JP2005106289A - 流体軸受ユニットおよび該流体軸受ユニットを備えたスピンドルモータ、記録ディスク駆動装置 - Google Patents

流体軸受ユニットおよび該流体軸受ユニットを備えたスピンドルモータ、記録ディスク駆動装置 Download PDF

Info

Publication number
JP2005106289A
JP2005106289A JP2004264470A JP2004264470A JP2005106289A JP 2005106289 A JP2005106289 A JP 2005106289A JP 2004264470 A JP2004264470 A JP 2004264470A JP 2004264470 A JP2004264470 A JP 2004264470A JP 2005106289 A JP2005106289 A JP 2005106289A
Authority
JP
Japan
Prior art keywords
dynamic pressure
outer ring
ring element
pressure groove
bearing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004264470A
Other languages
English (en)
Other versions
JP4754794B2 (ja
Inventor
Rikuro Obara
陸郎 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP2004264470A priority Critical patent/JP4754794B2/ja
Publication of JP2005106289A publication Critical patent/JP2005106289A/ja
Application granted granted Critical
Publication of JP4754794B2 publication Critical patent/JP4754794B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Sliding-Contact Bearings (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

【課題】 流体軸受装置を構成する部品をモジュール化し、装置全体をユニット化して、
標準化が可能にされた流体軸受ユニットを得る。
【解決手段】 複数のモジュール化された素子を組み合わせて構成される流体軸受ユニッ
ト1が、ケース素子10、エンドプレート素子20、第1の外輪素子30、第2の外輪素
子80、フランジ付きシャフト素子40、スペーサ素子100を備え、第1の外輪素子3
0の内周面および第2の外輪素子80の内周面には、ラジアル方向の荷重を受ける動圧を
発生させるための第1の動圧溝91、第2の動圧溝92がそれぞれ形成され、第2の外輪
素子80の下端面およびエンドプレート素子20の上面には、アキシャル方向の荷重を受
ける動圧を発生させるための第3の動圧溝93、第4の動圧溝94がそれぞれ形成され、
これらの動圧溝がそれぞれ臨む各対向面間の微小隙間には、潤滑油が充填されている。少
なくとも動圧溝が形成される素子は、焼き入れ可能な、鋼またはステンレス鋼から成る。
【選択図】 図7

Description

本願の発明は、構成部品をモジュール化し、完成品全体をユニット化することによって、標準化が可能にされた、ラジアル、アキシャル両方向の荷重に対して軸受機能を発揮し得る流体軸受ユニットに関し、さらには、該流体軸受ユニットを備えたスピンドルモータ、記録ディスク駆動装置に関する。
近年、益々大容量化、小型化するコンピュータ等のオフィスオートメーション機器や、
その周辺機器である磁気ディスク駆動装置等の回転部の駆動装置・部品として使用されるスピンドルモータには、モータの振れ精度(NRRO(非同期振れ))や騒音、音響寿命、剛性等の信頼性が強く求められている。
従来、このようなスピンドルモータの回転軸の軸受部には、複数の玉軸受を組み合わせ
て構成された複合玉軸受装置が多く使用されている。ところで、最近、磁気ディスク駆動装置等において、記録容量の増大、耐衝撃性の向上、低騒音やデータアクセスの高速化等が一段と強く要求されてきており、これらの要求に応えるために、スピンドルモータの玉軸受は、材料の組成の改善、内外輪や転動体等の加工精度の向上等が図られているが、これらの対策だけでは十分とは言えず、転がり軸受そのものの限界も認識されて来ており、これに対処するために、流体軸受の搭載が進められている。
図13には、このような流体軸受が搭載された軸回転型スピンドルモータが図示されて
いる。このスピンドルモータ00は、ベース02と、このベース02に支持されて回転す
るロータハブ03と、これらベース02とロータハブ03との間に介装された流体軸受装
置01とを備えている。
流体軸受装置01のスリーブ010は、ベース02の中央部分の円筒状壁07の内周面
に嵌入されて固定され、このスリーブ010には、ロータハブ03に垂設された回転軸0
30が嵌挿されている。スリーブ010と回転軸030との間の微小間隙には潤滑油が充
填されて、回転軸030の回転とともにスリーブ010の内周面に形成された動圧溝(例
えば、ヘリングボーン形状の溝)051、052の作用によって潤滑油の圧力が発生する
ことで得られる動圧力によって、回転軸030をスリーブ010の内周面と非接触の状態
で回転自在にラジアル方向に支承する。動圧溝051、052は、スリーブ010の内周
面の上下2個所に形成されているが、これらの動圧溝は、回転軸030の外周面に形成さ
れる場合もある。
詳細には図示されないが、回転軸030の下端部に嵌着されたスラストリング060の
下端面と上端面それぞれに対向するカウンタープレート020の上面とスリーブ010の
下端面にも動圧溝(例えば、ヘリングボーン形状の溝)がそれぞれ形成されており、これ
らの動圧溝が臨む各対向面間の微小隙間には潤滑油が充填されて、回転軸030の回転と
ともにこれらの動圧溝の作用によって潤滑油の圧力が発生することで得られる動圧力によ
って、スラストリング060をカウンタープレート020の上面とスリーブ010の下端
面それぞれと非接触の状態で回転自在にアキシャル方向に支承する。これらの動圧溝は、
スラストリング060の下端面と上端面それぞれ形成される場合もある。
したがって、ベース02は、流体軸受装置01を介してロータハブ03の回転軸030
を回転自在に支承している。その他、ステータ05、永久磁石06等からなるモータ部の
構造等は、従来の複合玉軸受が使用されるスピンドルモータと基本的に異なるところはな
い。
このような流体軸受装置01は、従来、スリーブ010、回転軸030、カウンタープ
レート020等の構成部品のモジュ−ル化がなされていなかったので、各種機器・装置の
回転部の駆動装置の部品として流体軸受装置が必要とされた時、それら機器・装置のメー
カーは、流体軸受装置が適用される個々の機器・装置に適合した構造、性能を備えたもの
としてこれらの部品を、その都度、各メーカーにおいて個別に製作して、流体軸受装置を
完成しなければならず、高性能、高寿命の流体軸受装置を迅速に大量生産することが容易
ではなかった。
なお、スピンドルモータのレベルでは、それを構成する部品を出来るだけモジュール化
して、流体軸受装置を含む部品の共通化を進めることにより、完成品全体をユニット化し
て、部品仕様の多様化や機種の多様化に対しても、共通部品は、そのまま使用することが
できるようにし、また、一部の部品に不良が生じても、当該部品のみを交換すれば良いよ
うにして、部品の再利用を図り、これらを通じてコストの低減を図ることが、すでに提案
されている(特開2000−175405号公報、実開昭56−157427号公報、実
開昭56−133121号公報参照)。なお、ここで言う「部品」には、「最小単位とし
ての部品」の他に、「最小単位としての部品」が複数個組み合わされて構成された「組合
せ部品」が含まれるものである。
しかしながら、これらのモジュール化された部品は、あくまでも当該スピンドルモータ
に適合するように構造、寸法が定められるのであり、各種の機器・装置に共通に使用でき
るように標準化されたものではなかった。
特開2000−175405号公報 実開昭56−157427号公報 実開昭56−133121号公報
本願の発明は、従来の流体軸受装置が有する前記のような問題点を解決して、スピンド
ルモータの「組合せ部品」の1つである流体軸受装置をモジュール化するに際して、流体
軸受装置を構成する「最小単位としての部品」をさらにモジュール化して、「最小単位と
しての部品」に対しては「完成品」(組合せ部品)に相当する流体軸受装置をユニット化
することにより、スピンドルモータのみならず、各種の機器・装置に共通に使用できるよ
うに標準化された各種仕様の流体軸受装置を容易に製作できるようにして、どのような機
器・装置の回転駆動部の軸受装置としてでも、これらの機器・装置のメーカーが直ぐにこ
れらの「組合せ部品」もしくは「最小単位としての部品」を調達して、必要に応じて組み
合わせ、所望の構造、機能を備えた流体軸受ユニットを得ることができるようにした、ユ
ニット化に相応しい構造を備えた流体軸受ユニット、特にラジアル、アキシャル両方向の
荷重に対して軸受機能を発揮し得る流体軸受ユニットおよび該流体軸受ユニットを備えたスピンドルモータ、記録ディスク駆動装置を提供することを課題とする。
本願の発明は、前記のような課題を解決した流体軸受ユニットおよび該流体軸受ユニットを備えたスピンドルモータ、記録ディスク駆動装置に係り、
その請求項1に記載された発明は、複数のモジュール化された素子を組み合わせて構成
され、内部に複数の動圧発生機構部を有し、一端部にフランジ部を有するフランジ付きシ
ャフト素子を相対回転自在に支承する流体軸受ユニットであって、円筒状内周面を有する
筒状のケース素子と、前記ケース素子の下端部を閉塞するエンドプレート素子と、前記ケ
ース素子に嵌入される外輪素子と、そのフランジ部が前記外輪素子の下端面と前記エンド
プレート素子の上面とに挟まれるようにして、前記外輪素子に挿入されるフランジ付きシ
ャフト素子とを備え、前記外輪素子の内周面もしくは前記フランジ付きシャフト素子の本
体部の外周面には、対向するこれら両面間にラジアル方向の荷重を受ける動圧を発生させ
るための第1の動圧溝が形成され、前記外輪素子の下端面もしくは前記フランジ付きシャ
フト素子のフランジ部の上面には、対向するこれら両面間にアキシャル方向の荷重を受け
る動圧を発生させるための第2の動圧溝が形成され、前記エンドプレート素子の上面もし
くは前記フランジ付きシャフト素子のフランジ部の下面には、対向するこれら両面間にア
キシャル方向の荷重を受ける動圧を発生させるための第3の動圧溝が形成され、前記第1
の動圧溝、前記第2の動圧溝および前記第3の動圧溝がそれぞれ臨む各対向面間の微小隙
間には、潤滑油が充填されたことを特徴とする流体軸受ユニットである。
請求項1に記載された発明は、前記のように構成されているので、その一端部にフラン
ジ部を有するフランジ付きシャフト素子を相対回転自在に支承する流体軸受ユニットは、
各素子をモジュール化するのが容易であり、モジュール化された各素子をもって標準化さ
れた流体軸受ユニットを容易に製作することができる。
また、回転側素子と固定側素子との間に働く磁気力などのバイアス効果によってフラン
ジ付きシャフト素子をエンドプレート素子に向かって軸方向に常時押し付ける作用が期待
できない場合でも、第2の動圧溝が臨む対向面間(「対向する当該両面間」の意。以下、
同様。ここでは、互いに対向する外輪素子の下端面とフランジ付きシャフト素子のフラン
ジ部の上面との間を意味している。)の微小隙間に形成される動圧発生機構部(以下、「
動圧発生部」と略称する。)において生成される動圧力が、それと等価な作用を発揮する
ことができる。これにより、第2の動圧溝が臨む対向面間の微小隙間と第3の動圧溝が臨
む対向面間の微小隙間とをともに適切な隙間に保って、フランジ付きシャフト素子の相対
回転を安定化させ、回転精度の向上を図ることができる。
また、その請求項2に記載された発明は、複数のモジュール化された素子を組み合わせ
て構成され、内部に複数の動圧発生機構部を有し、ストレートなシャフト素子を相対回転
自在に支承する流体軸受ユニットであって、円筒状内周面を有する筒状のケース素子と、
前記ケース素子の下端部を閉塞するエンドプレート素子と、前記ケース素子に嵌入される
外輪素子と、前記外輪素子に挿入されるシャフト素子とを備え、前記外輪素子の内周面も
しくは前記シャフト素子の外周面には、対向するこれら両面間にラジアル方向の荷重を受
ける動圧を発生させるための第1の動圧溝が形成され、前記エンドプレートの上面もしく
は前記シャフト素子の下端面には、対向するこれら両面間にアキシャル方向の荷重を受け
る動圧を発生させるための第2の動圧溝が形成され、前記第1の動圧溝および前記第2の
動圧溝がそれぞれ臨む各対向面間の微小隙間には、潤滑油が充填されたことを特徴とする
流体軸受ユニットである。
請求項2に記載された発明は、前記のように構成されているので、そのストレートなシ
ャフト素子を相対回転自在に支承する流体軸受ユニットは、各素子をモジュール化するの
が容易であり、モジュール化された各素子をもって標準化された流体軸受ユニットを容易
に製作することができる。
さらに、その請求項3に記載された発明は、複数のモジュール化された素子を組み合わ
せて構成され、内部に複数の動圧発生機構部を有し、一端部にフランジ部を有するフラン
ジ付きシャフト素子を相対回転自在に支承する流体軸受ユニットであって、円筒状内周面
を有する筒状のケース素子と、前記ケース素子の下端部を閉塞するエンドプレート素子と
、前記ケース素子に嵌入される外輪素子と、前記外輪素子に挿入される内輪素子と、その
フランジ部が前記外輪素子の下端面および前記内輪素子の下端面と前記エンドプレート素
子の上面とに挟まれるようにして、前記内輪素子に嵌入されるフランジ付きシャフト素子
とを備え、前記外輪素子の内周面もしくは前記内輪素子の外周面には、対向するこれら両
面間にラジアル方向の荷重を受ける動圧を発生させるための第1の動圧溝が形成され、前
記外輪素子の下端面もしくは前記フランジ付きシャフト素子のフランジ部の上面には、対
向するこれら両面間にアキシャル方向の荷重を受ける動圧を発生させるための第2の動圧
溝が形成され、前記エンドプレート素子の上面もしくは前記フランジ付きシャフト素子の
フランジ部の下面には、対向するこれら両面間にアキシャル方向の荷重を受ける動圧を発
生させるための第3の動圧溝が形成され、前記第1の動圧溝、前記第2の動圧溝および前
記第3の動圧溝がそれぞれ臨む各対向面間の微小隙間には、潤滑油が充填されたことを特
徴とする流体軸受ユニットである。
請求項3に記載された発明は、前記のように構成されているので、その一端部にフラン
ジ部を有するフランジ付きシャフト素子を相対回転自在に支承する流体軸受ユニットは、
各素子をモジュール化するのが容易であり、モジュール化された各素子をもって標準化さ
れた流体軸受ユニットを容易に製作することができる。
また、同じフランジ付きシャフト素子を用いながら、外輪素子と内輪素子とによって形
成されるラジアル方向の隙間寸法の設定を変えることによって、当該隙間部に形成される
動圧発生部で生成されるラジアル方向の荷重を受ける動圧力を、所望する使途条件に合わ
せて調節することが可能になる。
また、回転側素子と固定側素子との間に働く磁気力などのバイアス効果によってフラン
ジ付きシャフト素子をエンドプレート素子に向かって軸方向に常時押し付ける作用が期待
できない場合でも、第2の動圧溝が臨む対向面間の微小隙間に形成される動圧発生部にお
いて生成される動圧力が、それと等価な作用を発揮することができ、これにより、第2の
動圧溝が臨む対向面間の微小隙間と第3の動圧溝が臨む対向面間の微小隙間とをともに適
切な隙間に保って、フランジ付きシャフト素子の相対回転を安定化させ、回転精度の向上
を図ることができる。
さらに、その請求項4に記載された発明は、複数のモジュール化された素子を組み合わ
せて構成され、内部に複数の動圧発生機構部を有し、ストレートなシャフト素子を相対回
転自在に支承する流体軸受ユニットであって、円筒状内周面を有する筒状のケース素子と
、前記ケース素子の下端部を閉塞するエンドプレート素子と、前記ケース素子に嵌入され
る外輪素子と、そのフランジ部が前記外輪素子の下端面と前記エンドプレート素子の上面
とに挟まれるようにして前記外輪素子に挿入される、一端部にフランジ部を有するフラン
ジ付き内輪素子と、前記フランジ付き内輪素子に嵌入されるシャフト素子とを備え、前記
外輪素子の内周面もしくは前記フランジ付き内輪素子の本体部の外周面には、対向するこ
れら両面間にラジアル方向の荷重を受ける動圧を発生させるための第1の動圧溝が形成さ
れ、前記外輪素子の下端面もしくは前記フランジ付き内輪素子のフランジ部の上面には、
対向するこれら両面間にアキシャル方向の荷重を受ける動圧を発生させるための第2の動
圧溝が形成され、前記エンドプレート素子の上面もしくは前記フランジ付き内輪素子のフ
ランジ部の下面には、対向するこれら両面間にアキシャル方向の荷重を受ける動圧を発生
させるための第3の動圧溝が形成され、前記第1の動圧溝、前記第2の動圧溝および前記
第3の動圧溝がそれぞれ臨む各対向面間の微小隙間には、潤滑油が充填されたことを特徴
とする流体軸受ユニットである。
請求項4に記載された発明は、前記のように構成されているので、そのストレートなシ
ャフト素子を相対回転自在に支承する流体軸受ユニットは、各素子をモジュール化するの
が容易であり、モジュール化された各素子をもって標準化された流体軸受ユニットを容易
に製作することができる。
また、同じストレートなシャフト素子を用いながら、外輪素子とフランジ付き内輪素子
とによって形成されるラジアル方向の隙間寸法の設定を変えることによって、当該隙間部
に形成される動圧発生部で生成されるラジアル方向の荷重を受ける動圧力を、所望する使
途条件に合わせて調節することが可能になる。
また、回転側素子と固定側素子との間に働く磁気力などのバイアス効果によってシャフ
ト素子をエンドプレート素子に向かって軸方向に常時押し付ける作用が期待できない場合
でも、第2の動圧溝が臨む対向面間の微小隙間に形成される動圧発生部において生成され
る動圧力が、それと等価な作用を発揮することができ、これにより、第2の動圧溝が臨む
対向面間の微小隙間と第3の動圧溝が臨む対向面間の微小隙間とをともに適切な隙間に保
って、シャフト素子の相対回転を安定化させ、回転精度の向上を図ることができる。
さらに、請求項5に記載されるように請求項1ないし4のいずれかに記載の流体軸受ユニットを構成することにより、第1の動圧溝は、該動圧溝が形成される面を有する素子の軸方向に隔てられた上下2個所に形成される。この結果、シャフト素子は、その軸方向上下2個所でラジアル方向に直接的にか、間接的にか軸受支持されることになるので、高い軸受剛性を得ることができる。特に流体軸受ユニットの軸方向寸法が大きくなった場合に、有利である。
また、その請求項6に記載された発明は、複数のモジュール化された素子を組み合わせ
て構成され、内部に複数の動圧発生機構部を有し、中間部にフランジ部を有するフランジ
付きシャフト素子を相対回転自在に支承する流体軸受ユニットであって、円筒状内周面を
有する筒状のケース素子と、前記ケース素子の下端部を閉塞するエンドプレート素子と、
前記ケース素子に嵌入される第1の外輪素子および第2の外輪素子と、そのフランジ部が
前記第1の外輪素子の下端面と前記第2の外輪素子の上端面とに挟まれるようにして、前
記第1の外輪素子および前記第2の外輪素子に挿入されるフランジ付きシャフト素子とを
備え、前記第1の外輪素子の内周面もしくは前記フランジ付きシャフト素子の本体部の外
周面には、対向するこれら両面間にラジアル方向の荷重を受ける動圧を発生させるための
第1の動圧溝が形成され、前記第2の外輪素子の内周面もしくは前記フランジ付きシャフ
ト素子の本体部の外周面には、対向するこれら両面間にラジアル方向の荷重を受ける動圧
を発生させるための第2の動圧溝が形成され、前記第1の外輪素子の下端面もしくは前記
フランジ付きシャフト素子のフランジ部の上面には、対向するこれら両面間にアキシャル
方向の荷重を受ける動圧を発生させるための第3の動圧溝が形成され、前記第2の外輪素
子の上端面もしくは前記フランジ付きシャフト素子のフランジ部の下面には、対向するこ
れら両面間にアキシャル方向の荷重を受ける動圧を発生させるための第4の動圧溝が形成
され、前記第1の動圧溝、前記第2の動圧溝、前記第3の動圧溝および前記第4の動圧溝
がそれぞれ臨む各対向面間の微小隙間には、潤滑油が充填されたことを特徴とする流体軸
受ユニットである。
請求項6に記載された発明は、前記のように構成されているので、その中間部にフラン
ジ部を有するフランジ付きシャフト素子を相対回転自在に支承する流体軸受ユニットは、
各素子をモジュール化するのが容易であり、モジュール化された各素子をもって標準化さ
れた流体軸受ユニットを容易に製作することができる。
また、第1の外輪素子と該第1の外輪素子に挿入されるフランジ付きシャフト素子の本
体部のフランジ部を境にした一半部とによって形成されるラジアル方向の隙間寸法と、第
2の外輪素子と該第2の外輪素子に挿入されるフランジ付きシャフト素子の本体部のフラ
ンジ部を境にした他半部とによって形成されるラジアル方向の隙間寸法とを、異なる寸法
に設定することによって、それぞれの隙間部に形成される動圧発生部で生成されるラジア
ル方向の荷重を受ける動圧力を、所望する使途条件に合わせて調節することが可能になる。
さらに、同じ高さの流体軸受ユニットにおいて、フランジ付きシャフト素子の本体部の
フランジ部を境にした一半部の軸方向寸法と他半部の軸方向寸法との比率を種々に変え、
それに応じて第1の外輪素子の軸方向高さと第2の外輪素子の軸方向高さとを種々に変え
て組み合わせることによって、第1の外輪素子とフランジ付きシャフト素子の本体部の一
半部とによって形成されるラジアル方向の隙間部および第2の外輪素子とフランジ付きシ
ャフト素子の本体部の他半部とによって形成されるラジアル方向の隙間部にそれぞれ形成
される動圧発生部で生成される、ラジアル方向の荷重を受ける動圧力や動圧力発生位置を
、所望する使途条件に合わせて調節することが可能になる。
また、これにより、第1の外輪素子の軸方向高さ、第2の外輪素子の軸方向高さおよび
フランジ付きシャフト素子のフランジ部の軸方向位置を調節することができるので、第3
の動圧溝が臨む対向面間の微小隙間および第4の動圧溝が臨む対向面間の微小隙間にそれ
ぞれ形成される動圧発生部の位置、換言すれば、シャフト素子に作用するアキシャル方向
の荷重を受ける動圧力の発生位置を、回転側素子を含む回転体全体の軸方向の重心位置に
合わせて調整することができ、フランジ付きシャフト素子を倒す方向に作用するモーメン
トを減らすことができて、フランジ付きシャフト素子のジャイロモーメントに起因する振
れ回り振動を低減し、その相対回転を安定化させて、回転精度を向上させることができる。
また、回転側素子と固定側素子との間に働く磁気力などのバイアス効果によってシャフ
ト素子がエンドプレート素子に向かって軸方向に常時押し付けられる作用が期待できない
場合でも、第3の動圧溝が臨む対向面間の微小隙間に形成される動圧発生部において生成
される動圧力が、それと等価な作用を発揮することができ、これにより、第3の動圧溝が
臨む対向面間の微小隙間と第4の動圧溝が臨む対向面間の微小隙間とをともに適切な隙間
に保って、フランジ付きシャフト素子の相対回転を安定化させ、回転精度の向上を図るこ
とができる。
さらに、請求項7に記載されるように請求項6に記載の流体軸受ユニットを構成するこ
とにより、フランジ付きシャフト素子の本体部のフランジ部を境にした一半部の径と他半
部の径とが異ならされる。これにより、前記した、それぞれの隙間部に形成される動圧発
生部で生成されるラジアル方向の荷重を受ける動圧力を、所望する使途条件に合わせて調
節する自由度をさらに拡げることができる。
また、フランジ付きシャフト素子の本体部の小径とされた側にある半部と第1の外輪素
子もしくは第2の外輪素子とによって形成されるラジアル方向の隙間部に形成される動圧
発生部(小径のラジアル動圧軸受部)においては、小径とされた分、摩擦損失を低減する
ことができるので、軸損トルクを低減して、動力消費を削減(低電力消費化)することが
できる。
加えて、小径のラジアル動圧軸受部において摩擦損失を低減することができることによ
り、フランジ付きシャフト素子を倒す方向に作用するモーメントを減らすことができ、こ
の面からも、フランジ付きシャフト素子のジャイロモーメントに起因する振れ回り振動を
低減して、その相対回転を安定化させ、回転精度の向上を図ることができる。
また、その請求項8に記載された発明は、複数のモジュール化された素子を組み合わせ
て構成され、内部に複数の動圧発生機構部を有し、一端部にフランジ部を有するフランジ
付きシャフト素子を相対回転自在に支承する流体軸受ユニットであって、円筒状内周面を
有する筒状のケース素子と、前記ケース素子の下端部を閉塞するエンドプレート素子と、
前記ケース素子に嵌入される第1の外輪素子および第2の外輪素子と、そのフランジ部が
前記第2の外輪素子の下端面と前記エンドプレート素子の上面とに挟まれるようにして、
前記第1の外輪素子および前記第2の外輪素子に挿入されるフランジ付きシャフト素子と
、前記第2の外輪素子を前記エンドプレート素子に対して位置決めするために、前記フラ
ンジ付きシャフト素子のフランジ部を囲むようにして設けられる環状のスペーサ素子とを
備え、前記第1の外輪素子の内周面もしくは前記フランジ付きシャフト素子の本体部の外
周面には、対向するこれら両面間にラジアル方向の荷重を受ける動圧を発生させるための
第1の動圧溝が形成され、前記第2の外輪素子の内周面もしくは前記フランジ付きシャフ
ト素子の本体部の外周面には、対向するこれら両面間にラジアル方向の荷重を受ける動圧
を発生させるための第2の動圧溝が形成され、前記第2の外輪素子の下端面もしくは前記
フランジ付きシャフト素子のフランジ部の上面には、対向するこれら両面間にアキシャル
方向の荷重を受ける動圧を発生させるための第3の動圧溝が形成され、前記エンドプレー
ト素子の上面もしくは前記フランジ付きシャフト素子のフランジ部の下面には、対向する
これら両面間にアキシャル方向の荷重を受ける動圧を発生させるための第4の動圧溝が形
成され、前記第1の動圧溝、前記第2の動圧溝、前記第3の動圧溝および前記第4の動圧
溝がそれぞれ臨む各対向面間の微小隙間には、潤滑油が充填されたことを特徴とする流体
軸受ユニットである。
請求項8に記載された発明は、前記のように構成されているので、その一端部にフラン
ジ部を有するフランジ付きシャフト素子を相対回転自在に支承する流体軸受ユニットは、
各素子をモジュール化するのが容易であり、モジュール化された各素子をもって標準化さ
れた流体軸受ユニットを容易に製作することができる。
また、第1の外輪素子とフランジ付きシャフト素子とによって形成されるラジアル方向
の隙間寸法と、第2の外輪素子とフランジ付きシャフト素子とによって形成されるラジア
ル方向の隙間寸法とを、異なる寸法に設定することによって、それぞれの隙間部に形成さ
れる動圧発生部で生成されるラジアル方向の荷重を受ける動圧力を、所望する使途条件に
合わせて調節することが可能になる。
また、同じ高さの流体軸受ユニットにおいて、第1の外輪素子の軸方向高さと第2の外
輪素子の軸方向高さとを種々に変えて組み合わせることによって、第1の外輪素子とフラ
ンジ付きシャフト素子とによって形成されるラジアル方向の隙間部および第2の外輪素子
とフランジ付きシャフト素子とによって形成されるラジアル方向の隙間部にそれぞれ形成
される動圧発生部で生成される、ラジアル方向の荷重を受ける動圧力や動圧力発生位置を
、所望する使途条件に合わせて調節することが可能になる。
さらに、スペーサ素子によって、フランジ部の厚さの異なるフランジ付きシャフト素子
に応じ、第1の外輪素子および第2の外輪素子の軸方向位置をエンドプレート素子に対し
て正確に調整、設定することができる。
さらに、また、回転側素子と固定側素子との間に働く磁気力などのバイアス効果によっ
てフランジ付きシャフト素子がエンドプレート素子に向かって軸方向に常時押し付けられ
る作用が期待できない場合でも、第3の動圧溝が臨む対向面間の微小隙間に形成される動
圧発生部において生成される動圧力が、それと等価な作用を発揮することができ、これに
より、第3の動圧溝が臨む対向面間の微小隙間と第4の動圧溝が臨む対向面間の微小隙間
とをともに適切な隙間に保って、フランジ付きシャフト素子の相対回転を安定化させ、回
転精度の向上を図ることができる。
また、その請求項9に記載された発明は、複数のモジュール化された素子を組み合わせ
て構成され、内部に複数の動圧発生機構部を有し、ストレートなシャフト素子を相対回転
自在に支承する流体軸受ユニットであって、円筒状内周面を有する筒状のケース素子と、
前記ケース素子の下端部を閉塞するエンドプレート素子と、前記ケース素子に嵌入される
第1の外輪素子および第2の外輪素子と、前記第1の外輪素子に挿入される第1の内輪素
子と、そのフランジ部が前記第2の外輪素子の下端面と前記エンドプレート素子の上面と
に挟まれるようにして前記第2の外輪素子に挿入される、一端部にフランジ部を有するフ
ランジ付き第2の内輪素子と、前記第1の内輪素子および前記フランジ付き第2の内輪素
子に嵌入されるシャフト素子とを備え、前記第1の外輪素子の内周面もしくは前記第1の
内輪素子の外周面には、対向するこれら両面間にラジアル方向の荷重を受ける動圧を発生
させるための第1の動圧溝が形成され、前記第2の外輪素子の内周面もしくは前記フラン
ジ付き第2の内輪素子の外周面には、対向するこれら両面間にラジアル方向の荷重を受け
る動圧を発生させるための第2の動圧溝が形成され、前記第2の外輪素子の下端面もしく
は前記フランジ付き第2の内輪素子のフランジ部の上面には、対向するこれら両面間にア
キシャル方向の荷重を受ける動圧を発生させるための第3の動圧溝が形成され、前記エン
ドプレート素子の上面もしくは前記フランジ付き第2の内輪素子のフランジ部の下面には
、対向するこれら両面間にアキシャル方向の荷重を受ける動圧を発生させるための第4の
動圧溝が形成され、前記第1の動圧溝、前記第2の動圧溝、前記第3の動圧溝および前記
第4の動圧溝がそれぞれ臨む各対向面間の微小隙間には、潤滑油が充填されたことを特徴
とする流体軸受ユニットである。
請求項9に記載された発明は、前記のように構成されているので、そのストレートなシ
ャフト素子を相対回転自在に支承する流体軸受ユニットは、各素子をモジュール化するの
が容易であり、モジュール化された各素子をもって標準化された流体軸受ユニットを容易
に製作することができる。
また、ストレートなシャフト素子を用いながら、第1の外輪素子と第1の内輪素子とに
よって形成されるラジアル方向の隙間寸法と、第2の外輪素子とフランジ付き第2の内輪
素子とによって形成されるラジアル方向の隙間寸法とを、異なる寸法に設定することによ
って、それぞれの隙間部に形成される動圧発生部で生成されるラジアル方向の荷重を受け
る動圧力を、所望する使途条件に合わせて調節することが可能になる。
また、同じ高さの流体軸受ユニットにおいて、第1の外輪素子の軸方向高さと第2の外
輪素子の軸方向高さとを種々に変え、それに応じて第1の内輪素子の軸方向高さとフラン
ジ付き第2の内輪素子の軸方向高さとを種々に変えて組み合わせることによって、第1の
外輪素子と第1の内輪素子とによって形成されるラジアル方向の隙間部および第2の外輪
素子とフランジ付き第2の内輪素子とによって形成されるラジアル方向の隙間部にそれぞ
れ形成される動圧発生部で生成される、ラジアル方向の荷重を受ける動圧力や動圧力発生
位置を、所望する使途条件に合わせて調節することが可能になる。
さらに、回転側素子と固定側素子との間に働く磁気力などのバイアス効果によってシャ
フト素子がエンドプレート素子に向かって軸方向に常時押し付けられる作用が期待できな
い場合でも、第3の動圧溝が臨む対向面間の微小隙間に形成される動圧発生部において生
成される動圧力が、それと等価な作用を発揮することができ、これにより、第3の動圧溝
が臨む対向面間の微小隙間と第4の動圧溝が臨む対向面間の微小隙間とをともに適切な隙
間に保って、シャフト素子の相対回転を安定化させ、回転精度の向上を図ることができる。
また、その請求項10に記載された発明は、複数のモジュール化された素子を組み合わ
せて構成され、内部に複数の動圧発生機構部を有し、大径部と小径部とを有する段付きシ
ャフト素子を相対回転自在に支承する流体軸受ユニットであって、円筒状内周面を有する
筒状のケース素子と、前記ケース素子の下端部を閉塞するエンドプレート素子と、前記ケ
ース素子に嵌入される、大径の円筒状内周面を有する第1の外輪素子および小径の円筒状
内周面を有する第2の外輪素子と、その大径部が前記第1の外輪素子に挿入され、その小
径部が前記第2の外輪素子に挿入されるようにして、前記第1の外輪素子および前記第2
の外輪素子に挿入される段付きシャフト素子とを備え、前記第1の外輪素子の内周面もし
くは前記段付きシャフト素子の大径部の外周面には、対向するこれら両面間にラジアル方
向の荷重を受ける動圧を発生させるための第1の動圧溝が形成され、前記第2の外輪素子
の内周面もしくは前記段付きシャフト素子の小径部の外周面には、対向するこれら両面間
にラジアル方向の荷重を受ける動圧を発生させるための第2の動圧溝が形成され、前記第
2の外輪素子の上端面もしくは前記段付きシャフト素子の段部の面には、対向するこれら
両面間にアキシャル方向の荷重を受ける動圧を発生させるための第3の動圧溝が形成され
、前記第1の動圧溝、前記第2の動圧溝および前記第3の動圧溝がそれぞれ臨む各対向面
間の微小隙間には、潤滑油が充填されたことを特徴とする流体軸受ユニットである。
請求項10に記載された発明は、前記のように構成されているので、その大径部と小径
部とを有する段付きシャフト素子を相対回転自在に支承する流体軸受ユニットは、各素子
をモジュール化するのが容易であり、モジュール化された各素子をもって標準化された流
体軸受ユニットを容易に製作することができる。
また、段付きシャフト素子の大径部の外径寸法と小径部の外径寸法とを変えるとともに
、第1の外輪素子と段付きシャフト素子の大径部とによって形成されるラジアル方向の隙
間寸法と、第2の外輪素子と段付きシャフト素子の小径部とによって形成されるラジアル
方向の隙間寸法とを、異なる寸法に設定することによって、それぞれの隙間部に形成され
る動圧発生部で生成されるラジアル方向の荷重を受ける動圧力を、所望する使途条件に合
わせて調節することが可能になる。
また、同じ高さの流体軸受ユニットにおいて、段付きシャフト素子の大径部の軸方向寸
法と小径部の軸方向寸法との比率を種々に変え、それに応じて第1の外輪素子の軸方向高
さと第2の外輪素子の軸方向高さとを種々に変えて、組み合わせることによって、第1の
外輪素子と段付きシャフト素子の大径部とによって形成されるラジアル方向の隙間部およ
び第2の外輪素子と段付きシャフト素子の小径部とによって形成されるラジアル方向の隙
間部にそれぞれ形成される動圧発生部で生成される、ラジアル方向の荷重を受ける動圧力
や動圧力発生位置を、所望する使途条件に合わせて調節することが可能になる。
また、これにより、第2の外輪素子の軸方向高さおよび段付きシャフト素子の段部の軸
方向位置を調節することができるので、第3の動圧溝が臨む対向面間の微小隙間に形成さ
れる動圧発生部の位置、換言すれば、段付きシャフト素子に作用するアキシャル方向の荷
重を受ける動圧力の発生位置を、回転側素子を含む回転体全体の軸方向の重心位置に合わ
せて調整することができ、段付きシャフト素子を倒す方向に作用するモーメントを減らす
ことができて、段付きシャフト素子のジャイロモーメントに起因する振れ回り振動を低減
し、その相対回転を安定化させて、回転精度を向上させることができる。
さらに、段付きシャフト素子の外端部にロータハブ等の負荷部材(回転体もしくは固定
体)が連結されることにより比較的高い軸受剛性が必要となる、ケース素子がエンドプレ
ート素子により閉塞される側と反対側に位置する段付きシャフト素子の大径部側に、大径
のラジアル動圧軸受部を設定し、比較的低い軸受剛性で済む、ケース素子がエンドプレー
ト素子により閉塞される側に位置する段付きシャフト素子の小径部側に、小径のラジアル
動圧軸受部を設定することができ、この小径のラジアル動圧軸受部においては、小径とさ
れた分、摩擦損失を低減することができるので、全体としてみて、簡単な構成により、必
要な軸受剛性を確保しつつ、軸損トルクを低減して、動力消費を削減することができる。
加えて、小径のラジアル動圧軸受部において摩擦損失を低減することができることによ
り、段付きシャフト素子を倒す方向に作用するモーメントを減らすことができて、この面
からも、段付きシャフト素子のジャイロモーメントに起因する振れ回り振動を低減して、
その相対回転を安定化させ、回転精度を向上させることができる。
また、その請求項11に記載された発明は、複数のモジュール化された素子を組み合わ
せて構成され、内部に複数の動圧発生機構部を有し、小径部と大径部とを有する段付きシ
ャフト素子を回転自在に支承する流体軸受ユニットであって、円筒状内周面を有する筒状
のケース素子と、前記ケース素子の下端部を閉塞するエンドプレート素子と、前記ケース
素子に嵌入される、小径の円筒状内周面を有する第1の外輪素子および大径の円筒状内周
面を有する第2の外輪素子と、その小径部が前記第1の外輪素子に挿入され、その大径部
が前記第2の外輪素子に挿入されるようにして、前記第1の外輪素子および前記第2の外
輪素子に挿入される段付きシャフト素子とを備え、前記第1の外輪素子の内周面もしくは
前記段付きシャフト素子の小径部の外周面には、対向するこれら両面間にラジアル方向の
荷重を受ける動圧を発生させるための第1の動圧溝が形成され、前記第2の外輪素子の内
周面もしくは前記段付きシャフト素子の大径部の外周面には、対向するこれら両面間にラ
ジアル方向の荷重を受ける動圧を発生させるための第2の動圧溝が形成され、前記第1の
外輪素子の下端面もしくは前記段付きシャフト素子の段部の面には、対向するこれら両面
間にアキシャル方向の荷重を受ける動圧を発生させるための第3の動圧溝が形成され、前
記エンドプレート素子の上面もしくは前記段付きシャフト素子の下端面には、対向するこ
れら両面間にアキシャル方向の荷重を受ける動圧を発生させるための第4の動圧溝が形成
され、前記第1の動圧溝、前記第2の動圧溝、前記第3の動圧溝および前記第4の動圧溝
がそれぞれ臨む各対向面間の微小隙間には、潤滑油が充填されたことを特徴とする流体軸
受ユニットである。
請求項11に記載された発明は、前記のように構成されているので、その小径部と大径
部とを有する段付きシャフト素子を相対回転自在に支承する流体軸受ユニットは、各素子
をモジュール化するのが容易であり、モジュール化された各素子をもって標準化された流
体軸受ユニットを容易に製作することができる。
また、段付きシャフト素子の小径部の外径寸法と大径部の外径寸法とを変えるとともに
、第1の外輪素子と段付きシャフト素子の小径部とによって形成されるラジアル方向の隙
間寸法と、第2の外輪素子と段付きシャフト素子の大径部とによって形成されるラジアル
方向の隙間寸法とを、異なる寸法に設定することによって、それぞれの隙間部に形成され
る動圧発生部で生成されるラジアル方向の荷重を受ける動圧力を、所望する使途条件に合
わせて調節することが可能になる。
また、同じ高さの流体軸受ユニットにおいて、段付きシャフト素子の小径部の軸方向寸
法と大径部の軸方向寸法との比率を種々に変え、それに応じて第1の外輪素子の軸方向高
さと第2の外輪素子の軸方向高さとを種々に変えて、組み合わせることによって、第1の
外輪素子と段付きシャフト素子の小径部とによって形成されるラジアル方向の隙間部およ
び第2の外輪素子と段付きシャフト素子の大径部とによって形成されるラジアル方向の隙
間部にそれぞれ形成される動圧発生部で生成される、ラジアル方向の荷重を受ける動圧力
や動圧力発生位置を、所望する使途条件に合わせて調節することが可能になる。
また、これにより、第1の外輪素子の軸方向高さおよび段付きシャフト素子の段部の軸
方向位置を調節することができるので、第3の動圧溝が臨む対向面間の微小隙間に形成さ
れる動圧発生部の位置、換言すれば、段付きシャフト素子に作用するアキシャル方向の荷
重を受ける動圧力の発生位置を、回転側素子を含む回転体全体の軸方向の重心位置に合わ
せて調整することができ、段付きシャフト素子を倒す方向に作用するモーメントを減らす
ことができて、段付きシャフト素子のジャイロモーメントに起因する振れ回り振動を低減
し、その相対回転を安定化させて、回転精度を向上させることができる。
さらに、段付きシャフト素子の小径部側に設定され、第1の動圧溝が臨む対向面間の微
小隙間に形成される小径のラジアル動圧軸受部においては、小径とされた分、摩擦損失を
低減することができるので、全体としてみて、軸損トルクを低減して、動力消費を削減す
ることができる。
加えて、小径のラジアル動圧軸受部において摩擦損失を低減することができることによ
り、段付きシャフト素子を倒す方向に作用するモーメントを減らすことができて、この面
からも、段付きシャフト素子のジャイロモーメントに起因する振れ回り振動を低減して、
その相対回転を安定化させ、回転精度を向上させることができる。
さらに、また、回転側素子と固定側素子との間に働く磁気力などのバイアス効果によっ
て段付きシャフト素子がエンドプレート素子に向かって軸方向に常時押し付けられる作用
が期待できない場合でも、第3の動圧溝が臨む対向面間の微小隙間に形成される動圧発生
部において生成される動圧力が、それと等価な作用を発揮することができ、これにより、
第3の動圧溝が臨む対向面間の微小隙間と第4の動圧溝が臨む対向面間の微小隙間とをと
もに適切な隙間に保って、段付きシャフト素子の相対回転を安定化させ、回転精度の向上
を図ることができる。
また、請求項12に記載されるように請求項1ないし11のいずれかに記載の流体軸受ユニットを構成することにより、少なくともそのいずれかの面に動圧溝が形成される素子は、焼き入れ可能な鋼または焼き入れ可能なステンスレス鋼から成り、熱処理が施されて、研削仕上げされた後、電解加工にて、当該動圧溝が形成される。
これにより、少なくともそのいずれかの面に動圧溝が形成される素子は、硬度が高く、
高い寸法精度を得ることができ、ユニット化(組立)時や素子単体のハンドリング時のみ
ならず、流体軸受ユニットの作動停止時や回転起動時においても、傷が付きにくく、高い
寸法精度を維持することができる。特に、細密な面粗度の動圧溝を得ることができ、その
形状が維持されるので、設計どおりの動圧軸受機能を発揮させることができる。加えて、
電解加工により、動圧溝形成のための加工時間を短縮することができる。
また、請求項13に記載されるように請求項1ないし12のいずれかに記載の流体軸受ユニットを構成することにより、ケース素子の下端部に段部が形成され、エンドプレート素子が、該段部に嵌着されて、ケース素子の下端部を閉塞するようにされる。
この結果、ケース素子の内周面と同時に研削加工が可能であることにより格段の精度の
向上が期待できるケース素子の下端部の段部に、エンドプレート素子が嵌着されて、ケー
ス素子の下端部を閉塞することができるので、エンドプレートの上面とケース素子の軸心
との直角を出し易くなり、流体軸受ユニットを構成する各素子の組付精度が向上して、シ
ャフト素子の高い相対回転精度を得ることができる。
さらに、請求項14に記載されるように請求項1ないし13のいずれかに記載の流体軸受ユニットを構成することにより、ケース素子の下端部がエンドプレート素子により閉塞されて構成される軸受容器が、同一材料の一体成形により形成される。
これにより、流体軸受ユニットを構成する素子点数を1つ減らすことができ、ケース素
子の下端部にエンドプレート素子を嵌着する作業を省略することができるので、流体軸受
ユニットの組立(ユニット化)作業を簡単化することができる。
また、その請求項15に記載された発明は、請求項1、3、4、6ないし9、11のいずれかに記載の流体軸受ユニットを備えたスピンドルモータであって、ハウジングに固定されたステータと、前記軸部の上端部に嵌着された回転要素をなすロータハブと、該ロータハブに嵌着され、前記ステータと協働して回転磁界を発生するロータマグネットとからなり、前記ハウジングに対して回転自在に設けられたロータとを備え、前記流体軸受ユニットは、前記ロータの回転を支持していることを特徴とするスピンドルモータである。
請求項15に記載された発明は、前記のように構成されているので、スピンドルモータが備えようとする流体軸受として、所望の構造、軸受性能を備え、標準化された流体軸受ユニットを直ぐに調達して、高い回転精度と高い信頼性とを兼ね備えたスピンドルモータを低コストで、大量生産することが可能になる。
また、請求項16に記載されるように請求項15に記載のスピンドルモータを構成することにより、その流体軸受ユニットの、少なくともそのいずれかの面に動圧溝が形成される素子は、焼き入れ可能な鋼または焼き入れ可能なステンレス鋼から成り、熱処理が施されて、研削仕上げされた後、電解加工にて、該動圧溝が形成される。
これにより、少なくともそのいずれかの面に動圧溝が形成される素子は、硬度が高く、
高い寸法精度を得ることができ、ユニット化(組立)時や素子単体のハンドリング時のみ
ならず、スピンドルモータの作動停止時や回転起動時においても、傷が付きにくく、高い
寸法精度を維持することができる。特に、細密な面粗度の動圧溝を得ることができ、その
形状が維持されるので、設計どおりの動圧軸受機能を発揮させることができる。加えて、
電解加工により、動圧溝形成のための加工時間を短縮することができる。
さらに、請求項17に記載されるように請求項15または16に記載のスピンドルモータを構成することにより、その流体軸受ユニットのケース素子の下端部に段部が形成され、エンドプレート素子が、該段部に嵌着されて、ケース素子の下端部を閉塞するようにされる。
この結果、ケース素子の内周面と同時に研削加工が可能であることにより格段の精度の
向上が期待できるケース素子の下端部の段部に、エンドプレート素子が嵌着されて、ケー
ス素子の下端部を閉塞することができるので、エンドプレートの上面とケース素子の軸心
との直角を出し易くなり、流体軸受ユニットを構成する各素子の組付精度が向上して、シ
ャフト素子の高い相対回転精度を得ることができる。
また、請求項18に記載されるように請求項15ないし17に記載のスピンドルモータを構成することにより、その流体軸受ユニットのケース素子の下端部がエンドプレート素子により閉塞されて構成される軸受容器が、同一材料の一体成形により形成される。
これにより、流体軸受ユニットを構成する素子点数を1つ減らすことができ、ケース素子の下端部にエンドプレート素子を嵌着する作業を省略することができるので、流体軸受ユニットの組立(ユニット化)作業を簡単化することができる。
また、その請求項19に記載された発明は、請求項2または10に記載の流体軸受ユニットを備えたスピンドルモータであって、ハウジングに固定されたステータと、前記軸部の上端部に嵌着された回転要素をなすロータハブと、該ロータハブに嵌着され、前記ステータと協働して回転磁界を発生するロータマグネットとからなり、前記ハウジングに対して回転自在に設けられたロータとを備え、前記流体軸受ユニットは、前記ロータの回転を支持しており、前記ロータは、前記流体軸受ユニット内のアキシャル方向の荷重を受ける動圧を発生させるための動圧溝で発生する動圧が作用する方向とは反対方向に磁気力で吸引され、これらの動圧と磁気力とがバランスすることによって、その荷重が支持されていることを特徴とするスピンドルモータである。
請求項19に記載された発明は、前記のように構成されているので、スピンドルモータが備えようとする流体軸受として、所望の構造、軸受性能を備え、標準化された流体軸受ユニットを直ぐに調達して、高い回転精度と高い信頼性とを兼ね備えたスピンドルモータを低コストで、大量生産することが可能になる。
さらに、請求項20に記載されるように請求項19に記載のスピンドルモータを構成することにより、その流体軸受ユニットの、少なくともそのいずれかの面に動圧溝が形成される素子は、焼き入れ可能な鋼または焼き入れ可能なステンレス鋼から成り、熱処理が施されて、研削仕上げされた後、電解加工にて、該動圧溝が形成される。
これにより、少なくともそのいずれかの面に動圧溝が形成される素子は、硬度が高く、
高い寸法精度を得ることができ、ユニット化(組立)時や素子単体のハンドリング時のみ
ならず、スピンドルモータの作動停止時や回転起動時においても、傷が付きにくく、高い
寸法精度を維持することができる。特に、細密な面粗度の動圧溝を得ることができ、その
形状が維持されるので、設計どおりの動圧軸受機能を発揮させることができる。加えて、
電解加工により、動圧溝形成のための加工時間を短縮することができる。
また、請求項21に記載されるように請求項19または20に記載のスピンドルモータを構成することにより、その流体軸受ユニットのケース素子の下端部に段部が形成され、エンドプレート素子が、該段部に嵌着されて、ケース素子の下端部を閉塞するようにされる。
この結果、ケース素子の内周面と同時に研削加工が可能であることにより格段の精度の
向上が期待できるケース素子の下端部の段部に、エンドプレート素子が嵌着されて、ケー
ス素子の下端部を閉塞することができるので、エンドプレートの上面とケース素子の軸心
との直角を出し易くなり、流体軸受ユニットを構成する各素子の組付精度が向上して、シ
ャフト素子の高い相対回転精度を得ることができる。
また、請求項22に記載されるように請求項19ないし21に記載のスピンドルモータを構成することにより、その流体軸受ユニットのケース素子の下端部がエンドプレート素子により閉塞されて構成される軸受容器が、同一材料の一体成形により形成される。
これにより、流体軸受ユニットを構成する素子点数を1つ減らすことができ、ケース素子の下端部にエンドプレート素子を嵌着する作業を省略することができるので、流体軸受ユニットの組立(ユニット化)作業を簡単化することができる。
さらに、また、その請求項23に記載された発明は、請求項15ないし22のいずれかに記載のスピンドルモータを備えた記録ディスク駆動装置であって、記録ディスクに情報を書き込み及び/又は読み出しするための記録ヘッドを備え、前記スピンドルモータが、前記記録ディスクを回転駆動することを特徴とする記録ディスク駆動装置である。
請求項23に記載された発明は、前記のように構成されているので、スピンドルモータが備えようとする流体軸受として、所望の構造、軸受性能を備え、標準化された流体軸受ユニットを直ぐに調達して、高い回転精度と高い信頼性とを兼ね備えたスピンドルモータを低コストで、大量生産することが可能になり、牽いては、該スピンドルモータを備えた記録ディスク駆動装置を低コストで、大量生産することが可能になる。
以上に説明したとおり、本願の発明によれば、一端部にフランジ部を有するフランジ付
きシャフト素子、ストレートなシャフト素子、中間部にフランジ部を有するフランジ付き
シャフト素子、大径部と小径部とを有する段付きシャフト素子等、種々の形状のシャフト
素子を相対回転自在に支承する流体軸受ユニットが、ケース素子の一端部がエンドプレー
ト素子により閉塞されて構成される軸受容器の内部に各種仕様の外輪素子、第1の外輪素
子、第2の外輪素子、内輪素子、フランジ付き内輪素子、第1の内輪素子、第2の内輪素
子、フランジ付き第2の内輪素子、スペーサ素子、シャフト素子等が、一方を他方に嵌入
もしくは挿入する関係により、適宜相互に組み合わされて収蔵、固定され、所定の素子の
所定の面にはラジアル方向もしくはアキシャル方向の荷重を受ける動圧を発生させるため
の動圧溝が形成され、各動圧溝が臨む対向面間の微小隙間には潤滑油が充填されて、構成
されているので、その流体軸受ユニットは、各素子をモジュール化するのが容易であり、
モジュール化された各素子をもって標準化された流体軸受ユニットを容易に製作すること
ができる。
そして、これにより、各種の機器・装置に共通に使用できるように標準化された各種仕
様の流体軸受ユニットを容易に製作できるようになり、どのような機器・装置の回転駆動
部の軸受装置としてでも、これらの機器・装置のメーカーが直ぐにこれらの流体軸受ユニ
ットもしくはその構成部品としての各種素子を調達して、必要に応じて組み合わせ、所望
の構造、動圧軸受機能(ラジアル、アキシャル両方向の荷重に対する軸受剛性を含む)を
備えた流体軸受ユニットを得ることができ、軸受装置を使用する立場から見た最適な設計
や所望の構成を選択することが容易になる。
従来、流体動圧軸受は、様々な障害(構成部品の供給体制、軸受の組立体制など)に起
因して、限られた技術分野やアプリケーションなどの用途に使用されていたに過ぎなかっ
たが、本願の発明において、前記のようにして構成部品をモジュール化し、完成品をユニ
ット化することによって、標準化が達成され、軸受を搭載する機器や装置などの製品の開
発に従事する技術者が所望する多種、多様な仕様の流体動圧軸受を容易に提供することが
可能になり、これらの技術者に平等かつ均等に流体動圧軸受を採用できる機会を提供して
、あらゆる技術分野やアプリケーションなどの用途に流体動圧軸受を使用することが可能
になる。
また、少なくとも動圧溝が形成される素子は、焼き入れ可能な鋼または焼き入れ可能な
ステンレス鋼材から成り、熱処理が施されて、研削仕上げされた後、電解加工にて動圧溝
が形成されるので、硬度が高く、寸法精度の高い素子を得ることができ、ユニット化(組
立)時や素子単体のハンドリング時のみならず、流体軸受ユニットの作動停止時や回転起
動時においても、傷が付きにくく、高い寸法精度を維持することができる。特に、細密な
面粗度の動圧溝を得ることができ、その形状が維持されるので、設計どおりの動圧軸受機
能を発揮させることができる。加えて、電解加工により、動圧溝形成のための加工時間を
短縮することができる。
その他、一端部にフランジ部を有するフランジ付きシャフト素子、ストレートなシャフ
ト素子、中間部にフランジ部を有するフランジ付きシャフト素子、大径部と小径部とを有
する段付きシャフト素子等、相対回転自在に支承されるシャフト素子の形状、構造に応じ
て、複数のモジュール化された素子の特有の組合せをその軸受容器内に有する個々の流体
軸受ユニットは、そのラジアル動圧発生部およびアキシャル動圧発生部で生成されるラジ
アル方向およびアキシャル方向の荷重を受ける動圧力や動圧力発生位置を、所望する使途
条件に合わせて種々に調節することができ、これにより、シャフト素子の相対回転を安定
化させて、回転精度を向上させることができる等、種々の効果を奏することができる。
特に、本願の発明の流体軸受ユニットをスピンドルモータが備える流体軸受として適用すれば、所望の構造、軸受性能を備え、標準化された流体軸受ユニットを直ぐに調達して、高い回転精度と高い信頼性とを兼ね備えたスピンドルモータを低コストで、大量生産することが可能になり、牽いては、該スピンドルモータを備えた記録ディスク駆動装置を低コストで、大量生産することが可能になる。
一端部にフランジ部を有するフランジ付きシャフト素子、ストレートなシャフト素子、
中間部にフランジ部を有するフランジ付きシャフト素子、大径部と小径部とを有する段付
きシャフト素子等、種々の形状のシャフト素子を相対回転自在に支承する流体軸受ユニッ
トを、ケース素子、エンドプレート素子、外輪素子、第1の外輪素子、第2の外輪素子、
内輪素子、フランジ付き内輪素子、第1の内輪素子、第2の内輪素子、フランジ付き第2
の内輪素子、スペーサ素子、シャフト素子等、モジュール化が容易な複数の素子に分解し
、ケース素子の一端部がエンドプレート素子により閉塞されて構成される軸受容器の内部
に、これら各種仕様の外輪素子、第1の外輪素子、第2の外輪素子、内輪素子、フランジ
付き内輪素子、第1の内輪素子、第2の内輪素子、フランジ付き第2の内輪素子、スペー
サ素子、シャフト素子等を、一方を他方に嵌入もしくは挿入する関係により、適宜相互に
組み合わせて収蔵、固定し、所定の素子の所定の面には、ラジアル方向もしくはアキシャ
ル方向の荷重を受ける動圧を発生させるための動圧溝を形成し、各動圧溝が臨む各対向面
間の微小隙間には、潤滑油を充填する。そして、少なくとも動圧溝が形成される素子は、
焼き入れ可能な鋼材または焼き入れ可能なステンレス鋼材から製造し、熱処理を施して、
研削仕上げした後、電解加工にて、該動圧溝を形成するようにする。
このようにして、所望の構造、動圧軸受機能(ラジアル、アキシャル両方向の荷重に対
する軸受剛性を含む)を備えた流体軸受ユニットを得る。
次に、本願の発明の第1の実施例(実施例1)について説明する。
図1は、本実施例1の流体軸受ユニットの縦断面図である。図1に図示されるように、
この流体軸受ユニット1は、一端部(図1において下端部)にフランジ部42を有するフ
ランジ付きシャフト素子40を相対回転自在に支承する流体軸受ユニットであって、円筒
状内周面11を有する筒状のケース素子10と、ケース素子10の下端部を閉塞する円板
状のエンドプレート素子20と、ケース素子10に嵌入される円筒状の外輪素子30と、
そのフランジ部42が外輪素子30の下端面32とエンドプレート素子20の上面21と
に挟まれるようにして、外輪素子30に挿入されるフランジ付きシャフト素子40とを備
えて成る。
なお、本明細書においては、筒状のケース素子10の両開口部のうちの一方がエンドプ
レート素子20により閉塞されて構成される軸受容器の開口側、すなわち、この軸受容器
からシャフト素子40が突出する側(図1において上側)を上側として定義する。
この流体軸受ユニット1は、一般的には、フランジ付きシャフト素子40を回転側にし
て使用されるが、ケース素子10側、すなわち、ケース素子10、エンドプレート素子2
0および外輪素子30から成る一体組立体を回転側にして使用される場合もある。また、
場合により、図示される姿勢と上下を逆にして使用される場合もある。
外輪素子30の内周面31には、対向するフランジ付きシャフト素子40の本体部41
の外周面43との間にラジアル方向の荷重を受ける動圧を発生させるための第1の動圧溝
51(51−1、51−2)が形成され、外輪素子30の下端面32には、対向するフラ
ンジ付きシャフト素子40のフランジ部42の上面44との間にアキシャル方向の荷重を
受ける動圧を発生させるための第2の動圧溝52が形成され、エンドプレート素子20の
上面21には、対向するフランジ付きシャフト素子40のフランジ部42の下面45との
間にアキシャル方向の荷重を受ける動圧を発生させるための第3の動圧溝53が形成され
ている。これらの動圧溝51〜53は、ヘリング・ボーン(魚骨)形状に形成されるが、
必ずしもこの形状に限定されず、スパイラル形状、円弧形状、直線形状などに形成されて
もよい。
第1の動圧溝51は、図中の符号51−1、51−2で示されるように、外輪素子30
の内周面31の軸方向に隔てられた上下2個所に形成されている。このようにすることに
より、シャフト素子40は、上下2個所で軸受支持されることになるので、高い軸受剛性
を得ることができ、特にケース素子10の軸方向寸法、したがって、また、流体軸受ユニ
ット1の軸方向寸法が大きい場合に有利である。なお、ケース素子10の軸方向寸法が薄
型化されるに伴って、1個所のみ形成される場合もある。
これら第1の動圧溝51(51−1、51−2)、第2の動圧溝52および第3の動圧
溝53がそれぞれ臨む各対向面間の微小隙間には、潤滑油が充填されている。この潤滑油
の充填方法は、ケース素子10に外輪素子30、フランジ付きシャフト素子40が内蔵さ
れて、エンドプレート素子20によってケース素子10の一端部が塞がれた後に、各素子
間の微小隙間に、潤滑油のシール機構部60から潤滑油を充填することによって行なわれ
る。この潤滑油のシール機構部60は、外輪素子30の開放端側がわずかに拡径されるこ
とによってフランジ付きシャフト素子40の本体部41の外周面43との間に形成された
微小隙間から成る。
この潤滑油のシール機構部60の微小隙間は、上方の第1の動圧溝51−1が臨む微小
隙間より大きい幅にされており、このため、前記のようにして第1の動圧溝51(51−
1、51−2)、第2の動圧溝52および第3の動圧溝53がそれぞれ臨む各対向面間の
微小隙間に順次充填された動圧発生用の潤滑油は、この拡幅されたシール機構部60の微
小隙間において毛細管力が潤滑油の保持力として働くので、シール機構部60の微小隙間
部分を介して外部開放端側に漏れ出ることがない。
動圧溝が形成される素子、本実施例1においては、外輪素子30とエンドプレート素子
20とは、焼き入れ可能な鋼または焼き入れ可能なステンレス鋼材から製造されており、
熱処理が施されて、研削仕上げされた後、電解加工にて、第1の動圧溝51(51−1、
51−2)、第2の動圧溝52および第3の動圧溝53がそれぞれ形成されている。外輪
素子30に焼き入れ可能な鋼または焼き入れ可能なステンレス鋼材を用いる場合には、熱
処理の後、内周面、外周面および両端面を研削で仕上げることになる。また、エンドプレ
ート素子20に焼き入れ可能な鋼または焼き入れ可能なステンレス鋼材を用いる場合には
、熱処理の後、上面および外周面を研削で仕上げる。
なお、フランジ付きシャフト素子40を同様の材料にて製造し、同様に熱処理を施し、
研削にて仕上げてもよく、エンドプレート素子20を通常のステンレス鋼材にて製造し、
DLC(Diamond−Like Carbon)などのコーティングを施して、表面
の硬度を上げる方法も考えられる。
フランジ付きシャフト素子40のフランジ部42は、本体部41と一体で成形されてい
るが、これらを別体で成形しておいて、圧入、接着、かしめ、溶接などの方法もしくはそ
れらの方法を併用した方法によって組み立てて、フランジ付きシャフト素子40とするこ
ともできる。
ケース素子10の下端部には、段部12が形成されており、エンドプレート素子20の
外周縁部がここに嵌着されて、ケース素子10の下端部がエンドプレート素子20により
閉塞されるようになっている。
この段部12に臨む直角をなす2つの面は、ケース素子10の内周面11と同時に研削
加工が可能であるので、格段の精度の向上が期待でき、ここにエンドプレート素子20が
嵌着されることにより、エンドプレート20の上面21とケース素子10の軸心との直角
を出し易くなり、流体軸受ユニット1を構成する各素子の組付精度が向上して、シャフト
素子40の高い相対回転精度を得ることができる。
ケース素子10の下端部がエンドプレート素子20により閉塞されて構成される一体組
立体は、その内部に、シャフト素子40を初めとするその他の素子を収蔵するので、軸受
容器としての性格を備えるが、この軸受容器を同一材料の一体成形により形成することも
可能である。このようにして一体成形により形成された軸受容器は、1つの軸受容器素子
をなし、モジュール化が可能である。これにより、素子点数を1つ減らして、ケース素子
10の下端部にエンドプレート素子20を嵌着する作業を省略することができ、流体軸受
ユニット1の構造および組立作業を簡単化することができる。
ケース素子10への外輪素子30の嵌入は、これらが一体として静止し、また、一体と
して回転することができるように、焼きばめ、カシメ、接着剤などの固定方法による固定
であるのが望ましい。
また、あらゆる使用温度環境において組立時の寸法関係、位置関係が維持されるように
、できるだけ線膨張係数差の少ない材料を選択すること、真円度、円筒度、面粗度、平面
度、平行度などに関連する加工・組立精度の向上を図ることが重要である。
さらに、本実施例1の流体軸受ユニット1が各種の機器・装置に共通に使用可能なよう
に標準化されたものであるためには、これを組み付ける相手側部材との高精度な嵌合・嵌
着が達成されるように、ケース素子やエンドプレート素子の外形、寸法、表面性状、シャ
フト素子の外径寸法、表面性状などの精度にも十分に注意が払われなければならず、これ
らの素子の真円度、円筒度もしくは円柱度、面粗度などが高精度に仕上げられる必要があ
る。また、それらの素子の径、幅寸法のばらつきが極力抑えられるようにする。
本実施例1は、前記のように構成されており、その流体軸受ユニット1は、ケース素子
10と、エンドプレート素子20と、外輪素子30と、フランジ付きシャフト素子40と
を備えて成り、外輪素子30の内周面には第1の動圧溝51が形成され、外輪素子30の
下端面には第2の動圧溝52が形成され、エンドプレート素子20の上面には第3の動圧
溝53が形成され、これらの動圧溝51〜53がそれぞれ臨む各対向面間の微小隙間には
潤滑油が充填される構成であるので、隣接する両素子間の接合面もしくは摺動面は、全て
フランジ付きシャフト素子40の軸方向、すなわち、流体軸受ユニット1の軸方向、に平
行か、もしくは直交する関係にあり、各素子をモジュール化するのが容易で、このように
してモジュール化された各素子をもって標準化された流体軸受ユニットを容易に製作する
ことができる。
また、動圧溝51〜53が形成される素子であるケース素子10およびエンドプレート
素子20は、焼き入れ可能な鋼材または焼き入れ可能なステンレス鋼材にて製造されるの
で、硬度が高く、寸法精度の高い素子を得ることができ、複数素子を組み立てて流体軸受
ユニット1を完成させる複数素子のユニット化(組立)時や素子単体のハンドリング時の
みならず、流体軸受ユニット1の作動停止時や回転起動時においても、傷が付きにくく、
高い寸法精度を維持することができる。特に、細密な面粗度の動圧溝を得ることができ、
その形状が維持されるので、設計どおりの動圧軸受機能を発揮させることができる。また
、電解加工により、動圧溝形成のための加工時間も短縮することができる。
さらに、回転側素子と固定側素子との間に働く磁気力などのバイアス効果によってシャ
フト素子40をエンドプレート素子20に向かって軸方向に常時押し付ける作用が期待で
きない場合でも、第2の動圧溝52が臨む対向面間の微小隙間に形成される動圧発生部に
おいて生成される動圧力が、それと等価な作用を発揮することもでき、これにより、第2
の動圧溝52が臨む対向面間の微小隙間と第3の動圧溝53が臨む対向面間の微小隙間と
をともに適切な隙間に保って、フランジ付きシャフト素子40の相対回転を安定化させ、
回転精度の向上を図ることができる。
その他、上述したような種々の効果を奏することができる。
なお、本実施例1においては、第1〜第3の動圧溝51〜53は、外輪素子30の内周
面31、外輪素子30の下端面32、エンドプレート素子20の上面21にそれぞれ形成
されたが、これに限定されず、これらの面に対向するフランジ付きシャフト素子40の本
体部41の外周面43、フランジ付きシャフト素子40のフランジ部42の上面44、同
下面45にそれぞれ形成されてもよい。この場合にも、動圧溝が形成される素子は、焼き
入れ可能な鋼材または焼き入れ可能なステンレス鋼材から製造し、熱処理を施して、研削
仕上げした後、電解加工にて、これらの動圧溝を形成するようにする。このようにしても
、上記と同様の効果を奏することができる。
次に、本願の発明の第2の実施例(実施例2)について説明する。
図2は、本実施例2の流体軸受ユニットの縦断面図であり、実施例1と対応する部分に
は、同一の符号を付している。
図2に図示されるように、本実施例2の流体軸受ユニット1は、ストレートなシャフト
素子40を相対回転自在に支承する流体軸受ユニットであって、円筒状内周面11を有す
る筒状のケース素子10と、ケース素子10の下端部を閉塞する円板状のエンドプレート
素子20と、ケース素子10に嵌入される円筒状の外輪素子30と、外輪素子30に挿入
されるシャフト素子40とを備えて成り、外輪素子30の内周面31には、対向するシャ
フト素子40の外周面43との間にラジアル方向の荷重を受ける動圧を発生させるための
第1の動圧溝51(51−1、51−2)が形成され、エンドプレート20の上面21に
は、対向するシャフト素子40の下端面46との間にアキシャル方向の荷重を受ける動圧
を発生させるための第2の動圧溝52が形成され、第1の動圧溝51(51−1、51−
2)および第2の動圧溝52がそれぞれ臨む各対向面間の微小隙間には、潤滑油が充填さ
れている。
動圧溝が形成される素子、本実施例2においては、外輪素子30およびエンドプレート
素子20は、焼き入れ可能な鋼材または焼き入れ可能なステンレス鋼材から製造され、熱
処理が施されて、研削仕上げされた後、電解加工にて、第1の動圧溝51(51−1、5
1−2)および第2の動圧溝52がそれぞれ形成されている。
その他の構成は、実施例1と異なるところはないので、詳細な説明を省略する。
本実施例2は、前記のように構成されているので、そのストレートなシャフト素子40
を相対回転自在に支承する流体軸受ユニット1は、実施例1と同様に、それを構成する各
素子、すなわち、ケース素子10、エンドプレート素子20、外輪素子30およびストレ
ートなシャフト素子40をモジュール化するのが容易であり、このようにしてモジュール
化された各素子をもって標準化された流体軸受ユニットを容易に製作することができる。
また、動圧溝51(51−1、51−2)、52が形成される素子である外輪素子30
およびエンドプレート素子20は、焼き入れ可能な鋼材または焼き入れ可能なステンレス
鋼材から製造され、熱処理が施されて、研削仕上げされた後、電解加工にて、これらの動
圧溝が形成されるので、硬度が高く、寸法精度の高いこれら素子を得ることができ、傷が
付きにくく、高い寸法精度を維持することができる。特に、細密な面粗度の動圧溝を得る
ことができ、その形状が維持されるので、設計どおりの動圧軸受機能を発揮させることが
でき、電解加工により、動圧溝形成のための加工時間を短縮することもできる。
また、本実施例2の流体軸受ユニット1は、実施例1と比較して構造が簡素であり、実
施例1の流体軸受ユニット1ほどシャフト素子を浮上させるためのアキシャル方向の動圧
力(シャフト素子に作用するアキシャル方向の荷重をシャフト素子と非接触な状態で支持
する力)を発生させる必要がない場合や、回転側素子と固定側素子との間に働く磁気力な
どのバイアス効果によってシャフト素子40をエンドプレート素子20に向かって軸方向
に常時押し付ける作用が期待できる場合などに使用されて好適な流体軸受ユニットである
。その他、実施例1と同様の効果を奏することができる。
なお、本実施例2においては、第1、第2の動圧溝51(51−1、51−2)、52
は、外輪素子30の内周面31、エンドプレート素子20の上面21にそれぞれ形成され
たが、これに限定されず、これらの面に対向するシャフト素子40の外周面43、シャフ
ト素子40の下端面46にそれぞれ形成されてもよい。この場合にも、動圧溝が形成され
る素子は、焼き入れ可能な鋼材または焼き入れ可能なステンレス鋼材から製造し、熱処理
を施して、研削仕上げした後、電解加工にて、これらの動圧溝を形成するようにする。こ
のようにしても、上記と同様の効果を奏することができる。
次に、本願の発明の第3の実施例(実施例3)について説明する。
図3は、本実施例3の流体軸受ユニットの縦断面図であり、実施例1と対応する部分に
は、同一の符号を付している。
図3に図示されるように、本実施例3の流体軸受ユニット1は、実施例1の流体軸受ユ
ニット1(図1)と比較すると、外輪素子30が薄肉にされて、その結果空いた外輪素子
30とフランジ付きシャフト素子40との空間部に内輪素子70が介設された点において
異なっている。内輪素子70は、外輪素子30に挿入されており、外輪素子30に対して
相対回転が可能である。フランジ付きシャフト素子40は、この内輪素子70に嵌入され
ており、これと一体になって外輪素子30によりラジアル方向に軸受されて回転すること
ができる。内輪素子70の下端は、フランジ付きシャフト素子40のフランジ部42の上
面44に当接している。
第1の動圧溝51(上方の動圧溝51−1と下方の動圧溝51−2から成る)は、実施
例1と同様に、外輪素子30の内周面31に形成されるが、それが臨む微小隙間を形成す
る2つの対向面のうち、外輪素子30の内周面31と対をなす面は、内輪素子70の外周
面73となる。第2の動圧溝52、第3の動圧溝53が形成される個所は、実施例1と異
ならない。これら第1の動圧溝51(51−1、51−2)、第2の動圧溝52および第
3の動圧溝53がそれぞれ臨む各対向面間の微小隙間には、潤滑油が充填されている。
動圧溝が形成される素子、本実施例3においては、外輪素子30およびエンドプレート
素子20は、焼き入れ可能な鋼材または焼き入れ可能なステンレス鋼材から製造され、熱
処理が施されて、研削仕上げされた後、電解加工にて、第1の動圧溝51(51−1、5
1−2)、第2の動圧溝52および第3の動圧溝53がそれぞれ形成される。内輪素子7
0、フランジ付きシャフト素子40も、同様の材料から製造し、熱処理を施して、研削に
より仕上げることができる。
潤滑油のシール機構部60は、外輪素子30とフランジ付きシャフト素子40との間に
内輪素子70が備えられたことに伴い、外輪素子30の開放端側がわずかに拡径されるこ
とによって内輪素子70の外周面73との間に形成された微小隙間から成るものとされて
いる。
その他の構成は、実施例1と異なるところはないので、詳細な説明を省略する。
本実施例3は、前記のように構成されているので、その一端部にフランジ部42を有す
るフランジ付きシャフト素子40を相対回転自在に支承する流体軸受ユニット1は、実施
例1と同様に、それを構成する各素子、すなわち、ケース素子10、エンドプレート素子
20、外輪素子30、内輪素子70およびフランジ付きシャフト素子40をモジュール化
するのが容易であり、このようにしてモジュール化された各素子をもって標準化された流
体軸受ユニット1を容易に製作することができる。
また、同じフランジ付きシャフト素子40を用いながら、外輪素子30と内輪素子70
とによって形成されるラジアル方向の隙間寸法の設定を変えることによって、この隙間部
に形成される動圧発生部で生成されるラジアル方向の荷重を受ける動圧力を、所望する使
途条件に合わせて調節することが可能になる。
その他、実施例1と同様の効果を奏することができる。
なお、本実施例3において、第1の動圧溝51(51−1、51−2)、第2の動圧溝
52、第3の動圧溝53は、外輪素子30の内周面31、外輪素子30の下端面32、エ
ンドプレート素子20の上面21にそれぞれ形成されたが、これに限定されず、これらの
面に対向する内輪素子70の外周面73、フランジ付きシャフト素子40のフランジ部4
2の上面44、同下面45にそれぞれ形成されてもよく、この場合にも、動圧溝が形成さ
れる素子は、焼き入れ可能な鋼材または焼き入れ可能なステンレス鋼材から製造し、熱処
理を施して、研削仕上げした後、電解加工にて、これらの動圧溝を形成するようにする。
このようにしても、上記と同様の効果を奏することができる。
次に、本願の発明の第4の実施例(実施例4)について説明する。
図4は、本実施例4の流体軸受ユニットの縦断面図であり、実施例2および実施例3と
対応する部分には、同一の符号を付している。
図4に図示されるように、本実施例4の流体軸受ユニット1は、実施例2の流体軸受ユ
ニット1(図2)と比較すると、外輪素子30が薄肉にされて、その結果空いた外輪素子
30とストレートなシャフト素子40との間にフランジ付き内輪素子70が介設された点
において異なっている。フランジ付き内輪素子70は、外輪素子30に挿入されており、
外輪素子30に対して相対回転が可能である。シャフト素子40は、このフランジ付き内
輪素子70に嵌入されており、これと一体になって、外輪素子30によりラジアル方向に
軸受されて、回転することができる。
また、実施例3の流体軸受ユニット1(図3)と比較すると、実施例3の流体軸受ユニ
ット1のフランジ付きシャフト素子40に代えて、ストレートなシャフト素子40が用い
られ、同じくストレートな内輪素子70に代えて、フランジ付き内輪素子70が用いられ
ている点において異なっている。シャフト素子40は、フランジ付き内輪素子70に嵌入
されており、これと一体に回転することができる。フランジ付き内輪素子70のフランジ
部72は、外輪素子30の下端面32とエンドプレート素子20の上面21とに挟まれて
いて、これらの面に対して相対回転が可能である。
第2の動圧溝52は、実施例3と同様に、外輪素子30の下端面32に形成されるが、
それが臨む微小隙間を形成する2つの対向面のうち、外輪素子30の下端面32と対をな
す面は、フランジ付き内輪素子70のフランジ部72の上面74となる。また、第3の動
圧溝53は、実施例3と同様に、エンドプレート素子20の上面21に形成されるが、そ
れが臨む微小隙間を形成する2つの対向面のうち、エンドプレート素子20の上面21と
対をなす面は、フランジ付き内輪素子70のフランジ部72の下面75となる。第1の動
圧溝51(51−1、51−2)が形成される個所は、実施例3と異ならない。これら第
1の動圧溝51(51−1、51−2)、第2の動圧溝52および第3の動圧溝53がそ
れぞれ臨む各対向面間の微小隙間には、潤滑油が充填されている。
動圧溝が形成される素子、本実施例4においては、外輪素子30およびエンドプレート
素子20は、焼き入れ可能な鋼材または焼き入れ可能なステンレス鋼材から製造され、熱
処理が施されて、研削仕上げされた後、電解加工にて、第1の動圧溝51(51−1、5
1−2)、第2の動圧溝52および第2の動圧溝53がそれぞれ形成されている。フラン
ジ付き内輪素子70、シャフト素子40も、同様の材料から製造し、熱処理を施して、研
削により仕上げることができる。
その他の構成は、実施例3と異なるところはないので、詳細な説明を省略する。
本実施例4は、前記のように構成されているので、そのストレートなシャフト素子40
を相対回転自在に支承する流体軸受ユニット1は、実施例2、3と同様に、それを構成す
る各素子、すなわち、ケース素子10、エンドプレート素子20、外輪素子30、フラン
ジ付き内輪素子70およびストレートなシャフト素子40をモジュール化するのが容易で
あり、このようにしてモジュール化された各素子をもって標準化された流体軸受ユニット
1を容易に製作することができる。
また、同じストレートなシャフト素子40を用いながら、外輪素子30とフランジ付き
内輪素子70とによって形成されるラジアル方向の隙間寸法の設定を変えることによって
、この隙間部に形成される動圧発生部で生成されるラジアル方向の荷重を受ける動圧力を
、使途条件に合わせて調節することが可能になる。
その他、実施例3と同様の効果を奏することができる。
なお、本実施例4において、第1の動圧溝51(51−1、51−2)、第2の動圧溝
52、第3の動圧溝53は、外輪素子30の内周面31、外輪素子30の下端面32、エ
ンドプレート素子20の上面21にそれぞれ形成されたが、これに限定されず、これらの
面に対向するフランジ付き内輪素子70の外周面73、フランジ付き内輪素子70のフラ
ンジ部72の上面74、同下面75にそれぞれ形成されてもよく、この場合にも、動圧溝
が形成される素子は、焼き入れ可能な鋼材または焼き入れ可能なステンレス鋼材から製造
し、熱処理を施して、研削仕上げした後、電解加工にて、これらの動圧溝を形成するよう
にする。このようにしても、上記と同様の効果を奏することができる。
次に、本願の発明の第5の実施例(実施例5)について説明する。
図5は、本実施例5の流体軸受ユニットの縦断面図である。同図に図示されるように、
本実施例5の流体軸受ユニット1は、実施例1の流体軸受ユニット1(図1)と比較する
と、実施例1の流体軸受ユニット1におけるフランジ付きシャフト素子40のフランジ部
42がシャフト素子40の軸方向中間部に移されている点、および外輪素子30が2分割
されて、フランジ部42を上下から挟み込むようにして配置されている点において異なっ
ている。
そこで、本実施例5において、フランジ部42を上下から挟み込んでいる2つの外輪素
子のうち、上方の外輪素子に実施例1と同一の符号30を付して、第1の外輪素子30と
呼ぶこととし、下方の外輪素子に新たに符号80を付して、第2の外輪素子80と呼ぶこ
ととする。そして、第2の外輪素子80の内周面、下端面、上端面にそれぞれ符号81、
82、83を付し、フランジ付きシャフト素子40の本体部41の外周面43のうち、フ
ランジ部42の上方に位置する上方外周面、下方に位置する下方外周面にそれぞれ符号4
3−1、43−2を付し、シャフト素子40の下端面に新しい符号47を付し、以下に説
明する第1〜第4の動圧溝にも、新しい符号91〜94を付することとするが、その他の
部分であって、実施例1と対応する部分には、同一の符号を付することとする。
以下に、本実施例5の流体軸受ユニット1について、詳しく説明する。
本実施例5の流体軸受ユニット1は、中間部にフランジ部42を有するフランジ付きシ
ャフト素子40を相対回転自在に支承する流体軸受ユニットであって、円筒状内周面11
を有する筒状のケース素子10と、ケース素子10の下端部を閉塞する円板状のエンドプ
レート素子20と、ケース素子10に嵌入される短い円筒状の第1の外輪素子30および
第2の外輪素子80と、そのフランジ部42が第1の外輪素子30の下端面32と第2の
外輪素子80の上端面82とに挟まれるようにして、第1の外輪素子30および第2の外
輪素子80に挿入されるフランジ付きシャフト素子40とを備えて成る。第2の外輪素子
80の下端面82は、エンドプレート素子20の上面21に当接しているが、フランジ付
きシャフト素子40の下端面47は、エンドプレート素子20の上面21からわずかに浮
上している。
そして、第1の外輪素子30の内周面31には、対向するフランジ付きシャフト素子4
0の本体部41の上方外周面43−1との間にラジアル方向の荷重を受ける動圧を発生さ
せるための第1の動圧溝91が形成され、第2の外輪素子80の内周面81には、対向す
るフランジ付きシャフト素子40の本体部41の下方外周面43−2との間にラジアル方
向の荷重を受ける動圧を発生させるための第2の動圧溝92が形成され、第1の外輪素子
30の下端面32には、対向するフランジ付きシャフト素子40のフランジ部42の上面
44との間にアキシャル方向の荷重を受ける動圧を発生させるための第3の動圧溝93が
形成され、第2の外輪素子80の上端面83には、対向するフランジ付きシャフト素子4
0のフランジ部42の下面45との間にアキシャル方向の荷重を受ける動圧を発生させる
ための第4の動圧溝94が形成され、これら第1の動圧溝91、第2の動圧溝92、第3
の動圧溝93および第4の動圧溝94がそれぞれ臨む各対向面間の微小隙間には、潤滑油
が充填されている。
動圧溝が形成される素子、本実施例5においては、第1の外輪素子30および第2の外
輪素子80は、焼き入れ可能な鋼材または焼き入れ可能なステンレス鋼材から製造されて
おり、熱処理が施されて、研削仕上げされた後、電解加工にて、第1の動圧溝91、第2
の動圧溝92、第3の動圧溝93および第4の動圧溝94がそれぞれ形成されている。な
お、フランジ付きシャフト素子40を同様の材料にて製造し、同様に熱処理を施し、研削
にて仕上げるようにしてもよい。
中間部にフランジ部42を有するフランジ付きシャフト素子40の当該フランジ部42
は、本体部41と一体で成形されているが、これを別体で成形しておいて、圧入、接着、
かしめ、溶接などの方法もしくはそれらの方法を併用した方法によって本体部41に対し
て組み付けて、フランジ付きシャフト素子40を形成することもできる。
その他の構成は、実施例1と異なるところはないので、詳細な説明を省略する。
本実施例5は、前記のように構成されているので、その中間部にフランジ部を有するフ
ランジ付きシャフト素子40を相対回転自在に支承する流体軸受ユニット1は、実施例1
と同様に、それを構成する各素子、すなわち、ケース素子10、エンドプレート素子20
、第1の外輪素子30、第2の外輪素子80、フランジ付きシャフト素子40をモジュー
ル化するのが容易であり、このようにしてモジュール化された各素子をもって標準化され
た流体軸受ユニット1を容易に製作することができる。
また、第1の外輪素子30と該第1の外輪素子30に挿入されるフランジ付きシャフト
素子40の本体部41のフランジ部42を境にした一半部(上半部)とによって形成され
るラジアル方向の隙間寸法と、第2の外輪素子80と該第2の外輪素子80に挿入される
フランジ付きシャフト素子40の本体部41のフランジ部42を境にした他半部(下半部
)とによって形成されるラジアル方向の隙間寸法とを、異なる寸法に設定することによっ
て、それぞれの隙間部に形成される動圧発生部で生成されるラジアル方向の荷重を受ける
動圧力を、所望する使途条件に合わせて調節することが可能になる。
また、同じ高さの流体軸受ユニット1において、フランジ付きシャフト素子40の本体
部41の一半部(上半部)の軸方向寸法と他半部(下半部)の軸方向寸法との比率を種々
に変え、それに応じて第1の外輪素子30の軸方向高さW1と第2の外輪素子80の軸方
向高さW2とを種々に変えて、組み合わせることによって、第1の外輪素子30とフラン
ジ付きシャフト素子40の本体部41の一半部とによって形成されるラジアル方向の隙間
部および第2の外輪素子80と同本体部41の他半部とによって形成されるラジアル方向
の隙間部にそれぞれ形成される動圧発生部で生成される、ラジアル方向の荷重を受ける動
圧力や動圧力発生位置を、所望する使途条件に合わせて調節することが可能になる。
また、これにより、第1の外輪素子30の軸方向高さW1、第2の外輪素子80の軸方
向高さW2およびフランジ付きシャフト素子40のフランジ部42の軸方向位置を調節す
ることができるので、第3の動圧溝93が臨む対向面間の微小隙間および第4の動圧溝9
4が臨む対向面間の微小隙間にそれぞれ形成される動圧発生部において生成される、アキ
シャル方向の荷重を受ける動圧力の発生位置を、回転側素子を含む回転体全体の軸方向の
重心位置に合わせて調整することができ、フランジ付きシャフト素子40を倒す方向に作
用するモーメントを減らすことができて、フランジ付きシャフト素子40のジャイロモー
メントに起因する振れ回り振動を低減し、その相対回転を安定化させて、回転精度を向上
させることができる。
なお、この場合において、発生される動圧力がアキシャル方向の荷重に等しくされれば
、フランジ付きシャフト素子40のジャイロモーメントに起因する振れ回り振動のより効
果的な低減が可能になる。また、その振れ回り振動の等しい低減効果を得たい場合には、
アキシャル方向の荷重を受ける動圧力の発生位置を前記のように調整することによって、
より小さい動圧力の発生で済むことになる。これにより、動力消費を削減することができ
る。
さらに、動圧溝91〜94が形成される素子である第1の外輪素子30および第2の外
輪素子80は、焼き入れ可能な鋼材または焼き入れ可能なステンレス鋼材から製造されて
おり、熱処理が施されて、研削仕上げされた後、電解加工にて、これらの動圧溝がそれぞ
れ形成されるので、硬度が高く、寸法精度の高いこれら素子を得ることができ、傷が付き
にくく、高い寸法精度を維持することができる。特に、細密な面粗度の動圧溝を得ること
ができ、その形状が維持されるので、設計どおりの動圧軸受機能を発揮させることができ
、電解加工により、動圧溝形成のための加工時間を短縮することもできる。
また、回転側素子と固定側素子との間に働く磁気力などのバイアス効果によってシャフ
ト素子40がエンドプレート素子20に向かって軸方向に常時押し付けられる作用が期待
できない場合でも、第3の動圧溝93が臨む対向面間の微小隙間に形成される動圧発生部
において生成される動圧力が、それと等価な作用を発揮することができ、これにより、第
3の動圧溝93が臨む対向面間の微小隙間と第4の動圧溝94が臨む対向面間の微小隙間
とをともに適切な隙間に保って、シャフト素子40の相対回転を安定化させ、回転精度の
向上を図ることができる。
その他、実施例1と同様の効果を奏することができる。
なお、本実施例5においては、第1〜第4の動圧溝91〜94は、第1の外輪素子30
の内周面31、第2の外輪素子80の内周面81、第1の外輪素子30の下端面32、第
2の外輪素子80の上端面83にそれぞれ形成されたが、これに限定されず、これらの面
に対向するフランジ付きシャフト素子40の本体部41の上方外周面43−1、同下方外
周面43−2、フランジ付きシャフト素子40のフランジ部42の上面44、同下面45
にそれぞれ形成されてもよい。この場合にも、動圧溝が形成される素子は、焼き入れ可能
な鋼材または焼き入れ可能なステンレス鋼材から製造し、熱処理を施して、研削仕上げし
た後、電解加工にて、これらの動圧溝を形成するようにする。このようにしても、上記と
同様の効果を奏することができる。
次に、本実施例5の変形例について説明する。
本実施例5は、図6に図示されるように、フランジ付きシャフト素子40の本体部41
のフランジ部42を境にした一半部(図において上半部)の径D1と他半部(図において
下半部)の径D2とが異なるように変形することができる。図6に示される例では、D1
>D2とされているが、これに限定されない。
この変形例によれば、第1の外輪素子30と本体部41の一半部とによって形成される
ラジアル方向の隙間部および第2の外輪素子80と本体部41の他半部とによって形成さ
れるラジアル方向の隙間部にそれぞれ形成される動圧発生部で生成されるラジアル方向の
荷重を受ける動圧力の調節の自由度を、さらに拡げることができる。
また、本体部41の小径とされた側にある他半部と第2の外輪素子80とによって形成されるラジアル方向の隙間部に形成される動圧発生部(小径のラジアル動圧軸受部)においては、小径とされた分、摩擦損失を低減することができるので、軸損トルクを低減して、動力消費を削減(低電力消費化)することができる。
加えて、小径のラジアル動圧軸受部において摩擦損失を低減することができることにより、フランジ付きシャフト素子40を倒す方向に作用するモーメントを減らすことができ
、この面からも、フランジ付きシャフト素子40のジャイロモーメントに起因する振れ回
り振動を低減して、その相対回転を安定化させ、回転精度の向上を図ることができる。
次に、本願の発明の第6の実施例(実施例6)について説明する。
図7は、本実施例6の流体軸受ユニットの縦断面図であり、実施例5および実施例1と
対応する部分には、同一の符号を付している。
図7に図示されるように、本実施例6の流体軸受ユニット1は、実施例5の流体軸受ユ
ニット1(図5)と比較すると、実施例5の流体軸受ユニット1におけるフランジ付きシ
ャフト素子40のフランジ部42がシャフト素子40の一端部(下端部)に移されている
点、第2の外輪素子80をエンドプレート素子20に対して位置決めするために、環状の
スペーサ素子100が設けられている点において異なっている。この環状のスペーサ素子
100は、フランジ付きシャフト素子40のフランジ部42を囲むようにして配置されて
いる。
したがって、本実施例6の流体軸受ユニット1は、一端部にフランジ部42を有するフ
ランジ付きシャフト素子40を相対回転自在に支承する流体軸受ユニットであって、ケー
ス素子10と、エンドプレート素子20と、ケース素子10に嵌入される第1の外輪素子
30および第2の外輪素子80と、そのフランジ部42が第2の外輪素子80の下端面8
2とエンドプレート素子20の上面21とに挟まれるようにして、第1の外輪素子30お
よび第2の外輪素子80に挿入されるフランジ付きシャフト素子40と、第2の外輪素子
80をエンドプレート素子20に対して位置決めするために、フランジ付きシャフト素子
40のフランジ部42を囲むようにして設けられる環状のスペーサ素子100とを備えて
成る。
そして、第1の外輪素子30の内周面31には、対向するフランジ付きシャフト素子4
0の本体部41の外周面43との間にラジアル方向の荷重を受ける動圧を発生させるため
の第1の動圧溝91が形成され、第2の外輪素子80の内周面81には、対向するフラン
ジ付きシャフト素子40の本体部41の外周面43との間にラジアル方向の荷重を受ける
動圧を発生させるための第2の動圧溝92が形成され、第2の外輪素子80の下端面82
には、対向するフランジ付きシャフト素子40のフランジ部42の上面44との間にアキ
シャル方向の荷重を受ける動圧を発生させるための第3の動圧溝93が形成され、エンド
プレート素子20の上面21には、対向するフランジ付きシャフト素子40のフランジ部
42の下面45との間にアキシャル方向の荷重を受ける動圧を発生させるための第4の動
圧溝94が形成され、第1の動圧溝91、第2の動圧溝92、第3の動圧溝93および第
4の動圧溝94がそれぞれ臨む各対向面間の微小隙間には、潤滑油が充填されている。
動圧溝が形成される素子、本実施例6においては、第1の外輪素子30、第2の外輪素
子80およびエンドプレート素子20は、焼き入れ可能な鋼または焼き入れ可能なステン
レス鋼材から成り、熱処理が施されて、研削仕上げされた後、電解加工にて、第1の動圧
溝91、第2の動圧溝92、第3の動圧溝93および第4の動圧溝94がそれぞれ形成さ
れている。
その他の構成は、実施例5と異なるところはないので、詳細な説明を省略する。
本実施例6は、前記のように構成されているので、その一端部にフランジ部42を有す
るフランジ付きシャフト素子40を相対回転自在に支承する流体軸受ユニット1は、実施
例5と同様に、それを構成する各素子、すなわち、ケース素子10、エンドプレート素子
20、第1の外輪素子30、第2の外輪素子80、フランジ付きシャフト素子40、スペ
ーサ素子100をモジュール化するのが容易であり、このようにしてモジュール化された
各素子をもって標準化された流体軸受ユニット1を容易に製作することができる。
また、第1の外輪素子30とフランジ付きシャフト素子40の本体部41とによって形
成されるラジアル方向の隙間寸法と、第2の外輪素子80とフランジ付きシャフト素子4
0の本体部41とによって形成されるラジアル方向の隙間寸法とを、異なる寸法に設定す
ることによって、それぞれの隙間部に形成される動圧発生部で生成されるラジアル方向の
荷重を受ける動圧力を、所望する使途条件に合わせて調節することが可能になる。
また、同じ高さの流体軸受ユニット1において、第1の外輪素子30の軸方向高さW1
と第2の外輪素子80の軸方向高さW2とを種々に変えて組み合わせることによって、第
1の外輪素子30とフランジ付きシャフト素子40の本体部41とによって形成されるラ
ジアル方向の隙間部および第2の外輪素子80と同本体部41とによって形成されるラジ
アル方向の隙間部にそれぞれ形成される動圧発生部で生成される、ラジアル方向の荷重を
受ける動圧力や動圧力発生位置を、所望する使途条件に合わせて調節することが可能にな
る。
さらに、スペーサ素子100によって、フランジ部42の厚さの異なるフランジ付きシ
ャフト素子40に応じ、第1の外輪素子30および第2の外輪素子80の軸方向位置を、
エンドプレート素子20に対して正確に調整、設定することができる。
また、動圧溝91〜94が形成される素子である第1の外輪素子30、第2の外輪素子
80およびエンドプレート素子20は、焼き入れ可能な鋼材または焼き入れ可能なステン
レス鋼材から製造され、熱処理が施されて、研削仕上げされた後、電解加工にて、これら
の動圧溝が形成されるので、硬度が高く、寸法精度の高いこれら素子を得ることができ、
傷が付きにくく、高い寸法精度を維持することができる。特に、細密な面粗度の動圧溝を
得ることができ、その形状が維持されるので、設計どおりの動圧軸受機能を発揮させるこ
とができる。加えて、電解加工により、動圧溝形成のための加工時間を短縮することがで
きる。
その他、実施例5と同様の効果を奏することができる。
なお、本実施例6においては、第1〜第4の動圧溝91〜94は、第1の外輪素子30
の内周面31、第2の外輪素子80の内周面81、第2の外輪素子80の下端面82、エ
ンドプレート素子20の上面21にそれぞれ形成されたが、これに限定されず、これらの
面に対向するフランジ付きシャフト素子40の本体部41の外周面43(上下2個所)、
フランジ付きシャフト素子40のフランジ部42の上面44、同下面45にそれぞれ形成
されてもよい。この場合にも、動圧溝が形成される素子は、焼き入れ可能な鋼材または焼
き入れ可能なステンレス鋼材から製造し、熱処理を施して、研削仕上げした後、電解加工
にて、これらの動圧溝を形成するようにする。このようにしても、上記と同様の効果を奏
することができる。
次に、本願の発明の第7の実施例(実施例7)について説明する。
図8は、本実施例7の流体軸受ユニットの縦断面図である。同図に図示されるように、
本実施例7の流体軸受ユニット1は、実施例4の流体軸受ユニット1(図4)と比較する
と、実施例4の流体軸受ユニット1における外輪素子30とフランジ付き内輪素子70と
が、それぞれ上下に2分割された点において異なっている。あるいは、実施例4の流体軸
受ユニット1において、外輪素子30とフランジ付き内輪素子70との各軸方向長さを短
くして、空いた空間部に、実施例3の流体軸受ユニット1(図3)における外輪素子30
と内輪素子70との組合せを、それらの軸方向長さを短くして、適用したものとも考える
ことができる。
そこで、このようにして上下に2分割された実施例4の外輪素子30の上方部分を新た
に第1の外輪素子30とし、その内周面、下端面に実施例4と同じ符号31、32を付し
、下方部分を新たに第2の外輪素子80とし、その内周面、下端面、上端面に新しい符号
(但し、実施例6(図7)とは同じ符号)81、82、83を付し、同じく上下に2分割
された実施例4のフランジ付き内輪素子70の上方部分を新たに第1の内輪素子70とし
、その外周面に実施例4と同じ符号73を付し、その下端面に新しい符号76を付し、下
方部分を新たにフランジ付き第2の内輪素子110とし、その本体部、フランジ部、外周
面、フランジ部の上面、フランジ部の下面、上端面に新しい符号111、112、113
、114、115、116をそれぞれ付し、その他、実施例4と対応する部分には、同一
の符号を付することとする。
したがって、本実施例7の流体軸受ユニット1は、ストレートなシャフト素子40を相
対回転自在に支承する流体軸受ユニットであって、ケース素子10と、エンドプレート素
子20と、ケース素子10に嵌入される第1の外輪素子30および第2の外輪素子80と
、第1の外輪素子30に挿入される第1の内輪素子70と、そのフランジ部112が第2
の外輪素子80の下端面82とエンドプレート素子20の上面21とに挟まれるようにし
て第2の外輪素子80に挿入される、一端部にフランジ部112を有するフランジ付き第
2の内輪素子110と、第1の内輪素子70およびフランジ付き第2の内輪素子110に
嵌入されるシャフト素子40とを備えて成る。
そして、第1の外輪素子30の内周面31には、対向する第1の内輪素子70の外周面
73との間にラジアル方向の荷重を受ける動圧を発生させるための第1の動圧溝91が形
成され、第2の外輪素子80の内周面81には、対向するフランジ付き第2の内輪素子1
10の本体部111の外周面113との間にラジアル方向の荷重を受ける動圧を発生させ
るための第2の動圧溝92が形成され、第2の外輪素子80の下端面82には、対向する
フランジ付き第2の内輪素子110のフランジ部112の上面114との間にアキシャル
方向の荷重を受ける動圧を発生させるための第3の動圧溝93が形成され、エンドプレー
ト素子20の上面21には、対向するフランジ付き第2の内輪素子110のフランジ部1
12の下面115との間にアキシャル方向の荷重を受ける動圧を発生させるための第4の
動圧溝94が形成され、これら第1の動圧溝91、第2の動圧溝92、第3の動圧溝93
および第4の動圧溝94がそれぞれ臨む各対向面間の微小隙間には、潤滑油が充填されて
いる。
第1の外輪素子30の下端面32と第2の外輪素子80の上端面83とは当接し合い、
第1の内輪素子70の下端面76とフランジ付き第2の内輪素子110の上端面116と
は当接し合っている。シャフト素子40の下端面46は、エンドプレート素子20の上面
21からわずかに浮上させられている。
動圧溝が形成される素子、本実施例7においては、第1の外輪素子30、第2の外輪素
子80およびエンドプレート素子20は、焼き入れ可能な鋼または焼き入れ可能なステン
レス鋼材から成り、熱処理が施されて、研削仕上げされた後、電解加工にて、第1の動圧
溝91、第2の動圧溝92、第3の動圧溝93および第4の動圧溝94がそれぞれ形成さ
れている。なお、第1の内輪素子70、フランジ付き第2の内輪素子110を同様の材料
にて製造してもよい。
その他の構成は、実施例4と異なるところはないので、詳細な説明を省略する。
本実施例7は、前記のように構成されているので、そのストレートなシャフト素子40
を相対回転自在に支承する流体軸受ユニット1は、実施例4と同様に、それを構成する各
素子、すなわち、ケース素子10、エンドプレート素子20、第1の外輪素子30、第2
の外輪素子80、第1の内輪素子70、フランジ付き第2の内輪素子110、シャフト素
子40をモジュール化するのが容易であり、このようにしてモジュール化された各素子を
もって標準化された流体軸受ユニット1を容易に製作することができる。
また、第1の外輪素子30と第1の内輪素子70とによって形成されるラジアル方向の
隙間寸法と、第2の外輪素子80とフランジ付き第2の内輪素子110の本体部111と
によって形成されるラジアル方向の隙間寸法とを、異なる寸法に設定することによって、
それぞれの隙間部に形成される動圧発生部で生成されるラジアル方向の荷重を受ける動圧
力を、所望する使途条件に合わせて調整することが可能になる。
また、同じ高さの流体軸受ユニット1において、第1の外輪素子30の軸方向高さW1
と第2の外輪素子80の軸方向高さW2とを種々に変え、これに合わせて第1の内輪素子
70の軸方向高さとフランジ付き第2の内輪素子110の軸方向高さとを種々に変えて、
組み合わせることによって、第1の外輪素子30と第1の内輪素子70とによって形成さ
れるラジアル方向の隙間部および第2の外輪素子80とフランジ付き第2の内輪素子11
0の本体部111とによって形成されるラジアル方向の隙間部にそれぞれ形成される動圧
発生部で生成される、ラジアル方向の荷重を受ける動圧力や動圧力発生位置を、所望する
使途条件に合わせて調整することが可能になる。
このようにして動圧力や動圧力発生位置を調整する場合において、第1の外輪素子30
と第1の内輪素子70とによって形成される隙間半径(隙間中心が形成する仮想円筒膜の
半径)と、第2の外輪素子80とフランジ付き第2の内輪素子110の本体部111とに
よって形成される隙間半径とを異ならせることにより、上記の動圧力の調整の自由度をさ
らに拡げることができる。また、第1の内輪素子70の内径とフランジ付き第2の内輪素
子110の内径とを異ならせ、これに合わせて、シャフト素子40を大径部と小径部とを
有する段付きシャフト素子で構成したり(後述の実施例8、9参照)、外輪素子側と内輪
素子側とをそれぞれさらに多段に構成することも考えられ、これらの手段の多様な組み合
わせによって、動圧力や動圧力発生位置を多様に調整することができ、これにより、多様
な荷重形態に最適な軸受の設計要求に迅速に応えることが可能になる。
また、動圧溝91〜94が形成される素子である第1の外輪素子30、第2の外輪素子
80およびエンドプレート素子20は、焼き入れ可能な鋼材または焼き入れ可能なステン
レス鋼材から製造され、熱処理が施されて、研削仕上げされた後、電解加工にて、これら
の動圧溝91〜94が形成されるので、硬度が高く、寸法精度の高いこれら素子を得るこ
とができ、傷が付きにくく、高い寸法精度を維持することができる。特に、細密な面粗度
の動圧溝を得ることができ、その形状が維持されるので、設計どおりの動圧軸受機能を発
揮させることができる。加えて、電解加工により、動圧溝形成のための加工時間を短縮す
ることができる。
その他、実施例4と同様の効果を奏することができる。
なお、本実施例7においては、第1〜第4の動圧溝91〜94は、第1の外輪素子30
の内周面31、第2の外輪素子80の内周面81、第2の外輪素子80の下端面82、エ
ンドプレート素子20の上面21にそれぞれ形成されたが、これに限定されず、これらの
面に対向する第1の内輪素子70の外周面73、フランジ付き第2の内輪素子110の本
体部111の外周面113、フランジ付き第2の内輪素子110のフランジ部112の上
面114、同下面115にそれぞれ形成されてもよい。この場合にも、動圧溝が形成され
る素子は、焼き入れ可能な鋼材または焼き入れ可能なステンレス鋼材から製造し、熱処理
を施して、研削仕上げした後、電解加工にて、これらの動圧溝を形成するようにする。こ
のようにしても、上記と同様の効果を奏することができる。
次に、本願の発明の第8の実施例(実施例8)について説明する。
図9は、本実施例8の流体軸受ユニットの縦断面図である。同図に図示されるように、
本実施例8の流体軸受ユニット1は、実施例5の流体軸受ユニット1の変形例(図6)と
比較すると、同変形例の流体軸受ユニット1におけるフランジ付きシャフト素子40のフ
ランジ部42が切除されたものに相当するということができる。そこで、フランジ部42
が切除されて構成された新たな段付きシャフト素子に同変形例と同じ符号40を付し、そ
の上半部(大径部)、下半部(小径部)、段部の下向きの面に新たに符号41−1、41
−2、48を付し、その他、同変形例と対応する部分には、同一の符号を付することとす
る。
本実施例8の流体軸受ユニット1は、上半の大径部41−1と下半の小径部41−2と
を有する段付きシャフト素子40を相対回転自在に支承する流体軸受ユニットであって、
円筒状内周面11を有する筒状のケース素子10と、ケース素子10の下端部を閉塞する
エンドプレート素子20と、ケース素子10に嵌入される、大径の円筒状内周面31を有
する第1の外輪素子30および小径の円筒状内周面81を有する第2の外輪素子80と、
その大径部41−1が第1の外輪素子30に挿入され、その小径部41−2が第2の外輪
素子80に挿入されるようにして、第1の外輪素子30および第2の外輪素子80に挿入
される段付きシャフト素子40とを備えて成る。
そして、第1の外輪素子30の内周面31には、対向する段付きシャフト素子40の大
径部41−1の外周面43−1との間にラジアル方向の荷重を受ける動圧を発生させるた
めの第1の動圧溝91が形成され、第2の外輪素子80の内周面81には、対向する段付
きシャフト素子40の小径部41−2の外周面43−2との間にラジアル方向の荷重を受
ける動圧を発生させるための第2の動圧溝92が形成され、第2の外輪素子80の上端面
83には、対向する段付きシャフト素子40の段部の面48との間にアキシャル方向の荷
重を受ける動圧を発生させるための第3の動圧溝93が形成され、これら第1の動圧溝9
1、第2の動圧溝92および第3の動圧溝93がそれぞれ臨む各対向面間の微小隙間には
、潤滑油が充填されている。
第1の外輪素子30の下端面32と第2の外輪素子80の上端面83(第3の動圧溝9
3が形成される部分よりも外側の部分)とは当接し合っており、第2の外輪素子80の下
端面82とエンドプレート素子20の上面21とは当接し合っている。段付きシャフト素
子40の下端面47は、エンドプレート素子20の上面21からわずかに浮上させられて
いる。
動圧溝が形成される素子、本実施例8においては、第1の外輪素子30および第2の外
輪素子80は、焼き入れ可能な鋼材または焼き入れ可能なステンレス鋼材から製造されて
おり、熱処理が施されて、研削仕上げされた後、電解加工にて、第1の動圧溝91、第2
の動圧溝92および第3の動圧溝93がそれぞれ形成されている。なお、段付きシャフト
素子40を同様の材料にて製造し、同様に熱処理を施し、研削にて仕上げるようにしても
よい。
その他の構成は、実施例5の変形例(図6)と異なるところはないので、詳細な説明を
省略する。
本実施例8は、前記のように構成されているので、その上半の大径部41−1と下半の
小径部41−2とを有する段付きシャフト素子40を相対回転自在に支承する流体軸受ユ
ニット1は、実施例5およびその変形例と同様に、それを構成する各素子、すなわち、ケ
ース素子10、エンドプレート素子20、第1の外輪素子30、第2の外輪素子80、段
付きシャフト素子40をモジュール化するのが容易であり、このようにしてモジュール化
された各素子をもって標準化された流体軸受ユニット1を容易に製作することができる。
また、段付きシャフト素子40の大径部41−1の外径寸法D1と小径部41−2の外
径寸法D2とを変えるとともに、第1の外輪素子30と段付きシャフト素子40の大径部
41−1とによって形成されるラジアル方向の隙間寸法と、第2の外輪素子80と段付き
シャフト素子40の小径部41−2とによって形成されるラジアル方向の隙間寸法とを、
異なる寸法に設定することによって、それぞれの隙間部に形成される動圧発生部で生成さ
れるラジアル方向の荷重を受ける動圧力を、所望する使途条件に合わせて調節することが
可能になる。
また、同じ高さの流体軸受ユニット1において、段付きシャフト素子40の大径部41
−1の軸方向寸法と小径部41−2の軸方向寸法との比率を種々に変え、それに応じて第
1の外輪素子30の軸方向高さW1と第2の外輪素子80の軸方向高さW2とを種々に変
えて、組み合わせることによって、第1の外輪素子30と段付きシャフト素子40の大径
部41−1とによって形成されるラジアル方向の隙間部および第2の外輪素子80と段付
きシャフト素子40の小径部41−2とによって形成されるラジアル方向の隙間部にそれ
ぞれ形成される動圧発生部で生成される、ラジアル方向の荷重を受ける動圧力や動圧力発
生位置を、所望する使途条件に合わせて調節することが可能になる。
また、これにより、第2の外輪素子80の軸方向高さW2および段付きシャフト素子4
0の段部の軸方向位置を調節することができるので、第3の動圧溝93が臨む対向面間の
微小隙間に形成される動圧発生部の位置、換言すれば、段付きシャフト素子40に作用す
るアキシャル方向の荷重を受ける動圧力の発生位置を、回転側素子を含む回転体全体の軸
方向の重心位置に合わせて調整することができ、段付きシャフト素子40を倒す方向に作
用するモーメントを減らすことができて、段付きシャフト素子40のジャイロモーメント
に起因する振れ回り振動を低減し、その相対回転を安定化させて、回転精度の向上を図る
ことができる。
さらに、段付きシャフト素子40の外端部にロータハブ等の負荷部材(回転体もしくは
固定体)が連結されることにより比較的高い軸受剛性が必要となる、ケース素子10がエ
ンドプレート素子20により閉塞される側と反対側に位置する段付きシャフト素子40の
大径部41−1側に、大径のラジアル動圧軸受部を設定し、比較的低い軸受剛性で済む、
ケース素子10がエンドプレート素子20により閉塞される側に位置する段付きシャフト
素子40の小径部41−2側に、小径のラジアル動圧軸受部を設定することができ、摩擦
損失は軸径の3乗に比例するので、この小径のラジアル動圧軸受部においては、小径とさ
れた分、摩擦損失を低減することができ、全体としてみて、簡単な構成により、必要な軸
受剛性を確保しつつ、できるだけ軸損トルクを低減して、動力消費を削減することができ
る。
加えて、小径のラジアル動圧軸受部において摩擦損失を低減することができることによ
り、段付きシャフト素子40を倒す方向に作用するモーメントを減らすことができ、この
面からも、段付きシャフト素子のジャイロモーメントに起因する振れ回り振動を低減して
、その相対回転を安定化させ、回転精度を向上させることができる。
さらに、動圧溝91〜93が形成される素子である第1の外輪素子30および第2の外
輪素子80は、焼き入れ可能な鋼材または焼き入れ可能なステンレス鋼材から製造されて
おり、熱処理が施されて、研削仕上げされた後、電解加工にて、これらの動圧溝91〜9
3がそれぞれ形成されているので、硬度が高く、寸法精度の高いこれら素子を得ることが
でき、傷が付きにくく、高い寸法精度を維持することができる。特に、細密な面粗度の動
圧溝を得ることができ、その形状が維持されるので、設計どおりの動圧軸受機能を発揮さ
せることができる。また、電解加工により、動圧溝形成のための加工時間を短縮すること
ができる。
その他、本実施例8は、実施例5の変形例(図6)と同様の効果を奏することができる
。但し、本実施例8の流体軸受ユニット1は、回転側素子と固定側素子との間に働く磁気
力などのバイアス効果によってシャフト素子40をエンドプレート素子20に向かって軸
方向に常時押し付ける作用が期待できる場合に使用されて好適な流体軸受ユニットであり
、この点で、同変形例とは作用、効果を異にしている。
なお、本実施例8においては、第1〜第3の動圧溝91〜93は、第1の外輪素子30
の内周面31、第2の外輪素子80の内周面81、第2の外輪素子80の上端面83にそ
れぞれ形成されたが、これに限定されず、これらの面に対向する段付きシャフト素子40
の大径部41−1の外周面43−1、同小径部41−2の外周面43−2、同段部の面4
8にそれぞれ形成されてもよい。この場合にも、動圧溝が形成される素子は、焼き入れ可
能な鋼材または焼き入れ可能なステンレス鋼材から製造し、熱処理を施して、研削仕上げ
した後、電解加工にて、これらの動圧溝を形成するようにする。このようにしても、上記
と同様の効果を奏することができる。
次に、本願の発明の第9の実施例(実施例9)について説明する。
図10は、本実施例9の流体軸受ユニットの縦断面図である。同図に図示されるように
、本実施例9の流体軸受ユニット1は、実施例8の流体軸受ユニット1(図9)と比較す
ると、段付きシャフト素子40の上半部および下半部の各径の大小関係が逆になっている
。したがって、実施例8の流体軸受ユニット1における上半の大径部41−1、下半の小
径部41−2は、本実施例9において、上半の小径部41−1、下半の大径部41−2と
されている。また、それに合わせて、第1の外輪素子30および第2の外輪素子80の各
円筒状内周面の径の大小関係も逆になっている。段付きシャフト素子40の段部の面は上
向きであり、その面に新たに符号49を付することとするが、その他、実施例8と対応す
る部分には、同一の符号を付している。
したがって、本実施例9の流体軸受ユニット1は、上半の小径部41−1と下半の大径
部41−2とを有する段付きシャフト素子40を回転自在に支承する流体軸受ユニットで
あって、円筒状内周面11を有する筒状のケース素子10と、ケース素子10の下端部を
閉塞するエンドプレート素子20と、ケース素子10に嵌入される、小径の円筒状内周面
31を有する第1の外輪素子30および大径の円筒状内周面81を有する第2の外輪素子
80と、その小径部41−1が第1の外輪素子30に挿入され、その大径部41−2が第
2の外輪素子80に挿入されるようにして、第1の外輪素子30および第2の外輪素子8
0に挿入される段付きシャフト素子40とを備えて成る。
そして、第1の外輪素子30の内周面31には、対向する段付きシャフト素子40の小
径部41−1の外周面43−1との間にラジアル方向の荷重を受ける動圧を発生させるた
めの第1の動圧溝91が形成され、第2の外輪素子80の内周面81には、対向する段付
きシャフト素子40の大径部41−2の外周面43−2との間にラジアル方向の荷重を受
ける動圧を発生させるための第2の動圧溝92が形成され、第1の外輪素子30の下端面
32には、対向する段付きシャフト素子40の段部の面49との間にアキシャル方向の荷
重を受ける動圧を発生させるための第3の動圧溝93が形成され、エンドプレート素子2
0の上面21には、対向する段付きシャフト素子40の下端面47との間にアキシャル方
向の荷重を受ける動圧を発生させるための第4の動圧溝94が形成され、これら第1の動
圧溝91、第2の動圧溝92、第3の動圧溝93および第4の動圧溝94がそれぞれ臨む
各対向面間の微小隙間には、潤滑油が充填されている。
第1の外輪素子30の下端面32(第3の動圧溝93が形成される部分よりも外側の部
分)と第2の外輪素子80の上端面83とは当接し合い、外輪素子80の下端面82とエ
ンドプレート素子20の上面21とは当接し合っている。
動圧溝が形成される素子、本実施例9においては、第1の外輪素子30、第2の外輪素
子80およびエンドプレート素子20は、焼き入れ可能な鋼材または焼き入れ可能なステ
ンレス鋼材から製造されており、熱処理が施されて、研削仕上げされた後、電解加工にて
、第1の動圧溝91、第2の動圧溝92、第3の動圧溝93および第4の動圧溝94がそ
れぞれ形成されている。なお、段付きシャフト素子40を同様の材料にて製造し、同様に
熱処理を施し、研削にて仕上げるようにしてもよい。
その他の構成は、実施例8と異なるところはないので、詳細な説明を省略する。
本実施例9は、前記のように構成されているので、その上半の小径部41−1と下半の
大径部41−2とを有する段付きシャフト素子40を相対回転自在に支承する流体軸受ユ
ニット1は、実施例8と同様に、それを構成する各素子、すなわち、ケース素子10、エ
ンドプレート素子20、第1の外輪素子30、第2の外輪素子80、段付きシャフト素子
40をモジュール化するのが容易であり、このようにしてモジュール化された各素子をも
って標準化された流体軸受ユニット1を容易に製作することができる。
また、段付きシャフト素子40の小径部41−1の外径寸法D1と大径部41−2の外
径寸法D2とを変えるとともに、第1の外輪素子30と段付きシャフト素子40の小径部
41−1とによって形成されるラジアル方向の隙間寸法と、第2の外輪素子80と段付き
シャフト素子40の大径部41−2とによって形成されるラジアル方向の隙間寸法とを、
異なる寸法に設定することによって、それぞれの隙間部に形成される動圧発生部で生成さ
れるラジアル方向の荷重を受ける動圧力を、所望する使途条件に合わせて調節することが
可能になる。
また、同じ高さの流体軸受ユニット1において、段付きシャフト素子40の小径部41
−1の軸方向寸法と大径部41−2の軸方向寸法との比率を種々に変え、それに応じて第
1の外輪素子30の軸方向高さW1と第2の外輪素子80の軸方向高さW2とを種々に変
えて、組み合わせることによって、第1の外輪素子30と段付きシャフト素子40の小径
部41−1とによって形成されるラジアル方向の隙間部および第2の外輪素子80と段付
きシャフト素子40の大径部41−2とによって形成されるラジアル方向の隙間部にそれ
ぞれ形成される動圧発生部で生成される、ラジアル方向の荷重を受ける動圧力や動圧力発
生位置を、所望する使途条件に合わせて調節することが可能になる。
また、これにより、第1の外輪素子30の軸方向高さおよび段付きシャフト素子40の
段部の軸方向位置を調節することができるので、第3の動圧溝93が臨む対向面間の微小
隙間に形成される動圧発生部の位置、換言すれば、段付きシャフト素子40に作用するア
キシャル方向の荷重を受ける動圧力の発生位置を、回転側素子を含む回転体全体の軸方向
の重心位置に合わせて調整することができ、段付きシャフト素子40を倒す方向に作用す
るモーメントを減らすことができて、段付きシャフト素子40のジャイロモーメントに起
因する振れ回り振動を低減し、その相対回転を安定化させて、回転精度を向上させること
ができる。
さらに、段付きシャフト素子40の小径部41−1側に設定され、第1の動圧溝91が
臨む対向面間の微小隙間に形成される小径のラジアル動圧軸受部においては、小径とされ
た分、摩擦損失を低減することができるので、軸損トルクを低減して、動力消費を削減す
ることができる。
加えて、この小径のラジアル動圧軸受部において摩擦損失を低減することができること
により、段付きシャフト素子40を倒す方向に作用するモーメントを減らすことができて
、この面からも、段付きシャフト素子のジャイロモーメントに起因する振れ回り振動を低
減して、その相対回転を安定化させ、回転精度を向上させることができる。
また、動圧溝91〜94が形成される素子である第1の外輪素子30、第2の外輪素子
80およびエンドプレート素子20は、焼き入れ可能な鋼材または焼き入れ可能なステン
レス鋼材から製造されており、熱処理が施されて、研削仕上げされた後、電解加工にて、
これらの動圧溝91〜94がそれぞれ形成されているので、硬度が高く、寸法精度の高い
これら素子を得ることができ、傷が付きにくく、高い寸法精度を維持することができる。
特に、細密な面粗度の動圧溝を得ることができ、その形状が維持されるので、設計どおり
の動圧軸受機能を発揮させることができる。また、電解加工により、動圧溝形成のための
加工時間を短縮することができる。
さらに、また、回転側素子と固定側素子との間に働く磁気力などのバイアス効果によっ
て段付きシャフト素子40がエンドプレート素子20に向かって軸方向に常時押し付けら
れる作用が期待できない場合でも、第3の動圧溝93が臨む対向面間の微小隙間に形成さ
れる動圧発生部において生成される動圧力が、それと等価な作用を発揮することができ、
これにより、第3の動圧溝93が臨む対向面間の微小隙間と第4の動圧溝94が臨む対向
面間の微小隙間とをともに適切な隙間に保って、段付きシャフト素子40の相対回転を安
定化させ、回転精度の向上を図ることができる。
その他、実施例8と同様の効果を奏することができる。
なお、本実施例9においては、第1〜第4の動圧溝91〜94は、第1の外輪素子30
の内周面31、第2の外輪素子80の内周面81、第1の外輪素子30の下端面32、エ
ンドプレート素子20の上面21にそれぞれ形成されたが、これに限定されず、これらの
面に対向する段付きシャフト素子40の小径部41−1の外周面43−1、同大径部41
−2の外周面43−2、同段部の面49、同下端面47にそれぞれ形成されてもよい。こ
の場合にも、動圧溝が形成される素子は、焼き入れ可能な鋼材または焼き入れ可能なステ
ンレス鋼材から製造し、熱処理を施して、研削仕上げした後、電解加工にて、これらの動
圧溝を形成するようにする。このようにしても、上記と同様の効果を奏することができる。
次に、本実施例の流体軸受ユニット1の適用例について説明する。
図11は、本実施例1(図1)の流体軸受ユニット1が適用されたスピンドルモータの縦断面図である。同図において、スピンドルモータ120は、そのハウジング121のボス部126に貫通形成された中央円孔に、流体軸受ユニット1のケース素子10が嵌着されており、軸回転型のスピンドルモータを構成している。ボス部126は、ハウジング121の底部の図11において略中央の位置に、底部から上方に突出するようにして形成されている。流体軸受ユニット1のシャフト素子40の本体部(軸部)41の上端部には、このモータの回転要素をなすロータハブ122のボス部が嵌着されていて、このロータハブ122は、シャフト素子40と一体に回転する。ロータハブ122の外周面には、図示されない磁気ディスクや光ディスク等の情報記録媒体(記録ディスク)が複数段に装着される。本体部41の上端部の内部には、詳細には図示されないが、タップ孔が形成されており、これらの情報記録媒体を上方から押し付け固定するクランプ部材が、このタップ孔にねじ止めされることにより、本体部41に固着されるようになっている。
ハウジング121のボス部126の外周面には、ステータコアにコイルが捲回されてなるステータ123が嵌着されており、これとわずかの径方向隙間を置いて、シールドヨークに嵌着された永久磁石124が、ステータ123を囲むように円周方向に配置されて、ロータハブ122の周壁の内周面に取り付けられている。ハウジング121の下面には、フレキシブル配線基板125が固着されており、この配線基板125の出力端より制御電流がステータ123に供給されることにより、永久磁石124、ロータハブ122、シャフト素子40等からなるロータ組立体がステータ123に対して回転を始める。
なお、実施例2(図2)のように、アキシャル方向の荷重を受ける動圧を発生させるための動圧溝が第2の動圧溝52のみである場合に、この実施例2の流体軸受ユニット1が適用されたスピンドルモータ120においては、この第2の動圧溝52によって発生される動圧によって支持される荷重の方向と反対方向に作用する荷重を受けることができるようにするために、図示を省略するが、永久磁石124の直下のハウジング121の底面に環状の吸引板を固定するようにする。このようにすれば、この環状の吸引板が永久磁石124を引き付けるように作用するので、第2の動圧溝52によって発生される動圧とバランスして、ロータ組立体を安定に軸受支持することができる。実施例8(図9)の場合も、同様である。
図12は、本実施例1の流体軸受ユニット1が適用されたスピンドルモータ120を備えた磁気ディスク駆動装置の縦断面図である。
本磁気ディスク駆動装置130は、図12に図示されるように、スピンドルモータ120と、ハウジング121と、このハウジング121内を密閉して塵埃等が極度に少ないクリーンな空間を形成するカバー部材131と、磁気ディスク132と、磁気ディスク132のクランプ部材133と、磁気ディスク132に対して情報を書き込み及び/又は読み出しするための記録ヘッド134と、記録ヘッド134を支持するアーム135と、記録ヘッド134及びアーム135を所要の位置に移動させるボイスコイルモータ136とにより構成されている。磁気ディスク132は、ロータハブ122に1枚装着されているが、その枚数は、これに限定されるものではない。磁気ディスク132は、ロータハブ122の回転とともに回転する。
記録ヘッド134は、ハウジング121の底部の適宜個所に旋回自在に支持されたアーム135に固定されたヘッド・スタック・アッセンブリの先端部に、上下一対で取り付けられている。この上下一対の記録ヘッド134は、1枚の磁気ディスク132を挟むように配置され、磁気ディスク132の両面に対して情報の書き込み及び/又は読み出しを行なうようになっている。本磁気ディスク駆動装置130では、磁気ディスク132が1枚の構成となっているために、このように、記録ヘッド134が上下一対のみ設けられているが、磁気ディスク132が複数枚の場合には、ディスク1枚毎に記録ヘッド134が上下一対設けられる。
実施例2ないし実施例9およびそれらの変形例についても、上記と同様にして、スピンドルモータに適用が可能であり、また、このようにして構成されたスピンドルモータを、さらに、磁気ディスク駆動装置に適用することが可能である。
このように、スピンドルモータ120の流体軸受として、本実施例の流体軸受ユニット1を適用し、このようにして得られたスピンドルモータ120を磁気ディスク駆動装置130に適用することにより、所望の構造、軸受性能を備え、標準化された流体軸受ユニット1を直ぐに調達して、高い回転精度と高い信頼性とを兼ね備えたスピンドルモータおよび該スピンドルモータを備えた磁気ディスク駆動装置を低コストで、大量生産することが可能になる。
なお、上記の例では、本実施例の流体軸受ユニット1を備えたスピンドルモータ120が磁気ディスク駆動装置130に適用されたが、本実施例の流体軸受ユニット1を備えたスピンドルモータは、CDやDVD等の記録ディスクを駆動する記録ディスク駆動装置に適用されてもよいものである。
本願の発明は、以上の実施例に限定されず、その要旨を変更しない範囲において、種々
の変形が可能である。
例えば、実施例8、9において、段付きシャフト素子40の段部(大径部から小径部に
移行する部分)をテーパ状にすることも可能である。
実施例1の流体軸受ユニットの縦断面図である。 実施例2の流体軸受ユニットの縦断面図である。 実施例3の流体軸受ユニットの縦断面図である。 実施例4の流体軸受ユニットの縦断面図である。 実施例5の流体軸受ユニットの縦断面図である。 実施例5の流体軸受ユニットの変形例の縦断面図である。 実施例6の流体軸受ユニットの縦断面図である。 実施例7の流体軸受ユニットの縦断面図である。 実施例8の流体軸受ユニットの縦断面図である。 実施例9の流体軸受ユニットの縦断面図である。 実施例1の流体軸受ユニットが適用されたスピンドルモータの縦断面図である。 実施例1の流体軸受ユニットが適用されたスピンドルモータを備えた磁気ディスク駆動装置の縦断面図である。 従来の流体軸受装置が適用されたスピンドルモータの縦断面図である。
符号の説明
1…流体軸受ユニット、10…ケ−ス素子、11…内周面、12…段部、20…エンド
プレート素子、21…上面、30…外輪素子、第1の外輪素子、31…内周面、32…下
端面、40…シャフト素子(ストレート、一端部フランジ付き、中間部フランジ付き、段
付き)、41…本体部、41−1…一半部(上半部、大径部もしくは小径部)、41−2
…他半部(下半部、小径部もしくは大径部)、42…フランジ部、43…外周面、43−
1…上部外周面、43−2…下部外周面、144…上面、45…下面、46、47…下端
面、48、49…段部の面、51(51−1、51−2)…第1の動圧溝、52…第2の
動圧溝、53…第3の動圧溝、54…第4の動圧溝、60…シール機構部、70…内輪素
子、フランジ付き内輪素子、第1の内輪素子、71…本体部、72…フランジ部、73…
外周面、74…上面、75…下面、76…下端面、80…第2の外輪素子、81…内周面
、82…下端面、83…上端面、91…第1の動圧溝、92…第2の動圧溝、93…第3
の動圧溝、94…第4の動圧溝、100…スペーサ素子、110…フランジ付き第2の内
輪素子、111…本体部、112…フランジ部、113…外周面、114…上面、115
…下面、116…上端面、120…スピンドルモータ、121…ハウジング、122…ロータハブ、123…ステータ、124…永久磁石、125…配線基板、126…ボス部、130…磁気ディスク駆動装置、131…カバー部材、132…磁気ディスク、133…クランプ部材、134…記録ヘッド、135…アーム、136…ボイスコイルモータ、F…回転部全体の重量、Q…回転部全体の重心、R…回転軸の軸心の最下点、T…アキシャル方向の動圧力の合力。










Claims (23)

  1. 複数のモジュール化された素子を組み合わせて構成され、内部に複数の動圧発生機構部
    を有し、一端部にフランジ部を有するフランジ付きシャフト素子を相対回転自在に支承す
    る流体軸受ユニットであって、
    円筒状内周面を有する筒状のケース素子と、
    前記ケース素子の下端部を閉塞するエンドプレート素子と、
    前記ケース素子に嵌入される外輪素子と、
    そのフランジ部が前記外輪素子の下端面と前記エンドプレート素子の上面とに挟まれる
    ようにして、前記外輪素子に挿入されるフランジ付きシャフト素子とを備え、
    前記外輪素子の内周面もしくは前記フランジ付きシャフト素子の本体部の外周面には、
    対向するこれら両面間にラジアル方向の荷重を受ける動圧を発生させるための第1の動圧
    溝が形成され、
    前記外輪素子の下端面もしくは前記フランジ付きシャフト素子のフランジ部の上面には
    、対向するこれら両面間にアキシャル方向の荷重を受ける動圧を発生させるための第2の
    動圧溝が形成され、
    前記エンドプレート素子の上面もしくは前記フランジ付きシャフト素子のフランジ部の
    下面には、対向するこれら両面間にアキシャル方向の荷重を受ける動圧を発生させるため
    の第3の動圧溝が形成され、
    前記第1の動圧溝、前記第2の動圧溝および前記第3の動圧溝がそれぞれ臨む各対向面
    間の微小隙間には、潤滑油が充填された
    ことを特徴とする流体軸受ユニット。
  2. 複数のモジュール化された素子を組み合わせて構成され、内部に複数の動圧発生機構部
    を有し、ストレートなシャフト素子を相対回転自在に支承する流体軸受ユニットであって、
    円筒状内周面を有する筒状のケース素子と、
    前記ケース素子の下端部を閉塞するエンドプレート素子と、
    前記ケース素子に嵌入される外輪素子と、
    前記外輪素子に挿入されるシャフト素子とを備え、
    前記外輪素子の内周面もしくは前記シャフト素子の外周面には、対向するこれら両面間
    にラジアル方向の荷重を受ける動圧を発生させるための第1の動圧溝が形成され、
    前記エンドプレートの上面もしくは前記シャフト素子の下端面には、対向するこれら両
    面間にアキシャル方向の荷重を受ける動圧を発生させるための第2の動圧溝が形成され、
    前記第1の動圧溝および前記第2の動圧溝がそれぞれ臨む各対向面間の微小隙間には、
    潤滑油が充填された
    ことを特徴とする流体軸受ユニット。
  3. 複数のモジュール化された素子を組み合わせて構成され、内部に複数の動圧発生機構部
    を有し、一端部にフランジ部を有するフランジ付きシャフト素子を相対回転自在に支承す
    る流体軸受ユニットであって、
    円筒状内周面を有する筒状のケース素子と、
    前記ケース素子の下端部を閉塞するエンドプレート素子と、
    前記ケース素子に嵌入される外輪素子と、
    前記外輪素子に挿入される内輪素子と、
    そのフランジ部が前記外輪素子の下端面および前記内輪素子の下端面と前記エンドプレ
    ート素子の上面とに挟まれるようにして、前記内輪素子に嵌入されるフランジ付きシャフ
    ト素子とを備え、
    前記外輪素子の内周面もしくは前記内輪素子の外周面には、対向するこれら両面間にラ
    ジアル方向の荷重を受ける動圧を発生させるための第1の動圧溝が形成され、
    前記外輪素子の下端面もしくは前記フランジ付きシャフト素子のフランジ部の上面には
    、対向するこれら両面間にアキシャル方向の荷重を受ける動圧を発生させるための第2の
    動圧溝が形成され、
    前記エンドプレート素子の上面もしくは前記フランジ付きシャフト素子のフランジ部の
    下面には、対向するこれら両面間にアキシャル方向の荷重を受ける動圧を発生させるため
    の第3の動圧溝が形成され、
    前記第1の動圧溝、前記第2の動圧溝および前記第3の動圧溝がそれぞれ臨む各対向面
    間の微小隙間には、潤滑油が充填された
    ことを特徴とする流体軸受ユニット。
  4. 複数のモジュール化された素子を組み合わせて構成され、内部に複数の動圧発生機構部
    を有し、ストレートなシャフト素子を相対回転自在に支承する流体軸受ユニットであって、
    円筒状内周面を有する筒状のケース素子と、
    前記ケース素子の下端部を閉塞するエンドプレート素子と、
    前記ケース素子に嵌入される外輪素子と、
    そのフランジ部が前記外輪素子の下端面と前記エンドプレート素子の上面とに挟まれる
    ようにして前記外輪素子に挿入される、一端部にフランジ部を有するフランジ付き内輪素
    子と、
    前記フランジ付き内輪素子に嵌入されるシャフト素子とを備え、
    前記外輪素子の内周面もしくは前記フランジ付き内輪素子の本体部の外周面には、対向
    するこれら両面間にラジアル方向の荷重を受ける動圧を発生させるための第1の動圧溝が
    形成され、
    前記外輪素子の下端面もしくは前記フランジ付き内輪素子のフランジ部の上面には、対
    向するこれら両面間にアキシャル方向の荷重を受ける動圧を発生させるための第2の動圧
    溝が形成され、
    前記エンドプレート素子の上面もしくは前記フランジ付き内輪素子のフランジ部の下面
    には、対向するこれら両面間にアキシャル方向の荷重を受ける動圧を発生させるための第
    3の動圧溝が形成され、
    前記第1の動圧溝、前記第2の動圧溝および前記第3の動圧溝がそれぞれ臨む各対向面
    間の微小隙間には、潤滑油が充填された
    ことを特徴とする流体軸受ユニット。
  5. 前記第1の動圧溝は、該動圧溝が形成される面を有する素子の軸方向に隔てられた上下
    2個所に形成されていることを特徴とする請求項1ないし4のいずれかに記載の流体軸受ユニット。
  6. 複数のモジュール化された素子を組み合わせて構成され、内部に複数の動圧発生機構部
    を有し、中間部にフランジ部を有するフランジ付きシャフト素子を相対回転自在に支承す
    る流体軸受ユニットであって、
    円筒状内周面を有する筒状のケース素子と、
    前記ケース素子の下端部を閉塞するエンドプレート素子と、
    前記ケース素子に嵌入される第1の外輪素子および第2の外輪素子と、
    そのフランジ部が前記第1の外輪素子の下端面と前記第2の外輪素子の上端面とに挟ま
    れるようにして、前記第1の外輪素子および前記第2の外輪素子に挿入されるフランジ付
    きシャフト素子とを備え、
    前記第1の外輪素子の内周面もしくは前記フランジ付きシャフト素子の本体部の外周面
    には、対向するこれら両面間にラジアル方向の荷重を受ける動圧を発生させるための第1
    の動圧溝が形成され、
    前記第2の外輪素子の内周面もしくは前記フランジ付きシャフト素子の本体部の外周面
    には、対向するこれら両面間にラジアル方向の荷重を受ける動圧を発生させるための第2
    の動圧溝が形成され、
    前記第1の外輪素子の下端面もしくは前記フランジ付きシャフト素子のフランジ部の上
    面には、対向するこれら両面間にアキシャル方向の荷重を受ける動圧を発生させるための
    第3の動圧溝が形成され、
    前記第2の外輪素子の上端面もしくは前記フランジ付きシャフト素子のフランジ部の下
    面には、対向するこれら両面間にアキシャル方向の荷重を受ける動圧を発生させるための
    第4の動圧溝が形成され、
    前記第1の動圧溝、前記第2の動圧溝、前記第3の動圧溝および前記第4の動圧溝がそ
    れぞれ臨む各対向面間の微小隙間には、潤滑油が充填された
    ことを特徴とする流体軸受ユニット。
  7. 前記フランジ付きシャフト素子の本体部のフランジ部を境にした一半部の径と他半部の
    径とが異ならされていることを特徴とする請求項6に記載の流体軸受ユニット。
  8. 複数のモジュール化された素子を組み合わせて構成され、内部に複数の動圧発生機構部
    を有し、一端部にフランジ部を有するフランジ付きシャフト素子を相対回転自在に支承す
    る流体軸受ユニットであって、
    円筒状内周面を有する筒状のケース素子と、
    前記ケース素子の下端部を閉塞するエンドプレート素子と、
    前記ケース素子に嵌入される第1の外輪素子および第2の外輪素子と、
    そのフランジ部が前記第2の外輪素子の下端面と前記エンドプレート素子の上面とに挟
    まれるようにして、前記第1の外輪素子および前記第2の外輪素子に挿入されるフランジ
    付きシャフト素子と、
    前記第2の外輪素子を前記エンドプレート素子に対して位置決めするために、前記フラ
    ンジ付きシャフト素子のフランジ部を囲むようにして設けられる環状のスペーサ素子とを
    備え、
    前記第1の外輪素子の内周面もしくは前記フランジ付きシャフト素子の本体部の外周面
    には、対向するこれら両面間にラジアル方向の荷重を受ける動圧を発生させるための第1
    の動圧溝が形成され、
    前記第2の外輪素子の内周面もしくは前記フランジ付きシャフト素子の本体部の外周面
    には、対向するこれら両面間にラジアル方向の荷重を受ける動圧を発生させるための第2
    の動圧溝が形成され、
    前記第2の外輪素子の下端面もしくは前記フランジ付きシャフト素子のフランジ部の上
    面には、対向するこれら両面間にアキシャル方向の荷重を受ける動圧を発生させるための
    第3の動圧溝が形成され、
    前記エンドプレート素子の上面もしくは前記フランジ付きシャフト素子のフランジ部の
    下面には、対向するこれら両面間にアキシャル方向の荷重を受ける動圧を発生させるため
    の第4の動圧溝が形成され、
    前記第1の動圧溝、前記第2の動圧溝、前記第3の動圧溝および前記第4の動圧溝がそ
    れぞれ臨む各対向面間の微小隙間には、潤滑油が充填された
    ことを特徴とする流体軸受ユニット。
  9. 複数のモジュール化された素子を組み合わせて構成され、内部に複数の動圧発生機構部
    を有し、ストレートなシャフト素子を相対回転自在に支承する流体軸受ユニットであって、
    円筒状内周面を有する筒状のケース素子と、
    前記ケース素子の下端部を閉塞するエンドプレート素子と、
    前記ケース素子に嵌入される第1の外輪素子および第2の外輪素子と、
    前記第1の外輪素子に挿入される第1の内輪素子と、
    そのフランジ部が前記第2の外輪素子の下端面と前記エンドプレート素子の上面とに挟
    まれるようにして前記第2の外輪素子に挿入される、一端部にフランジ部を有するフラン
    ジ付き第2の内輪素子と、
    前記第1の内輪素子および前記フランジ付き第2の内輪素子に嵌入されるシャフト素子
    とを備え、
    前記第1の外輪素子の内周面もしくは前記第1の内輪素子の外周面には、対向するこれ
    ら両面間にラジアル方向の荷重を受ける動圧を発生させるための第1の動圧溝が形成され、
    前記第2の外輪素子の内周面もしくは前記フランジ付き第2の内輪素子の外周面には、
    対向するこれら両面間にラジアル方向の荷重を受ける動圧を発生させるための第2の動圧
    溝が形成され、
    前記第2の外輪素子の下端面もしくは前記フランジ付き第2の内輪素子のフランジ部の
    上面には、対向するこれら両面間にアキシャル方向の荷重を受ける動圧を発生させるため
    の第3の動圧溝が形成され、
    前記エンドプレート素子の上面もしくは前記フランジ付き第2の内輪素子のフランジ部
    の下面には、対向するこれら両面間にアキシャル方向の荷重を受ける動圧を発生させるた
    めの第4の動圧溝が形成され、
    前記第1の動圧溝、前記第2の動圧溝、前記第3の動圧溝および前記第4の動圧溝がそ
    れぞれ臨む各対向面間の微小隙間には、潤滑油が充填された
    ことを特徴とする流体軸受ユニット。
  10. 複数のモジュール化された素子を組み合わせて構成され、内部に複数の動圧発生機構部
    を有し、大径部と小径部とを有する段付きシャフト素子を相対回転自在に支承する流体軸
    受ユニットであって、
    円筒状内周面を有する筒状のケース素子と、
    前記ケース素子の下端部を閉塞するエンドプレート素子と、
    前記ケース素子に嵌入される、大径の円筒状内周面を有する第1の外輪素子および小径
    の円筒状内周面を有する第2の外輪素子と、
    その大径部が前記第1の外輪素子に挿入され、その小径部が前記第2の外輪素子に挿入
    されるようにして、前記第1の外輪素子および前記第2の外輪素子に挿入される段付きシ
    ャフト素子とを備え、
    前記第1の外輪素子の内周面もしくは前記段付きシャフト素子の大径部の外周面には、
    対向するこれら両面間にラジアル方向の荷重を受ける動圧を発生させるための第1の動圧
    溝が形成され、
    前記第2の外輪素子の内周面もしくは前記段付きシャフト素子の小径部の外周面には、
    対向するこれら両面間にラジアル方向の荷重を受ける動圧を発生させるための第2の動圧
    溝が形成され、
    前記第2の外輪素子の上端面もしくは前記段付きシャフト素子の段部の面には、対向す
    るこれら両面間にアキシャル方向の荷重を受ける動圧を発生させるための第3の動圧溝が
    形成され、
    前記第1の動圧溝、前記第2の動圧溝および前記第3の動圧溝がそれぞれ臨む各対向面
    間の微小隙間には、潤滑油が充填された
    ことを特徴とする流体軸受ユニット。
  11. 複数のモジュール化された素子を組み合わせて構成され、内部に複数の動圧発生機構部
    を有し、小径部と大径部とを有する段付きシャフト素子を回転自在に支承する流体軸受ユ
    ニットであって、
    円筒状内周面を有する筒状のケース素子と、
    前記ケース素子の下端部を閉塞するエンドプレート素子と、
    前記ケース素子に嵌入される、小径の円筒状内周面を有する第1の外輪素子および大径
    の円筒状内周面を有する第2の外輪素子と、
    その小径部が前記第1の外輪素子に挿入され、その大径部が前記第2の外輪素子に挿入
    されるようにして、前記第1の外輪素子および前記第2の外輪素子に挿入される段付きシ
    ャフト素子とを備え、
    前記第1の外輪素子の内周面もしくは前記段付きシャフト素子の小径部の外周面には、
    対向するこれら両面間にラジアル方向の荷重を受ける動圧を発生させるための第1の動圧
    溝が形成され、
    前記第2の外輪素子の内周面もしくは前記段付きシャフト素子の大径部の外周面には、
    対向するこれら両面間にラジアル方向の荷重を受ける動圧を発生させるための第2の動圧
    溝が形成され、
    前記第1の外輪素子の下端面もしくは前記段付きシャフト素子の段部の面には、対向す
    るこれら両面間にアキシャル方向の荷重を受ける動圧を発生させるための第3の動圧溝が
    形成され、
    前記エンドプレート素子の上面もしくは前記段付きシャフト素子の下端面には、対向す
    るこれら両面間にアキシャル方向の荷重を受ける動圧を発生させるための第4の動圧溝が
    形成され、
    前記第1の動圧溝、前記第2の動圧溝、前記第3の動圧溝および前記第4の動圧溝がそ
    れぞれ臨む各対向面間の微小隙間には、潤滑油が充填された
    ことを特徴とする流体軸受ユニット。
  12. 少なくともそのいずれかの面に前記動圧溝が形成される素子は、焼き入れ可能な鋼また
    は焼き入れ可能なステンレス鋼から成り、熱処理が施されて、研削仕上げされた後、電解
    加工にて、前記動圧溝が形成されたことを特徴とする請求項1ないし11のいずれかに記載の流体軸受ユニット。
  13. 前記ケース素子の下端部に段部が形成され、前記エンドプレート素子が、前記段部に嵌
    着されて、前記ケース素子の下端部を閉塞していることを特徴とする請求項1ないし12のいずれかに記載の流体軸受ユニット。
  14. 前記ケース素子の下端部が前記エンドプレート素子により閉塞されて構成される軸受容
    器が、同一材料の一体成形により形成されていることを特徴とする請求項1ないし13のいずれかに記載の流体軸受ユニット。
  15. 請求項1、3、4、6ないし9、11のいずれかに記載の流体軸受ユニットを備えたスピンドルモータであって、 ハウジングに固定されたステータと、
    前記軸部の上端部に嵌着された回転要素をなすロータハブと、該ロータハブに嵌着され、前記ステータと協働して回転磁界を発生するロータマグネットとからなり、前記ハウジングに対して回転自在に設けられたロータと
    を備え、
    前記流体軸受ユニットは、前記ロータの回転を支持している
    ことを特徴とするスピンドルモータ。
  16. 前記流体軸受ユニットの、少なくともそのいずれかの面に前記動圧溝が形成される素子は、焼き入れ可能な鋼または焼き入れ可能なステンレス鋼から成り、熱処理が施されて、研削仕上げされた後、電解加工にて、前記動圧溝が形成されたことを特徴とする請求項15に記載のスピンドルモータ。
  17. 前記流体軸受ユニットの前記ケース素子の下端部に段部が形成され、前記エンドプレート素子が、前記段部に嵌着されて、前記ケース素子の下端部を閉塞していることを特徴とする請求項15または16に記載のスピンドルモータ。
  18. 前記流体軸受ユニットの前記ケース素子の下端部が前記エンドプレート素子により閉塞されて構成される軸受容器が、同一材料の一体成形により形成されていることを特徴とする請求項15ないし17のいずれかに記載のスピンドルモータ。
  19. 請求項2または10に記載の流体軸受ユニットを備えたスピンドルモータであって、
    ハウジングに固定されたステータと、
    前記軸部の上端部に嵌着された回転要素をなすロータハブと、該ロータハブに嵌着され、前記ステータと協働して回転磁界を発生するロータマグネットとからなり、前記ハウジングに対して回転自在に設けられたロータと
    を備え、
    前記流体軸受ユニットは、前記ロータの回転を支持しており、
    前記ロータは、前記流体軸受ユニット内のアキシャル方向の荷重を受ける動圧を発生させるための動圧溝で発生する動圧が作用する方向とは反対方向に磁気力で吸引され、これらの動圧と磁気力とがバランスすることによって、その荷重が支持されている
    ことを特徴とするスピンドルモータ。
  20. 前記流体軸受ユニットの少なくともそのいずれかの面に前記動圧溝が形成される素子は、焼き入れ可能な鋼または焼き入れ可能なステンレス鋼から成り、熱処理が施されて、研削仕上げされた後、電解加工にて、前記動圧溝が形成されたことを特徴とする請求項19に記載のスピンドルモータ。
  21. 前記流体軸受ユニットの前記ケース素子の下端部に段部が形成され、前記エンドプレート素子が、前記段部に嵌着されて、前記ケース素子の下端部を閉塞していることを特徴とする請求項19または20に記載のスピンドルモータ。
  22. 前記流体軸受ユニットの前記ケース素子の下端部が前記エンドプレート素子により閉塞されて構成される軸受容器が、同一材料の一体成形により形成されていることを特徴とする請求項19ないし21のいずれかに記載のスピンドルモータ。
  23. 請求項15ないし22のいずれかに記載のスピンドルモータを備えた記録ディスク駆動装置であって、
    記録ディスクに情報を書き込み及び/又は読み出しするための記録ヘッドを備え、
    前記スピンドルモータが、前記記録ディスクを回転駆動する
    ことを特徴とする記録ディスク駆動装置。








JP2004264470A 2003-09-12 2004-09-10 流体軸受ユニットおよび該流体軸受ユニットを備えたスピンドルモータ、記録ディスク駆動装置 Expired - Fee Related JP4754794B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004264470A JP4754794B2 (ja) 2003-09-12 2004-09-10 流体軸受ユニットおよび該流体軸受ユニットを備えたスピンドルモータ、記録ディスク駆動装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003321807 2003-09-12
JP2003321807 2003-09-12
JP2004264470A JP4754794B2 (ja) 2003-09-12 2004-09-10 流体軸受ユニットおよび該流体軸受ユニットを備えたスピンドルモータ、記録ディスク駆動装置

Publications (2)

Publication Number Publication Date
JP2005106289A true JP2005106289A (ja) 2005-04-21
JP4754794B2 JP4754794B2 (ja) 2011-08-24

Family

ID=34554400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004264470A Expired - Fee Related JP4754794B2 (ja) 2003-09-12 2004-09-10 流体軸受ユニットおよび該流体軸受ユニットを備えたスピンドルモータ、記録ディスク駆動装置

Country Status (1)

Country Link
JP (1) JP4754794B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126337A1 (ja) * 2005-05-24 2006-11-30 Ntn Corporation 流体軸受装置およびこれを備えたモータ
KR100771327B1 (ko) * 2006-05-02 2007-10-29 삼성전기주식회사 스핀들 모터
JP2008008472A (ja) * 2006-06-30 2008-01-17 Ntn Corp 流体軸受装置
JP2008051130A (ja) * 2006-08-22 2008-03-06 Victor Co Of Japan Ltd 流体動圧軸受装置及びそれを備えたモータ
WO2008075675A1 (ja) * 2006-12-20 2008-06-26 Ntn Corporation 流体軸受装置用軸部材、およびその製造方法
JP2008298142A (ja) * 2007-05-30 2008-12-11 Ntn Corp 流体軸受装置、およびその軸部材の製造方法
US8240918B2 (en) 2006-12-20 2012-08-14 Ntn Corporation Shaft member for fluid bearing device and method of producing the same
JP2013148216A (ja) * 2011-12-19 2013-08-01 Minebea Co Ltd 摺動部材及び流体動圧軸受装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005174A (ja) * 2000-06-19 2002-01-09 Nippon Densan Corp 流体動圧軸受部品及びその製造方法、並びにそれを用いたモータ及びディスク装置
JP2003239951A (ja) * 2002-02-20 2003-08-27 Ntn Corp 動圧軸受装置及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005174A (ja) * 2000-06-19 2002-01-09 Nippon Densan Corp 流体動圧軸受部品及びその製造方法、並びにそれを用いたモータ及びディスク装置
JP2003239951A (ja) * 2002-02-20 2003-08-27 Ntn Corp 動圧軸受装置及びその製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126337A1 (ja) * 2005-05-24 2006-11-30 Ntn Corporation 流体軸受装置およびこれを備えたモータ
JP2006329275A (ja) * 2005-05-24 2006-12-07 Ntn Corp 流体軸受装置およびこれを備えたモータ
US9694567B2 (en) 2005-05-24 2017-07-04 Ntn Corporation Fluid dynamic bearing apparatus and motor comprising the same
KR100771327B1 (ko) * 2006-05-02 2007-10-29 삼성전기주식회사 스핀들 모터
JP2008008472A (ja) * 2006-06-30 2008-01-17 Ntn Corp 流体軸受装置
JP2008051130A (ja) * 2006-08-22 2008-03-06 Victor Co Of Japan Ltd 流体動圧軸受装置及びそれを備えたモータ
WO2008075675A1 (ja) * 2006-12-20 2008-06-26 Ntn Corporation 流体軸受装置用軸部材、およびその製造方法
US8240918B2 (en) 2006-12-20 2012-08-14 Ntn Corporation Shaft member for fluid bearing device and method of producing the same
KR101395072B1 (ko) * 2006-12-20 2014-05-16 엔티엔 가부시키가이샤 유체 베어링 장치용 축부재, 및 그 제조 방법
JP2008298142A (ja) * 2007-05-30 2008-12-11 Ntn Corp 流体軸受装置、およびその軸部材の製造方法
JP2013148216A (ja) * 2011-12-19 2013-08-01 Minebea Co Ltd 摺動部材及び流体動圧軸受装置

Also Published As

Publication number Publication date
JP4754794B2 (ja) 2011-08-24

Similar Documents

Publication Publication Date Title
US7654743B2 (en) Bearing assembly, motor and recording disk drive
JP3609258B2 (ja) モータ
US7399120B2 (en) Spindle motor
US5283491A (en) Air-bearing motor assembly for magnetic recording systems
JP2005045924A (ja) スピンドルモータ、このスピンドルモータに適用されるロータの製造方法、及びこのスピンドルモータを備えたハードディスク駆動装置
US20070058291A1 (en) Spindle motor, recording and reproducing apparatus having the same, and method of manufacturing the spindle motor
JP2006017299A (ja) 流体動圧軸受とこれを備えたスピンドルモータ及び記録ディスク駆動装置
US20070258670A1 (en) Fluid Dynamic Pressure Bearing, Spindle Motor with the Fluid Dynamic Pressure Bearing; and Recording Disk Drive Device with the Spindle Motor
KR100672177B1 (ko) 낮은 프로파일 스러스트 저널 플레이트 유체 다이내믹베어링 모터
US20070110348A1 (en) Fluid dynamic bearing unit
JP4754794B2 (ja) 流体軸受ユニットおよび該流体軸受ユニットを備えたスピンドルモータ、記録ディスク駆動装置
US7246945B2 (en) Oil dynamic bearing, motor supported on oil dynamic bearing and disk drive carrying the motor
US6911748B2 (en) Spindle motor
JP3939987B2 (ja) スピンドルモータ
JP2006300245A (ja) 動圧流体軸受装置
JP2011038564A (ja) ディスク駆動装置
JP2008252968A (ja) 流体軸受装置およびそれを備えたスピンドルモータ、ディスク駆動装置およびその製造方法
JP2000074043A (ja) スピンドルモ―タ
JP2006325329A (ja) スピンドルモータおよびこのスピンドルモータを用いたディスク駆動装置
KR100465178B1 (ko) 스핀들 모터의 조합형 동압 베어링
JP3110389U (ja) モータの流体動圧軸受装置及び該流体動圧軸受装置を備えたスピンドルモータ、記録ディスク駆動装置
US10978099B2 (en) Bearing systems
JP2002372039A (ja) 動圧流体軸受装置及びスピンドルモータ
JP2005155911A (ja) 流体軸受装置および該流体軸受装置を備えたスピンドルモータ、記録ディスク駆動装置
JP2001271831A (ja) 動圧型軸受ユニット

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110526

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4754794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees