JP2005061901A - Insulation diagnostic method for electric equipment - Google Patents

Insulation diagnostic method for electric equipment Download PDF

Info

Publication number
JP2005061901A
JP2005061901A JP2003290008A JP2003290008A JP2005061901A JP 2005061901 A JP2005061901 A JP 2005061901A JP 2003290008 A JP2003290008 A JP 2003290008A JP 2003290008 A JP2003290008 A JP 2003290008A JP 2005061901 A JP2005061901 A JP 2005061901A
Authority
JP
Japan
Prior art keywords
item
measurement
diagnostic
insulation
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003290008A
Other languages
Japanese (ja)
Other versions
JP4121430B2 (en
Inventor
Shu Okazawa
周 岡澤
Shinsuke Miki
伸介 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003290008A priority Critical patent/JP4121430B2/en
Priority to TW093106125A priority patent/TWI292040B/en
Priority to CNB2004100434543A priority patent/CN1300566C/en
Priority to KR1020040032330A priority patent/KR100541996B1/en
Publication of JP2005061901A publication Critical patent/JP2005061901A/en
Application granted granted Critical
Publication of JP4121430B2 publication Critical patent/JP4121430B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/008Monitoring fouling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • G01N25/22Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures
    • G01N25/28Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly
    • G01N25/30Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly using electric temperature-responsive elements
    • G01N25/32Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly using electric temperature-responsive elements using thermoelectric elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/002Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the work function voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8603Signal analysis with integration or differentiation
    • G01N2030/862Other mathematical operations for data preprocessing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Combustion & Propulsion (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ecology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Electrochemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Testing Relating To Insulation (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulation diagnostic method for an electric equipment allowing measurement without being affected by an external circumstance in the measurement, and capable of correcting an obtained diagnostic data to that in an optional environment. <P>SOLUTION: A diagnostic item, and a plurality of measuring items having a strong correlation with the diagnostic item are selected, the correlation between the diagnostic item and measured data are displayed by a correlation diagram, based on the diagnostic item collected from an insulation object sample and the measured data of the respective measuring items (S11), a characteristic diagram or characteristic expression indicating a relation between the diagnostic item and an external circumstance factor is prepared (S12), the diagnostic measured data measured the measuring item by the measuring item are expressed by one index, as to the measuring objective insulator for insulation diagnosis, a numerical value of the diagnostic item corresponding thereto is read out from the correlation diagram prepared preliminarily (S13), a relation between the read numerical value and the external circumstance factor is expressed by a characteristic curve using the characteristic diagram or characteristic expression, and a corrected value of the diagnostic item with an influence of the external circumstance factor taken into account is acquired thereby (S14). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、電気機器に使用されている絶縁物の経年による性能劣化を診断する方法に関するものである。   The present invention relates to a method for diagnosing performance deterioration due to aging of an insulator used in an electric device.

受配電設備等の電気機器に使用される絶縁物は、周囲環境や電気的,機械的ストレス等により経年劣化するが、電気機器の絶縁物の性能劣化を診断する方法としては、例えば、絶縁抵抗測定、部分放電測定、漏れ電流測定、分解ガス測定、tanδ測定等多くの方法が知られている。測定方法で分類すれば、対象物を破壊する測定と非破壊での測定、絶縁物に直接測定器具を接触させる測定と非接触での測定、電気機器の稼動状態での測定と停止状態での測定等が挙げられる。このような多種多様な診断方法からその電気機器に最適の方法を適宜選択して絶縁物の劣化を診断する。このような絶縁診断の具体的な従来の技術として、例えば、受配電設備を構成する主回路部分に用いられる固体絶縁材料の表面電気抵抗、または主回路部分に設けられた固体絶縁材料と同等材料から成るセンサ部の表面電気抵抗を測定する第1ステップ、予め受配電設備の実使用時間または実使用時間に相当する時間毎に測定された、表面電気抵抗率測定環境の相対湿度をパラメータとした表面電気抵抗率の測定値を基に湿度依存性基準曲線を作成する第2ステップ、および湿度依存性基準曲線と第1ステップで測定された表面電気抵抗率との比較により受配電設備の寿命を判定、または受配電設備の余寿命を算出する第3ステップを備え、寿命判定におけるしきい値を「相対湿度80%において表面電気抵抗率が10Ω」のように一定値とするような受配電設備の寿命診断方法が開示されている(例えば、特許文献1参照)。 Insulators used in electrical equipment such as power distribution facilities deteriorate over time due to the surrounding environment, electrical and mechanical stress, etc. As a method of diagnosing performance deterioration of electrical equipment insulation, for example, insulation resistance Many methods such as measurement, partial discharge measurement, leakage current measurement, decomposition gas measurement, and tan δ measurement are known. If you classify by measurement method, measurement that destroys the object and non-destructive measurement, measurement that contacts the measuring instrument directly with insulation and non-contact measurement, measurement in the operating state of electrical equipment and in the stopped state Measurement and the like. The optimum method for the electrical equipment is appropriately selected from such a variety of diagnostic methods, and the deterioration of the insulator is diagnosed. As a specific conventional technique for such insulation diagnosis, for example, the surface electrical resistance of a solid insulating material used for a main circuit part constituting a power distribution facility, or a material equivalent to a solid insulating material provided for the main circuit part The first step of measuring the surface electrical resistance of the sensor unit comprising: the relative humidity of the surface electrical resistivity measurement environment measured in advance for each time corresponding to the actual usage time or the actual usage time of the power receiving and distribution equipment as a parameter The second step of creating a humidity-dependent reference curve based on the measured value of surface electrical resistivity, and the life of the power distribution equipment by comparing the humidity-dependent reference curve with the surface electrical resistivity measured in the first step 3rd step to calculate the remaining life of judgment or distribution / distribution equipment, and the threshold value in life judgment is a constant value such as “surface electrical resistivity is 10 9 Ω at 80% relative humidity” A life diagnosis method for power receiving and distribution equipment is disclosed (for example, see Patent Document 1).

特開2003−9316号公報(第2頁、図1および図2)Japanese Patent Laying-Open No. 2003-9316 (Page 2, FIGS. 1 and 2)

上記のような従来の電気機器の絶縁診断方法では、診断対象電気機器が設置された現地において、絶縁物の表面抵抗率を測定しているので、測定時に、例えば湿度の高低等の外部環境によるノイズの影響を受けやすく、測定データの信頼性が低下する場合があり、測定結果を湿度依存性基準曲線によって補正しているが、基となるデータの信頼性が低いために正確な診断ができないという問題があった。   In the conventional electrical equipment insulation diagnosis method as described above, since the surface resistivity of the insulator is measured at the site where the electrical equipment to be diagnosed is installed, the measurement depends on the external environment, such as high or low humidity. The measurement data is likely to be affected by noise and the reliability of the measurement data may be reduced, and the measurement result is corrected by the humidity dependence reference curve. However, since the reliability of the underlying data is low, accurate diagnosis cannot be performed. There was a problem.

また、表面抵抗率のような電気的測定を現地で実施するには、測定操作に習熟性と専門性を必要とし、誰でも簡単には行えないとういう問題があった。   In addition, in order to carry out electrical measurements such as surface resistivity locally, there is a problem that the measurement operation requires proficiency and expertise and cannot be easily performed by anyone.

また、しきい値は、絶縁物の種類や形状や使用環境(課電電圧等)に関わらず一定としているので、診断対象絶縁物の実状にあっていない場合もあり、さらに、初期に想定した使用方法や環境条件等が大きく変化した場合、そのしきい値により規定された年数を経ない前に不具合が生じたり、逆に規定された年数を過ぎても問題なく使用されるというようなことも起こり得る。   In addition, since the threshold value is constant regardless of the type and shape of the insulator and the usage environment (voltage applied, etc.), it may not be the actual condition of the insulator to be diagnosed, and was assumed in the initial stage. When the usage method or environmental conditions change significantly, a malfunction occurs before the number of years specified by the threshold value has passed, or conversely, it can be used without problems even after the specified number of years. Can also happen.

この発明は、上記のような課題を解決するためになされたもので、測定時の外部環境による影響を受けることなく現地において容易に測定でき、また、劣化原因を総合的に判断することにより診断精度を向上させた電気機器の絶縁診断方法を提供することを目的とする。
また、しきい値を論理的に求め、客観的で精度の良い寿命推定を行える電気機器の絶縁診断方法を提供することを目的とする。
The present invention has been made to solve the above-described problems, and can be easily measured in the field without being affected by the external environment during measurement, and can be diagnosed by comprehensively determining the cause of deterioration. An object of the present invention is to provide an insulation diagnosis method for electrical equipment with improved accuracy.
It is another object of the present invention to provide an insulation diagnosis method for electrical equipment that can logically obtain a threshold value and perform objective and accurate life estimation.

この発明に係る電気機器の絶縁診断方法は、電気機器に使用される絶縁物の劣化を診断するための診断項目と、この診断項目と相関関係の強い複数の測定項目とを選定し、新品と使用品の絶縁物サンプルから、一定環境下において診断項目の測定データを採取し、通常環境下において各測定項目毎の測定データを採取し、MT(マハラノビス・タグチシステム)法を用いて各測定項目の測定データを1つの指標で表し、この1つの指標と診断項目の測定データとの相関関係を表す相関図を作成する第1のステップと、診断項目とその診断項目に影響を及ぼす外部環境要因との関係を示す特性図または特性式を準備する第2のステップと、絶縁診断する測定対象絶縁物について、各測定項目毎に測定した診断用測定データをMT法を用いて1つの指標で表し、この1つの指標に対応する診断項目の数値を第1のステップで予め作成しておいた相関図から読みとる第3のステップと、第2のステップで予め準備しておいた特性図または特性式を用いて、第3のステップで得た診断項目の数値と外部環境要因との関係を示す特性曲線を作成し、外部環境要因の影響を考慮した絶縁診断時点での診断項目の補正値を取得する第4のステップとを備え、この補正値を利用して絶縁物の劣化状況を診断するものである。   The electrical equipment insulation diagnosis method according to the present invention selects a diagnostic item for diagnosing deterioration of an insulator used in the electrical equipment, and a plurality of measurement items having a strong correlation with the diagnostic item. Collect measurement data of diagnostic items from the insulator sample of the product used in a certain environment, collect measurement data of each measurement item in a normal environment, and measure each item using the MT (Mahalanobis Taguchi System) method. The first step of expressing the measurement data of one by one index and creating a correlation diagram representing the correlation between the one index and the measurement data of the diagnostic item, and the external environmental factors that affect the diagnostic item and the diagnostic item The second step of preparing a characteristic diagram or characteristic equation showing the relationship between the measurement object and the measurement target insulator to be insulation-diagnosed, one piece of diagnostic measurement data measured for each measurement item using the MT method A characteristic diagram prepared in advance in the third step, which is represented by an index, and which reads the numerical value of the diagnostic item corresponding to this one index from the correlation diagram prepared in advance in the first step. Alternatively, using a characteristic equation, create a characteristic curve that shows the relationship between the numerical value of the diagnostic item obtained in the third step and external environmental factors, and correct the diagnostic item at the time of insulation diagnosis considering the influence of external environmental factors And a fourth step of acquiring a value, and using this correction value, the deterioration state of the insulator is diagnosed.

この発明によれば、診断項目と相関関係の強い複数の測定項目を選定し、複数の測定項目の測定値を1つの指標で表したものと診断項目の測定値との相関を表す相関図と、診断項目の外部環境要因による影響を補正する特性図または特性式とを予め用意しておき、複数の測定項目を測定して得た測定データを1つの指標で表し、これをもとに相関図と特性図または特性式とを用いて診断項目の補正値を得るようにし、この補正値を利用して絶縁物の劣化診断をするようにしたので、外部環境から受けるノイズの影響を排除した一定環境での診断データを容易に得られるとともに、任意の外部環境での診断データも得ることができ、劣化診断の精度が向上する。   According to the present invention, a plurality of measurement items having a strong correlation with a diagnosis item are selected, and a correlation diagram representing the correlation between the measurement value of the plurality of measurement items represented by one index and the measurement value of the diagnosis item; A characteristic diagram or characteristic formula that corrects the influence of diagnostic items due to external environmental factors is prepared in advance, and measurement data obtained by measuring multiple measurement items is represented by one index, and correlation is based on this. The correction value of the diagnostic item is obtained using the figure and the characteristic diagram or the characteristic equation, and the deterioration of the insulator is diagnosed using this correction value, so the influence of noise from the external environment is eliminated. Diagnostic data in a certain environment can be easily obtained, and diagnostic data in an arbitrary external environment can be obtained, thereby improving the accuracy of deterioration diagnosis.

実施の形態1.
本発明は、電気機器の絶縁劣化診断において、診断対象絶縁物の種類,外部環境(温度,湿度,外部ノイズ等)などを考慮して診断項目を決定し、この診断項目と相関が強く、現地で外部環境に影響されることなく短時間で容易に測定できる複数の測定項目を選定し、それらの測定結果をもとに総合的に判断して正確な劣化診断を行い、さらには、論理的に導き出したしきい値を用いて「寿命」あるいは「余寿命」を推定するものである。
Embodiment 1 FIG.
The present invention determines the diagnosis item in the diagnosis of insulation deterioration of electrical equipment in consideration of the type of insulation to be diagnosed and the external environment (temperature, humidity, external noise, etc.), and has a strong correlation with this diagnosis item. Select multiple measurement items that can be easily measured in a short time without being affected by the external environment, make comprehensive judgments based on those measurement results, and perform accurate deterioration diagnosis. The “lifetime” or “remaining life” is estimated using the threshold value derived in step (1).

図1は実施の形態1による電気機器の絶縁診断方法の手順を示すフローチャートである。以下図1に従って、発明の手順を説明する。
まず第1ステップとして、診断対象電気機器の絶縁性能の劣化を判断するための診断項目を選定し、これと相関関係が強い複数の測定項目を選定する。
絶縁診断に診断項目と複数の測定項目を用いる理由を簡単に説明する。絶縁物の劣化は
絶縁物の種類や使用環境、外部環境によって大きく異なる。そこで、その絶縁物に見合った診断項目として、例えば電気的測定であれば「部分放電」「表面抵抗」「tanδ」「漏れ電流」等の項目から最適なものを選ぶが、これらを現地において測定するのは外部ノイズの影響を受け容易ではない。そこで、その診断項目の劣化原因であったり、相関性が強くかつ現地において容易に測定できる項目を複数個抽出し、それを測定項目とする。たとえば、「部分放電」を診断項目とした場合、「光沢」「表面浸食度」「分解ガス量」を測定項目に選定する。選定した測定項目を直接測定することによって、もとの診断項目を間接的にかつ複数の測定項目から総合的に判断するものである。
FIG. 1 is a flowchart showing a procedure of an electrical equipment insulation diagnosis method according to the first embodiment. The procedure of the invention will be described below with reference to FIG.
First, as a first step, a diagnosis item for determining deterioration of the insulation performance of the electrical device to be diagnosed is selected, and a plurality of measurement items having a strong correlation therewith are selected.
The reason for using diagnostic items and a plurality of measurement items for insulation diagnosis will be briefly described. Insulator deterioration varies greatly depending on the type of insulator, usage environment, and external environment. Therefore, as the diagnostic items suitable for the insulation, for example, in the case of electrical measurement, the most appropriate one is selected from items such as “partial discharge”, “surface resistance”, “tanδ”, and “leakage current”, but these are measured locally. It is not easy to be affected by external noise. Therefore, a plurality of items that cause deterioration of the diagnostic items or have strong correlation and can be easily measured in the field are extracted and set as measurement items. For example, when “partial discharge” is a diagnostic item, “gloss”, “surface erosion degree”, and “decomposition gas amount” are selected as measurement items. By directly measuring the selected measurement item, the original diagnosis item is indirectly determined from a plurality of measurement items.

次に、測定対象電気機器の絶縁物と同じ絶縁物の、新品と使用品(例えばユーザで長年使用されていた劣化品)の絶縁物サンプルを多数用意する。これらの絶縁物サンプルから、一定環境(例えば、温度20℃、湿度50%。以下、これを基準環境と称す)の下で診断項目について測定し測定データを採取する。併せて、同サンプルから、各測定項目について測定データを採取する。次に、各測定項目の測定データをサンプル毎に、品質工学の分野でよく知られているマハラノビス・タグチシステム法(以下、MT法と略す)を用いて1つの指標(マハラノビスの距離)として表し、この1つの指標と診断項目の測定結果との相関関係を表す相関図(図4参照。詳細は後述する)を作成し、相関関係を1本の線で表したマスターカーブを得る(S11)。この相関図において診断項目値を示す横軸の数値は、基準環境における値である。   Next, a large number of insulator samples of new and used products (for example, deteriorated products that have been used for many years by users) of the same insulator as that of the electrical equipment to be measured are prepared. From these insulator samples, measurement items are collected by measuring the diagnostic items under a certain environment (for example, temperature 20 ° C., humidity 50%, hereinafter referred to as reference environment). In addition, measurement data is collected from each sample for each measurement item. Next, the measurement data of each measurement item is expressed for each sample as one index (Mahalanobis distance) using the Mahalanobis Taguchi system method (hereinafter abbreviated as MT method) well known in the field of quality engineering. Then, a correlation diagram (refer to FIG. 4), which represents the correlation between this one index and the measurement result of the diagnostic item, is created, and a master curve in which the correlation is represented by a single line is obtained (S11). . In this correlation diagram, the numerical value on the horizontal axis indicating the diagnostic item value is a value in the reference environment.

次に第2ステップとして、診断項目とそれに影響を及ぼす外部環境要因との関係を示す特性図(図5参照。詳細は後述する)または特性式を作成し準備しておく(S12)。ここでの外部環境要因とは、ステップ1において診断項目のデータを採取するとき基準環境とした環境項目のことであり、上記の例では温度と湿度である。ただし、複数の診断項目について複数の外部環境要因毎に特性図を作成するのは多大な労力を要するので、特に影響が大きい外部環境要因(例えば湿度)を特定できれば、それとの関連を見るだけで実用上十分である。   Next, as a second step, a characteristic diagram (see FIG. 5) or a characteristic equation showing the relationship between the diagnostic item and external environmental factors affecting it is created and prepared (S12). The external environmental factor here is an environmental item that is used as a reference environment when collecting diagnostic item data in Step 1, and in the above example, is the temperature and humidity. However, creating a characteristic chart for each of multiple external environmental factors for multiple diagnostic items requires a great deal of labor, so if you can identify external environmental factors (for example, humidity) that have a particularly large impact, just look at the relationship with them. Practical enough.

特性図の作り方は、複数の絶縁物サンプル(これはステップ1の絶縁物サンプルと同じでなくてもよい)を用意し、加速劣化によって劣化度合いの異なるサンプルを作成し、それらのサンプル毎に外部環境要因をパラメータとして診断項目について測定し、測定結果を例えば横軸を外部環境要因の大小、縦軸を診断項目の測定値としたグラフとして表す。そうすれば、劣化程度が異なる診断項目の、外部環境要因をパラメータとした複数の特性曲線が得られる。
また、特性曲線を数式化しておいて、その数式を使い特性曲線を作成してもよい。(具体例は後述する)
以上の第1ステップから第2ステップまでは、現地における診断対象電気機器の絶縁診断に先立ち、事前に準備しておく準備作業である。
To create a characteristic diagram, prepare multiple insulator samples (this may not be the same as the insulator sample in Step 1), create samples with different degrees of degradation due to accelerated degradation, and create external samples for each sample. The diagnostic item is measured with the environmental factor as a parameter, and the measurement result is represented as a graph with the horizontal axis as the magnitude of the external environmental factor and the vertical axis as the measured value of the diagnostic item. By doing so, a plurality of characteristic curves of diagnostic items with different degrees of deterioration using external environmental factors as parameters can be obtained.
Alternatively, the characteristic curve may be formulated into a formula and the characteristic curve may be created using the formula. (Specific examples will be described later)
The first step to the second step described above are preparatory work that is prepared in advance prior to the insulation diagnosis of the electrical device to be diagnosed on site.

次に第3のステップについて説明する。これ以降が実機での絶縁診断のための測定および診断作業となる。まず、診断対象電気機器の測定対象絶縁物について、各測定項目毎に診断用の測定データを採取する。測定項目にもよるが、通常は停電状態で絶縁物を直接測定するか、絶縁物から試料を採取してその試料を測定する。測定結果をMT法を用いて1つの指標とする。次に、上記第1のステップで作成した相関図のマスターカーブを用いて、1つの指標に対応する診断項目の数値を読み取る(S13)。ここで読みとった診断項目の数値は、先に説明したように基準環境での値なので、測定時の現地の外部環境要因に影響されることなく、一定環境下の測定結果を得ることができる。   Next, the third step will be described. After this, the measurement and diagnosis work for insulation diagnosis with the actual machine is performed. First, measurement data for diagnosis is collected for each measurement item for the insulator to be measured of the electrical device to be diagnosed. Depending on the measurement item, the insulator is usually measured directly in a power failure state, or a sample is taken from the insulator and the sample is measured. The measurement result is set as one index using the MT method. Next, the numerical value of the diagnostic item corresponding to one index is read using the master curve of the correlation diagram created in the first step (S13). Since the numerical value of the diagnostic item read here is a value in the reference environment as described above, it is possible to obtain a measurement result in a certain environment without being influenced by local external environmental factors at the time of measurement.

次に第4のステップとして、第2のステップで作成しておいた特性図または特性式を用いて、第3のステップで得た診断項目の数値(基準環境での値)をもとに、外部環境要因と診断項目との関係を示す特性曲線を作成する。具体的な作成方法は後述する。
この特性曲線は、現地における測定時点での診断項目の外部環境要因(例えば湿度)をパラメータとする特性曲線である。従って、例えば外部環境要因を湿度とすれば、湿度0%から湿度100%のすべてにおける診断項目の値をこの特性曲線から読みとることができる(S15)。
Next, as the fourth step, using the characteristic diagram or characteristic formula created in the second step, based on the numerical value of the diagnostic item obtained in the third step (value in the reference environment), Create a characteristic curve showing the relationship between external environmental factors and diagnostic items. A specific creation method will be described later.
This characteristic curve is a characteristic curve having an external environmental factor (for example, humidity) of a diagnostic item at the time of measurement in the field as a parameter. Therefore, for example, if the external environmental factor is humidity, the values of the diagnostic items in all of the humidity from 0% to 100% can be read from this characteristic curve (S15).

以上のように、第1から第4までのステップによれば、診断項目と相関関係の強い複数の診断項目により判断するので、診断項目について多面的に判断でき、また、測定時点の外部環境要因に関係なく、外部環境要因をパラメータとする診断項目値の特性曲線が得られるので、任意の外部環境値に対応する診断項目値が求められ、絶縁物の劣化状態を正確に把握することができる。   As described above, according to the first to fourth steps, determination is made based on a plurality of diagnosis items having a strong correlation with the diagnosis item, so that the diagnosis item can be determined from various aspects, and external environmental factors at the time of measurement Regardless of the condition, the characteristic curve of the diagnostic item value with the external environmental factor as a parameter can be obtained, so the diagnostic item value corresponding to any external environmental value can be obtained, and the deterioration state of the insulator can be accurately grasped .

更に、以上の結果をもとに寿命診断を精度よく行う方法について説明する。まず、診断項目と使用年(経年)との相関を表す寿命推定図を用意し、診断項目の初期値(すなわち新品時の値であり、これは第1のステップで測定したものを利用する)と第4のステップで得られた測定時点の診断項目値とをプロットし、2点を結んで劣化傾向線とし、この線と予め求めておいた診断項目に対するしきい値の線との交点から寿命を推定する(S15)。すなわち、新品時点から交点までの経年が寿命であり、測定時点から交点までの経年を余寿命と推定するものである(図7参照。詳細は後述する)。   Furthermore, a method for accurately performing the life diagnosis based on the above results will be described. First, a life estimation diagram showing the correlation between the diagnosis item and the year of use (age) is prepared, and the initial value of the diagnosis item (that is, the value at the time of a new item, which is measured in the first step) And the diagnostic item value at the time of measurement obtained in the fourth step, connecting two points as a deterioration tendency line, and from the intersection of this line and the threshold line for the diagnostic item obtained in advance The lifetime is estimated (S15). That is, the aging from the new time to the intersection is the life, and the aging from the measurement to the intersection is estimated as the remaining life (see FIG. 7, details will be described later).

以上のように、この方法によれば測定時点での任意の外部環境値における診断項目値を用いて寿命が推定できるので、色々な外部環境を予測した寿命推定が可能となる。   As described above, according to this method, the lifetime can be estimated using the diagnostic item value at an arbitrary external environment value at the time of measurement, so that it is possible to estimate the lifetime by predicting various external environments.

次に、以上のような電気機器の絶縁診断方法を、受配電設備の絶縁診断に適用した場合を例に挙げ具体的な診断方法を説明する。
受配電設備に使用されている絶縁物の主な種類は、ポリエステル樹脂絶縁物、エポキシ樹脂絶縁物、フェノール樹脂絶縁物等である。これらの絶縁物の劣化プロセスとしては、絶縁物表面の汚損→吸湿→絶縁抵抗低下,漏れ電流増加→ジュール熱によるドライバンド(絶縁物表面が濡れた状態の時にできるミクロの乾いたギャップ)の形成→シンチレーション放電(沿面微小放電)の発生→表面の炭化によるトラッキング放電(局所放電)の発生・進展→全路破壊のように進展していくことが近年の研究で明らかにされている。従って、劣化診断項目として、絶縁物の表面抵抗を測定して判断するのが効果的であることが知られている。
Next, a specific diagnosis method will be described by taking as an example the case where the above-described insulation diagnosis method for electrical equipment is applied to insulation diagnosis for power receiving and distribution equipment.
The main types of insulators used in power distribution facilities are polyester resin insulators, epoxy resin insulators, phenol resin insulators, and the like. As the deterioration process of these insulators, contamination of the insulator surface → moisture absorption → reduction of insulation resistance, increase of leakage current → formation of dryness (micro dry gap formed when the insulator surface is wet) by Joule heat → Scintillation discharge (creeping discharge) → Tracking discharge (local discharge) due to carbonization of the surface → Progress → Recent research has revealed that it progresses like all-way destruction. Therefore, it is known that it is effective to measure and judge the surface resistance of an insulator as a deterioration diagnosis item.

まず第1のステップとして、診断項目と測定項目を選定する。診断項目は、上記のような絶縁物の劣化判定に有効とされる「絶縁物の表面抵抗値」とする。しかし、表面抵抗値のような電気的な測定は湿度等の外部環境ノイズの影響を受けやすく、例えば同じ絶縁物が同じだけ劣化した場合でも、湿度が異なれば最大5桁以上の測定誤差がある。そこで、外部環境からのノイズを受けることが少なく表面抵抗の変化の要因となる劣化原因を直接測定することにし、現地での測定の容易さも考慮して、測定項目として表面抵抗と相関関係が強い化学的測定項目である「イオン量」と「色差光沢量」を選定した。イオンの種類としては、硝酸イオン,硫酸イオン,塩素イオン,ナトリウムイオン,フッ素イオン等があり、色差に関しても、色彩(明度),色彩(黄)等がある。測定対象絶縁物との相関関係の強さが予め分かっている場合は適宜選択すればよいが、本実施の形態では、次のような手法により、各項目から最適な測定項目を絞り込んだ。   First, as a first step, diagnostic items and measurement items are selected. The diagnostic item is the “surface resistance value of the insulator” that is effective for the deterioration determination of the insulator as described above. However, electrical measurements such as surface resistance are easily affected by external environmental noise such as humidity. For example, even if the same insulator deteriorates to the same extent, there is a measurement error of up to 5 digits if the humidity is different. . Therefore, we decided to directly measure the cause of deterioration that is less likely to receive noise from the external environment and cause changes in surface resistance. In consideration of the ease of on-site measurement, there is a strong correlation with surface resistance as a measurement item. The chemical measurement items “ion amount” and “color difference gloss amount” were selected. As the types of ions, there are nitrate ions, sulfate ions, chlorine ions, sodium ions, fluorine ions and the like, and there are also colors (lightness), colors (yellow) and the like regarding color differences. If the strength of the correlation with the insulator to be measured is known in advance, it may be selected as appropriate, but in the present embodiment, the optimum measurement items are narrowed down from each item by the following method.

図2は測定項目候補から測定項目を選定するフローチャートであり、図3は測定項目の有効性を判断する要因効果図である。図を参照しながら説明する。図2において、まず診断項目とした表面抵抗値と相関があると思われる複数の測定項目候補として、色彩,光沢,成分(炭化水素等),イオン付着量等、15項目を選択した(S21)。図3の横軸に列記したものが測定項目候補である。   FIG. 2 is a flowchart for selecting a measurement item from measurement item candidates, and FIG. 3 is a factor effect diagram for determining the effectiveness of the measurement item. This will be described with reference to the drawings. In FIG. 2, first, 15 items such as color, gloss, component (hydrocarbon, etc.), ion adhesion amount, etc. were selected as a plurality of measurement item candidates that seem to be correlated with the surface resistance value as a diagnostic item (S21). . Those listed on the horizontal axis in FIG. 3 are measurement item candidates.

次に、絶縁物のサンプルを使い、それらの各項目毎に、その項目を使った場合と使わなかった場合の効果の程度(有効性)を、MT法を利用してSN比として表す(S22)。図3において、各項目候補毎に、その項目を診断に使った場合を「有」、使わない場合を「無」として縦軸にSN比を表している。右下がりで差が大きいほど「有」の場合の効果が顕著であることが分かる。   Next, using a sample of an insulator, for each of these items, the degree of effectiveness (effectiveness) when the item is used or not used is expressed as an SN ratio using the MT method (S22). ). In FIG. 3, for each item candidate, the vertical axis represents the SN ratio with “Yes” when the item is used for diagnosis and “No” when the item is not used. It can be seen that the effect of “Yes” becomes more remarkable as the difference decreases to the right.

次に、無効な測定項目候補を排除して、有効な測定項目候補の中から更に効果が顕著な項目を抽出し、これを測定項目に選定する(S23)。図3をもとに、SN比の高い、色彩(黄),硝酸イオンおよび硫酸イオンの3項目を抽出し測定項目に選定した。   Next, the invalid measurement item candidates are excluded, the items that are more effective are extracted from the valid measurement item candidates, and are selected as the measurement items (S23). Based on FIG. 3, three items of color (yellow), nitrate ion and sulfate ion having a high S / N ratio were extracted and selected as measurement items.

なお、選定した測定項目によって相関性を確認し、相関性が十分でない場合は別の測定項目候補をあげ、再度S21〜S23の作業を実施する。また、このSN比から有効性を判断し測定候補を見つける方法は、上記の例以外でも適用できるのはいうまでもない。   Note that the correlation is confirmed by the selected measurement item, and if the correlation is not sufficient, another measurement item candidate is given and the operations of S21 to S23 are performed again. Further, it goes without saying that the method of determining effectiveness from this SN ratio and finding a measurement candidate can be applied to other than the above example.

上記のようなSN比により測定項目を決定する作業によれば、測定項目を客観的に抽出でき、併せて、主劣化因子を解明することができる効果もある。   According to the operation for determining the measurement item based on the SN ratio as described above, there is an effect that the measurement item can be objectively extracted and the main deterioration factor can be clarified.

次に、測定対象絶縁物と同じ絶縁物の新品と使用期間の異なる使用品の絶縁物サンプルを複数個用意し、それらのサンプルから、色彩(黄),硝酸イオン量および硫酸イオン量の3項目について測定する。色彩は例えば簡易色素計により黄色の濃度を測定する。各イオン量は例えばイオン試験紙と高感度反射式光度計を用いてイオン試験紙に転写したイオンの濃度を測定する。色彩およびイオン量は温度や湿度の影響をほとんど受けないので常温下で測定できる。次に、上記と同じサンプルを用いて表面抵抗値を測定するが、表面抵抗値は湿度の影響を大きく受けるので、例えば外部環境からのノイズをシャットアウトしたノイズシールド室を利用して、温度20℃、湿度50%のような一定環境(基準環境)の下で測定する。次に、MT法を用いて、上記で測定した色彩と2種のイオン量とを1つの指標(マハラノビスの距離)として求め、図4に示すような表面抵抗値とマハラノビスの距離との相関性を示す相関図に表し、マスターカーブを得る。図4において、右下の複数のかたまりは新品を示し、マハラノビスの距離が離れるほど新品との違いが大きく劣化が進行していることを示している。マハラノビスの距離が分かれば、マスターカーブから表面抵抗値を知ることができる。ここで得られる表面抵抗値は、基準環境での値である。   Next, prepare a number of insulation samples of the same insulation as the object to be measured and a product with a different usage period. From these samples, three items of color (yellow), nitrate ion amount and sulfate ion amount are prepared. Measure about. For the color, for example, the density of yellow is measured with a simple dye meter. The amount of each ion is measured by, for example, measuring the concentration of ions transferred to the ion test paper using an ion test paper and a high-sensitivity reflection photometer. Color and ion content are almost unaffected by temperature and humidity and can be measured at room temperature. Next, the surface resistance value is measured using the same sample as described above. However, since the surface resistance value is greatly affected by humidity, for example, using a noise shield room in which noise from the external environment is shut out, the temperature 20 Measure under a constant environment (standard environment) such as ℃ and humidity 50%. Next, using the MT method, the color measured above and the two types of ions are obtained as one index (Mahalanobis distance), and the correlation between the surface resistance value and the Mahalanobis distance as shown in FIG. And a master curve is obtained. In FIG. 4, a plurality of clusters in the lower right indicates a new article, and the difference between the new article and the new article increases as the Mahalanobis distance increases. If the Mahalanobis distance is known, the surface resistance value can be determined from the master curve. The surface resistance value obtained here is a value in the reference environment.

次に第2のステップとして、表面抵抗値に影響を及ぼす外部環境として湿度の影響、すなわち表面抵抗の湿度依存性を見るための作業を行う。表面抵抗値は同じ劣化品でも湿度によって大きく変化する。色彩、イオン量を測定項目とした場合、温度による影響はあまり見られないので温度については考慮しないものとする。
まず、複数の絶縁物サンプルを用意する。室温下で例えば硝酸水溶液の蒸気に1日、2日というように期間を変えて曝したサンプルを乾燥させた後、環境室内で温度20℃、湿度を5%〜95%と段階的に変えてそれぞれの時点の表面抵抗値を測定する。図5は湿度と表面抵抗値の関係を示す特性曲線図である。図において破線で示すものは測定結果から得た曲線であり、測定結果をプロットしてなめらかに結んだものである。Aは新品の曲線を示し、B,C,Dと下方の曲線ほど劣化程度の高い絶縁物の特性曲線である。劣化が進むほど湿度の影響を受けやすくなっていることが分かる。
Next, as a second step, work is performed to see the influence of humidity as an external environment that affects the surface resistance value, that is, the humidity dependence of the surface resistance. The surface resistance value varies greatly depending on humidity even for the same deteriorated product. When color and ion content are used as measurement items, temperature is not considered because temperature does not affect much.
First, a plurality of insulator samples are prepared. After drying the sample exposed to the vapor of nitric acid aqueous solution for one day or two days at room temperature for a period of time, etc., change the temperature from 20 ° C. and humidity to 5% to 95% stepwise in the environmental chamber. The surface resistance value at each time point is measured. FIG. 5 is a characteristic curve diagram showing the relationship between humidity and surface resistance. In the figure, a broken line indicates a curve obtained from the measurement result, and the measurement result is plotted and smoothly connected. A indicates a new curve, and B, C, D and lower curves are characteristic curves of an insulator having a higher degree of deterioration. It can be seen that the more deteriorated, the more susceptible to humidity.

特性曲線の作成においては、劣化程度の異なるサンプルを数多く用意すれば、劣化程度の異なる多くの曲線が得られ、きめ細かな特性曲線図となるが、サンプル数が多くなるほどデータ採取のための多大な時間と労力を要する。そこで、この曲線を数式化できれば、どんな表面抵抗値でも簡単に湿度補正ができる。測定で得られた特性曲線が図5に示すように正規分布曲線の一部に類似していることから、この曲線をガウス分布関数によるフィッティングを行い、ガウス分布曲線を使って数式化する技術が、特開2003−9316号広報に開示されている。そこでこの技術を利用し、ガウス分布関数により数式化した特性式を利用して描いた特性曲線が図5の実線で示すものである。a〜dは実測から得た特性曲線A〜Eに対応して特性式から求めた特性曲線である。この特性式を利用すれば、湿度が特定されている表面抵抗値1点が分かれば、特性曲線を描けるので、任意の湿度の表面抵抗値を簡単に読みとることができる。
以上までのステップが、実際の診断に先立つ準備作業である。
In creating a characteristic curve, if you prepare many samples with different degrees of deterioration, many curves with different degrees of deterioration can be obtained, resulting in detailed characteristic curve diagrams. It takes time and effort. Therefore, if this curve can be mathematically expressed, humidity correction can be easily performed with any surface resistance value. Since the characteristic curve obtained by the measurement is similar to a part of the normal distribution curve as shown in FIG. 5, a technique for fitting this curve with a Gaussian distribution function and formulating it using the Gaussian distribution curve is available. , And disclosed in Japanese Patent Application Laid-Open No. 2003-9316. Therefore, a characteristic curve drawn by using this technique and using a characteristic expression expressed by a Gaussian distribution function is indicated by a solid line in FIG. a to d are characteristic curves obtained from the characteristic equation corresponding to the characteristic curves A to E obtained from actual measurement. If this characteristic equation is used, a characteristic curve can be drawn if one point of the surface resistance value where the humidity is specified is known, so that the surface resistance value at an arbitrary humidity can be easily read.
The steps up to here are preparatory work prior to actual diagnosis.

次に、第3のステップとして、診断対象の受配電設備が設置されている現地において、測定対象絶縁物の表面堆積物から、色彩(黄),硝酸イオン量および硫酸イオン量の3項目の測定を実施する。色彩は例えば簡易色素計により黄色の濃度を測定する。各イオン量は例えばイオン試験紙と高感度反射式光度計を用いてイオン試験紙に転写したイオンの濃度を測定する。測定した色彩と2種のイオン量とをMT法を用いて1つの指標(マハラノビスの距離)とする。そして、第1のステップで用意しておいた相関図のマスターカーブからマハラノビス距離に対する表面抵抗値を読みとる。この抵抗値は湿度50%での値である。すなわち、ここまでのステップによって、現地において、測定対象絶縁物から、測定条件に関わらず常に温度20℃,湿度50%の表面抵抗値を得ることができる。従って、時系列的に測定した測定結果から劣化傾向を診断する場合、補正の必要が無くそのまま測定結果を利用できる。   Next, as a third step, measurement of three items of color (yellow), nitrate ion amount, and sulfate ion amount from the surface deposit of the insulator to be measured at the site where the power distribution facility to be diagnosed is installed To implement. For the color, for example, the density of yellow is measured with a simple dye meter. The amount of each ion is measured by, for example, measuring the concentration of ions transferred to the ion test paper using an ion test paper and a high-sensitivity reflection photometer. The measured color and the two kinds of ions are set as one index (Mahalanobis distance) using the MT method. Then, the surface resistance value with respect to the Mahalanobis distance is read from the master curve of the correlation diagram prepared in the first step. This resistance value is a value at a humidity of 50%. That is, according to the steps so far, a surface resistance value of a temperature of 20 ° C. and a humidity of 50% can always be obtained from the insulator to be measured at the site regardless of the measurement conditions. Therefore, when diagnosing the deterioration tendency from the measurement results measured in time series, the measurement results can be used as they are without correction.

次に、第4のステップとして、湿度補正を行う。図6は特性曲線の利用方法を説明する図である。上記第3のステップで相関図から得た表面抵抗値を、図の湿度50%の線上にプロット(点P)する。予め用意した特性曲線を利用する場合は、点Pが曲線上に乗れば、その曲線が測定した絶縁物の表面抵抗の湿度依存曲線である。曲線上に乗らない場合は、点Pの上下の曲線の距離から、新たに点Pを通る曲線を作成すればよい。
上述の特性式を利用すれば予め特性図を用意する必要はなく、点Pの表面抵抗値を基にガウス分布関数による特性式によって曲線を描くことができる。この曲線が測定で得た表面抵抗値の湿度依存曲線となる。図中に太矢印で示すように、湿度50%での表面抵抗値が11(logρΩ)とすると、この数値をもとに式から太曲線のような湿度依存曲線が得られる。従って、任意の湿度における測定時の表面抵抗値がわかる。
Next, humidity correction is performed as a fourth step. FIG. 6 is a diagram for explaining a method of using the characteristic curve. The surface resistance value obtained from the correlation diagram in the third step is plotted (point P) on the 50% humidity line in the figure. When a characteristic curve prepared in advance is used, if the point P is on the curve, the curve is a humidity-dependent curve of the measured surface resistance of the insulator. When not on the curve, a new curve passing through the point P may be created from the distance between the curves above and below the point P.
If the above characteristic equation is used, it is not necessary to prepare a characteristic diagram in advance, and a curve can be drawn by a characteristic equation based on a Gaussian distribution function based on the surface resistance value of the point P. This curve becomes the humidity dependence curve of the surface resistance value obtained by the measurement. As indicated by a thick arrow in the figure, assuming that the surface resistance value at a humidity of 50% is 11 (log ρΩ), a humidity dependence curve like a thick curve is obtained from the equation based on this value. Therefore, the surface resistance value at the time of measurement at an arbitrary humidity can be known.

次に、上記結果を基に寿命を推定する。図7は本実施の形態による電気機器の絶縁診断方法による寿命推定図である。寿命推定図は次のようにして作成する。縦軸を表面抵抗値(対数目盛とする)、横軸を使用年(経年)とし、新品時の絶縁抵抗値を左端の縦軸にプロットする(点ア)。次に、上記第3のステップで相関図から読みとった湿度50%の表面抵抗値をプロットする(点イ)。また、寿命を推定する基準とする任意の湿度での値を上記第4のステップで得た特性曲線から求めてプロットする(点ウ)。点イは常に湿度50%での値なので、例えば別の測定時点での値と比較し傾向を見るときなどに天候等に関係なく一定の診断ができる。点ウは例えば湿度100%の時の値とすれば、最も厳しい条件で後述の寿命を判断できる。通常は、梅雨時や台風時の湿度とするのが実際的である。次に、点アと点ウ結んだ直線を引けば、この線が測定対象絶縁物の劣化傾向線となる。
なお、定期的に寿命推定を行う場合は、前回の結果を出発点とする劣化傾向線をひくことにより、実状に合致した劣化傾向を見ることができる。
Next, the lifetime is estimated based on the above result. FIG. 7 is a life estimation diagram by the electrical equipment insulation diagnosis method according to the present embodiment. The life estimation diagram is created as follows. The vertical axis is the surface resistance value (logarithmic scale), the horizontal axis is the year of use (age), and the insulation resistance value at the time of a new article is plotted on the leftmost vertical axis (point a). Next, the surface resistance value of 50% humidity read from the correlation diagram in the third step is plotted (point A). In addition, a value at an arbitrary humidity as a reference for estimating the lifetime is obtained from the characteristic curve obtained in the fourth step and plotted (point c). Since point a is always a value at a humidity of 50%, a constant diagnosis can be made regardless of the weather or the like when, for example, a tendency is compared with the value at another measurement time point. If the point C is a value at a humidity of 100%, for example, the life described later can be determined under the most severe conditions. Usually, it is practical to use humidity during the rainy season or typhoon. Next, if a straight line connecting points A and U is drawn, this line becomes a deterioration tendency line of the insulator to be measured.
In addition, when performing life estimation periodically, it is possible to see a deterioration tendency that matches the actual situation by drawing a deterioration tendency line starting from the previous result.

次に、寿命を推定するために、予め設定した表面抵抗値のしきい値を横軸に平行に引く。しきい値は、例えば、規定をもとに定めたり、過去の事例から導き出したり、後述する実施の形態2で求めた数式により計算で求めてもよい。このしきい値の線と劣化傾向線の交点(点エ)に対応する使用年を寿命と推定する。従って、寿命から測定時点までの経年を引けば推定余寿命を求めることができる。なお、図7で点エより右で劣化傾向線が急に下がっているのは、これ以降は急速に劣化が進み、地絡・短絡に至る確率が急激に高まるためである。   Next, in order to estimate the life, a preset threshold value of the surface resistance value is drawn parallel to the horizontal axis. For example, the threshold value may be determined on the basis of a rule, derived from a past case, or calculated by a formula obtained in the second embodiment described later. The use year corresponding to the intersection (point d) of the threshold line and the deterioration tendency line is estimated as the life. Therefore, the estimated remaining life can be obtained by subtracting the aging from the life to the time of measurement. The reason why the deterioration trend line suddenly drops to the right of point (D) in FIG. 7 is that the deterioration progresses rapidly thereafter, and the probability of a ground fault / short circuit increases rapidly.

以上のように、実施の形態1による発明によれば、外部環境から受けるノイズの影響を排除した一定環境での診断データを得られるとともに、測定時点の外部環境要因に関係なく、外部環境要因をパラメータとした診断項目値の特性曲線が得られるので、任意の外部環境値に対応する測定項目値が求められ、絶縁物の劣化状態を正確に把握することができる。
また、診断項目と相関関係の強い複数の診断項目により判断するので、診断項目について多面的に判断でき、測定精度が向上する。
また、測定結果を利用して寿命を推定する場合は、任意の外部環境値における診断項目値を利用できるので、色々な外部環境を予測した寿命推定が可能となる。
更にまた、測定結果から外部環境要因をパラメータとした補正値を得るのに、特性式を利用することにより、測定結果による外部環境要因依存曲線を簡単に作成することができる。
As described above, according to the invention according to the first embodiment, it is possible to obtain diagnostic data in a fixed environment that eliminates the influence of noise received from the external environment, and the external environmental factor can be determined regardless of the external environmental factor at the time of measurement. Since the characteristic curve of the diagnostic item value as a parameter is obtained, a measurement item value corresponding to an arbitrary external environment value is obtained, and the deterioration state of the insulator can be accurately grasped.
Further, since the determination is made based on a plurality of diagnosis items having a strong correlation with the diagnosis items, the diagnosis items can be determined from various aspects, and the measurement accuracy is improved.
Moreover, when estimating a lifetime using a measurement result, since the diagnostic item value in arbitrary external environment values can be used, it is possible to estimate the lifetime by predicting various external environments.
Furthermore, an external environment factor dependency curve based on the measurement result can be easily created by using the characteristic formula to obtain a correction value using the external environment factor as a parameter from the measurement result.

実施の形態2.
実施の形態2による電気機器の絶縁物診断法は、寿命推定に当たってのしきい値を理論的に求めることを特徴とするものである。診断対象電気機器の絶縁物から測定データを取得し相関図を用いて表面抵抗値を読みとり、補正曲線により湿度依存曲線を求め、寿命を推定するために寿命推定図から劣化傾向線を求めるまでは実施の形態1と同様なので、詳細な説明は省略する。本実施の形態によるしきい値は以下のようにして求める。
Embodiment 2. FIG.
The electrical device insulator diagnostic method according to the second embodiment is characterized by theoretically obtaining a threshold value for life estimation. Until the measurement data is obtained from the insulation of the electrical equipment to be diagnosed, the surface resistance value is read using the correlation diagram, the humidity dependence curve is obtained from the correction curve, and the deterioration trend line is obtained from the life estimation diagram to estimate the life Since it is the same as that of Embodiment 1, detailed description is abbreviate | omitted. The threshold value according to the present embodiment is obtained as follows.

図8は、この発明の実施の形態2による電気機器の絶縁物の電気的等価回路を示す図である。図に示すように、導電部1と導電部2の間に、それらを絶縁および支持するために、例えばエポキシ樹脂注型品からなる絶縁物3が設けられている。電気機器に使用される絶縁物の形状は多種多様であるが、図は説明のために模式的に示したものである。符号の説明は後述する。   FIG. 8 is a diagram showing an electrical equivalent circuit of an insulator of an electrical device according to Embodiment 2 of the present invention. As shown in the drawing, an insulator 3 made of, for example, an epoxy resin cast product is provided between the conductive portion 1 and the conductive portion 2 in order to insulate and support them. There are various shapes of insulators used in electrical equipment, but the drawings are schematically shown for explanation. The description of the symbols will be described later.

次に、しきい値の算出方法について説明する。絶縁物3の絶縁沿面距離をLとし、導電部1,2間の課電電圧をVとする。絶縁物3の単位長さ当たりの静電容量をC1〜Cnとし、表面抵抗をR1〜Rnとする。厳密には絶縁物3の内部の絶縁抵抗Rも考慮する必要があるが、商用周波(50/60Hz)では絶縁物3のインピーダンスは静電容量が支配的(R>>1/C、但しCは絶縁物3の全長の静電容量)になるので無視する。   Next, a threshold value calculation method will be described. The insulation creepage distance of the insulator 3 is L, and the applied voltage between the conductive parts 1 and 2 is V. The capacitance per unit length of the insulator 3 is C1 to Cn, and the surface resistance is R1 to Rn. Strictly speaking, it is necessary to consider the insulation resistance R inside the insulator 3, but at the commercial frequency (50/60 Hz), the impedance of the insulator 3 is dominated by the capacitance (R >> 1 / C, where C Is neglected because it is the total capacitance of the insulator 3).

ここで、絶縁物3が劣化して表面でトラッキングが形成され絶縁破壊に至るまでのプロセスは、実施の形態1で説明したように、絶縁物表面の汚損→吸湿→絶縁抵抗低下,漏れ電流増加→ドライバンド形成→シンチレーション放電発生→トラッキング放電発生・進展→全路破壊のように進展する。   Here, as described in the first embodiment, the process from the deterioration of the insulator 3 to the formation of tracking on the surface leading to dielectric breakdown is as follows. → Drivand formation → Scintillation discharge generation → Tracking discharge generation / progress → All road destruction.

図8において、ドライバンドにおける絶縁物の静電容量をCg、表面抵抗をRgとして示している。ドライバンド部のインピーダンスZdと他の部分の単位長さ当たりのインピーダンスZpは式1および式2で表される。   In FIG. 8, the capacitance of the insulator in the dry is shown as Cg and the surface resistance as Rg. The impedance Zd of the dry portion and the impedance Zp per unit length of the other portions are expressed by Equation 1 and Equation 2.

Figure 2005061901
Figure 2005061901

課電されている絶縁物3全体のインピーダンスをZとすれば、Z=Zd+Zp・nなので、Zに式1,2を代入して式3が得られる。   Assuming that the impedance of the entire insulator 3 being charged is Z, since Z = Zd + Zp · n, Expressions 1 and 2 are substituted into Z to obtain Expression 3.

Figure 2005061901
Figure 2005061901

ここで、nは絶縁物3の絶縁沿面距離Lを単位長さに区切った数なので絶縁沿面距離Lに比例した係数である。いま、絶縁物3の表面でシンチレーション放電が発生する条件を計算する場合、図8に示されるドライバンド部の表面抵抗Rgは十分高いことから、絶縁物3の表面の電位分担は静電容量Cgによるインピーダンスで決定される。従って、Zは下式4で近似できる。   Here, since n is a number obtained by dividing the insulation creepage distance L of the insulator 3 into unit lengths, it is a coefficient proportional to the insulation creepage distance L. Now, when calculating the conditions under which scintillation discharge occurs on the surface of the insulator 3, since the surface resistance Rg of the dry portion shown in FIG. 8 is sufficiently high, the potential sharing of the surface of the insulator 3 is the capacitance Cg. Determined by the impedance. Therefore, Z can be approximated by Equation 4 below.

Figure 2005061901
Figure 2005061901

絶縁物3に課電されている課電電圧Vとドライバンドに加わる電圧vgの関係は次の式5で与えられる。   The relationship between the applied voltage V applied to the insulator 3 and the voltage vg applied to the dry ground is given by the following equation (5).

Figure 2005061901
Figure 2005061901

ここで、vgが火花開始電圧viを越える課電電圧Vの条件を求めれば、シンチレーション放電発生電圧Viが下式6で計算できる。   Here, if the condition of the applied voltage V at which vg exceeds the spark start voltage vi is obtained, the scintillation discharge generation voltage Vi can be calculated by the following equation 6.

Figure 2005061901
Figure 2005061901

Cgはドライバンドのギャップの長さtに依存し、viも同様にtに依存する。viは、いわゆるパッシェンの火花開始電圧で与えられ、大気圧空気のviは下式7で近似できる。   Cg depends on the length t of the dry band gap, and vi likewise depends on t. vi is given by the so-called Paschen spark start voltage, and vi of atmospheric pressure air can be approximated by the following equation (7).

Figure 2005061901
Figure 2005061901

式6から、Rnを左辺にして式を整理し、放電発生表面抵抗値Rsを求めれば、Rsは式8のようになる。
Rs(MΩ)≒a×E/(L×T)・・・・・・(8)
但し、E:定格電圧(kV),L:絶縁沿面距離L(mm),T:絶縁厚さ(mm)
なお、a,bは周波数や絶縁物の種類から決まる定数である。式8から、放電開始表面抵抗値Rsは絶縁沿面距離と絶縁厚さの積に反比例することが分かった。この放電開始表面抵抗値Rsは、絶縁物の材質・形状・使用条件より、放電が発生する可能性が出てくる点をさしている。放電が発生すると大気環境中にあるイオンが化学反応を起こし絶縁物の性能劣化を促進させる化合物を発生させるため、トラッキングから全路破壊へと進展するので、この放電開始表面抵抗値Rsをしきい値として定める。
From Equation 6, if the equation is arranged with Rn as the left side and the discharge generation surface resistance value Rs is obtained, then Rs becomes Equation 8.
Rs (MΩ) ≈a × E b / (L × T) (8)
Where E: Rated voltage (kV), L: Insulation creepage distance L (mm), T: Insulation thickness (mm)
Note that a and b are constants determined by the frequency and the type of insulator. From Equation 8, it was found that the discharge initiation surface resistance value Rs is inversely proportional to the product of the insulation creepage distance and the insulation thickness. The discharge start surface resistance value Rs indicates a point at which discharge may occur depending on the material, shape, and use conditions of the insulator. When a discharge occurs, the ions in the atmospheric environment cause a chemical reaction to generate a compound that promotes deterioration of the performance of the insulator, and thus progresses from tracking to all-path destruction. Therefore, this discharge start surface resistance value Rs is a threshold value. Set as value.

以上のように、実施の形態2の発明によれば、しきい値を、絶縁物の種類や形状,使用電圧等の、診断対象絶縁物の数値と放電開始電圧から論理的に求めたので、客観的で精度のよいしきい値を得ることができ、これに基づいて正確な寿命および余寿命を推定することが可能となる。   As described above, according to the invention of the second embodiment, the threshold value is logically obtained from the numerical value of the insulator to be diagnosed and the discharge start voltage, such as the type and shape of the insulator, the operating voltage, etc. An objective and accurate threshold value can be obtained, and based on this, it is possible to estimate an accurate life and remaining life.

この発明は、例えば化学会社,電気ガス会社,食品会社等で広く使用されている配電機器のスイッチギヤ等に使用されている絶縁物の診断に適用して、絶縁劣化状況を的確に診断することにより、地絡・短絡などの大きな事故を未然に防止することができる。   This invention is applied to diagnosis of insulators used in switch gears of power distribution equipment widely used in chemical companies, electric gas companies, food companies, etc., and accurately diagnoses the deterioration of insulation. Therefore, it is possible to prevent a major accident such as a ground fault or a short circuit.

実施の形態1による電気機器の絶縁診断方法を示すフローチャートである。3 is a flowchart illustrating an electrical equipment insulation diagnosis method according to Embodiment 1; 実施の形態1による電気機器の絶縁診断方法の測定項目を選定するフローチャートである。3 is a flowchart for selecting measurement items of the electrical device insulation diagnosis method according to the first embodiment. 実施の形態1による電気機器の絶縁診断方法の測定項目の有効性を判断する要因効果図である。It is a factor effect figure which judges the effectiveness of the measurement item of the insulation diagnostic method of the electric equipment by Embodiment 1. 実施の形態1による電気機器の絶縁診断方法の表面抵抗値とマハラノビスの距離との相関性を示す相関図である。It is a correlation diagram which shows the correlation with the surface resistance value of the insulation diagnostic method of the electric equipment by Embodiment 1, and the distance of Mahalanobis. 実施の形態1による電気機器の絶縁診断方法の湿度と表面抵抗値の関係を示す特性曲線図である。It is a characteristic curve figure which shows the relationship between the humidity and surface resistance value of the insulation diagnostic method of the electric equipment by Embodiment 1. FIG. 実施の形態1による電気機器の絶縁診断方法の特性曲線の利用方法を説明する図である。It is a figure explaining the utilization method of the characteristic curve of the insulation diagnosis method of the electric equipment by Embodiment 1. FIG. 実施の形態1による電気機器の絶縁診断方法による寿命推定図である。6 is a life estimation diagram by the electrical equipment insulation diagnosis method according to Embodiment 1. FIG. 実施の形態2による電気機器の絶縁診断方法の絶縁物の電気的等価回路を示す図である。It is a figure which shows the electrical equivalent circuit of the insulator of the insulation diagnostic method of the electric equipment by Embodiment 2. FIG.

符号の説明Explanation of symbols

1 導電部
2 導電部
3 絶縁物。
DESCRIPTION OF SYMBOLS 1 Conductive part 2 Conductive part 3 Insulator.

Claims (6)

電気機器に使用される絶縁物の劣化を診断するための診断項目と、この診断項目と相関関係の強い複数の測定項目とを選定し、新品と使用品の絶縁物サンプルから、一定環境下において上記診断項目の測定データを採取し、通常環境下において上記各測定項目毎の測定データを採取し、MT(マハラノビス・タグチシステム)法を用いて上記各測定項目の測定データを1つの指標で表し、この1つの指標と上記診断項目の測定データとの相関関係を表す相関図を作成する第1のステップと、
上記診断項目とその診断項目に影響を及ぼす外部環境要因との関係を示す特性図または特性式を準備する第2のステップと、
絶縁診断する測定対象絶縁物について、上記各測定項目毎に測定した診断用測定データをMT法を用いて1つの指標で表し、この1つの指標に対応する上記診断項目の数値を上記第1のステップで予め作成しておいた上記相関図から読みとる第3のステップと、
上記第2のステップで予め準備しておいた上記特性図または特性式を用いて、上記第3のステップで得た診断項目の数値と上記外部環境要因との関係を示す特性曲線を作成し、上記外部環境要因の影響を考慮した絶縁診断時点での上記診断項目の補正値を取得する第4のステップとを備え、上記補正値を利用して絶縁物の劣化状況を診断することを特徴とする電気機器の絶縁診断方法。
Select diagnostic items for diagnosing deterioration of insulators used in electrical equipment and multiple measurement items that have a strong correlation with these diagnostic items. Collect measurement data of the above diagnostic items, collect measurement data for each of the above measurement items in a normal environment, and express the measurement data of each of the above measurement items as one index using the MT (Mahalanobis Taguchi System) method. A first step of creating a correlation diagram representing a correlation between the one index and the measurement data of the diagnostic item;
A second step of preparing a characteristic diagram or characteristic equation showing a relationship between the diagnostic item and an external environmental factor affecting the diagnostic item;
For the insulator to be measured for insulation diagnosis, the measurement data for diagnosis measured for each measurement item is represented by one index using the MT method, and the numerical value of the diagnosis item corresponding to this one index is expressed by the first method. A third step to read from the correlation diagram created in advance in step;
Using the characteristic diagram or characteristic equation prepared in advance in the second step, create a characteristic curve indicating the relationship between the numerical value of the diagnostic item obtained in the third step and the external environmental factor, A fourth step of acquiring a correction value of the diagnostic item at the time of insulation diagnosis in consideration of the influence of the external environmental factor, and diagnosing the deterioration state of the insulator using the correction value Insulation diagnosis method for electrical equipment.
請求項1記載の電気機器の絶縁診断方法において、上記第4のステップにおける上記劣化状況の診断は、上記第1のステップで測定した上記診断項目の新品の値と上記第4のステップで得た上記診断項目の補正値とを診断項目と経年の相関を表す寿命推定図にプロットして劣化傾向線を作成し、予め求めておいた上記診断項目のしきい値との交点から寿命を推定することを特徴とする電気機器の絶縁診断方法。   2. The insulation diagnosis method for an electrical device according to claim 1, wherein the diagnosis of the deterioration state in the fourth step is obtained by a new value of the diagnosis item measured in the first step and the fourth step. The correction value of the diagnostic item is plotted on a life estimation diagram showing the correlation between the diagnostic item and the aging, and a deterioration trend line is created, and the lifetime is estimated from the intersection with the threshold value of the diagnostic item obtained in advance. An insulation diagnosis method for electrical equipment. 請求項2記載の電気機器の絶縁診断方法において、しきい値は、絶縁物の劣化により火花が発生する放電発生電圧を基に作成した計算式から求めることを特徴とする電気機器の絶縁診断方法。   3. The electrical equipment insulation diagnosis method according to claim 2, wherein the threshold value is obtained from a calculation formula created based on a discharge generation voltage at which a spark is generated due to deterioration of the insulator. . 請求項1〜請求項3のいずれか1項に記載の電気機器の絶縁診断方法において、上記第1のステップにおける上記測定項目の選択は、上記診断項目と相関があると思われる複数の測定項目候補から測定データを採取し、MT法を利用してSN比を求め、相関性の強い測定項目候補を選択して測定項目とすることを特徴とする電気機器の絶縁診断方法。   4. The electrical equipment insulation diagnosis method according to claim 1, wherein the selection of the measurement item in the first step includes a plurality of measurement items that are considered to be correlated with the diagnosis item. 5. An insulation diagnosis method for electrical equipment, comprising: collecting measurement data from a candidate, obtaining an SN ratio using an MT method, and selecting a measurement item candidate having a strong correlation as a measurement item. 請求項1〜請求項4のいずれか1項に記載の電気機器の絶縁診断方法において、上記第2のステップは、予め複数の絶縁サンプルから、上記外部環境要因をパラメータとして上記診断項目を測定し、上記診断項目と上記外部環境要因との関係を特性曲線で表し、この特性曲線をガウス分布関数により数式化したことを特徴とする電気機器の絶縁診断方法。   5. The electrical equipment insulation diagnosis method according to claim 1, wherein the second step measures the diagnosis item from a plurality of insulation samples in advance using the external environment factor as a parameter. An electrical equipment insulation diagnosis method characterized in that the relationship between the diagnostic item and the external environmental factor is represented by a characteristic curve, and the characteristic curve is expressed by a Gaussian distribution function. 請求項1〜請求項5のいずれか1項に記載の電気機器の絶縁診断方法において、上記診断項目を絶縁物の表面抵抗値とし、上記測定項目を色差と複数のイオン量とし、上記外部環境要因を湿度としたことを特徴とする電気機器の絶縁診断方法。   6. The electrical equipment insulation diagnosis method according to claim 1, wherein the diagnostic item is a surface resistance value of an insulator, the measurement item is a color difference and a plurality of ion amounts, and the external environment is used. An insulation diagnosis method for electrical equipment, characterized in that the factor is humidity.
JP2003290008A 2003-08-08 2003-08-08 Insulation diagnosis method for electrical equipment Expired - Lifetime JP4121430B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003290008A JP4121430B2 (en) 2003-08-08 2003-08-08 Insulation diagnosis method for electrical equipment
TW093106125A TWI292040B (en) 2003-08-08 2004-03-09 Method for diagnosing the insulation of electric apparatus
CNB2004100434543A CN1300566C (en) 2003-08-08 2004-04-29 Insulation diagnosis method for electric appliance
KR1020040032330A KR100541996B1 (en) 2003-08-08 2004-05-07 A dignosis method of insulation of electric apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003290008A JP4121430B2 (en) 2003-08-08 2003-08-08 Insulation diagnosis method for electrical equipment

Publications (2)

Publication Number Publication Date
JP2005061901A true JP2005061901A (en) 2005-03-10
JP4121430B2 JP4121430B2 (en) 2008-07-23

Family

ID=34368161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003290008A Expired - Lifetime JP4121430B2 (en) 2003-08-08 2003-08-08 Insulation diagnosis method for electrical equipment

Country Status (4)

Country Link
JP (1) JP4121430B2 (en)
KR (1) KR100541996B1 (en)
CN (1) CN1300566C (en)
TW (1) TWI292040B (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180607A (en) * 2007-01-25 2008-08-07 Railway Technical Res Inst Deterioration-evaluating system for article consisting of polymeric material
JP2008536108A (en) * 2005-08-15 2008-09-04 ユニバーシティー オブ デンバー Test methods for evaluating diffusion and leakage currents in insulators.
JP2009064868A (en) * 2007-09-05 2009-03-26 Mitsubishi Electric Building Techno Service Co Ltd Transformer remnant life estimation system
JP2009180860A (en) * 2008-01-30 2009-08-13 Yokogawa Electric Corp Process-related data display device and process-related data display method
JP2010071961A (en) * 2008-09-22 2010-04-02 Chubu Electric Power Co Inc Deterioration diagnosis method of polymer material
JP2011008403A (en) * 2009-06-24 2011-01-13 Mitsubishi Electric Corp State change detecting device
JP2011027596A (en) * 2009-07-27 2011-02-10 Toshiba Corp Insulation deterioration diagnosis method of insulating material
JP2011052961A (en) * 2009-08-31 2011-03-17 Fuji Electric Systems Co Ltd Remaining life estimation method, maintenance/update plan creation method, remaining life estimation system, and maintenance/update plan creation system
JP2012141146A (en) * 2010-12-28 2012-07-26 Toshiba Corp Apparatus, method and program for diagnosing deterioration of insulating material
JP2014224824A (en) * 2014-07-22 2014-12-04 株式会社東芝 Insulation deterioration diagnosis method of insulation material
JP2015135348A (en) * 2015-03-25 2015-07-27 株式会社東芝 Insulating material remaining life estimation apparatus, insulating material remaining life estimation method, and insulating material remaining life estimation program
JP2015163878A (en) * 2015-03-25 2015-09-10 株式会社東芝 Deterioration diagnosis device of insulation material, deterioration diagnosis method, and deterioration diagnosis program
JP2015227804A (en) * 2014-05-30 2015-12-17 株式会社東芝 Remaining life calculation method, deterioration diagnosis method, deterioration diagnostic device and program
CN105891427A (en) * 2016-06-08 2016-08-24 深圳市欧瑞博电子有限公司 Sensor life monitoring method and device based on cloud computing
JP2017146112A (en) * 2016-02-15 2017-08-24 三菱電機株式会社 Electric facility diagnostic method
JP2019027810A (en) * 2017-07-26 2019-02-21 三菱電機株式会社 Method and apparatus for assessing remaining lifetime of electric appliance
JP2020003277A (en) * 2018-06-27 2020-01-09 三菱電機株式会社 Method and system for diagnosing shorted residual life of power receiving/distributing apparatus
WO2020105557A1 (en) * 2018-11-20 2020-05-28 三菱電機プラントエンジニアリング株式会社 Method for assessing remaining life of rotating electrical machine and device for assessing remaining life of rotating electrical machine
WO2020165961A1 (en) * 2019-02-13 2020-08-20 三菱電機株式会社 Method and device for diagnosing remaining life of electric device
CN112232381A (en) * 2020-09-25 2021-01-15 国网上海市电力公司 Model parameter post-processing method and device for leading load parameter noise identification
JPWO2021166095A1 (en) * 2020-02-19 2021-08-26
JP7368566B2 (en) 2018-03-19 2023-10-24 株式会社東芝 Deterioration diagnosis system, resistance value estimation method, and computer program

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103048260B (en) * 2012-12-29 2015-04-15 南方电网科学研究院有限责任公司 Electrocorrosion acceleration test method for DC porcelain insulator iron cap
CN105277822B (en) * 2015-09-17 2018-06-12 广西电网有限责任公司电力科学研究院 A kind of artificial accelerated aging test method for GIS disc insulators

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326429A (en) * 1998-05-20 1999-11-26 Toshiba Corp Insulation diagnostic method and device for dry insulation equipment
JP3923257B2 (en) * 2001-01-15 2007-05-30 三菱電機株式会社 Insulation deterioration diagnosis method
JP4045776B2 (en) * 2001-04-17 2008-02-13 三菱電機株式会社 Life diagnosis method for power distribution facilities
JP3864063B2 (en) * 2001-06-04 2006-12-27 三菱電機株式会社 Degradation evaluation method for coil insulation paper
CN1204410C (en) * 2002-09-13 2005-06-01 西安交通大学 Ultrasonic reflection detecting device and mehtod for diagnosis of insulation state of stator for large electric generator

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008536108A (en) * 2005-08-15 2008-09-04 ユニバーシティー オブ デンバー Test methods for evaluating diffusion and leakage currents in insulators.
JP2008180607A (en) * 2007-01-25 2008-08-07 Railway Technical Res Inst Deterioration-evaluating system for article consisting of polymeric material
JP2009064868A (en) * 2007-09-05 2009-03-26 Mitsubishi Electric Building Techno Service Co Ltd Transformer remnant life estimation system
JP2009180860A (en) * 2008-01-30 2009-08-13 Yokogawa Electric Corp Process-related data display device and process-related data display method
JP2010071961A (en) * 2008-09-22 2010-04-02 Chubu Electric Power Co Inc Deterioration diagnosis method of polymer material
JP2011008403A (en) * 2009-06-24 2011-01-13 Mitsubishi Electric Corp State change detecting device
JP2011027596A (en) * 2009-07-27 2011-02-10 Toshiba Corp Insulation deterioration diagnosis method of insulating material
JP2011052961A (en) * 2009-08-31 2011-03-17 Fuji Electric Systems Co Ltd Remaining life estimation method, maintenance/update plan creation method, remaining life estimation system, and maintenance/update plan creation system
JP2012141146A (en) * 2010-12-28 2012-07-26 Toshiba Corp Apparatus, method and program for diagnosing deterioration of insulating material
JP2015227804A (en) * 2014-05-30 2015-12-17 株式会社東芝 Remaining life calculation method, deterioration diagnosis method, deterioration diagnostic device and program
JP2014224824A (en) * 2014-07-22 2014-12-04 株式会社東芝 Insulation deterioration diagnosis method of insulation material
JP2015135348A (en) * 2015-03-25 2015-07-27 株式会社東芝 Insulating material remaining life estimation apparatus, insulating material remaining life estimation method, and insulating material remaining life estimation program
JP2015163878A (en) * 2015-03-25 2015-09-10 株式会社東芝 Deterioration diagnosis device of insulation material, deterioration diagnosis method, and deterioration diagnosis program
JP2017146112A (en) * 2016-02-15 2017-08-24 三菱電機株式会社 Electric facility diagnostic method
CN105891427A (en) * 2016-06-08 2016-08-24 深圳市欧瑞博电子有限公司 Sensor life monitoring method and device based on cloud computing
CN105891427B (en) * 2016-06-08 2019-05-31 深圳市欧瑞博电子有限公司 Sensor life-time monitoring method and device based on cloud computing
JP2019027810A (en) * 2017-07-26 2019-02-21 三菱電機株式会社 Method and apparatus for assessing remaining lifetime of electric appliance
JP7368566B2 (en) 2018-03-19 2023-10-24 株式会社東芝 Deterioration diagnosis system, resistance value estimation method, and computer program
JP2020003277A (en) * 2018-06-27 2020-01-09 三菱電機株式会社 Method and system for diagnosing shorted residual life of power receiving/distributing apparatus
JPWO2020105557A1 (en) * 2018-11-20 2021-09-27 三菱電機プラントエンジニアリング株式会社 Remaining life diagnosis method for rotary electric machines and remaining life diagnosis device for revolving electric machines
JP7157517B2 (en) 2018-11-20 2022-10-20 三菱電機プラントエンジニアリング株式会社 Method for diagnosing remaining life of rotating electric machine and apparatus for diagnosing remaining life of rotating electric machine
WO2020105557A1 (en) * 2018-11-20 2020-05-28 三菱電機プラントエンジニアリング株式会社 Method for assessing remaining life of rotating electrical machine and device for assessing remaining life of rotating electrical machine
US11885848B2 (en) 2018-11-20 2024-01-30 Mitsubishi Electric Corporation Method for assessing remaining life of rotating electrical machine and device for assessing remaining life of rotating electrical machine
WO2020165961A1 (en) * 2019-02-13 2020-08-20 三菱電機株式会社 Method and device for diagnosing remaining life of electric device
JPWO2021166095A1 (en) * 2020-02-19 2021-08-26
WO2021166095A1 (en) * 2020-02-19 2021-08-26 三菱電機株式会社 Deterioration diagnosis method and deterioration diagnosis device
CN112232381A (en) * 2020-09-25 2021-01-15 国网上海市电力公司 Model parameter post-processing method and device for leading load parameter noise identification
CN112232381B (en) * 2020-09-25 2024-03-01 国网上海市电力公司 Model parameter post-processing method and device for dominant load parameter noise identification

Also Published As

Publication number Publication date
TW200506335A (en) 2005-02-16
CN1580735A (en) 2005-02-16
JP4121430B2 (en) 2008-07-23
TWI292040B (en) 2008-01-01
KR100541996B1 (en) 2006-01-10
CN1300566C (en) 2007-02-14
KR20050018577A (en) 2005-02-23

Similar Documents

Publication Publication Date Title
JP4121430B2 (en) Insulation diagnosis method for electrical equipment
CN106021756A (en) Method for assessing insulation state of oil paper based on characteristic quantity of frequency domain dielectric spectroscopy
JP7241476B2 (en) Short-circuit remaining life diagnostic method and short-circuit remaining life diagnostic system for power receiving and distributing equipment
CN113064002A (en) Method for evaluating insulation aging state of 10kV XLPE cable
CN112557838B (en) Method for evaluating insulation aging of XLPE cable based on polarization factor
JP4045776B2 (en) Life diagnosis method for power distribution facilities
JP5562287B2 (en) Remaining life diagnosis method and remaining life diagnosis device for power distribution equipment
JP6460003B2 (en) Diagnosis method of electrical equipment
JP2014052356A (en) Deterioration diagnosis method and device for insulation material
JPS6159242A (en) Method for diagnosing deterioration of insulating material
RU2373546C2 (en) Method of determination of condition and resource of isolation
JP6164022B2 (en) Interlayer insulation diagnosis method for winding equipment
CN105445626A (en) Residual life evaluation method for low-voltage and multi-core cable
Weindl et al. Development of the p-factor in an accelerated ageing experiment of the MV PILC cables
JP5787565B2 (en) Insulation deterioration diagnosis method
JP5559638B2 (en) Degradation judgment method for power cables
Joshi et al. Dielectric diagnosis of EHV current transformer using frequency domain spectroscopy (FDS) & polarization and depolarization current (PDC) techniques
JP3720291B2 (en) Degradation diagnosis method for solid insulation materials
JP3280547B2 (en) Insulation diagnosis method
JP3923257B2 (en) Insulation deterioration diagnosis method
JP2002156401A (en) Method for evaluating electrical insulator
JP5495232B2 (en) Degradation diagnosis method and surface resistance measurement method of polymer material
CN113424044A (en) Remaining life diagnosis method and remaining life diagnosis device for electrical equipment
CN114609485B (en) Test system for aging condition of crosslinked polyethylene insulated power cable of new energy automobile
JP4501315B2 (en) Insulation diagnostic sensor for power distribution facility and remaining life diagnostic method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4121430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term