JP2005069143A - 予混合圧縮自着火内燃機関 - Google Patents

予混合圧縮自着火内燃機関 Download PDF

Info

Publication number
JP2005069143A
JP2005069143A JP2003301630A JP2003301630A JP2005069143A JP 2005069143 A JP2005069143 A JP 2005069143A JP 2003301630 A JP2003301630 A JP 2003301630A JP 2003301630 A JP2003301630 A JP 2003301630A JP 2005069143 A JP2005069143 A JP 2005069143A
Authority
JP
Japan
Prior art keywords
amount
exhaust gas
egr
exhaust
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003301630A
Other languages
English (en)
Inventor
Riyouji Saikai
亮児 西海
Yukihiro Tsukasaki
之弘 塚▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003301630A priority Critical patent/JP2005069143A/ja
Publication of JP2005069143A publication Critical patent/JP2005069143A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/24Layout, e.g. schematics with two or more coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/38Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with two or more EGR valves disposed in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/42Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】
予混合圧縮自着火内燃機関において、吸入空気量とEGR量とをそれぞれ目標値に、より精度良く制御することによって、燃焼の安定性を向上させた技術を提供する。
【解決手段】EGR通路30に加えて、さらに、機関の排気系20から排気の一部を蓄圧する蓄圧タンク51と、蓄圧タンク51に蓄圧された排気を吸気系10に供給する流量調整弁52と、を有する第2の排気還流通路50を設け、排気還流量検出手段により検出または推定されたEGR量が目標値以下の場合に、蓄圧タンク51に蓄圧された排気を流量調整弁52により吸気系10に供給させる。
【選択図】 図1

Description

本発明は、予混合圧縮自着火内燃機関に関する。
従来、内燃機関において、吸気行程中および/または圧縮行程中に、気筒内に燃料を噴射することで、該燃料と吸気との予混合気を形成し、該予混合気を燃焼に供する予混合圧縮自着火内燃機関の開発が進められている。
一方、内燃機関の排気通路を流れる排気の一部を該内燃機関の吸気通路へ再循環させる排気再循環(EGR:Exhaust Gas Recirculation)装置を利用する方法が提案されている。
そして、予混合圧縮自着火燃焼と、予混合気を形成せずに燃焼を行う通常燃焼(いわゆる拡散燃焼)とを切り替え可能な内燃機関において、それぞれの燃焼ごとに最適な酸素量目標値(目標EGR量)と酸素濃度目標値(目標EGR率)を運転条件に応じて別々に設定するものが知られている(例えば、特許文献1参照)。
特開2002−327638号公報 特開平3−117665号公報 特開平8−254159号公報 特開2002−21625号公報 特開平6−123259号公報
ところで、予混合圧縮自着火燃焼においては、燃料と吸気とが予混合され、この予混合気の温度が上昇することにより着火するものであって、その着火の温度は排気再循環(EGR)による排気ガス量(以下、EGR量という場合もある)でコントロールすることができる。また、一般に、気筒に還流させるEGR量が増加するにつれて発生するNOx量は低下する。
このように、予混合圧縮自着火燃焼においては、着火・燃焼を制御するためにEGRを用いることが有効とされるが、EGR量が過度に増減した場合には、燃焼状態が悪化する問題がある。
通常燃焼が行われる場合には、高温・高圧下で燃料が噴射されるため、EGR量にあまり影響されることなく着火・燃焼が行われる。しかしながら、予混合圧縮自着火燃焼が行われる場合には、EGR量が過度に増大すると気筒内の酸素量が不足して失火する可能性があり、また、EGR量が過度に減少すると気筒内の酸素量が過剰となり過早着火の可能性があり、予混合圧縮自着火燃焼においては、EGR量による着火・燃焼への影響が通常燃焼と比較して大きい。
したがって、予混合圧縮自着火燃焼が行われる場合、着火・燃焼を良好に制御するために、吸入空気量とEGR量との両方を目標値に制御することが重要となるが、吸入空気量とEGR量との両方をそれぞれ目標値に制御することは困難である。
特に、予混合圧縮自着火燃焼が行われる場合であって、過渡運転状態等において、EGR量を減少させずに吸入空気量を増大させたい場合、特許文献1に開示された技術のよう
な、EGR弁の制御だけでは、排気圧力と吸気圧力との両方が変化してしまうため、吸入空気量とEGR量とをそれぞれの目標値に制御することは困難であった。
本発明は、上記したような事情に鑑みてなされたものであり、予混合圧縮自着火内燃機関において、吸入空気量とEGR量とをそれぞれ目標値に、より精度良く制御することによって、燃焼の安定性を向上させた技術を提供することを目的とする。
上記目的を達成するために、本発明に係る予混合圧縮自着火内燃機関にあっては、排気の一部を予め蓄えておき、従来のEGR通路を還流して吸気系に供給されるEGR量では目標のEGR量を達成できない場合に、予め蓄えた排気を吸気系に供給する手段を、従来のEGR通路(EGR制御)に加えて、さらに備えるもので、これにより、吸入空気量とEGR量とをそれぞれ目標値に、より精度良く制御することを要旨とするものである。
すなわち、本発明の具体的な構成としては、
内燃機関の排気系から吸気系に排気の一部を還流させる排気還流通路と、
前記排気還流通路内を還流する排気の量を変更するとともに、内燃機関に吸入される空気の量を変更する変更手段と、
前記変更手段により変更され、前記排気還流通路内を通って吸気系に還流する排気の量を検出または推定する排気還流量検出手段と、
を備え、
吸気行程中および/または圧縮行程中に、気筒内に燃料と吸気との予混合気が形成され、該予混合気が燃焼に供される予混合圧縮自着火燃焼を行う予混合圧縮自着火内燃機関において、
機関の排気系から排気の一部を蓄圧する蓄圧手段と、
前記蓄圧手段に蓄圧された排気を吸気系に供給する供給手段と、
前記排気還流量検出手段により検出または推定された排気の量が目標値以下の場合に、前記蓄圧手段に蓄圧された排気を前記供給手段により吸気系に供給させる制御手段と、
を備えることを特徴とする。
ここで、変更手段としては、排気還流通路に設けられ開閉されることにより排気還流通路内を還流する排気の量を変更する開閉弁(いわゆるEGR弁)を例示することができる。また、変更手段として、内燃機関に吸入される空気(新気)量を変更する吸気絞り弁や、排気圧に対して過給できる吸気量が可変な可変容量過給機(可変ノズルベーン式)や、吸排気弁の開閉タイミングを変更して吸排気弁の開弁期間をオーバーラップさせることが可能な可変動弁機構などを例示することもできる。
内燃機関に吸入される吸気、すなわち、空気(新気)とEGRガスとの混合気の体積流量は、機関運転状態が定まれば運転状態に応じた略一定の値になる(機関運転状態が一定の状態では、吸気系に還流するEGR量を増大すれば機関に吸入される空気の量は減少し、EGR量を低減すれば機関に吸入される空気の量は増大することとなる)。このため、EGR弁により変更手段を構成する場合、EGR弁により排気還流通路内を還流する排気の量を変更するということは、実質的には、吸気系に還流するEGR量と、機関に吸入される空気の量とを変更することになる。これは、吸気絞り弁や可変容量過給機や可変動弁機構などにより変更手段を構成する場合も同様である。なお、これらEGR弁と吸気絞り弁と可変容量過給機と可変動弁機構とのうち複数が内燃機関に適用される場合、変更手段は該複数により構成されても好ましい。
また、排気還流量検出手段としては、排気還流通路内を通って吸気系に還流する排気の量を直接検出するものであってもよいし、内燃機関に吸入される空気の量を検出して機関
運転状態により決まる吸気量から推定するものであってもよい。また、排気還流量変更手段がEGR弁である場合には、EGR弁の上流側および下流側の圧力と、EGR弁の開弁量とから推定するものであってもよい。
また、蓄圧手段とは、排気の一部を高圧状態で貯蔵(保持)するものである。ここで、蓄圧手段には、排気系と蓄圧手段との間に設けられて所定のタイミングで適宜切り替えられることにより排気の一部を蓄圧手段に流通させる切り替え手段を備えているとよい。所定のタイミングとは、例えば、排気還流通路が閉ざされて排気還流通路内を排気が還流しない時(EGR弁であれば閉弁状態の時)であり、これには、機関全負荷運転時などが相当する。また、切り替え手段の代わりに、例えば、排気が所定圧以上となった場合に開弁する開閉弁を備えていてもよく、この場合には、機関の運転状態によって所定圧以上となった排気を蓄圧することができる。また、排気の一部を圧縮(加圧)する圧縮手段を設けてもよい。圧縮手段により圧縮された排気を蓄圧手段により蓄圧することにより、適宜、蓄圧手段に排気を蓄圧しておくことができる。また、排気圧を利用して吸気を昇圧する過給機が内燃機関に設けられている場合には、該過給機の下流側の排気の一部を蓄圧するようにしてもよい。過給機の下流側では排気圧が低下しているので、このような場合にも、排気の一部を圧縮(加圧)する圧縮手段を設けることにより、過給機に流入する排気の流量に及ぼす影響を無くすことができる。したがって、蓄圧手段に排気の一部を貯蔵する場合の、過給圧への影響を無くすことが可能となる。
このように構成することにより、変更手段により吸入空気量およびEGR量を制御し、さらに、変更手段では目標のEGR量が達成できない(EGR量が目標値以下となる)ような場合に、吸気系に排気を供給することができるので、吸入空気量およびEGR量を従来よりも精度よく、かつ、迅速に(目標値に対する応答性(追従性)を向上させて)制御することが可能となる。したがって、燃焼の安定性を向上させることが可能となる。
ここで、EGR装置は排気を還流させるものであるため、EGR量は目標値に対する追従が遅れてしまう場合がある。特に、加速時や減速時などの過渡運転状態においては、吸入空気量やEGR量の目標値は刻々と変化するものであるため、吸入空気量やEGR量においてそれぞれの目標値に対する追従の遅れがより大きなものとなる場合があり、このような場合には、燃焼制御が困難となってしまう。上記の構成によれば、吸入空気量およびEGR量の応答性を向上させることができるので、燃焼の安定性を向上させることが可能となる。
また、例えば、加速時等の過渡運転状態において、EGR量を減少させずに、吸入空気量を増大させたい場合がある。ここで、EGR量を減少させないのは、NOx量を抑制するためや、燃焼状態を良好に保つためである。このような場合、従来のようなEGR制御では、吸入空気量を増大させようとすると、吸入空気量の増大に伴いEGR量が減少してしまい、気筒内の酸素量が過剰となり過早着火の可能性がある。また、従来のようなEGR制御では、EGR量を減少させずに吸入空気量を増大させることは困難であり、吸入空気量が増大せずに燃料噴射量が増大してしまうことにより失火の可能性がある。上記の構成によれば、吸入空気量は、変更手段により増大させることができ、かつ、蓄圧手段に蓄圧された排気を吸気系に供給することによりEGR量を精度良く制御することができるので、例えば、加速時等の過渡運転状態において、EGR量を減少させずに、吸入空気量を増大させることが可能となる。
また、予混合圧縮自着火燃焼が行われる場合であって、高負荷運転領域においては、排気が還流し難く、EGR量を増加させることが困難となって、気筒内の酸素量が過剰となり、また、気筒の温度を抑制できないことにより、過早着火が起こってしまう可能性がある。上記の構成によれば、このような高負荷運転領域においても、蓄圧手段に蓄圧された
排気を供給することによってEGR量を増加させることにより、EGR量を目標値にすることができるので、予混合圧縮自着火燃焼を行うことが可能な領域を拡大することが可能となる。
また、排気圧を利用して吸気を昇圧する過給機が内燃機関に備えられる場合には、吸入空気量は過給圧力に大きく影響を受ける。また、過給圧力と排気圧力との差によってEGR量は大きく影響を受ける。例えば、EGR量を増加させる場合、過給機に流入する排気ガス量が減少するため過給圧力が減少してしまい、これに伴い吸入空気量も減少してしまうこととなる。ここで、過給機が、排気圧に対して過給できる吸気量が可変な可変容量過給機(可変ノズルベーン式)であれば、過給圧力の減少を補正することができる。しかしながら、過給圧力の減少を補正するために可変ノズルベーンの開度を小さくした場合には、排気圧が上がってしまい、これに伴いEGR量も増大してしまう。また、過給機を用いた場合、過給圧力の応答には必ず遅れが生じてしまう。このため、吸入空気量とEGR量とを同時に目標値に制御するのは困難である。上記の構成によれば、EGR量の制御のために変更手段を制御する必要はなくなるため、過給機に流入する排気の量が大きく変動することはなくなる。このため、過給機が備えられた内燃機関であっても、従来ほど過給圧力の影響を受けることはなく、吸入空気量とEGR量とを略同時に、より精度良く目標値に制御することが可能となる。
また、上記の構成において、
内燃機関に吸入される空気の量を検出または推定する吸入空気量検出手段と、
内燃機関の運転状態に基づいて、予混合圧縮自着火燃焼が行われるように、前記排気還流通路内を還流する排気の量、および、内燃機関に吸入される空気の量それぞれの目標値を設定する設定手段と、
をさらに備え、
前記制御手段は、
前記吸入空気量検出手段により検出または推定される吸入空気量が、前記設定手段により設定された目標値となるように前記変更手段を制御するとともに、
前記排気還流量検出手段により検出または推定された排気の量が、前記設定手段により設定された目標値以下の場合に、該排気の量が該目標値となるように、前記供給手段により前記蓄圧手段に蓄圧された排気を吸気系に供給させることも好ましい。
このように構成することにより、吸入空気量は変更手段により制御され、EGR量(排気の量)は蓄圧手段に蓄圧された排気が供給手段により吸気系に供給されることにより制御されることとなるので、吸入空気量およびEGR量を、さらに精度よく、かつ、迅速に(目標値に対する応答性(追従性)を向上させて)制御することが可能となる。ここで、変更手段としては、上記の開閉弁(いわゆるEGR弁)および吸気絞り弁から構成されると好ましい。
本発明によれば、予混合圧縮自着火内燃機関において、吸入空気量とEGR量とをそれぞれ目標値に、より精度良く制御することができ、燃焼の安定性を向上させることが可能となる。
以下に図面を参照して、この発明を実施するための最良の形態を、実施例に基づいて例示的に詳しく説明する。
(実施例1)
図1は、本発明の実施例1に係る内燃機関としてディーゼルエンジンの概略構成を示す図である。
図1に示すように、内燃機関(以下、エンジンという)1は、吸入行程、圧縮行程、爆発行程(膨張行程)及び排気行程の4サイクルを繰り返して出力を得るディーゼルエンジンである。エンジン1は、その内部に気筒(燃焼室)2を形成する。気筒2で発生する燃料の爆発力は、ピストン3及びコンロッド4を介してクランクシャフト(図示略)の回転力に変換される。また、気筒2には、吸気系10において吸気通路13の最下流部をなす吸気ポート12と、排気系20において排気通路23の最上流部をなす排気ポート22とが設けられている。吸気ポート12と気筒2との境界は吸気弁11によって開閉される。また、排気ポート22と気筒2との境界は排気弁21によって開閉される。
また、エンジン1は、燃料噴射弁5を備えている。燃料噴射弁5は、高圧ポンプ(図示略)等によって加圧された燃料を、燃焼室2に適宜の量、適宜のタイミングで噴射供給する電磁駆動式開閉弁である。
また、エンジン1には、吸気通路13と排気通路23とを連通する第1の排気還流通路(EGR通路)30が形成されている。このEGR通路30は、排気の一部を適宜吸気通路13に戻す機能を有する。EGR通路30には、同通路30内を流れる排気ガス(EGRガス)の流れ方向(図1中において矢印で示す)に沿って上流から下流にかけ、EGRクーラ31、EGR弁32が、順次配設されている。
EGRクーラ31は、EGR通路30の周囲を取り巻くように設けられ、EGRガスを冷却する。EGR弁32は、変更手段を構成するものであって、無段階に開閉される電子制御弁(開閉弁)であり、EGRガスの流量を自在に調整することができる。
また、このエンジン1には、周知の過給機(以下、ターボチャージャという)40が設けられている。ターボチャージャ40は、シャフト41を介して連結された回転体42,43を備える。一方の回転体(以下、タービンホイールという)42は排気系20内の排気に晒され、他方の回転体(以下、コンプレッサホイールという)43は、吸気系10内の吸気に晒される。このような構成を有するターボチャージャ40は、タービンホイール42が受ける排気流(排気圧)を利用してコンプレッサホイール43を回転させ、吸気圧を高めるといったいわゆる過給を行う。
吸気系10において、ターボチャージャ40の下流に設けられたインタークーラ15は、過給によって昇温した吸入空気を強制冷却する。インタークーラ15よりもさらに下流に設けられた吸気絞り弁14は、変更手段を構成するものであって、その開度を無段階に調節することのできる電子制御式の開閉弁であり、所定の条件下において吸入空気の流路面積を変更し、同吸入空気の供給量(流量、吸入空気量)を調整する機能を有する。
吸気絞り弁14を通過した吸入空気は、吸気通路13を通じ、吸気ポート12から各燃焼室2へ導入される。
また、排気系20において、ターボチャージャ40の下流の排気通路23には、排気中に含まれるNOx(窒素酸化物)、HC(炭化水素)、CO(一酸化炭素)、微粒子(PM:Particulate Matter)等を浄化する排気浄化装置24が設けられている。
さらに、本実施例において、エンジン1には、EGR通路30とは別に、吸気通路13と排気通路23とを連通する第2の排気還流通路50が設けられている。そして、第2の
排気還流通路50には、排気の一部を蓄圧する蓄圧手段として蓄圧タンク51が設けられている。
また、第2の排気還流通路50内を排気系20から吸気系10へ向かって流れる排気の流れ方向(図1中において矢印で示す)において、蓄圧タンク51の上流側には、排気系20の排気の一部を蓄圧タンク51に流通させる切り替え弁53が設けられ、また、蓄圧タンク51の下流側には、蓄圧タンク51に蓄圧されている排気を吸気系10に供給する流量調整弁52が設けられている。ここで、切り替え弁53は、切り替え手段を構成するもので、本実施例においては、EGR弁32が閉弁状態の時などに切り替えられて、排気系20の排気の一部を蓄圧タンク51に流通させる電磁駆動式開閉弁である。また、流量調整弁52は、供給手段を構成するもので、本実施例においては、蓄圧タンク51に蓄圧されている排気を吸気系10に適宜の量、適宜のタイミングで供給する電磁駆動式開閉弁である。
エンジン1は、運転者によるアクセルペダル(図示略)の踏込量に応じた信号を出力するアクセルポジションセンサ、クランクシャフト(図示略)のエンジン回転数に応じた信号を出力するクランクポジションセンサ、及びエンジン1内を循環する冷却水の温度(冷却水温)に応じた信号を出力する水温センサ、吸気通路13を通じて気筒2に導入される空気の流量(吸入空気量)に応じた信号を出力し吸入空気量検出手段を構成するエアフロメータ16等、各種センサを備える。これら各種センサの信号は、電子制御ユニット(Electronic Control Unit:ECU)に入力される。例えば、アクセルポジションセンサはアクセル開度に比例した出力電圧をECUに出力し、ECUはアクセルポジションセンサの出力信号に基づいて負荷を演算する。クランクポジションセンサはクランクシャフトが一定角度回転する毎に出力パルスをECUに出力し、ECUはこの出力パルスに基づいてエンジン回転数を演算する。ECUは、これら負荷やエンジン回転数などによってエンジン1の運転状態を検出する。
ECUは、制御手段や設定手段を構成するものであって、中央処理装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及びバックアップRAM等からなる論理演算回路を備え、各種センサの信号に基づいて、燃料噴射弁5の開閉弁動作に関する制御や、EGR弁32の開度調整や、吸気絞り弁14の開度調整や、流量調整弁52の開度調整や、切り替え弁53の開閉制御等、エンジン1の各種構成要素を統括制御する。
また、ECUは、一定時間毎に実行すべき基本ルーチンにおいて、各種センサの出力信号の入力、エンジン回転数の演算、負荷の演算、燃料噴射量の演算などを実行する。基本ルーチンにおいてECUが入力した各種信号やECUが演算して得られた各種制御値は、ECUのRAMに一時的に記憶される。更に、ECUは、各種のセンサやスイッチからの信号の入力、一定時間の経過、或いはクランクポジションセンサからのパルス信号の入力などをトリガとした割り込み処理において、RAMから各種制御値を読み出し、それら制御値に従って定期的に吸入空気量の制御やEGR量の制御などを実行する。
本実施例に係るエンジン1は、ECUからの指令によって吸気行程中または圧縮行程中に燃料噴射弁5から気筒2へ向けて燃料を噴射することで、気筒2内において燃料と吸気との予混合気が形成され、該予混合気が燃焼に供される、いわゆる予混合圧縮自着火燃焼を行う内燃機関である。なお、予混合圧縮自着火燃焼と、予混合気を形成せずに燃焼を行う通常燃焼と、を選択的に切り替えることが可能に構成されていてもよい。
次に、ECUによる吸入空気量の制御及びEGR量の制御について説明する。本実施例においては、吸入空気量とEGR量とに対してそれぞれ目標値が設定され、設定されたそ
れぞれの目標値となるように吸入空気量とEGR量とをそれぞれ制御するものである。
EGRにより排気中のNOxを抑制する場合には、燃焼の悪化やPMの増大が生じない範囲でNOxの抑制効果が最大になるように、吸入空気量とEGR量とをエンジン運転状態に応じて正確に制御することが重要となる。
このため、目標となる吸入空気量(以下、目標吸入空気量という)と、目標となるEGR量(以下、目標EGR量という)とを、基本的にエンジン運転状態に応じて最適な値となるよう実験等に基づいて予め設定されたマップを参照してそれぞれ決定している。ここで、本実施例では、目標吸入空気量と目標EGR量とは、エンジン運転状態としてエンジン回転数と燃料噴射量とをパラメータとして用いたマップの形でECUのROMにそれぞれ記憶されている。
そして、ECUは、この目標吸入空気量と目標EGR量とをエンジン1の運転中所定時間毎に更新し、逐次、実際の吸入空気量とEGR量とが、それぞれ更新された目標吸入空気量と目標EGR量とになるように制御する(目標吸入空気量と目標EGR量とに収束するようにフィードバック制御を行うことも好ましい)。ここで、実際の吸入空気量は、エアフロメータ16の出力に基づいて演算される。
そして、実際の吸入空気量が目標吸入空気量になるように、EGR弁32と吸気絞り弁14とのうち少なくともいずれかの弁の開度を調整(制御)する。例えば、実際の吸入空気量が目標吸入空気量よりも少ない場合には、EGR弁32の開度を小さくしたり、吸気絞り弁14の開度を大きくしたりする。また、実際の吸入空気量が目標吸入空気量よりも多い場合には、EGR弁32の開度を大きくしたり、吸気絞り弁14の開度を小さくしたりする。
また、実際のEGR量は次のように検出または推定される。EGR量を検出または推定する排気還流量検出手段として、例えば、EGR弁32の上流側および下流側の通路の圧力を検出する手段と、EGR弁32の開弁量を検出する手段とを設け、EGR弁32の上流側および下流側の通路の圧力と、EGR弁32の開弁量とから実際のEGR量を推定することができる。また、排気還流量検出手段は、エアフロメータ16によりエンジン1に吸入される実際の吸入空気量を検出することによりエンジン1の運転状態に基づいて実際のEGR量を推定するものであってもよい。
ここで、実際のEGR量が目標EGR量を満足しない場合が生じる。これは、例えば、EGR装置は排気を還流させるものであるため、吸入空気量とEGR量とはそれぞれの目標値に対する追従が遅れてしまう場合があるためである。
本実施例では、このような場合に、蓄圧タンク51内のEGRガスを吸気系10に供給することにより、EGR量が目標EGR量になるように調整(制御)している。
すなわち、目標EGR量に対する追従が遅れた場合などのように、実際のEGR量が目標EGR量よりも少ない場合には、実際のEGR量が目標EGR量になるように流量調整弁52を調整することにより、蓄圧タンク51から吸気系10に供給される排気(EGRガス)の量を調整(制御)して、蓄圧タンク51内のEGRガスを吸気系10に供給するものである。
ここで、流量調整弁52の調整は、流量調整弁52の弁開度を変更することにより行われるもので、目標EGR量と実際のEGR量との差に基づいた、流量調整弁52の開度の変更(調整)量を予め実験等により算出してECUのROMに記憶させている。
図2は、本実施例における吸入空気量及びEGR量の制御を説明するためのフローチャート図である。
まず、ステップS101では、エンジン1の運転状態を反映する各種情報(例えば、エンジン回転数や、アクセル開度など)を取得する。続いてステップS102においては、ステップS101で取得された情報(エンジン回転数とアクセル開度など)に基づいて、燃料噴射量を算出する。ここで、燃料噴射量は、エンジン回転数とアクセル開度とをパラメータとして用いたマップの形でECUのROMに記憶しておくとよい。
続くステップS103では、ステップS101において取得されたエンジン回転数と、ステップS102で算出された燃料噴射量とに基づいて、目標吸入空気量と目標EGR量との値が算出される。
続くステップS104においては、実際の吸入空気量と、実際のEGR量とを検出している。
そして、続くステップS105において、検出された実際の吸入空気量と目標吸入空気量とを比較し、実際の吸入空気量が目標吸入空気量になるように、EGR弁32と吸気絞り弁14とのうち少なくともいずれかの開度を調整する。
続くステップS106においては、検出された実際のEGR量と目標EGR量とを比較し、実際のEGR量が目標EGR量以下である場合には、実際のEGR量が目標EGR量になるように、流量調整弁52を制御することにより、蓄圧タンク51内のEGRガスを吸気系10に供給する。
ここで、ステップS104において、実際の吸入空気量と、実際のEGR量とを検出しているが、ステップS104の代わりにステップS104’として、実際の吸入空気量のみを検出することにしてもよい。この場合には、ステップS104’に続くステップS105とステップS106との間に、実際のEGR量を検出するステップをステップS105’として設けるとよい。すなわち、図2に示すフローチャートにおいて、ステップS103の後は、ステップS104’→ステップS105→ステップS105’→ステップS106としてもよい。
このように、EGR弁32と吸気絞り弁14とのうち少なくともいずれかの開度を調整することにより吸入空気量を目標吸入空気量とし、実際のEGR量が目標EGR量以下である場合には、実際のEGR量が目標EGR量になるように、流量調整弁52を制御することにより、吸入空気量およびEGR量を従来よりも精度よく、かつ、目標値に対する応答性を向上させて制御することが可能となる。吸入空気量およびEGR量の応答性を向上させることができるので、燃焼の安定性を向上させることが可能となる。また、予混合圧縮自着火燃焼を高負荷運転領域において行う場合、従来では、排気が還流し難く、EGR量を増加させることが困難となって、気筒内の酸素量が過剰となり、また、気筒の温度を抑制できないことにより、過早着火が起こってしまう可能性があったが、本実施例によれば、このような高負荷運転領域においても、蓄圧タンク51内のEGRガスを吸気系10に供給することによってEGR量を増加させて、EGR量を目標値にすることができるので、予混合圧縮自着火燃焼を行うことが可能な領域を拡大することができる。
(実施例2)
図3は、本発明の実施例2に係るエンジン1’の概略構成を示す図である。なお、実施例1と同様の構成部分については同一の符号を付して、その説明は省略する。
実施例1で示したエンジン1において、第2の排気還流通路50は、ターボチャージャ40の上流側に接続され、ターボチャージャ40より上流側の排気の一部を還流させている。これに対して本実施例に係るエンジン1’においては、第2の排気還流通路50をターボチャージャ40の下流側に接続するもので、ターボチャージャ40を流通した後の排気の一部を還流させるものである。
ここで、ターボチャージャ40の下流側では、排気圧力は低下しているので、本実施例においては、ターボチャージャ40の下流側の排気の一部を圧縮する圧縮手段として圧縮装置54を設け、圧縮装置54により圧縮された排気を蓄圧タンク51に蓄圧するようにしている。
このように構成することにより、ターボチャージャ40に流入する排気の流量に及ぼす影響を無くすことができる。したがって、蓄圧タンク51に排気の一部を貯蔵する場合の、過給圧への影響を無くすことが可能となる。
(実施例3)
図4は、本発明の実施例3における吸入空気量及びEGR量の制御を説明するためのフローチャート図である。予混合圧縮自着火燃焼においては、燃料の特性、例えば着火性によっても、着火・燃焼が大きく影響を受けることとなる。そこで、本実施例では、実施例1で説明した制御に加えて、さらに、燃料の着火性を考慮して吸入空気量及びEGR量を制御するものである。燃料の着火性として、本実施例では、燃料のセタン価を用いている。すなわち、燃料のセタン価が変化した時に、目標吸入空気量および目標EGR量を燃料のセタン価に応じて補正するものである。
図4に示すフローチャートにおいては、実施例1で説明した図2に示すフローチャートに対して、ステップS103とステップS104との間に、燃料のセタン価により補正を行うステップが設けられている。すなわち、ステップS103に続くステップS201において、燃料のセタン価を検出する。これは、燃料のセタン価を検出するセタン価検出手段によるものである。
そして、ステップS201に続くステップS202において、ステップS201で検出された燃料のセタン価に応じて、ステップS103で算出された目標吸入空気量および目標EGR量の補正を行い、ステップS104に進む。ステップS104以降は、図2で説明したステップ同様、吸入空気量およびEGR量を、それぞれ補正された目標吸入空気量および目標EGR量となるように制御している。
このように、燃料の特性を検出する手段を設け、燃料の特性に応じて、目標吸入空気量および目標EGR量を補正することにより、燃焼状態をより安定させることが可能となる。
本発明の実施例1に係る内燃機関としてディーゼルエンジンの概略構成を示す図。 本発明の実施例1において吸入空気量およびEGR量の制御を示すフローチャート図。 本発明の実施例2に係る内燃機関としてディーゼルエンジンの概略構成を示す図。 本発明の実施例3において吸入空気量およびEGR量の制御を示すフローチャート図。
符号の説明
1 エンジン
2 気筒(燃焼室)
3 ピストン
4 コンロッド
5 燃料噴射弁
10 吸気系
11 吸気弁
12 吸気ポート
13 吸気通路
14 吸気絞り弁
15 インタークーラ
16 エアフロメータ
20 排気系
21 排気弁
22 排気ポート
23 排気通路
24 排気浄化装置
30 EGR通路
31 EGRクーラ
32 EGR弁
40 ターボチャージャ
41 シャフト
42 タービンホイール
43 コンプレッサホイール
50 第2の排気還流通路
51 蓄圧タンク
52 流量調整弁
53 切り替え弁
54 圧縮装置

Claims (2)

  1. 内燃機関の排気系から吸気系に排気の一部を還流させる排気還流通路と、
    前記排気還流通路内を還流する排気の量を変更するとともに、内燃機関に吸入される空気の量を変更する変更手段と、
    前記変更手段により変更され、前記排気還流通路内を通って吸気系に還流する排気の量を検出または推定する排気還流量検出手段と、
    を備え、
    吸気行程中および/または圧縮行程中に、気筒内に燃料と吸気との予混合気が形成され、該予混合気が燃焼に供される予混合圧縮自着火燃焼を行う予混合圧縮自着火内燃機関において、
    機関の排気系から排気の一部を蓄圧する蓄圧手段と、
    前記蓄圧手段に蓄圧された排気を吸気系に供給する供給手段と、
    前記排気還流量検出手段により検出または推定された排気の量が目標値以下の場合に、前記蓄圧手段に蓄圧された排気を前記供給手段により吸気系に供給させる制御手段と、
    を備えることを特徴とする予混合圧縮自着火内燃機関。
  2. 内燃機関に吸入される空気の量を検出または推定する吸入空気量検出手段と、
    内燃機関の運転状態に基づいて、予混合圧縮自着火燃焼が行われるように、前記排気還流通路内を還流する排気の量、および、内燃機関に吸入される空気の量それぞれの目標値を設定する設定手段と、
    をさらに備え、
    前記制御手段は、
    前記吸入空気量検出手段により検出または推定される吸入空気量が、前記設定手段により設定された目標値となるように前記変更手段を制御するとともに、
    前記排気還流量検出手段により検出または推定された排気の量が、前記設定手段により設定された目標値以下の場合に、該排気の量が該目標値となるように、前記供給手段により前記蓄圧手段に蓄圧された排気を吸気系に供給させることを特徴とする請求項1に記載の予混合圧縮自着火内燃機関。
JP2003301630A 2003-08-26 2003-08-26 予混合圧縮自着火内燃機関 Pending JP2005069143A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003301630A JP2005069143A (ja) 2003-08-26 2003-08-26 予混合圧縮自着火内燃機関

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003301630A JP2005069143A (ja) 2003-08-26 2003-08-26 予混合圧縮自着火内燃機関

Publications (1)

Publication Number Publication Date
JP2005069143A true JP2005069143A (ja) 2005-03-17

Family

ID=34406194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003301630A Pending JP2005069143A (ja) 2003-08-26 2003-08-26 予混合圧縮自着火内燃機関

Country Status (1)

Country Link
JP (1) JP2005069143A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040070A1 (ja) * 2005-10-06 2007-04-12 Isuzu Motors Limited 内燃機関のegrシステム
JP2008151072A (ja) * 2006-12-19 2008-07-03 Toyota Motor Corp 内燃機関の気体供給装置
JP2008157067A (ja) * 2006-12-21 2008-07-10 Toyota Motor Corp 内燃機関の気体供給装置
JP2010501763A (ja) * 2006-08-22 2010-01-21 クノル−ブレムゼ ジステーメ フューア ヌッツファールツォイゲ ゲゼルシャフト ミット ベシュレンクテル ハフツング ターボ過給式のピストン内燃機関の新鮮空気供給のための装置および方法
JP2010203318A (ja) * 2009-03-03 2010-09-16 Toyota Motor Corp 駆動力制御装置
JP2012188948A (ja) * 2011-03-09 2012-10-04 Hino Motors Ltd 蓄圧式egrシステム
JPWO2018100708A1 (ja) * 2016-12-01 2019-07-04 マツダ株式会社 圧縮着火式ガソリンエンジン

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040070A1 (ja) * 2005-10-06 2007-04-12 Isuzu Motors Limited 内燃機関のegrシステム
JP2007100627A (ja) * 2005-10-06 2007-04-19 Isuzu Motors Ltd 内燃機関のegrシステム
JP4692201B2 (ja) * 2005-10-06 2011-06-01 いすゞ自動車株式会社 内燃機関のegrシステム
JP2010501763A (ja) * 2006-08-22 2010-01-21 クノル−ブレムゼ ジステーメ フューア ヌッツファールツォイゲ ゲゼルシャフト ミット ベシュレンクテル ハフツング ターボ過給式のピストン内燃機関の新鮮空気供給のための装置および方法
JP2008151072A (ja) * 2006-12-19 2008-07-03 Toyota Motor Corp 内燃機関の気体供給装置
JP2008157067A (ja) * 2006-12-21 2008-07-10 Toyota Motor Corp 内燃機関の気体供給装置
JP4697134B2 (ja) * 2006-12-21 2011-06-08 トヨタ自動車株式会社 内燃機関の気体供給装置
JP2010203318A (ja) * 2009-03-03 2010-09-16 Toyota Motor Corp 駆動力制御装置
JP2012188948A (ja) * 2011-03-09 2012-10-04 Hino Motors Ltd 蓄圧式egrシステム
JPWO2018100708A1 (ja) * 2016-12-01 2019-07-04 マツダ株式会社 圧縮着火式ガソリンエンジン
US11008969B2 (en) 2016-12-01 2021-05-18 Mazda Motor Corporation Compression ignition gasoline engine

Similar Documents

Publication Publication Date Title
EP2063083B1 (en) Control device for multi-stage turbochargers
JP3743195B2 (ja) 予混合圧縮着火内燃機関
US8001953B2 (en) Exhaust gas recirculation system for internal combustion engine and method for controlling the same
EP2933458B1 (en) Engine control device
US10995692B2 (en) Internal combustion engine and control device for internal combustion engine
US20150192087A1 (en) Fuel injection control device of diesel engine
JP2003506619A (ja) 排ガス再循環を伴う過給内燃機関を調整する方法
US8315777B2 (en) Control apparatus and control method for internal combustion engine
JP2005233033A (ja) ディーゼル機関の制御装置
US6877479B2 (en) Apparatus and a method for controlling an internal combustion engine
US20180283295A1 (en) Engine out nox controller
JP4442643B2 (ja) 内燃機関の排気浄化制御装置
JP2005069143A (ja) 予混合圧縮自着火内燃機関
US10711728B2 (en) Control device for internal combustion engine
JP4265382B2 (ja) 予混合圧縮着火内燃機関
JP4911432B2 (ja) 内燃機関の制御装置
US7367311B2 (en) Control system for compression ignition internal combustion engine
JP4803056B2 (ja) 予混合圧縮着火内燃機関
JP2009191660A (ja) 内燃機関の制御装置
JP2005299570A (ja) 圧縮着火内燃機関の予混合燃焼制御システム
JP4166681B2 (ja) 内燃機関のための排気浄化装置
JP2006046299A (ja) 圧縮着火内燃機関の燃焼制御システム
JP2005023826A (ja) 予混合圧縮自着火内燃機関
JP6493279B2 (ja) エンジンの制御装置
JP2005273594A (ja) 内燃機関の排気還流システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080527