JP2014052356A - Deterioration diagnosis method and device for insulation material - Google Patents

Deterioration diagnosis method and device for insulation material Download PDF

Info

Publication number
JP2014052356A
JP2014052356A JP2012198953A JP2012198953A JP2014052356A JP 2014052356 A JP2014052356 A JP 2014052356A JP 2012198953 A JP2012198953 A JP 2012198953A JP 2012198953 A JP2012198953 A JP 2012198953A JP 2014052356 A JP2014052356 A JP 2014052356A
Authority
JP
Japan
Prior art keywords
insulation resistance
deterioration
insulating material
constant
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012198953A
Other languages
Japanese (ja)
Other versions
JP5836904B2 (en
Inventor
Yoko Todo
洋子 藤堂
Kiyoko Murayama
聖子 村山
Tsuyoshi Fukumoto
剛司 福本
Susumu Kinoshita
晋 木下
Wataru Nakajima
渉 中島
Toshiaki Ogawa
俊明 小川
Kazuki Matsushima
和貴 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012198953A priority Critical patent/JP5836904B2/en
Publication of JP2014052356A publication Critical patent/JP2014052356A/en
Application granted granted Critical
Publication of JP5836904B2 publication Critical patent/JP5836904B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an insulation deterioration diagnosis method and a device capable of easily diagnosing a contamination state of an insulation material and a deterioration state of the insulation material itself on the spot.SOLUTION: A deterioration diagnosis device 10 includes an insulation resistance measurement section 11 which measures secular change of an insulation resistance by applying a DC voltage to the insulation material to be diagnosed; an approximation curve calculation section 12 which finds a power approximation curve R=A×t(A, B: constant) and an exponent approximation curve R=C×exp (Dt) (C, D: constant) from the relation between the insulation resistance and a measurement time; and a deterioration diagnosis section 13 which determines a contamination state of the insulation material by comparing the value of the constant D of the exponent approximation curve with a determination threshold and diagnoses a deterioration state of the insulation material itself by comparing the value of the constant B of the power approximation curve with a determination threshold.

Description

本発明の実施形態は、電力設備等に使用されている絶縁材料の劣化状態を診断する劣化診断方法及び装置に関する。   Embodiments described herein relate generally to a deterioration diagnosis method and apparatus for diagnosing a deterioration state of an insulating material used in electric power equipment or the like.

電力設備は、社会インフラストラクチャを支える重要な設備であり、長期の安定稼動が求められる。しかし、電力設備の導体支持又はバリヤなどに使用される絶縁材料は、材料自体の経年劣化、設置環境に浮遊する塵埃又はガスの付着などにより絶縁性が低下する場合がある。絶縁材料の絶縁性が低下すると放電又はトラッキングが発生するため、絶縁材料の絶縁性の低下は設備停止の原因となる。   Electric power facilities are important facilities that support social infrastructure, and long-term stable operation is required. However, an insulating material used for a conductor support or a barrier of a power facility may deteriorate in insulation property due to aging of the material itself, adhesion of dust or gas floating in the installation environment, and the like. When the insulating property of the insulating material is lowered, discharge or tracking is generated. Therefore, the lowered insulating property of the insulating material causes the facility to stop.

また、設置環境に基づく絶縁材料の劣化は、上記の塵埃又はガスの付着による汚損のみでなく、絶縁材料の成分と反応する環境因子からも影響を受ける。特に、絶縁材料の成分と反応する環境因子が存在する環境では、通常の経年劣化を上回る速度で、絶縁材料が劣化する場合がある。例えば、無機充填材として炭酸カルシウムが使用される絶縁材料は、この炭酸カルシウムが塩素系ガス又は窒素酸化物ガスなどと反応すると、絶縁材料表面に塩化カルシウム又は硝酸カルシウムが形成される。これらの塩化カルシウム又は硝酸カルシウムなどの物質は、湿度40%RH以下の低湿度であっても水分を吸入して潮解する。したがって、絶縁材料表面に塩化カルシウム又は硝酸カルシウムが形成された場合、低湿度条件であっても、絶縁材料の表面が結露し、漏れ電流が流れ、絶縁が破壊され、設備停止となる場合があると考えられる。   In addition, the deterioration of the insulating material based on the installation environment is influenced not only by the contamination due to the adhesion of dust or gas but also by environmental factors that react with the components of the insulating material. In particular, in an environment where there are environmental factors that react with the components of the insulating material, the insulating material may deteriorate at a rate that exceeds normal aging. For example, in an insulating material using calcium carbonate as an inorganic filler, when the calcium carbonate reacts with a chlorine-based gas or a nitrogen oxide gas, calcium chloride or calcium nitrate is formed on the surface of the insulating material. These substances such as calcium chloride or calcium nitrate deliquesce by inhaling moisture even at a low humidity of 40% RH or less. Therefore, when calcium chloride or calcium nitrate is formed on the surface of the insulating material, the surface of the insulating material may condense, leakage current will flow, insulation may be destroyed, and the equipment may be shut down even under low humidity conditions. it is conceivable that.

さらに、絶縁材料が汚損しイオン性物質が付着すると、吸湿して微小放電が発生し、絶縁劣化を起こし、最終的には絶縁破壊に至る。微小放電が始まると、絶縁材料表面の劣化が急激に進行する。したがって、絶縁材料の劣化診断では、イオン性物質の付着量を検知するとともに、絶縁材料自体の劣化状態も検知する必要がある。   Further, when the insulating material is fouled and ionic substances are adhered, moisture is absorbed to generate a micro discharge, resulting in deterioration of insulation, and finally dielectric breakdown. When the minute discharge starts, the surface of the insulating material rapidly deteriorates. Therefore, in the deterioration diagnosis of the insulating material, it is necessary to detect the adhesion amount of the ionic substance and also detect the deterioration state of the insulating material itself.

従来の劣化診断方法では、イオン性物質の付着量をイオン分析で測定している。また、絶縁材料自体の劣化状態を把握するための一例として、表面の色差、反射率、光沢度などを測定し、これらの結果を多変量解析であるT(タグチ)法により解析し、任意の温度、湿度における表面絶縁抵抗を推定している。   In the conventional deterioration diagnosis method, the amount of ionic substances attached is measured by ion analysis. Moreover, as an example for grasping the deterioration state of the insulating material itself, the color difference, reflectance, glossiness, etc. of the surface are measured, and these results are analyzed by the T (Taguchi) method which is multivariate analysis. The surface insulation resistance at temperature and humidity is estimated.

しかしながら、上記の方法ではイオン分析について現地測定ができず、所定の分析場所まで持ち帰ってから測定するため、解析までに時間が掛かってしまう。   However, in the above method, on-site measurement cannot be performed for ion analysis, and it takes time until analysis because it is performed after taking it back to a predetermined analysis place.

また、従来のT法を利用した劣化診断では、絶縁材料自体の劣化指標として表面の色差、反射率、光沢度などを測定しているが、材料本来の色調によっては劣化がある程度進行しないと把握できず、劣化が感度よく測定結果に反映されないことがあった。   In the degradation diagnosis using the conventional T method, the color difference, reflectance, and glossiness of the surface are measured as degradation indicators of the insulating material itself, but it is understood that the degradation does not progress to some extent depending on the original color tone of the material. In some cases, deterioration could not be reflected in the measurement results with high sensitivity.

さらに、絶縁材料自体の劣化は、材料表面の濡れ性との相関があるが、濡れ性は材料表面に水を滴下し、その水滴の形状測定から接触角を測定することで把握できる。しかし、接触角は水平面での測定は可能であるが、垂直面での測定は水滴が保持できないため困難である。   Furthermore, the deterioration of the insulating material itself has a correlation with the wettability of the material surface, but the wettability can be grasped by dropping water onto the material surface and measuring the contact angle from the shape measurement of the water droplet. However, the contact angle can be measured on a horizontal plane, but measurement on a vertical plane is difficult because water droplets cannot be held.

このため、現地で簡便に絶縁材料の汚損状態と絶縁材料自体の劣化を判定できる評価方法が要望されている。   For this reason, there is a demand for an evaluation method that can easily determine the contamination state of the insulating material and the deterioration of the insulating material itself on site.

特開2011−27596号公報JP 2011-27596 A

本発明の実施形態は、現地で簡便に絶縁材料の汚損状態と絶縁材料自体の劣化状態を診断できる絶縁劣化診断方法及び装置を提供することを目的とする。   An object of the embodiment of the present invention is to provide an insulation deterioration diagnosis method and apparatus capable of diagnosing a fouling state of an insulating material and a deterioration state of the insulating material itself on site.

上述の目的を達成するため、本発明の実施形態に係る絶縁材料の劣化診断方法は、診断対象となる絶縁材料に直流電圧を印加して絶縁抵抗の経時変化を測定し、該絶縁抵抗と測定時間との関係を指数方程式で近似した場合の指数近似曲線の定数から前記絶縁材料の汚損状態を診断し、前記絶縁抵抗と測定時間との関係を累乗方程式で近似した場合の累乗近似曲線の定数から前記絶縁材料の劣化状態を診断することを特徴とする。   In order to achieve the above-described object, the method for diagnosing deterioration of an insulating material according to an embodiment of the present invention measures a change in insulation resistance with time by applying a DC voltage to the insulating material to be diagnosed, and measures the insulation resistance and measurement. Diagnose the contamination state of the insulating material from the constant of the exponential approximation curve when the relationship with time is approximated by an exponential equation, and the constant of the power approximation curve when the relationship between the insulation resistance and measurement time is approximated by a power equation From this, the deterioration state of the insulating material is diagnosed.

また、本発明の他の実施形態に係る絶縁材料の劣化診断方法は、診断対象となる絶縁材料に直流電圧を印加して絶縁抵抗の経時変化を測定し、絶縁抵抗Rと測定時間tの関係を累乗方程式で近似した累乗近似曲線R=A×tを求め(A、Bは定数)、定数Bを前記絶縁材料自体の劣化指標とし、定数Bを含めた複数の評価項目を用いて多変量解析であるT法により絶縁抵抗推定式を求め、当該絶縁抵抗推定式に対して診断時における測定条件を代入して求めた診断時の絶縁抵抗推定値と、初期時の絶縁抵抗値とから寿命推定曲線を作成し、当該寿命推定曲線と予め材料毎に求めた寿命閾値との交点から余寿命を求めることを特徴とする。 In addition, in a method for diagnosing deterioration of an insulating material according to another embodiment of the present invention, a DC voltage is applied to an insulating material to be diagnosed to measure a change in the insulation resistance with time, and the relationship between the insulation resistance R and the measurement time t. A power approximation curve R = A × t B is approximated by a power equation (A and B are constants), and constant B is used as a deterioration index of the insulating material itself, and a plurality of evaluation items including constant B are used. Using the T method, which is a variable analysis, to obtain an insulation resistance estimation formula, and from the estimated insulation resistance value at the time of diagnosis obtained by substituting the measurement conditions at the time of diagnosis into the insulation resistance estimation formula, and the initial insulation resistance value A life estimation curve is created, and the remaining life is obtained from the intersection of the life estimation curve and a life threshold value obtained in advance for each material.

また、上述の目的を達成するため、本発明の実施形態に係る絶縁材料の劣化診断装置は、診断対象となる絶縁材料に直流電圧を印加して絶縁抵抗の経時変化を測定する絶縁抵抗測定部と、絶縁抵抗と測定時間の関係から累乗近似曲線R=A×t(A、Bは定数)及び指数近似曲線R=C×exp(Dt)(C、Dは定数)を求める近似曲線算出部と、前記指数近似曲線の定数Dの値を判定閾値と比較して前記絶縁材料の汚損状態を診断し、前記累乗近似曲線の定数Bの値を判定閾値と比較して前記絶縁材料自体の劣化状態を診断する劣化診断部と、を備えたことを特徴とする。 In order to achieve the above-mentioned object, an insulation material deterioration diagnosis apparatus according to an embodiment of the present invention is an insulation resistance measurement unit that measures a change in insulation resistance with time by applying a DC voltage to an insulation material to be diagnosed. Approximate curve calculation for obtaining a power approximation curve R = A × t B (A and B are constants) and an exponential approximation curve R = C × exp (Dt) (C and D are constants) from the relationship between insulation resistance and measurement time And the value of the constant D of the exponential approximation curve is compared with a determination threshold value to diagnose the contamination state of the insulating material, and the value of the constant B of the power approximation curve is compared with a determination threshold value to compare the value of the insulating material itself. A deterioration diagnosis unit for diagnosing the deterioration state.

さらに、本発明の他の実施形態に係る絶縁材料の劣化診断装置は、絶縁抵抗Rと測定時間tの関係を累乗方程式で近似した累乗近似曲線R=A×tにおける定数Bを絶縁材料自体の劣化指標とし、前記定数Bを含めた複数の絶縁材料の評価項目を測定する評価項目測定部と、前記評価項目を用いて多変量解析であるT法により予め材料毎に求めた絶縁抵抗推定式が格納された材料別推定式データベースと、前記絶縁抵抗推定式に前記評価項目の測定値を代入して診断時の前記絶縁材料が設置環境で想定される条件における絶縁抵抗推定値を算出する絶縁抵抗推定値算出部と、予め算出された材料別の絶縁抵抗の寿命閾値を格納した材料別寿命閾値データベースと、前記診断時と同一条件における初期時の絶縁抵抗値と前記算出した絶縁抵抗推定値とから寿命推定曲線を作成し、当該寿命推定曲線と前記材料別の絶縁抵抗の寿命閾値との交点から余寿命を求める余寿命推定部と、を備えたことを特徴とする。 Furthermore, the insulation material deterioration diagnosis apparatus according to another embodiment of the present invention uses a constant B in a power approximation curve R = A × t B in which the relationship between the insulation resistance R and the measurement time t is approximated by a power equation. As an indicator of deterioration, an evaluation item measuring unit that measures evaluation items of a plurality of insulating materials including the constant B, and insulation resistance estimation obtained for each material in advance by the T method that is multivariate analysis using the evaluation items By substituting the measured value of the evaluation item into the estimation equation database for each material in which equations are stored, and the insulation resistance estimation equation, the insulation resistance estimation value is calculated under the condition that the insulating material at the time of diagnosis is assumed in the installation environment. Insulation resistance estimated value calculation unit, life threshold database for each material storing life threshold values of insulation resistance for each material calculated in advance, insulation resistance value in the initial state and the calculated insulation resistance under the same conditions as in the diagnosis Create a lifetime estimation curve and a value, characterized in that and a remaining service life estimation portion for determining the remaining life from the intersection of the said life estimation curve and the material-specific insulation resistance life threshold value.

絶縁材料の表面絶縁抵抗の経時変化を示すグラフである。It is a graph which shows a time-dependent change of the surface insulation resistance of an insulating material. 第1の実施形態に係る絶縁材料の劣化診断装置の構成を示すブロック図である。It is a block diagram which shows the structure of the deterioration diagnosis apparatus of the insulating material which concerns on 1st Embodiment. 第1の実施形態に係る絶縁材料の劣化診断方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the degradation diagnosis method of the insulating material which concerns on 1st Embodiment. 第2の実施形態に係る絶縁材料の劣化診断装置の構成を示すブロック図である。It is a block diagram which shows the structure of the deterioration diagnosis apparatus of the insulating material which concerns on 2nd Embodiment. 第2の実施形態に係る絶縁材料の劣化診断方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the degradation diagnosis method of the insulating material which concerns on 2nd Embodiment. 第2の実施形態に係る絶縁材料の劣化診断方法における余寿命推定手法を説明するグラフである。It is a graph explaining the remaining life estimation method in the deterioration diagnosis method of the insulating material which concerns on 2nd Embodiment.

以下、本発明の実施形態について、図面を参照して具体的に説明する。以下の各実施形態では、例えば、受電設備、変電設備、スイッチギヤ等の各種の電力機器又は電力設備に使用される絶縁材料(具体的には、ポリエステル樹脂、エポキシ樹脂、フェノール樹脂等)を診断対象として説明する。   Embodiments of the present invention will be specifically described below with reference to the drawings. In each of the following embodiments, for example, diagnosis is made on insulating materials (specifically, polyester resin, epoxy resin, phenol resin, etc.) used in various power equipment or power equipment such as power receiving equipment, substation equipment, and switchgear. It will be explained as a target.

まず、本実施形態の劣化診断方法の前提となる絶縁抵抗の近似曲線の計算例について説明する。
(絶縁材料の絶縁抵抗)
図1は、直流電圧を印加した場合の上記の絶縁材料の表面絶縁抵抗の経時変化を示すグラフである。測定電圧は、数十V〜数千Vの直流電圧である。絶縁抵抗は経時的に変化するため、通常は60秒後の値を絶縁抵抗の値として採用する。本実施形態においても60秒とするが、測定時間をさらに長くしてもよい。一方、測定時間が数十秒以下は変化率が大きいので、望ましくない。
First, a calculation example of an approximate curve of insulation resistance, which is a premise of the deterioration diagnosis method of the present embodiment, will be described.
(Insulation resistance of insulation material)
FIG. 1 is a graph showing the change over time of the surface insulation resistance of the insulating material when a DC voltage is applied. The measurement voltage is a DC voltage of tens to thousands of volts. Since the insulation resistance changes with time, the value after 60 seconds is usually adopted as the value of the insulation resistance. In this embodiment, it is 60 seconds, but the measurement time may be further increased. On the other hand, the measurement time of several tens of seconds or less is not desirable because the rate of change is large.

図1において、測定1はフィールドで使用していた絶縁材料の絶縁抵抗を温度20℃、湿度65%RH条件で測定した結果であり、測定2は温度20℃、湿度80%RH条件で測定した結果である。測定3は、測定1、測定2の絶縁材料の表面汚損物を純水で洗浄後乾燥し、温度20℃、湿度65%RH条件で絶縁抵抗を測定した結果である。測定4は、測定1、測定2の絶縁材料の表面汚損物を純水で洗浄後乾燥し、温度20℃、湿度80%RH条件で測定した結果である。   In FIG. 1, measurement 1 is the result of measuring the insulation resistance of an insulating material used in the field under conditions of temperature 20 ° C. and humidity 65% RH, and measurement 2 is measured under conditions of temperature 20 ° C. and humidity 80% RH. It is a result. Measurement 3 is the result of measuring the insulation resistance under the conditions of a temperature of 20 ° C. and a humidity of 65% RH after cleaning the surface fouling material of measurement 1 and measurement 2 with pure water and drying. Measurement 4 is the result of measuring the surface fouling materials of the insulating materials of Measurement 1 and Measurement 2 with pure water and drying them, and measuring under conditions of a temperature of 20 ° C. and a humidity of 80% RH.

(近似曲線)
次に、測定した絶縁抵抗と時間(t)との関係を累乗方程式で近似した累乗近似曲線R=A×tと、指数方程式で近似した指数近似曲線R=C×exp(Dt)を求め、それぞれの近似曲線の相関係数r1、r2を求める。ここで、A、B、C、Dは定数である。累乗近似曲線の相関係数r1と指数近似曲線の相関係数r2、累乗近似曲線の定数B、指数近似曲線の定数Dを表1に示す。

Figure 2014052356
(Approximate curve)
Next, a power approximate curve R 1 = A × t B obtained by approximating the relationship between the measured insulation resistance and time (t) by a power equation, and an exponent approximate curve R 2 = C × exp (Dt) approximated by an exponential equation And correlation coefficients r1 and r2 of the respective approximate curves are obtained. Here, A, B, C, and D are constants. Table 1 shows the correlation coefficient r1 of the power approximation curve, the correlation coefficient r2 of the exponent approximation curve, the constant B of the power approximation curve, and the constant D of the exponent approximation curve.
Figure 2014052356

過去の測定データから、表面が汚損により湿潤状態になると絶縁抵抗の経時変化が指数近似曲線によく一致し、清浄な状態で水分の影響がない状態では累乗近似曲線によく一致することが分かっている。測定1と測定2は表面の汚損は同じであるが、測定雰囲気が異なっている。高湿度条件では、汚損が原因で吸湿する測定2で指数近似曲線の相関係数の方が累乗近似の相関係数より大きくなっている。また、同じ高湿度条件の測定でも、表面の汚損を清掃した絶縁材料を測定した測定4では、高湿度雰囲気でも表面が汚損していないので吸湿せず、累乗近似曲線の相関係数の方が高くなる。ただし、相関係数の比較だけでは、汚損しているが測定条件は低湿度である場合(測定1)、表面の水分吸着がないため、相関係数は累乗近似曲線の方が大きくなる。   From past measurement data, it can be seen that the time-dependent change in insulation resistance matches the exponential approximation curve when the surface becomes wet due to fouling, and the power approximation curve matches well when it is clean and free from moisture. Yes. Measurement 1 and Measurement 2 have the same surface fouling but different measurement atmospheres. Under the high humidity condition, the correlation coefficient of the exponential approximation curve is larger than the correlation coefficient of the power approximation in Measurement 2 which absorbs moisture due to fouling. Further, even in the measurement under the same high humidity condition, in the measurement 4 in which the insulating material whose surface contamination was cleaned was measured, the surface was not contaminated even in a high humidity atmosphere, so the moisture was not absorbed, and the correlation coefficient of the power approximation curve was better. Get higher. However, when only the correlation coefficient is compared, it is soiled but the measurement condition is low humidity (Measurement 1). Since there is no moisture adsorption on the surface, the correlation coefficient becomes larger in the power approximation curve.

(定数Dと表面の汚損状態の関係)
そこで、指数近似曲線の定数Dと表面の汚損状態の関係を調査した結果、定数Dは、測定湿度の影響を受けずに汚損状態を検知できることが分かった。表1に指数近似曲線の定数Dの値を示す。表面を清掃すると、定数Dの値はマイナスになることが分かる。材料により汚損を検知する閾値は異なるが、エポキシ樹脂については、表2に示すように、表面を汚損区分の軽汚損の上限値である汚損度(等価塩分量)0.03mg/cmに汚損させて測定した結果、定数Dが0.001以上であったことから、Dが0.001を超える場合は、絶縁特性に影響を与えるような汚損状態(表2の中汚損以上)であると判断できる。

Figure 2014052356
(Relationship between constant D and surface fouling state)
Therefore, as a result of investigating the relationship between the constant D of the exponential approximation curve and the surface contamination state, it was found that the constant D can detect the contamination state without being affected by the measured humidity. Table 1 shows the value of the constant D of the exponential approximation curve. It can be seen that the value of the constant D becomes negative when the surface is cleaned. Although the threshold for detecting fouling differs depending on the material, as shown in Table 2, for epoxy resin, the fouling degree (equivalent salt content) is 0.03 mg / cm 2 , which is the upper limit of light fouling in the fouling category. As a result of the measurement, the constant D was 0.001 or more. Therefore, when D exceeds 0.001, it is a fouling state that affects the insulation characteristics (more than the medium fouling in Table 2). I can judge.
Figure 2014052356

(定数Bと絶縁材料自体の劣化状態の関係)
また、絶縁材料自体の劣化を検知できる定数として、固体状態の絶縁抵抗特性を反映している累乗近似曲線の定数について、劣化状態の異なる絶縁材料との関係を調査した結果、定数Bと相関があり、Bの値がマイナスになるほど材料自体の劣化が進行していることが分かった。エポキシ樹脂については、Bの値は−0.1以下の場合に劣化していると判定できる。よって、表1に記載の材料は、B>−0.1なので材料自体の劣化はないことになる。
(Relationship between the constant B and the deterioration state of the insulating material itself)
Further, as a constant capable of detecting the deterioration of the insulating material itself, as a result of investigating the relationship between the power approximation curve constant reflecting the insulation resistance characteristic in the solid state and the insulating material having a different deterioration state, the correlation with the constant B is It was found that the deterioration of the material itself progressed as the value of B became negative. As for the epoxy resin, it can be determined that the value of B is deteriorated when it is −0.1 or less. Therefore, since the materials described in Table 1 are B> −0.1, there is no deterioration of the materials themselves.

[第1の実施形態]
(簡易的な劣化診断方法)
図2に、本実施形態に係る絶縁材料の劣化診断装置の構成を示す。
[First Embodiment]
(Simple deterioration diagnosis method)
FIG. 2 shows the configuration of the insulation material deterioration diagnosis apparatus according to the present embodiment.

(劣化診断装置)
本劣化診断装置10は、対象となる絶縁材料の絶縁抵抗を測定する絶縁抵抗測定部11、測定時間と絶縁抵抗から近似曲線を求める近似曲線算出部12、得られた近似曲線における定数と材料別の閾値とに基づき劣化度合を診断する劣化診断部13、材料別の劣化判定閾値に関するデータを格納する材料別劣化判定閾値データベース14、汚損度と付着している単位面積当たりの硝酸イオン量(mg/cm)を測定するイオン分析部15から構成されている。
(Deterioration diagnosis device)
The degradation diagnosis apparatus 10 includes an insulation resistance measurement unit 11 that measures an insulation resistance of a target insulation material, an approximate curve calculation unit 12 that obtains an approximate curve from measurement time and insulation resistance, and constants and materials in the obtained approximate curve. Deterioration diagnosis unit 13 for diagnosing the degree of deterioration based on the threshold value of the material, deterioration determination threshold value database 14 for each material storing data relating to the deterioration determination threshold value for each material, and the degree of contamination and the amount of nitrate ions per unit area (mg / Cm 2 ) to measure the ion analyzer 15.

(劣化診断方法)
次に、上記の構成を有する劣化診断装置10を用い、現地で簡易的に劣化診断を実施する手順について図3に従って説明する。
(Deterioration diagnosis method)
Next, a procedure for performing a simple deterioration diagnosis on site using the deterioration diagnosis apparatus 10 having the above-described configuration will be described with reference to FIG.

先ず、絶縁抵抗測定部11により絶縁抵抗の経時変化のデータを60秒間取得する(ステップS11)。次に、近似曲線算出部12により測定時間と絶縁抵抗の累乗近似曲線R=A×tを求める(ステップS12)。また、測定時間と絶縁抵抗の指数近似曲線R=C×exp(Dt)を求める(ステップS13)。 First, the insulation resistance measurement unit 11 acquires data on the change in insulation resistance over time for 60 seconds (step S11). Next, the approximate curve calculation unit 12 obtains a power approximate curve R 1 = A × t B of the measurement time and the insulation resistance (step S12). Further, an exponential approximate curve R 2 = C × exp (Dt) of measurement time and insulation resistance is obtained (step S13).

次に、劣化診断部13は、指数近似曲線R=C×exp(Dt)の定数Dの値と、材料別劣化判定閾値データベース14に格納されている材料毎の閾値のデータと比較して劣化を診断する。例えば、エポキシ樹脂の場合、閾値のデータは上述したように0.001であることから、劣化診断部13は、定数Dの値が0.001未満か否かを判定し(ステップS14)、0.001未満であれば(ステップS14でYes)、汚損していないと診断する(ステップS15)。他方、定数Dが0.001以上であれば(ステップS14でNo)、汚損していると診断する(ステップS16)。 Next, the deterioration diagnosis unit 13 compares the value of the constant D of the exponential approximation curve R 2 = C × exp (Dt) with the threshold value data for each material stored in the deterioration determination threshold value database 14 for each material. Diagnose deterioration. For example, in the case of an epoxy resin, the threshold value data is 0.001 as described above. Therefore, the deterioration diagnosis unit 13 determines whether the value of the constant D is less than 0.001 (step S14). If it is less than 001 (Yes in step S14), it is diagnosed that it is not soiled (step S15). On the other hand, if the constant D is 0.001 or more (No in step S14), it is diagnosed that it is soiled (step S16).

ここで、汚損していると診断した場合でも、材料自体の劣化がなければ、清掃を十分に実施すれば回復する。材料自体の劣化があれば清掃しても、すぐに放電により汚損、材料の劣化が進行するので、精密診断で余寿命を定量的に求める必要がある。   Here, even if it is diagnosed that the material is soiled, if the material itself is not deteriorated, it can be recovered if cleaning is sufficiently performed. Even if the material itself is deteriorated, even if it is cleaned, contamination and deterioration of the material proceed immediately due to discharge. Therefore, it is necessary to quantitatively determine the remaining life by precise diagnosis.

そこで、ステップS16で汚損ありと診断した材料については、劣化診断部13が材料別劣化判定閾値データベース14の閾値に基づき、材料自体の劣化を判定する(ステップS17)。劣化の判定にあたっては、エポキシ樹脂の場合では、定数Bの値が−0.1を超えているか否かを判定し(ステップS17)、−0.1を超える場合(ステップS17でYes)は、絶縁材料自体の劣化はないと診断する(ステップS18)。他方、定数Bが−0.1以下の場合(ステップS17でNo)は、絶縁材料自体の劣化があると診断する(ステップS19)。   Therefore, for the material diagnosed as having fouling in step S16, the deterioration diagnosis unit 13 determines deterioration of the material itself based on the threshold values in the material-specific deterioration determination threshold value database 14 (step S17). In determining the deterioration, in the case of an epoxy resin, it is determined whether or not the value of the constant B exceeds −0.1 (step S17). If it exceeds −0.1 (Yes in step S17), It is diagnosed that there is no deterioration of the insulating material itself (step S18). On the other hand, when the constant B is −0.1 or less (No in step S17), it is diagnosed that the insulating material itself is deteriorated (step S19).

ステップS18で材料自体の劣化はないと診断した場合は、イオン分析部15が汚損度と付着している単位面積当たりの硝酸イオン量(mg/cm)を測定する(ステップS20)。通常環境の汚損度に対する硝酸イオン量の比率は、長年の測定データの経験値で0.1〜0.2であることが分かっている。ステップS21で汚損度に対する硝酸イオン量の比率が0.2を超える場合(ステップS21でYes)は、放電の兆候がある、即ち放電が始まっていると評価し、ステップS22で精密診断を実施する。他方、汚損度に対する硝酸イオン量の比率が0.2以下である場合(ステップS21でNo)は、清掃を実施する等で対策して終了する。 If it is determined in step S18 that the material itself is not deteriorated, the ion analyzer 15 measures the degree of contamination and the amount of nitrate ions (mg / cm 2 ) per unit area attached (step S20). It has been found that the ratio of the nitrate ion amount to the pollution degree of the normal environment is 0.1 to 0.2 as an empirical value of measurement data for many years. If the ratio of the nitrate ion amount to the degree of contamination exceeds 0.2 in step S21 (Yes in step S21), it is evaluated that there is a sign of discharge, that is, the discharge has started, and precise diagnosis is performed in step S22. . On the other hand, when the ratio of the nitrate ion amount to the degree of fouling is 0.2 or less (No in step S21), the countermeasure is terminated by carrying out cleaning or the like.

ステップS19で絶縁材料自体の劣化があると診断した場合は、放電等により劣化が進行し、寿命が近い可能性が高いので、ステップS22で精密診断を実施する。   If it is diagnosed in step S19 that the insulating material itself has deteriorated, the deterioration proceeds due to discharge or the like, and there is a high possibility that the life will be near. Therefore, a precise diagnosis is performed in step S22.

(効果)
本実施形態によれば、放電による絶縁破壊に至る前に、現地で簡便に絶縁材料の汚損状態と絶縁材料自体の劣化状態を診断することができる。
(effect)
According to the present embodiment, it is possible to easily diagnose the contamination state of the insulating material and the deterioration state of the insulating material itself on site before the dielectric breakdown due to discharge.

[第2の実施形態]
(精密劣化診断方法)
図4に、本実施形態に係る絶縁材料の劣化診断装置の構成を示す。
[Second Embodiment]
(Precise deterioration diagnosis method)
FIG. 4 shows the configuration of the insulation material deterioration diagnosis apparatus according to the present embodiment.

(劣化診断装置)
本劣化診断装置20は、対象となる絶縁材料の絶縁抵抗を測定する絶縁抵抗測定部11、測定時間と絶縁抵抗から近似曲線を求める近似曲線算出部12、診断対象について予め決められている評価項目(T法による絶縁抵抗推定式を作成した時の評価項目)を測定する評価項目測定部21、絶縁抵抗の推定値を算出する絶縁抵抗推定値算出部22、予め求められた材料別推定式に関するデータを格納する材料別推定式データベース23、寿命推定曲線を作成する寿命推定曲線作成部24、余寿命を判定する余寿命判定部25、予め算出された材料別寿命閾値に関するデータを格納する材料別寿命閾値データベース26から構成される。
(Deterioration diagnosis device)
The degradation diagnosis apparatus 20 includes an insulation resistance measurement unit 11 that measures an insulation resistance of a target insulation material, an approximate curve calculation unit 12 that obtains an approximate curve from the measurement time and the insulation resistance, and an evaluation item that is predetermined for the diagnosis target. The evaluation item measuring unit 21 for measuring (the evaluation item when the insulation resistance estimation formula by the T method is created), the insulation resistance estimated value calculating unit 22 for calculating the estimated value of the insulation resistance, and the estimation formula for each material obtained in advance Material-specific estimation formula database 23 for storing data, life estimation curve creating unit 24 for creating a life estimation curve, remaining life determination unit 25 for determining the remaining life, and data for each material for storing pre-calculated life threshold values for each material The life threshold value database 26 is configured.

(精密劣化診断方法)
次に、上記の構成を有する劣化診断装置20を用い、現地で精密劣化診断を実施する手順について説明する。
(Precise deterioration diagnosis method)
Next, a procedure for carrying out a precise deterioration diagnosis on site using the deterioration diagnosis apparatus 20 having the above-described configuration will be described.

本実施形態では、第1の実施形態で簡易判定に用いた累乗近似曲線の定数Bを、絶縁材料の劣化評価項目に加えてT(タグチ)法により解析し、絶縁抵抗推定式を求めるものである。   In the present embodiment, the constant B of the power approximation curve used for the simple determination in the first embodiment is analyzed by the T (Taguchi) method in addition to the deterioration evaluation items of the insulating material to obtain the insulation resistance estimation formula. is there.

図5に、本実施形態に係る絶縁材料の劣化診断方法の手順を示す。
先ず、絶縁抵抗測定部11により対象となる絶縁材料の絶縁抵抗を測定する(ステップS31)。次に、近似曲線算出部12により測定時間と絶縁抵抗のデータから累乗近似曲線R=A×tを求める(ステップS32)。
FIG. 5 shows a procedure of the degradation diagnosis method for an insulating material according to the present embodiment.
First, the insulation resistance of the target insulation material is measured by the insulation resistance measurement unit 11 (step S31). Next, the approximate curve calculation unit 12 obtains a power approximate curve R 1 = A × t B from the measurement time and insulation resistance data (step S32).

また、絶縁材料評価項目(温度、湿度、汚損度、塩素イオン、硝酸イオン、硫酸イオン、ナトリウムイオン、色差、反射率、光沢度など)に累乗近似曲線R=A×tの定数Bを追加して、T法により予め絶縁抵抗推定式を求めておき、材料別推定式データベース23にこの絶縁抵抗推定式に関するデータを格納しておく(ステップS33)。 In addition, a constant B of power approximation curve R 1 = A × t B is used for insulating material evaluation items (temperature, humidity, fouling degree, chlorine ion, nitrate ion, sulfate ion, sodium ion, color difference, reflectance, glossiness, etc.) In addition, an insulation resistance estimation formula is obtained in advance by the T method, and data relating to the insulation resistance estimation formula is stored in the material-specific estimation formula database 23 (step S33).

ここで、前記推定式は、各評価項目の一次式であり、下式で表される。なお、定数B以外の評価項目は、材料の種類により異なる。   Here, the estimation formula is a primary formula of each evaluation item, and is expressed by the following formula. Note that the evaluation items other than the constant B differ depending on the type of material.

Y=C+a・X1+b・X2+c・X3+・・・・+l・X12+m・X13
測定値:X1、X2、・・・・・、X13
係数:C,a,b,c,・・・・l,m
Y = C + a.X1 + b.X2 + c.X3 +... + L.X12 + m.X13
Measurement values: X1, X2, ..., X13
Coefficients: C, a, b, c, ... l, m

次に、評価項目測定部21により、近似曲線の定数Bも含めて診断対象について予め決められている評価項目を測定する(ステップS34)。   Next, the evaluation item measuring unit 21 measures evaluation items predetermined for the diagnosis target including the constant B of the approximate curve (step S34).

さらに、絶縁抵抗推定値算出部22は、材料別推定式データベース23に格納された絶縁抵抗推定式を用い、設置環境の最大温度、最大湿度(通常は梅雨時期の温度、湿度)条件での診断時の測定値を代入して絶縁抵抗推定値を計算する(ステップS35)。   Furthermore, the insulation resistance estimated value calculation unit 22 uses the insulation resistance estimation formula stored in the material-specific estimation formula database 23, and diagnoses under conditions of maximum temperature and maximum humidity (usually temperature and humidity in the rainy season) of the installation environment. An insulation resistance estimated value is calculated by substituting the measured value at the time (step S35).

次に、寿命推定曲線作成部24は、図6に示すように、求めた診断時の設置環境の最大温度、最大湿度(通常は梅雨時期の温度、湿度)条件での絶縁抵抗推定値と、その同条件における初期の新品材料の絶縁抵抗値とを用いて絶縁抵抗の寿命推定曲線を作成する(ステップS36)。   Next, the life estimation curve creation unit 24, as shown in FIG. 6, the estimated insulation resistance value under the maximum temperature and maximum humidity conditions (usually the temperature and humidity during the rainy season) at the time of diagnosis, An insulation resistance life estimation curve is created using the initial insulation resistance value of the new material under the same conditions (step S36).

さらに、余寿命判定部25は、絶縁抵抗の寿命推定曲線と材料別寿命閾値データベース26に格納された材料別の寿命閾値とを用いて、図6に示すように、寿命推定曲線と寿命閾値との交点から絶縁材料の余寿命を求める(ステップS37)。   Further, the remaining life determination unit 25 uses the life estimation curve of the insulation resistance and the life threshold for each material stored in the life threshold database for each material 26, as shown in FIG. The remaining life of the insulating material is obtained from the intersection of (step S37).

(効果)
従来のT法を利用した精密劣化診断では、絶縁材料自体の劣化指標として表面の色差、反射率、光沢度などを測定しているが、材料本来の色調によっては、感度よく劣化が測定結果に反映されないことがあり、余寿命診断結果の精度が悪くなることがある。
(effect)
In the precision degradation diagnosis using the conventional T method, the color difference, reflectance, glossiness, etc. of the surface are measured as degradation indicators of the insulating material itself. However, depending on the original color tone, degradation may be detected with high sensitivity. It may not be reflected, and the accuracy of the remaining life diagnosis result may deteriorate.

これに対して、本実施形態では、絶縁材料自体の劣化指標に累乗近似曲線の定数Bを追加したことにより、絶縁材料自体の劣化を、より精度よく反映した診断結果を得ることができる。   On the other hand, in this embodiment, by adding the constant B of the power approximation curve to the deterioration index of the insulating material itself, a diagnosis result that more accurately reflects the deterioration of the insulating material itself can be obtained.

[他の実施形態]
(1)第2の実施形態の劣化診断装置20では、絶縁抵抗測定部11及び近似曲線算出部12を設け、絶縁材料の絶縁抵抗を測定し累乗近似曲線Rを求めたが、これらの部材を省略して、第1の実施形態の劣化診断装置10における絶縁抵抗測定部11及び近似曲線算出部12による測定結果を利用することもできる。
[Other embodiments]
(1) In the deterioration diagnosis device 20 of the second embodiment, the insulation resistance measurement unit 11 and the approximate curve calculation unit 12 are provided, and the insulation resistance of the insulating material is measured to obtain the power approximate curve R 1. The measurement result by the insulation resistance measurement unit 11 and the approximate curve calculation unit 12 in the deterioration diagnosis apparatus 10 of the first embodiment can be used.

(2)第2の実施形態の劣化診断装置20では、寿命推定曲線作成部24と余寿命判定部25とを別々に設けたが、寿命推定曲線作成部24を省略し、余寿命判定部25に寿命推定曲線作成部24の機能を追加することもできる。 (2) In the deterioration diagnosis device 20 of the second embodiment, the life estimation curve creation unit 24 and the remaining life determination unit 25 are provided separately, but the life estimation curve creation unit 24 is omitted and the remaining life determination unit 25. In addition, the function of the life estimation curve creating unit 24 can be added.

(3)以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 (3) Although several embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

10…劣化診断装置
11…絶縁抵抗測定部
12…近似曲線算出部
13…劣化診断部
14…材料別劣化判定閾値データベース
15…イオン分析部
20…劣化診断装置
21…評価項目測定部
22…絶縁抵抗推定値算出部
23…材料別推定式データベース
24…寿命推定曲線作成部
25…余寿命判定部
26…材料別寿命閾値データベース
DESCRIPTION OF SYMBOLS 10 ... Degradation diagnostic apparatus 11 ... Insulation resistance measurement part 12 ... Approximate curve calculation part 13 ... Degradation diagnosis part 14 ... Degradation threshold database 15 classified by material 15 ... Ion analysis part 20 ... Degradation diagnosis apparatus 21 ... Evaluation item measurement part 22 ... Insulation resistance Estimated value calculation unit 23 ... Material-specific estimation formula database 24 ... Life estimation curve creation unit 25 ... Remaining life determination unit 26 ... Material-specific life threshold database

Claims (7)

診断対象となる絶縁材料に直流電圧を印加して絶縁抵抗の経時変化を測定し、該絶縁抵抗と測定時間との関係を指数方程式で近似した場合の指数近似曲線の定数から前記絶縁材料の汚損状態を診断し、前記絶縁抵抗と測定時間との関係を累乗方程式で近似した場合の累乗近似曲線の定数から前記絶縁材料の劣化状態を診断することを特徴とする絶縁材料の劣化診断方法。   Measure the change in insulation resistance over time by applying a DC voltage to the insulation material to be diagnosed, and the contamination of the insulation material from the constant of the exponential approximation curve when the relationship between the insulation resistance and measurement time is approximated by an exponential equation A method for diagnosing deterioration of an insulating material, comprising: diagnosing the state of deterioration and diagnosing a deterioration state of the insulating material from a constant of a power approximation curve when the relation between the insulation resistance and the measurement time is approximated by a power equation. 絶縁抵抗Rと測定時間tの関係を指数方程式で近似した指数近似曲線R=C×exp(Dt)を求め(C、Dは定数)、定数Dの値が材料毎に設定された閾値を越えた場合に前記絶縁材料表面が汚損状態であると診断することを特徴とする請求項1記載の絶縁材料の劣化診断方法。   An exponential approximation curve R = C × exp (Dt) is obtained by approximating the relationship between the insulation resistance R and the measurement time t with an exponential equation (C and D are constants), and the value of the constant D exceeds the threshold set for each material. 2. The method for diagnosing deterioration of an insulating material according to claim 1, wherein the surface of the insulating material is diagnosed as being fouled in the event of failure. 絶縁抵抗Rと測定時間tの関係を累乗方程式で近似した累乗近似曲線R=A×tを求め(A、Bは定数)、定数Bの値が材料毎に設定された閾値以下の場合に前記絶縁材料自体が劣化していると診断することを特徴とする請求項1記載の絶縁材料の劣化診断方法。 A power approximation curve R = A × t B obtained by approximating the relationship between the insulation resistance R and the measurement time t with a power equation is obtained (A and B are constants), and the value of the constant B is less than the threshold set for each material. 2. The method for diagnosing deterioration of an insulating material according to claim 1, wherein the diagnosing that the insulating material itself has deteriorated is diagnosed. 単位面積当たりの硝酸イオン量(mg/cm)を測定し、汚損度に対する硝酸イオン量の比率が所定の値を超える場合に放電の兆候があると評価することを特徴とする請求項2記載の絶縁材料の劣化診断方法。 3. The amount of nitrate ions per unit area (mg / cm 2 ) is measured, and when the ratio of the amount of nitrate ions to the degree of fouling exceeds a predetermined value, it is evaluated that there is an indication of discharge. Deterioration diagnosis method for insulating materials. 診断対象となる絶縁材料に直流電圧を印加して絶縁抵抗の経時変化を測定し、絶縁抵抗Rと測定時間tの関係を累乗方程式で近似した累乗近似曲線R=A×tを求め(A、Bは定数)、定数Bを前記絶縁材料自体の劣化指標とし、定数Bを含めた複数の評価項目を用いて多変量解析であるT法により絶縁抵抗推定式を求め、当該絶縁抵抗推定式に対して診断時における測定条件を代入して求めた診断時の絶縁抵抗推定値と、初期時の絶縁抵抗値とから寿命推定曲線を作成し、当該寿命推定曲線と予め材料毎に求めた寿命閾値との交点から余寿命を求めることを特徴とする絶縁材料の劣化診断方法。 A DC voltage is applied to the insulation material to be diagnosed to measure the change in insulation resistance with time, and a power approximation curve R = A × t B is obtained by approximating the relationship between the insulation resistance R and the measurement time t by a power equation (A , B are constants), the constant B is a deterioration index of the insulating material itself, and an insulation resistance estimation formula is obtained by the T method which is multivariate analysis using a plurality of evaluation items including the constant B, and the insulation resistance estimation formula A life estimation curve is created from the estimated insulation resistance value at diagnosis and the initial insulation resistance value obtained by substituting the measurement conditions at the time of diagnosis with respect to the life estimation curve and the life previously determined for each material. A method for diagnosing deterioration of an insulating material, characterized in that a remaining life is obtained from an intersection with a threshold value. 診断対象となる絶縁材料に直流電圧を印加して絶縁抵抗の経時変化を測定する絶縁抵抗測定部と、
絶縁抵抗と測定時間の関係から累乗近似曲線R=A×t(A、Bは定数)及び指数近似曲線R=C×exp(Dt)(C、Dは定数)を求める近似曲線算出部と、
前記指数近似曲線の定数Dの値を判定閾値と比較して前記絶縁材料の汚損状態を診断し、前記累乗近似曲線の定数Bの値を判定閾値と比較して前記絶縁材料自体の劣化状態を診断する劣化診断部と、
を備えたことを特徴とする絶縁材料の劣化診断装置。
An insulation resistance measurement unit that measures a change in insulation resistance with time by applying a DC voltage to the insulation material to be diagnosed;
An approximate curve calculation unit for obtaining a power approximate curve R = A × t B (A and B are constants) and an exponential approximate curve R = C × exp (Dt) (C and D are constants) from the relationship between insulation resistance and measurement time; ,
The value of constant D of the exponential approximation curve is compared with a determination threshold value to diagnose the contamination state of the insulating material, and the value of constant B of the power approximation curve is compared with a determination threshold value to determine the deterioration state of the insulating material itself. A deterioration diagnosis unit to diagnose,
A deterioration diagnosis apparatus for insulating materials, comprising:
絶縁抵抗Rと測定時間tの関係を累乗方程式で近似した累乗近似曲線R=A×tにおける定数Bを絶縁材料自体の劣化指標とし、前記定数Bを含めた複数の絶縁材料の評価項目を測定する評価項目測定部と、
前記評価項目を用いて多変量解析であるT法により予め材料毎に求めた絶縁抵抗推定式が格納された材料別推定式データベースと、
前記絶縁抵抗推定式に前記評価項目の測定値を代入して診断時の前記絶縁材料が設置環境で想定される条件における絶縁抵抗推定値を算出する絶縁抵抗推定値算出部と、
予め算出された材料別の絶縁抵抗の寿命閾値を格納した材料別寿命閾値データベースと、
前記診断時と同一条件における初期時の絶縁抵抗値と前記算出した絶縁抵抗推定値とから寿命推定曲線を作成し、当該寿命推定曲線と前記材料別の絶縁抵抗の寿命閾値との交点から余寿命を求める余寿命推定部と、
を備えたことを特徴とする絶縁材料の劣化診断装置。
The constant B in the power approximation curve R = A × t B, which approximates the relationship between the insulation resistance R and the measurement time t by a power equation, is used as the degradation index of the insulating material itself, and evaluation items for a plurality of insulating materials including the constant B are as follows. An evaluation item measuring unit to be measured;
An estimation formula database classified by material in which an insulation resistance estimation formula obtained for each material in advance by the T method which is multivariate analysis using the evaluation items is stored;
An insulation resistance estimated value calculation unit that calculates an insulation resistance estimated value in a condition that the insulating material at the time of diagnosis is assumed in an installation environment by substituting the measured value of the evaluation item into the insulation resistance estimation formula;
A life threshold database for each material storing a life threshold value of insulation resistance for each material calculated in advance;
A life estimation curve is created from the initial insulation resistance value and the calculated insulation resistance estimated value under the same conditions as the diagnosis, and the remaining life is calculated from the intersection of the life estimation curve and the life threshold value of the insulation resistance for each material. A remaining life estimation unit for obtaining
A deterioration diagnosis apparatus for insulating materials, comprising:
JP2012198953A 2012-09-10 2012-09-10 Insulation material degradation diagnosis method and apparatus Expired - Fee Related JP5836904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012198953A JP5836904B2 (en) 2012-09-10 2012-09-10 Insulation material degradation diagnosis method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012198953A JP5836904B2 (en) 2012-09-10 2012-09-10 Insulation material degradation diagnosis method and apparatus

Publications (2)

Publication Number Publication Date
JP2014052356A true JP2014052356A (en) 2014-03-20
JP5836904B2 JP5836904B2 (en) 2015-12-24

Family

ID=50610939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012198953A Expired - Fee Related JP5836904B2 (en) 2012-09-10 2012-09-10 Insulation material degradation diagnosis method and apparatus

Country Status (1)

Country Link
JP (1) JP5836904B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015227804A (en) * 2014-05-30 2015-12-17 株式会社東芝 Remaining life calculation method, deterioration diagnosis method, deterioration diagnostic device and program
JP2017106750A (en) * 2015-12-07 2017-06-15 富士電機株式会社 Insulation characteristic measuring apparatus, method for measuring insulation characteristic using the apparatus, and residual life diagnostic method
CN108205075A (en) * 2016-12-16 2018-06-26 施耐德电器工业公司 For diagnosing the method and apparatus of the abrasion of electrical switching unit and electric unit
CN111766537A (en) * 2020-07-29 2020-10-13 海南电网有限责任公司电力科学研究院 Insulation trend analysis method for direct current system
CN113424044A (en) * 2019-02-13 2021-09-21 三菱电机株式会社 Remaining life diagnosis method and remaining life diagnosis device for electrical equipment
JP7395077B1 (en) 2023-04-18 2023-12-08 三菱電機株式会社 Method, device and program for diagnosing deterioration of electrical equipment including insulators

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015227804A (en) * 2014-05-30 2015-12-17 株式会社東芝 Remaining life calculation method, deterioration diagnosis method, deterioration diagnostic device and program
JP2017106750A (en) * 2015-12-07 2017-06-15 富士電機株式会社 Insulation characteristic measuring apparatus, method for measuring insulation characteristic using the apparatus, and residual life diagnostic method
CN108205075A (en) * 2016-12-16 2018-06-26 施耐德电器工业公司 For diagnosing the method and apparatus of the abrasion of electrical switching unit and electric unit
CN113424044A (en) * 2019-02-13 2021-09-21 三菱电机株式会社 Remaining life diagnosis method and remaining life diagnosis device for electrical equipment
CN111766537A (en) * 2020-07-29 2020-10-13 海南电网有限责任公司电力科学研究院 Insulation trend analysis method for direct current system
JP7395077B1 (en) 2023-04-18 2023-12-08 三菱電機株式会社 Method, device and program for diagnosing deterioration of electrical equipment including insulators

Also Published As

Publication number Publication date
JP5836904B2 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP5836904B2 (en) Insulation material degradation diagnosis method and apparatus
JP5840342B2 (en) Insulation degradation diagnosis method for insulation materials
JP7241476B2 (en) Short-circuit remaining life diagnostic method and short-circuit remaining life diagnostic system for power receiving and distributing equipment
JP4121430B2 (en) Insulation diagnosis method for electrical equipment
JP4937012B2 (en) Remaining life diagnosis method for power distribution equipment
JP5722027B2 (en) Insulation material deterioration diagnosis device, deterioration diagnosis method, and deterioration diagnosis program
CN108089101B (en) A kind of appraisal procedure of scene casing insulation ag(e)ing state
JP5562287B2 (en) Remaining life diagnosis method and remaining life diagnosis device for power distribution equipment
JP4045776B2 (en) Life diagnosis method for power distribution facilities
JP6045444B2 (en) Remaining life diagnosis method and remaining life diagnosis device for power distribution equipment
JP5374445B2 (en) Remaining life diagnosis method, remaining life diagnosis device and program
JP6460003B2 (en) Diagnosis method of electrical equipment
JP2014023401A (en) Remaining lifetime diagnosing method of insulator in power receiving/transforming facility
JP6334271B2 (en) Remaining life calculation method, deterioration diagnosis method, deterioration diagnosis device, and program
JP2015175613A (en) Evaluation method of electric wire and evaluation device of electric wire
JP6049792B2 (en) Insulation material deterioration diagnosis device, deterioration diagnosis method, and deterioration diagnosis program
JP5787565B2 (en) Insulation deterioration diagnosis method
JP5872643B2 (en) Insulation degradation diagnosis method for insulation materials
JP2004236465A (en) Estimating method for remaining lifetime of solid insulator for power receiving and distributing equipment
CN116466067A (en) Method for early warning residual life of composite insulator silicon rubber material based on gray theory
JP2017110916A (en) Deterioration diagnostic device and deterioration diagnostic method
JP5550034B2 (en) Degradation diagnosis method for polymer materials
JP2019020271A (en) Method and device for evaluating decrease in insulation resistance value of insulator or recovery from decrease state
JP6763131B2 (en) Insulation characteristic measuring device, insulation characteristic measuring method using it, and remaining life diagnosis method
JP5495232B2 (en) Degradation diagnosis method and surface resistance measurement method of polymer material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150226

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151104

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

LAPS Cancellation because of no payment of annual fees