上には、通常コンデンサ下部電極以外の配線回路(11)や電子素子も形成されており、誘電体層(16)はこれらコンデンサ下部電極以外の導通の取れている配線回路や電子素子にはかからないように部分的に形成されなければならない。具体的には適当な精度でパターニングできるスクリーン印刷の手法で、コンデンサ下部電極とその周囲に形成するのが好ましい。   In the present invention, the dielectric layer (16) of the capacitor is formed so as to cover the capacitor lower electrode (15). At this time, wiring circuits (11) and electronic elements other than the capacitor lower electrode are usually formed on the insulating layer (12) on which the capacitor lower electrode is formed, and the dielectric layer (16) is formed below these capacitors. It must be partially formed so as not to be applied to a conductive wiring circuit or electronic element other than the electrodes. Specifically, it is preferable to form the capacitor lower electrode and the periphery thereof by a screen printing method capable of patterning with appropriate accuracy.

本発明では、コンデンサ下部電極(15)上に形成された誘電体層(16)表面の平滑化を目的として研磨を行う。一般に高誘電率フィラーを高充填した高誘電ペーストを用いて誘電体層を形成した場合、樹脂の硬化収縮等の影響のため誘電体層表層のフィラーが樹脂で充分に覆われず、表面の形状が悪くなる。従って、誘電体層の表層を研磨するとこのフィラーリッチの領域が除去され平滑な誘電体層表面を得ることが可能となる。研磨の方法としては、セラミックあるいは不織布のバフによるバフ研磨、研磨ベルトによるベルトサンダー研磨等があるが、なかでもバフが比較的柔らかい不織布バフによる研磨が好ましい。   In the present invention, polishing is performed for the purpose of smoothing the surface of the dielectric layer (16) formed on the capacitor lower electrode (15). In general, when a dielectric layer is formed by using a high dielectric paste filled with a high dielectric constant filler, the filler on the surface of the dielectric layer is not sufficiently covered with the resin due to the effect of resin curing shrinkage, etc. Becomes worse. Therefore, when the surface layer of the dielectric layer is polished, the filler-rich region is removed, and a smooth dielectric layer surface can be obtained. Examples of the polishing method include buffing with a ceramic or non-woven fabric buff, belt sander polishing with an abrasive belt, etc. Among them, polishing with a non-woven buff with a relatively soft buff is preferable.

研磨によって表面を整えられた誘電体層(16)上へ、コンデンサ下部電極(15)を覆って広い面積になるようなコンデンサ上部電極(17)及びコンデンサ上部電極と多層プリント配線板内の配線回路との接続部(18)を導電性ペーストで形成する(図1(e)、図2(e)、図3(c))。方法としては適当な精度で生産性よく加工できるスクリーン印刷が好ましい。   A capacitor upper electrode (17) that covers the capacitor lower electrode (15) and has a large area on the dielectric layer (16) whose surface is adjusted by polishing, and a wiring circuit in the capacitor upper electrode and the multilayer printed wiring board The connection part (18) is formed with a conductive paste (FIG. 1 (e), FIG. 2 (e), FIG. 3 (c)). As a method, screen printing that can be processed with appropriate accuracy and high productivity is preferable.

このように製造されたコンデンサ上に再び絶縁材料を積層して絶縁層とし、コンデンサ上部電極あるいは他の内部配線回路の導通をとり、上述の工程を1回、あるいは複数回繰り返すことで、内部に電子部品たるコンデンサ素子を内蔵した電子部品内蔵基板を製造することができる(図1(f)、図2(f))。   The insulating material is laminated again on the capacitor thus manufactured to form an insulating layer, and the capacitor upper electrode or other internal wiring circuit is made conductive, and the above process is repeated once or a plurality of times, so that An electronic component built-in substrate having a capacitor element as an electronic component can be manufactured (FIGS. 1 (f) and 2 (f)).

以下に実施例及び比較例を示して本発明を具体的に説明するが、本発明はこれに限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited thereto.

まず、本発明における実施例で用いた絶縁樹脂シート及び、高誘電樹脂ペーストの製造例を示す。絶縁樹脂ワニス及び高誘電樹脂ペーストの組成は表1に記載の通りである。また、表1中の数値は特に示さない限り重量部である。
<絶縁樹脂シートの製造例1>
熱硬化性樹脂であるエポキシ樹脂成分としてエピコート1001(油化シェルエポキシ社製)90重量部、エピコート828EL(油化シェルエポキシ社製)10重量部、エポキシ樹脂硬化剤としてフェノールノボラック(日本化薬社製)24.6重量部、熱可塑性樹脂としてフェノキシ樹脂(フェノートYP−50、東都化成社製)37.4重量部をシクロヘキサノンとMEKの混合溶媒に溶解させた。この溶液にシリカフィラーのAEROSIL RY200(日本アエロジル社製)40.5重量部、硬化触媒の2−エチル−4−メチルイミダゾール(東京化成工業社製)0.32重量部を加え、練り込みロールで分散させた後に攪拌及び脱泡し、絶縁樹脂ワニスを調製した。このようにして得られた絶縁樹脂ワニスを厚さ30μmのPET支持体上に乾燥後の膜厚が50μmとなるようにロールコーターで塗布し、80℃で10分間乾燥させた。さらに、支持体積層面とは反対側の絶縁樹脂面に、厚さ20μmのポリエチレン保護フィルムを張り合わせ、絶縁樹脂面を保護した。
<絶縁樹脂シートの製造例2>
熱硬化性樹脂であるエポキシ樹脂成分としてEPPN−502H(日本化薬社製)90重量部、エピコート828EL(油化シェルエポキシ社製)10重量部、エポキシ樹脂硬化剤としてカヤハードNHN(日本化薬社製)99.4重量部、熱可塑性樹脂としてポリエーテルスルホン(スミカエクセル5003P、住友化学工業社製)59.8重量部を4−ブチロラクトンとN−メチル−2−ピロリドンの混合溶媒に溶解させた。この溶液にシリカフィラーのアドマファインSO−C1(アドマテックス社製)77.8重量部、硬化触媒の2−エチル−4−メチルイミダゾール(東京化成工業社製)0.78重量部を加え、練り込みロールで分散させた後に攪拌及び脱泡し、絶縁樹脂ワニスを調製した。このようにして得られた絶縁樹脂ワニスを厚さ30μmのPET支持体上に乾燥後の膜厚が50μmとなるようにロールコーターで塗布し、80℃で10分間乾燥させた。さらに、支持体積層面とは反対側の絶縁樹脂面に、厚さ20μmのポリエチレン保護フィルムを張り合わせ、絶縁樹脂面を保護した。
<高誘電樹脂ペーストの製造例1>
熱硬化性樹脂であるエポキシ樹脂成分としてEPPN−502H(日本化薬社製)90重量部、エピコート828EL(油化シェルエポキシ社製)10重量部、エポキシ樹脂硬化剤としてカヤハードNHN(日本化薬社製)99.4重量部をシクロヘキサノンに溶解させた。この溶液に高誘電率フィラーとしてチタン酸バリウム(富士チタン工業社製)1801.6重量部、硬化触媒の2−エチル−4−メチルイミダゾール(東京化成工業社製)0.78重量部を加え、練り込みロールで分散させた後に攪拌及び脱泡し、高誘電樹脂ペーストを作成した。この高誘電樹脂ペーストをポリイミドフィルム上に塗布・硬化させた後、LCRメーターで1MHzにおける比誘電率を測定したところ51であった。
<高誘電樹脂ペーストの製造例2>
熱硬化性樹脂であるエポキシ樹脂成分としてエポトートYDCN−703(東都化成社製)90重量部、エポトートYD−128(東都化成社製)10重量部、エポキシ樹脂硬化剤としてフェノールノボラック(日本化薬社製)53.3重量部をγ−ブチルラクトンに溶解させた。この溶液に高誘電率フィラーとしてチタン酸ストロンチウム(富士チタン工業社製)1417.5重量部、硬化触媒の2−エチル−4−メチルイミダゾール(東京化成工業社製)0.78重量部を加え、練り込みロールで分散させた後に攪拌及び脱泡し、高誘電樹脂ペーストを作成した。この高誘電樹脂ペーストをポリイミドフィルム上に塗布・硬化させた後、LCRメーターで1MHzにおける比誘電率を測定したところ12であった。
First, production examples of the insulating resin sheet and the high dielectric resin paste used in the examples of the present invention are shown. The compositions of the insulating resin varnish and the high dielectric resin paste are as shown in Table 1. The numerical values in Table 1 are parts by weight unless otherwise indicated.
<Insulation resin sheet production example 1>
90 parts by weight of Epicoat 1001 (manufactured by Yuka Shell Epoxy) as an epoxy resin component which is a thermosetting resin, 10 parts by weight of Epicoat 828EL (manufactured by Yuka Shell Epoxy), and phenol novolak (Nippon Kayaku Co., Ltd.) as an epoxy resin curing agent 24.6 parts by weight and 37.4 parts by weight of a phenoxy resin (Phenato YP-50, manufactured by Tohto Kasei Co., Ltd.) as a thermoplastic resin were dissolved in a mixed solvent of cyclohexanone and MEK. To this solution, 40.5 parts by weight of silica filler AEROSIL RY200 (manufactured by Nippon Aerosil Co., Ltd.) and curing catalyst 2-ethyl-4-methylimidazole (manufactured by Tokyo Chemical Industry Co., Ltd.) 0.32 parts by weight are added. After the dispersion, stirring and defoaming were performed to prepare an insulating resin varnish. The insulating resin varnish thus obtained was applied on a 30 μm thick PET support with a roll coater so that the film thickness after drying was 50 μm, and dried at 80 ° C. for 10 minutes. Furthermore, a 20 μm-thick polyethylene protective film was laminated on the insulating resin surface opposite to the support laminate surface to protect the insulating resin surface.
<Insulation resin sheet production example 2>
EPPN-502H (manufactured by Nippon Kayaku Co., Ltd.) 90 parts by weight as an epoxy resin component which is a thermosetting resin, Epicoat 828EL (manufactured by Yuka Shell Epoxy Co., Ltd.) 10 parts by weight, and Kayahard NHN (Nippon Kayaku Co., Ltd.) as an epoxy resin curing agent 99.4 parts by weight and 59.8 parts by weight of polyethersulfone (Sumika Excel 5003P, manufactured by Sumitomo Chemical Co., Ltd.) as a thermoplastic resin were dissolved in a mixed solvent of 4-butyrolactone and N-methyl-2-pyrrolidone. . To this solution, 77.8 parts by weight of silica filler Admafine SO-C1 (manufactured by Admatechs) and 0.78 part by weight of 2-ethyl-4-methylimidazole (manufactured by Tokyo Chemical Industry Co., Ltd.) as a curing catalyst are added and kneaded. After dispersing with a dough roll, stirring and defoaming were performed to prepare an insulating resin varnish. The insulating resin varnish thus obtained was applied on a 30 μm thick PET support with a roll coater so that the film thickness after drying was 50 μm, and dried at 80 ° C. for 10 minutes. Furthermore, a 20 μm-thick polyethylene protective film was laminated on the insulating resin surface opposite to the support laminate surface to protect the insulating resin surface.
<Production Example 1 of High Dielectric Resin Paste>
EPPN-502H (manufactured by Nippon Kayaku Co., Ltd.) 90 parts by weight as an epoxy resin component which is a thermosetting resin, Epicoat 828EL (manufactured by Yuka Shell Epoxy Co., Ltd.) 10 parts by weight, and Kayahard NHN (Nippon Kayaku Co., Ltd.) as an epoxy resin curing agent 99.4 parts by weight were dissolved in cyclohexanone. To this solution was added 1801.6 parts by weight of barium titanate (Fuji Titanium Industry Co., Ltd.) as a high dielectric constant filler, 0.78 parts by weight of 2-ethyl-4-methylimidazole (Tokyo Chemical Industry Co., Ltd.) as a curing catalyst, After dispersing with a kneading roll, stirring and defoaming were performed to prepare a high dielectric resin paste. After applying and curing this high dielectric resin paste on a polyimide film, the relative dielectric constant at 1 MHz was measured with an LCR meter to be 51.
<Production Example 2 of High Dielectric Resin Paste>
90 parts by weight of Epototo YDCN-703 (manufactured by Toto Kasei Co., Ltd.) as an epoxy resin component which is a thermosetting resin, 10 parts by weight of Epototo YD-128 (manufactured by Toto Kasei Co., Ltd.), phenol novolak (Nippon Kayaku Co., Ltd.) as an epoxy resin curing agent 53.3 parts by weight were dissolved in γ-butyllactone. To this solution, 1417.5 parts by weight of strontium titanate (manufactured by Fuji Titanium Industry Co., Ltd.) as a high dielectric constant filler, 0.78 parts by weight of 2-ethyl-4-methylimidazole (manufactured by Tokyo Chemical Industry Co., Ltd.) as a curing catalyst, After dispersing with a kneading roll, stirring and defoaming were performed to prepare a high dielectric resin paste. After applying and curing this high dielectric resin paste on a polyimide film, the relative dielectric constant at 1 MHz was measured with an LCR meter and found to be 12.

[実施例1]
配線回路(11)が形成されたコア基材(10)(コア厚0.8mm)上に(図1(a))、絶縁樹脂シートの製造例1で製造した絶縁樹脂シートを、保護フィルムを剥がし、真空ラミネーターにより温度130℃、圧力3kgf/cmでラミネートした。室温まで冷却して絶縁樹脂支持体を剥離した後、170℃のオーブン中で30分間加熱して絶縁樹脂を硬化させ、絶縁層(12)とした。この後、所定のビアホール形成部にUV−YAGレーザーで穴開けを行った後(図1(b))、アルカリ性過マンガン酸塩による表面粗化を行い、パネル−フィルドビアめっきによりビアホール(13)の電気的接続及びコンデンサ下部電極(15)の形成を行った(図1(c))。コンデンサ下部電極の設計は1辺2mmの正方形形状であった。
[Example 1]
On the core substrate (10) (core thickness 0.8 mm) on which the wiring circuit (11) is formed (FIG. 1 (a)), the insulating resin sheet produced in Production Example 1 of the insulating resin sheet is applied with a protective film. It peeled off and it laminated by the temperature of 130 degreeC and the pressure of 3 kgf / cm < 2 > with the vacuum laminator. After cooling to room temperature and peeling off the insulating resin support, the insulating resin was cured by heating in an oven at 170 ° C. for 30 minutes to obtain an insulating layer (12). After this, a predetermined via hole forming portion was drilled with a UV-YAG laser (FIG. 1 (b)), surface roughening with alkaline permanganate was performed, and the via hole (13) was formed by panel-filled via plating. Electrical connection and formation of the capacitor lower electrode (15) were performed (FIG. 1 (c)). The design of the capacitor lower electrode was a square shape with a side of 2 mm.

上述のように形成したコンデンサ下部電極(15)上に、高誘電樹脂ペーストの製造例1で製造した高誘電樹脂ペーストを、厚さ20μm、1辺6mmの正方形形状でスクリーン印刷して誘電体層(16)をコンデンサ下部電極よりも大きな面積でコンデンサ下部電極を覆うように形成した(図1(d))。スクリーン版には200メッシュ、乳剤厚さ15μmのステンレス版(東京プロセスサービス社製)を用いた。この後、80℃のオーブン中で30分乾燥させた後、180℃のオーブン中で1時間加熱して誘電体層を硬化させた。さらに誘電体層表面を不織布バフ♯320,♯600,♯1000(角田ブラシ社製)により研磨した。このようにして形成された誘電体層(16)上に導電性銀ペーストXA−436(藤倉化成社製)を縦4mm、横8mmの長方形形状で印刷し、コンデンサ上部電極(17)を形成するとともに、コンデンサ上部電極と絶縁樹脂上の導体パターンを電気的に接続した(図1(e))。   On the capacitor lower electrode (15) formed as described above, the high dielectric resin paste produced in Production Example 1 of the high dielectric resin paste is screen-printed in a square shape with a thickness of 20 μm and a side of 6 mm, and the dielectric layer (16) was formed so as to cover the capacitor lower electrode with a larger area than the capacitor lower electrode (FIG. 1D). As the screen plate, a stainless steel plate (manufactured by Tokyo Process Service Co., Ltd.) having a 200 mesh and emulsion thickness of 15 μm was used. Thereafter, after drying in an oven at 80 ° C. for 30 minutes, the dielectric layer was cured by heating in an oven at 180 ° C. for 1 hour. Further, the surface of the dielectric layer was polished with nonwoven fabric buffs # 320, # 600, # 1000 (manufactured by Kakuda Brush Co.). On the dielectric layer (16) thus formed, conductive silver paste XA-436 (manufactured by Fujikura Kasei Co., Ltd.) is printed in a rectangular shape of 4 mm in length and 8 mm in width to form the capacitor upper electrode (17). At the same time, the capacitor upper electrode and the conductive pattern on the insulating resin were electrically connected (FIG. 1 (e)).

さらにこの基板上に再度絶縁樹脂シートの製造例1で製造した絶縁樹脂シートを、保護フィルムを剥がし、真空ラミネーターにより温度130℃、圧力3kgf/cmでラミネートした。室温まで冷却して絶縁樹脂支持体を剥離した後、170℃のオーブン中で30分間加熱して絶縁樹脂を硬化させ、絶縁層(12)とした。所定のビアホール形成部にUV−YAGレーザーでビアホール(13)を形成し、パネル−フィルドビアめっきによりビアを電気的に接続し、エッチングにより導体回路(11)及びコンデンサ下部電極(15)を形成した。以上の工程を2回繰り返すことによりビルドアップ2層電子部品内蔵基板を製造した(図1(f))。尚、表層の導体回路を形成する際にはコンデンサ下部電極は形成しなかった。
[実施例2]
絶縁樹脂シートの製造例1で製造した絶縁樹脂シートと、高誘電樹脂ペーストの製造例2で製造した高誘電樹脂ペーストを用いた他は実施例1と同様にしてビルドアップ2層電子部品内蔵基板を製造した。
[実施例3]
絶縁樹脂シートの製造例2で製造した絶縁樹脂シートと、高誘電樹脂ペーストの製造例1で製造した高誘電樹脂ペーストを用いた他は実施例1と同様にしてビルドアップ2層電子部品内蔵基板を製造した。
[実施例4]
絶縁樹脂シートの製造例2で製造した絶縁樹脂シートと、高誘電樹脂ペーストの製造例2で製造した高誘電樹脂ペーストを用いた他は実施例1と同様にしてビルドアップ2層電子部品内蔵基板を製造した。
[実施例5]
配線回路(11)が形成されたコア基材(10)(コア厚0.8mm)上に(図2(a))、絶縁樹脂シートの製造例1で製造した絶縁樹脂シートを、保護フィルムを剥がし、真空ラミネーターにより温度130℃、圧力3kgf/cmでラミネートした。室温まで冷却して絶縁樹脂支持体を剥離した後、170℃のオーブン中で30分間加熱して絶縁樹脂を硬化させ、絶縁層(12)とした。この後、所定のビアホール形成部にUV−YAGレーザーで穴開けを行った後(図2(b))、アルカリ性過マンガン酸塩による表面粗化を行い、パネル−フィルドビアめっきによりビアホール(13)の電気的接続及びコンデンサ下部電極(15)さらに誘電材料の流れ止めパターン(19)の形成を行った(図2(c))。コンデンサ下部電極の設計は1辺2mmの正方形形状であった。
Furthermore, the protective resin sheet was peeled off again from the insulating resin sheet produced in Production Example 1 of the insulating resin sheet on this substrate, and laminated with a vacuum laminator at a temperature of 130 ° C. and a pressure of 3 kgf / cm 2 . After cooling to room temperature and peeling off the insulating resin support, the insulating resin was cured by heating in an oven at 170 ° C. for 30 minutes to obtain an insulating layer (12). Via holes (13) were formed by UV-YAG laser in predetermined via hole forming portions, vias were electrically connected by panel-filled via plating, and conductive circuits (11) and capacitor lower electrodes (15) were formed by etching. By repeating the above steps twice, a build-up two-layer electronic component built-in substrate was manufactured (FIG. 1 (f)). Note that the capacitor lower electrode was not formed when the surface conductor circuit was formed.
[Example 2]
Build-up two-layer electronic component built-in substrate in the same manner as in Example 1 except that the insulating resin sheet produced in Production Example 1 of the insulating resin sheet and the high dielectric resin paste produced in Production Example 2 of the high dielectric resin paste were used Manufactured.
[Example 3]
Build-up two-layer electronic component built-in substrate in the same manner as in Example 1 except that the insulating resin sheet produced in Production Example 2 of the insulating resin sheet and the high dielectric resin paste produced in Production Example 1 of the high dielectric resin paste were used Manufactured.
[Example 4]
Build-up two-layer electronic component built-in substrate in the same manner as in Example 1 except that the insulating resin sheet produced in Production Example 2 of the insulating resin sheet and the high dielectric resin paste produced in Production Example 2 of the high dielectric resin paste were used Manufactured.
[Example 5]
On the core substrate (10) (core thickness 0.8 mm) on which the wiring circuit (11) is formed (FIG. 2 (a)), the insulating resin sheet produced in Production Example 1 of the insulating resin sheet is coated with a protective film. It peeled off and it laminated by the temperature of 130 degreeC and the pressure of 3 kgf / cm < 2 > with the vacuum laminator. After cooling to room temperature and peeling off the insulating resin support, the insulating resin was cured by heating in an oven at 170 ° C. for 30 minutes to obtain an insulating layer (12). After this, a predetermined via hole forming portion was drilled with a UV-YAG laser (FIG. 2 (b)), surface roughening with alkaline permanganate was performed, and the via hole (13) was formed by panel-filled via plating. Electrical connection and capacitor lower electrode (15) and a dielectric material flow stop pattern (19) were formed (FIG. 2C). The design of the capacitor lower electrode was a square shape with a side of 2 mm.

上述のように形成したコンデンサ下部電極(15)及び誘電材料の流れ止め防止パターン(19)上に、高誘電樹脂ペーストの製造例1で製造した高誘電樹脂ペーストを、厚さ20μm、1辺6mmの正方形形状でスクリーン印刷して誘電体層(16)をコンデンサ下部電極よりも大きな面積でコンデンサ下部電極及び流れ止め防止パターンを覆うように形成した(図2(d))。スクリーン版には200メッシュ、乳剤厚さ15μmのステンレス版(東京プロセスサービス社製)を用いた。この後、80℃のオーブン中で30分乾燥させた後、180℃のオーブン中で1時間加熱して誘電体層を硬化させた。さらに誘電体層表面を不織布バフ♯320,♯600,♯1000(角田ブラシ社製)により研磨した。このようにして形成された誘電体層(16)上に導電性銀ペーストXA−436(藤倉化成社製)を縦4mm、横8mmの長方形形状で印刷し、コンデンサ上部電極(17)を形成するとともに、コンデンサ上部電極と絶縁樹脂上の導体パターンを電気的に接続した(図2(e))。   On the capacitor lower electrode (15) and the dielectric material anti-flow pattern (19) formed as described above, the high dielectric resin paste produced in Production Example 1 of the high dielectric resin paste has a thickness of 20 μm and a side of 6 mm. The dielectric layer (16) was formed so as to cover the capacitor lower electrode and the anti-flow prevention pattern with a larger area than the capacitor lower electrode by screen printing in a square shape (FIG. 2D). As the screen plate, a stainless steel plate (manufactured by Tokyo Process Service Co., Ltd.) having a 200 mesh and emulsion thickness of 15 μm was used. Thereafter, after drying in an oven at 80 ° C. for 30 minutes, the dielectric layer was cured by heating in an oven at 180 ° C. for 1 hour. Further, the surface of the dielectric layer was polished with nonwoven fabric buffs # 320, # 600, # 1000 (manufactured by Kakuda Brush Co.). On the dielectric layer (16) thus formed, conductive silver paste XA-436 (manufactured by Fujikura Kasei Co., Ltd.) is printed in a rectangular shape of 4 mm in length and 8 mm in width to form the capacitor upper electrode (17). At the same time, the capacitor upper electrode and the conductive pattern on the insulating resin were electrically connected (FIG. 2E).

さらにこの基板上に再度絶縁樹脂シートの製造例1で製造した絶縁樹脂シートを、保護フィルムを剥がし、真空ラミネーターにより温度130℃、圧力3kgf/cmでラミネートした。室温まで冷却して絶縁樹脂支持体を剥離した後、170℃のオーブン中で30分間加熱して絶縁樹脂を硬化させ、絶縁層(12)とした。所定のビアホール形成部にUV−YAGレーザーでビアホール(13)を形成し、パネル−フィルドビアめっきによりビアを電気的に接続し、エッチングにより導体回路(11)、コンデンサ下部電極(15)及び流れ止め防止パターン(19)を形成した。以上の工程を2回繰り返すことによりビルドアップ2層電子部品内蔵基板を製造した(図2(f))。尚、表層の導体回路を形成する際にはコンデンサ下部電極は形成しなかった。 Furthermore, the protective resin sheet was peeled off again from the insulating resin sheet produced in Production Example 1 of the insulating resin sheet on this substrate, and laminated with a vacuum laminator at a temperature of 130 ° C. and a pressure of 3 kgf / cm 2 . After cooling to room temperature and peeling off the insulating resin support, the insulating resin was cured by heating in an oven at 170 ° C. for 30 minutes to obtain an insulating layer (12). A via hole (13) is formed by a UV-YAG laser in a predetermined via hole forming portion, the via is electrically connected by panel-filled via plating, and a conductor circuit (11), a capacitor lower electrode (15) and a flow prevention are prevented by etching. A pattern (19) was formed. By repeating the above process twice, a build-up two-layer electronic component built-in substrate was manufactured (FIG. 2F). Note that the capacitor lower electrode was not formed when the surface conductor circuit was formed.

コア基材となる0.8mm両面銅張り積層板をエッチングして配線回路及びコンデンサ下部電極を形成した。コンデンサ下部電極は1辺が4mmの正方形形状とし、コンデンサ下部電極に接続する配線もエッチングにより電極と同時に同じ層に形成した。このようにして形成したコンデンサ下部電極上に、高誘電樹脂ペーストの製造例1で製造した高誘電樹脂ペーストを、厚さ20μm、1辺が6mmの正方形形状でスクリーン印刷して誘電体層をコンデンサ下部電極よりも大きな面積でコンデンサ下部電極を覆うように形成した。スクリーン版には実施例1と同じものを用いた。この後、80℃のオーブン中で30分乾燥させた後、180℃のオーブン中で1時間加熱して誘電体層を硬化させた。このようにして形成された誘電体層上に実施例1と同じ導電性銀ペーストで1辺2mmの正方形系状のコンデンサ上部電極及びこのコンデンサ上部電極の配線回路への接続配線部(線幅0.2mm)を印刷、形成した。この後の工程は上下電極のサイズ以外は実施例1と同様にしてビルドアップ2層電子部品内蔵基板を製造した。
[比較例2]
コア基材となる0.8mm両面銅張り積層板の銅箔をエッチングして配線回路及びコンデンサ下部電極を形成したこと、及びビルドアップ2層目の内蔵コンデンサ下部電極が直下のビアホールではなく、同一面内に形成された配線回路パターンと平面的に電気的導通をとられていること以外は実施例1と同様にして、ビルドアップ2層電子部品内蔵基板を作製した。
A 0.8 mm double-sided copper-clad laminate serving as a core substrate was etched to form a wiring circuit and a capacitor lower electrode. The capacitor lower electrode had a square shape with a side of 4 mm, and the wiring connected to the capacitor lower electrode was formed on the same layer as the electrode by etching. On the capacitor lower electrode thus formed, the high dielectric resin paste produced in Production Example 1 of the high dielectric resin paste is screen-printed in a square shape having a thickness of 20 μm and a side of 6 mm, and the dielectric layer is formed into a capacitor. The capacitor lower electrode was formed so as to cover a larger area than the lower electrode. The same screen plate as in Example 1 was used. Thereafter, after drying in an oven at 80 ° C. for 30 minutes, the dielectric layer was cured by heating in an oven at 180 ° C. for 1 hour. On the dielectric layer formed in this manner, a square-shaped capacitor upper electrode having a side of 2 mm with the same conductive silver paste as in Example 1, and a connection wiring portion (line width 0) of the capacitor upper electrode to the wiring circuit .2 mm) was printed and formed. Subsequent steps were performed in the same manner as in Example 1 except for the sizes of the upper and lower electrodes, and a build-up two-layer electronic component built-in substrate was manufactured.
[Comparative Example 2]
The copper foil of the 0.8mm double-sided copper-clad laminate used as the core substrate was etched to form the wiring circuit and the capacitor lower electrode, and the built-in capacitor lower electrode of the second build-up layer was the same instead of the via hole directly below A built-up two-layer electronic component built-in substrate was produced in the same manner as in Example 1 except that the wiring circuit pattern formed in the plane was electrically connected in a plane.

上述のようにして作製した資料の評価方法は下記によった。結果を表2に示す。
<静電容量>
実施例1〜5及び比較例1〜2で作製した評価基板により、電子部品内蔵基板が内蔵するコンデンサの静電容量をマテリアルアナライザにより測定した。尚、静電容量の設計値は誘電体の誘電率と厚さ、電極の有効面積から計算した値である。電極面積は全て2mm×2mmの4mmで設計している。
The evaluation method of the material produced as described above was as follows. The results are shown in Table 2.
<Capacitance>
With the evaluation board | substrate produced in Examples 1-5 and Comparative Examples 1-2, the electrostatic capacitance of the capacitor | condenser which the electronic component built-in board | substrate incorporates was measured with the material analyzer. The design value of the capacitance is a value calculated from the dielectric constant and thickness of the dielectric and the effective area of the electrode. The electrode area is all designed to be 2 mm × 2 mm 4 mm 2 .

本発明による電子部品内蔵基板の一形態の製造方法の一例を示す説明図である。It is explanatory drawing which shows an example of the manufacturing method of one form of the electronic component built-in board | substrate by this invention. 本発明による電子部品内蔵基板の他の形態の製造方法の一例を示す説明図である。It is explanatory drawing which shows an example of the manufacturing method of the other form of the electronic component built-in board | substrate by this invention. 本発明による電子部品内蔵基板の他の形態の製造方法の一例を上から見た説明図である。It is explanatory drawing which looked at an example of the manufacturing method of the other form of the electronic component built-in substrate by this invention from the top. 従来の電子部品内蔵基板の一例を上から見た説明図である。10…コア基板11…配線回路12…絶縁層13…(下層の配線回路まで到達する)ビアホール14…下層の配線回路と導通のとれたビア15…コンデンサ下部電極16…誘電体層17…コンデンサ上部電極18…多層プリント配線板内の配線回路との接続部19…誘電材料の流れ止め防止パターン20…電子部品内蔵基板21…コンデンサ下部電極の導通用配線回路パターンIt is explanatory drawing which looked at an example of the conventional electronic component built-in board | substrate from the top. DESCRIPTION OF SYMBOLS 10 ... Core board | substrate 11 ... Wiring circuit 12 ... Insulating layer 13 ... Via hole 14 (being reached to lower wiring circuit) ... Via 15 connected with lower wiring circuit ... Capacitor lower electrode 16 ... Dielectric layer 17 ... Upper part of capacitor Electrode 18 ... Connection portion 19 with wiring circuit in multilayer printed wiring board ... Dielectric material flow prevention pattern 20 ... Electronic component built-in substrate 21 ... Conductor wiring circuit pattern for capacitor lower electrode

Claims (9)

絶縁層と導体層を交互に形成してなる多層プリント配線板にコンデンサを内蔵した電子部品内蔵基板であって、該コンデンサが、
多層プリント配線板を形成するいずれかの絶縁層上の一部にコンデンサ下部電極が設けられ、
該コンデンサ下部電極を覆うように誘電体層が設けられ、
該誘電体層の上部には該コンデンサ下部電極より広い面積のコンデンサ上部電極が設けられていることを特徴とする電子部品内蔵基板。
An electronic component-embedded board in which a capacitor is built in a multilayer printed wiring board formed by alternately forming insulating layers and conductor layers,
A capacitor lower electrode is provided on a part of any of the insulating layers forming the multilayer printed wiring board,
A dielectric layer is provided so as to cover the capacitor lower electrode,
A substrate with a built-in electronic component, wherein a capacitor upper electrode having a larger area than the capacitor lower electrode is provided on the dielectric layer.
前記下部電極が絶縁層より下層の配線回路と導通をとるために形成したビア上に前記コンデンサ下部電極が形成されていることを特徴とする請求項1記載の電子部品内蔵基板。   2. The electronic component built-in substrate according to claim 1, wherein the capacitor lower electrode is formed on a via formed so that the lower electrode is electrically connected to a wiring circuit below the insulating layer. 前記コンデンサ下部電極の周囲には前記誘電体層を形成する誘電材料の流れ止め防止のためのパターンが形成されていることを特徴とする請求項1または2記載の電子部品内蔵基板。   3. The electronic component built-in substrate according to claim 1, wherein a pattern for preventing flow of a dielectric material forming the dielectric layer is formed around the capacitor lower electrode. 絶縁層と導体層を交互に形成してなる多層プリント配線板にコンデンサを内蔵した電子部品内蔵基板の製造方法であって、以下の工程を含むことを特徴とする電子部品内蔵基板の製造方法。
a.多層プリント配線板を形成するいずれかの絶縁層上の一部にコンデンサ下部電極を設ける工程、
b.該絶縁層上の一部に前記コンデンサ下部電極を覆うように熱硬化性樹脂を主成分とする高誘電樹脂ペーストをスクリーン印刷して誘電体層を設ける工程、
c.前記コンデンサ下部電極よりも広い面積を占めるコンデンサ上部電極と該コンデンサ上部電極と前記多層プリント配線板内の配線回路との接続部を導電性ペーストによって形成する工程。
A method for manufacturing an electronic component built-in substrate in which a capacitor is embedded in a multilayer printed wiring board formed by alternately forming insulating layers and conductor layers, the method including the following steps.
a. Providing a capacitor lower electrode on a part of any insulating layer forming the multilayer printed wiring board;
b. A step of providing a dielectric layer by screen printing a high dielectric resin paste mainly composed of a thermosetting resin so as to cover the capacitor lower electrode on a part of the insulating layer;
c. Forming a capacitor upper electrode occupying a larger area than the capacitor lower electrode, and a connecting portion between the capacitor upper electrode and the wiring circuit in the multilayer printed wiring board by a conductive paste;
請求項4記載の工程aのかわりに、
d.多層プリント配線板を形成するいずれかの絶縁層に、該絶縁層より下層の配線回路と導通をとるためのビアホールを形成する工程、
および
e.前記ビアホールにフィルドビアめっきを施し、前記下層の配線回路と導通のとれたビア及びコンデンサ下部電極を形成する工程、
の2工程を含むことを特徴とする請求項4記載の電子部品内蔵基板の製造方法。
Instead of step a according to claim 4,
d. A step of forming a via hole for establishing electrical connection with a wiring circuit below the insulating layer in any insulating layer forming the multilayer printed wiring board;
And e. Applying via filling to the via hole and forming a via and a capacitor lower electrode that are electrically connected to the lower wiring circuit;
5. The method for manufacturing an electronic component built-in substrate according to claim 4, comprising the following two steps.
請求項4記載の工程bと工程cの間に、
f.前記誘電体層の機械研磨を行う工程、
が含まれることを特徴とする請求項4または5記載の電子部品内蔵基板の製造方法。
Between step b and step c according to claim 4,
f. Performing mechanical polishing of the dielectric layer;
The method for manufacturing an electronic component-embedded substrate according to claim 4 or 5, wherein:
請求項4記載の工程aの前、または請求項5記載の工程dの前に、
g.配線回路が形成された絶縁性基板上に熱硬化性樹脂を主成分とする絶縁樹脂シートを積層し絶縁層を形成する工程、
が含まれることを特徴とする請求項4から6のいずれかに記載の電子部品内蔵基板の製造方法。
Before step a according to claim 4 or before step d according to claim 5,
g. Forming an insulating layer by laminating an insulating resin sheet mainly composed of a thermosetting resin on an insulating substrate on which a wiring circuit is formed;
The method of manufacturing an electronic component built-in substrate according to claim 4, wherein:
請求項4記載の工程aのかわりに、
h.多層プリント配線板を形成するいずれかの絶縁層の一部にコンデンサ下部電極を設け、該コンデンサ下部電極の周囲に誘電体層の流れ止め防止パターンを形成する工程、
を含むことを特徴とする請求項4記載の電子部品内蔵基板の製造方法。
Instead of step a according to claim 4,
h. A step of providing a capacitor lower electrode on a part of any of the insulating layers forming the multilayer printed wiring board, and forming a dielectric layer anti-flow pattern around the capacitor lower electrode;
The method for manufacturing an electronic component built-in substrate according to claim 4, comprising:
請求項5記載の工程eのかわりに、
i.前記ビアホールにフィルドビアめっきを施し、前記下層の配線回路と導通のとれたビア及びコンデンサ下部電極と、該コンデンサ下部電極の周囲に誘電体層の流れ止め防止パターンを形成する工程、
を含むことを特徴とする請求項5記載の電子部品内蔵基板の製造方法。
Instead of step e according to claim 5,
i. Applying via filling to the via hole, forming a via and a capacitor lower electrode conductive with the lower wiring circuit, and forming a dielectric layer anti-flow pattern around the capacitor lower electrode;
The method of manufacturing an electronic component built-in substrate according to claim 5, comprising:
JP2003345502A 2003-10-03 2003-10-03 Manufacturing method of electronic component built-in substrate Expired - Fee Related JP4453325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003345502A JP4453325B2 (en) 2003-10-03 2003-10-03 Manufacturing method of electronic component built-in substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003345502A JP4453325B2 (en) 2003-10-03 2003-10-03 Manufacturing method of electronic component built-in substrate

Publications (2)

Publication Number Publication Date
JP2005116604A true JP2005116604A (en) 2005-04-28
JP4453325B2 JP4453325B2 (en) 2010-04-21

Family

ID=34538758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003345502A Expired - Fee Related JP4453325B2 (en) 2003-10-03 2003-10-03 Manufacturing method of electronic component built-in substrate

Country Status (1)

Country Link
JP (1) JP4453325B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344847A (en) * 2005-06-10 2006-12-21 Murata Mfg Co Ltd Substrate with built-in component, module equipped with built-in component using same, and method of manufacturing same
JP2008130779A (en) * 2006-11-21 2008-06-05 Aica Kogyo Co Ltd Method for manufacturing capacitor incorporating multilayer printed wiring board
JP2013510429A (en) * 2009-11-06 2013-03-21 スリーエム イノベイティブ プロパティズ カンパニー Dielectric material having non-halogenated curing agent
JP2020167336A (en) * 2019-03-29 2020-10-08 Tdk株式会社 Element-embedded substrate and manufacturing method of the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204516A (en) * 1982-05-24 1983-11-29 株式会社日立製作所 Thick film multilayer circuit board
JPH0215764U (en) * 1988-07-15 1990-01-31
JPH11126977A (en) * 1997-10-22 1999-05-11 Sony Corp Manufacture of wiring substrate
JP2001068858A (en) * 1999-08-27 2001-03-16 Shinko Electric Ind Co Ltd Multilayer wiring board, manufacture thereof, and semiconductor device
JP2002134871A (en) * 2000-10-30 2002-05-10 Mitsubishi Electric Corp Printed wiring board and method for manufacturing the same
JP2003243796A (en) * 2002-02-19 2003-08-29 Victor Co Of Japan Ltd Printed board equipped with capacitor element and manufacturing method of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204516A (en) * 1982-05-24 1983-11-29 株式会社日立製作所 Thick film multilayer circuit board
JPH0215764U (en) * 1988-07-15 1990-01-31
JPH11126977A (en) * 1997-10-22 1999-05-11 Sony Corp Manufacture of wiring substrate
JP2001068858A (en) * 1999-08-27 2001-03-16 Shinko Electric Ind Co Ltd Multilayer wiring board, manufacture thereof, and semiconductor device
JP2002134871A (en) * 2000-10-30 2002-05-10 Mitsubishi Electric Corp Printed wiring board and method for manufacturing the same
JP2003243796A (en) * 2002-02-19 2003-08-29 Victor Co Of Japan Ltd Printed board equipped with capacitor element and manufacturing method of the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344847A (en) * 2005-06-10 2006-12-21 Murata Mfg Co Ltd Substrate with built-in component, module equipped with built-in component using same, and method of manufacturing same
JP2008130779A (en) * 2006-11-21 2008-06-05 Aica Kogyo Co Ltd Method for manufacturing capacitor incorporating multilayer printed wiring board
JP2013510429A (en) * 2009-11-06 2013-03-21 スリーエム イノベイティブ プロパティズ カンパニー Dielectric material having non-halogenated curing agent
US9247645B2 (en) 2009-11-06 2016-01-26 3M Innovative Properties Company Dielectric material with non-halogenated curing agent
JP2020167336A (en) * 2019-03-29 2020-10-08 Tdk株式会社 Element-embedded substrate and manufacturing method of the same

Also Published As

Publication number Publication date
JP4453325B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
JP6304265B2 (en) Epoxy resin composition
JP4117690B2 (en) Method for producing multilayer printed wiring board using adhesive film for multilayer printed wiring board
US7164197B2 (en) Dielectric composite material
KR101045554B1 (en) Wiring board sheet material and its manufacturing method and multilayer board and its manufacturing method
WO2006016589A1 (en) Method for producing dielectric layer-constituting material, dielectric layer-constituting material produced by such method, method for manufacturing capacitor circuit-forming member using such dielectric layer-constituting material, capacitor circuit-forming member obtained by such method, and multilayer printed wiring boa
JP2006093640A (en) Printed circuit substrate material for embedded passive element
US7700185B2 (en) Insulation material, film, circuit board and method of producing them
WO2004010751A1 (en) Multilayer wiring board, method for producing the same, semiconductor device and radio electronic device
JP2004146495A (en) Built-in chip capacitor for printed wiring board, and element-containing board built therein
JPH11340367A (en) Multilayer wiring board and its manufacture
JP4453325B2 (en) Manufacturing method of electronic component built-in substrate
JP4269746B2 (en) Printed wiring board manufacturing method, printed wiring board, and semiconductor package
JP2004349672A (en) Filler material, multilayer wiring substrate using the same, and method of manufacturing multilayer wiring substrate
JP2008227153A (en) Dielectric material for multilayer printed wiring board with built-in capacitor, multilayer printed wiring board with built-in capacitor member and capacitor, and method for manufacturing multilayer printed wiring board with built-in capacitor
JP4720194B2 (en) Method for manufacturing printed wiring board
JP4200802B2 (en) Device-embedded substrate and manufacturing method thereof
JP2002309200A (en) Adhesive film
WO2004081952A1 (en) Polymer composite high-dielectric-constant material, multilayer printed circuit board and module board
JP2004063722A (en) Printed-wiring board with built-in passive element and its manufacturing method
JP4010202B2 (en) Multilayer circuit board manufacturing method
JP2002176246A (en) Wiring board and its producing method
JP2002252470A (en) Interlayer insulating material film for printed wiring board and multilayer printed wiring board using it
JP4248827B2 (en) Multilayer wiring board and manufacturing method thereof
JP4075569B2 (en) Printed wiring board manufacturing material, printed wiring board and manufacturing method thereof
JP3832406B2 (en) Multilayer wiring board, semiconductor device, and wireless electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4453325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees