WO2021166095A1 - Deterioration diagnosis method and deterioration diagnosis device - Google Patents

Deterioration diagnosis method and deterioration diagnosis device Download PDF

Info

Publication number
WO2021166095A1
WO2021166095A1 PCT/JP2020/006415 JP2020006415W WO2021166095A1 WO 2021166095 A1 WO2021166095 A1 WO 2021166095A1 JP 2020006415 W JP2020006415 W JP 2020006415W WO 2021166095 A1 WO2021166095 A1 WO 2021166095A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
metal thin
film wiring
insulator
deterioration
Prior art date
Application number
PCT/JP2020/006415
Other languages
French (fr)
Japanese (ja)
Inventor
宗一郎 藤原
伸介 三木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/006415 priority Critical patent/WO2021166095A1/en
Priority to JP2022501458A priority patent/JP7183473B2/en
Publication of WO2021166095A1 publication Critical patent/WO2021166095A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections

Definitions

  • the present disclosure relates to a deterioration diagnosis method and a deterioration diagnosis device for diagnosing deterioration of high-voltage electrical equipment including an insulator.
  • Patent Document 1 discloses a method for diagnosing the remaining life of a power receiving and distributing facility.
  • the remaining life diagnosis method insulation diagnosis is performed in which a comb-shaped electrode is provided in each of an undeteriorated part in which the material equivalent to the insulating material used in high-voltage electrical equipment is in an undeteriorated state and a deteriorated part in a deteriorated state.
  • the change in the surface resistivity of the deteriorated part and the undeteriorated part of the sensor is measured, and the deterioration is diagnosed based on the time-dependent reference curve of the surface resistivity measured in advance.
  • This disclosure is made to solve the above-mentioned problems, and is to simply diagnose the deterioration of high-voltage electrical equipment without being affected by humidity.
  • the deterioration diagnosis method diagnoses deterioration of high-voltage electrical equipment including an insulator.
  • the deterioration diagnosis method includes a step of arranging at least one metal thin film wiring around the insulator and a resistance value of at least one metal thin film wiring when both the insulator and at least one metal thin film wiring come into contact with a specific gas.
  • the step of creating a relational expression expressing the second correlation between the usage time of high-voltage electrical equipment and the surface resistance of the insulation, and in the relational expression, the insulation performs insulation performance.
  • the step of calculating the lifetime of the high-voltage electrical equipment corresponding to the reference surface resistance in case of loss and the lifetime the usage time of the high-voltage electrical equipment at the measurement timing or at least one metal thin film wiring is arranged around the insulator. It includes a step of calculating the remaining life time of the high-pressure electric device by subtracting the usage time of the high-pressure electric device at the same timing.
  • the deterioration diagnostic apparatus diagnoses deterioration of high-voltage electrical equipment including an insulator.
  • the deterioration diagnosis device includes at least one metal thin film wiring, a database, a measurement unit, an estimation unit, a relational expression creation unit, a life calculation unit, and a remaining life calculation unit.
  • At least one metal thin film wiring is arranged around the insulation.
  • the database defines the first correlation between the resistance value of at least one metal thin film wiring and the surface resistivity of the insulator when both the insulation and at least one metal thin film wiring come into contact with a specific gas.
  • the measuring unit measures the resistance value at each measurement timing of at least one metal thin film wiring.
  • the estimation unit estimates the surface resistivity of the insulator at the measurement timing by using the database and the resistance value at the measurement timing.
  • the relational expression creation unit is based on the usage time of the high-voltage electrical equipment at the measurement timing, the surface resistivity of the insulator at the measurement timing, and the surface resistivity of the insulator when the high-voltage electrical equipment is unused. Create a relational expression that expresses the second correlation between the usage time and the surface resistivity of the insulator.
  • the life calculation unit calculates the life time of the high-voltage electrical equipment corresponding to the reference surface resistivity when the insulator loses the insulation performance.
  • the remaining life calculation unit calculates the remaining life time of the high-voltage electrical equipment by subtracting the usage time of the high-voltage electrical equipment at the measurement timing or the usage time of the high-voltage electrical equipment at the timing when at least one metal thin film wiring is arranged around the insulator. calculate.
  • the resistance value of at least one metal thin film wiring and the surface resistivity of the insulation when both the insulation and at least one metal thin film wiring come into contact with a specific gas By using a database that defines the first correlation with, deterioration of high-voltage electrical equipment can be easily diagnosed without being affected by humidity.
  • FIG. 1 This database defines the correlation between the surface resistivity of the insulator to be diagnosed after the NOx exposure test, which affects the insulation deterioration, and the resistance value of the metal thin film wiring.
  • FIG. It is a block diagram which shows the functional structure of the deterioration diagnosis apparatus which executes the deterioration diagnosis method which concerns on Embodiment 1.
  • FIG. It is a hardware block diagram of the main part of the control part of FIG. It is a functional block diagram of the control part of FIG. It is a block diagram which shows the functional structure of the deterioration diagnosis apparatus which executes the deterioration diagnosis method which concerns on Embodiment 2.
  • FIG. It is a flowchart which shows the flow of the deterioration diagnosis method which concerns on Embodiment 2.
  • It is a functional block diagram of the control part of FIG. It is a block diagram which shows the functional structure of the deterioration diagnosis apparatus which executes the deterioration diagnosis method which concerns on Embodiment 3.
  • It is the schematic of the metal thin film wiring which concerns on Embodiment 4.
  • the method for diagnosing deterioration of high-voltage electrical equipment according to the first embodiment is a method for diagnosing deterioration of high-voltage electrical equipment provided with an insulator.
  • High-voltage electrical equipment is composed of main circuit components such as circuit breakers, disconnectors, transformers, buses and conductors, and measuring equipment.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of a switchgear 49, which is an example of high-voltage electrical equipment.
  • the switchgear 49 includes a circuit breaker supported by an insulator, a disconnector, a main circuit component such as a bus / conductor, and a measuring device.
  • the X-axis, Y-axis, and Z-axis are orthogonal to each other.
  • the + direction of the Z-axis is the upper side
  • the-direction of the Z-axis is the lower side.
  • the switchgear 49 includes circuit breakers 50a, 50b, three horizontal bus 52s, connecting conductors 53a, 54a, 53b, 54b, bus support plates 56, cables 57a, 57b, and the like.
  • a plurality of insulators 58 are provided.
  • the circuit breaker 50a includes an operating mechanism 51a and a mold frame 55a.
  • the circuit breaker 50b includes an operating mechanism 51b and a mold frame 55b.
  • the connecting conductors 53a, 54a, 53b, and 54b are supported by a plurality of insulators 58.
  • the three horizontal bus 52s correspond to the three phases of three-phase alternating current.
  • the bus support plate 56 collectively supports the three horizontal bus 52s.
  • the mold frame 55a incorporating the operation mechanism 51a and the blocking portion (not shown) is mounted on the trolley 61a.
  • a mold frame 55b incorporating an operation mechanism 51b and a blocking portion (not shown) is mounted on a carriage 61b.
  • the carriages 61a and 61b can move in the X-axis direction.
  • One end of the connecting conductor 53a is electrically connected to the cable 57a.
  • the other end of the connecting conductor 53a is electrically connected to the upper terminal of the circuit breaker 50a.
  • One end of the connecting conductor 54a is electrically connected to the lower terminal of the circuit breaker 50a.
  • the other end of the connecting conductor 54a is electrically connected to one end of the connecting conductor 53b via the horizontal bus 52.
  • the other end of the connecting conductor 53b is connected to the upper terminal of the circuit breaker 50b.
  • One end of the connecting conductor 54b is connected to the lower terminal of the circuit breaker 50b.
  • the other end of the connecting conductor 54b is electrically connected to the cable 57b.
  • Each of the mold frames 55a and 55b, the bus support plate 56, and the insulator 58 is an insulator, and is a target of deterioration diagnosis (diagnosis target) in the present disclosure.
  • Examples of the material of the insulator include polyester resin, epoxy resin, and phenol resin.
  • the metal thin film wiring 10 is formed as a separate body from the diagnosis target and is installed around the diagnosis target.
  • the metal thin film wiring 10 is installed in the vicinity of the mold frame 55b.
  • FIG. 2 is a flowchart showing the flow of the deterioration diagnosis method according to the first embodiment.
  • FIG. 3 is a graph schematically showing the relationship between the years of use (use time) of high-voltage electrical equipment and the surface resistivity.
  • a specific gas for example, nitrogen oxide (NOx) or sulfur oxide (SOx)
  • NOx nitrogen oxide
  • SOx sulfur oxide
  • a database that defines the correlation (first correlation) between the resistance value of the metal thin film wiring and the surface resistivity of the diagnosis target is available. Created in advance.
  • the metal thin film wiring is arranged around the diagnosis target. The periphery of the diagnosis target is an area covered with the specific gas when the diagnosis target is exposed to a specific gas that affects the deterioration of the diagnosis target.
  • step S3 the resistance value of the metal thin film wiring is measured at each measurement timing by a simple resistance meter such as a tester. The resistance value is measured regularly or constantly.
  • step S4 the resistance value of the metal thin film wiring measured in step S3 is collated with the database created in step S1, and the surface resistivity SR1 of the diagnosis target at the measurement timing of the resistance value is estimated.
  • the measurement timing of the resistance value at which the surface resistivity SR1 is estimated is defined as the number of years of use L1 (year).
  • step S5 from the surface resistivity SR1 and the surface resistivity SR0 of the new product (unused product) to be diagnosed, the correlation between the surface resistivity and the years of use of the high-voltage electrical equipment ( A relational expression representing the deterioration straight line RF1 (linear relation) representing the second correlation) is created.
  • step S6 the life period L2 (life time) corresponding to the surface resistivity threshold SR2 (reference surface resistivity) is calculated from the deterioration straight line RF1.
  • the threshold value SR2 is the surface resistivity when the diagnosis target loses the insulation performance and a discharge occurs in the diagnosis target.
  • step S7 by subtracting the years of use L1 ( ⁇ L2) of the diagnosis target at the measurement timing of the metal thin film wiring or the arrangement timing of the metal thin film wiring from the life years L2 of the diagnosis target, the remaining life RL1 (remaining) of the diagnosis target is subtracted. Life time) is calculated.
  • FIG. 4 is a schematic view of the metal thin film wiring 10 according to the first embodiment.
  • a comb-shaped metal thin film wiring 10 is formed on the main surface of the insulating substrate 32.
  • the ratio (W / L) of the wiring width W of the metal thin film wiring 10 to the wiring length L of the metal thin film wiring 10 is adjusted so as to have a resistance (several hundred ⁇ level) that can be easily measured by a tester or the like (W / L).
  • the shape of the metal thin film wiring 10 may be other than the comb shape as long as the ratio is 1000 or more).
  • the metal thin film wiring 10 is excessively thin or excessively long, the impedance of the metal thin film wiring 10 increases and the detection sensitivity decreases. Therefore, it is desirable that the metal thin film wiring 10 has an appropriate width and length. Further, if the metal thin film wiring 10 is excessively short, it may be difficult to form and solder the metal thin film wiring 10. Therefore, it is desirable that the metal thin film wiring 10 has an appropriate length. From the viewpoint of suppressing the increase in the impedance of the metal thin film wiring 10 due to the cross-sectional area of the metal thin film wiring 10, and from the viewpoint of suppressing the increase in the impedance of the metal thin film wiring 10 at a position near the film thickness at the time of film formation of the metal thin film wiring 10.
  • the thickness of the metal thin film wiring 10 is preferably 0.1 ⁇ m or more. Further, in order to measure the resistance of the metal thin film wiring 10, the metal thin film wiring 10 needs to be formed on an insulating substrate. Examples of the material of the insulating substrate 32 include glass, glass epoxy, and paper phenol.
  • Electrode pads 33 are arranged at both ends of the metal thin film wiring 10.
  • the electrode pad 33 is connected to the lead wire 34.
  • the metal material of the metal thin film wiring 10 a metal that can accurately evaluate the environment exposed to a specific gas (for example, copper (Cu), copper alloy, silver (Ag), silver alloy, nickel (Ni), etc. It is preferably a nickel alloy, iron (Fe), and iron alloy). Even if it is a metal material other than these, other metal materials may be used as long as the exposure environment can be evaluated.
  • Examples of the film forming method of the metal thin film wiring 10 include a sputtering method, a vapor deposition method, and a plating method.
  • FIG. 5 is a database that defines the correlation between the surface resistivity of the insulator to be diagnosed after the NOx exposure test, which affects the insulation deterioration, and the resistance value of the metal thin film wiring 10.
  • the data shown in FIG. 5 is data when a polyester insulator is used as a diagnostic target and a copper thin film wiring is used as the metal thin film wiring 10.
  • a linear relationship is approximately established between the resistance value of the metal thin film wiring 10 and the surface resistivity of the diagnosis target. By using the straight line, the surface resistivity of the diagnosis target can be estimated from the resistance value of the metal thin film wiring 10.
  • the metal thin film wiring 10 and the diagnostic target are not limited to the copper thin film wiring and the polyester insulator, respectively.
  • the metal thin film wiring 10 may be formed of, for example, a copper alloy, silver, silver alloy, nickel, nickel alloy, iron, or iron alloy.
  • the diagnosis target may be, for example, an epoxy insulator or a phenol insulator.
  • a database that defines the correlation between the resistance value and the surface resistivity of the polyester insulator may be used.
  • the resistance value of the metal thin film wiring 10 is not affected by humidity, unlike the surface resistivity of the diagnosis target. Therefore, by using the metal thin film wiring 10 and the database in which the relationship between the resistance value of the metal thin film wiring 10 and the surface resistivity of the diagnosis target is defined, the error due to the influence of humidity is eliminated from the surface resistivity of the diagnosis target. can do. Further, a high-performance measuring device such as a high resistance measuring instrument necessary for measuring the surface resistivity of the diagnostic object is not required, and the resistance value can be easily measured by a tester or the like. The surface resistivity of the diagnosis target can be estimated by collating the simply measured resistance value with the database. As a result, deterioration of high-voltage electrical equipment can be easily diagnosed without being affected by humidity.
  • FIG. 6 is a block diagram showing a functional configuration of the deterioration diagnosis device 100 that executes the deterioration diagnosis method according to the first embodiment.
  • the deterioration diagnosis device 100 is realized in the form of a control board whose operation is controlled by a program recorded on a recording medium such as a ROM (Read Only Memory).
  • the control board is an example of realization of the deterioration diagnosis device 100, and the hardware configuration of the deterioration diagnosis device 100 is not limited to the configuration shown in FIG.
  • the deterioration diagnosis device 100 includes an input unit 101, a storage unit 102, a control unit 103, and an output unit 104.
  • the input unit 101 includes an input device such as a keyboard, a mouse, or a tablet.
  • the input unit 101 receives the input from the database necessary for the deterioration diagnosis of the diagnosis target 55 (for example, the mold frames 55a and 55b), and transmits the input database to the storage unit 102. For example, data of the resistance value of the copper thin film wiring and the surface resistivity of the polyester insulator is input to the input unit 101 prior to the deterioration diagnosis.
  • a predetermined voltage for example, 100 V
  • a measuring unit 20 such as a tester
  • an output value from the metal thin film wiring 10 is measured by the measuring unit 20.
  • the measured value sent from the measuring unit 20 is input to the input unit 101.
  • the storage unit 102 is a memory device including, for example, a ROM, a RAM (Random Access Memory), and a hard disk.
  • the storage unit 102 stores various data such as a program for executing the deterioration diagnosis method and data on the metal thin film wiring 10 for calculating the surface resistivity from the measured value.
  • the storage unit 102 stores various data input to the input unit 101.
  • the control unit 103 is realized by, for example, a microprocessor (MPU: Micro-Processing Unit). By reading the program stored in the storage unit 102, the control unit 103 executes the process related to the deterioration diagnosis according to the procedure described in the program. Twice
  • FIG. 7 is a hardware configuration diagram of the main part of the control unit 103 of FIG. Each function of the control unit 103 can be realized by the processing circuit 1.
  • the processing circuit 1 includes at least one processor 1b and at least one memory 1c.
  • the processing circuit 1 may include at least one dedicated hardware 1a together with the processor 1b and the memory 1c, or as a substitute for them.
  • each function of the deterioration diagnosis device 100 is realized by software, firmware, or a combination of software and firmware. At least one of the software and firmware is written as a program. The program is stored in the memory 1c. The processor 1b realizes each function of the deterioration diagnosis device 100 by reading and executing the program stored in the memory 1c.
  • the processor 1b is also called a CPU (Central Processing Unit), a processing device, an arithmetic unit, a microprocessor, a microcomputer, or a DSP.
  • the memory 1c is composed of, for example, a non-volatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM (Erasable Programmable Read Only Memory), or an EEPROM (Electrically Erasable Programmable Read Only Memory).
  • the processing circuit 1 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field Programmable). It is realized by Gate Array) or a combination of these.
  • Each of the plurality of functions of the deterioration diagnosis device 100 can be realized by the processing circuit 1.
  • the plurality of functions of the deterioration diagnosis device 100 can be collectively realized by the processing circuit 1.
  • a part may be realized by the dedicated hardware 1a, and the other part may be realized by software or firmware.
  • the processing circuit 1 can realize each function of the deterioration diagnosis device 100 by the hardware 1a, the software, the firmware, or a combination thereof.
  • the output unit 104 outputs the diagnosis result based on the remaining life calculated by the control unit 103 to the external output device 105.
  • the output device 105 may include, for example, a wireless device, a printer, a display, or both.
  • FIG. 8 is a functional block diagram of the control unit 103 of FIG. With reference to FIGS. 8 and 2, the control unit 103 includes an estimation unit 72, a relational expression creation unit 73, a life calculation unit 74, and a remaining life calculation unit 75.
  • the estimation unit 72 estimates the surface resistivity of the diagnosis target.
  • the relational expression creation unit 73 creates a relational expression between the years of use of the diagnosis target and the surface resistivity of the diagnosis target.
  • the life calculation unit 74 calculates the life of the diagnosis target.
  • the remaining life calculation unit 75 calculates the remaining life of the diagnosis target.
  • the database 71 defines the correlation between the resistance value of the metal thin film wiring 10 derived based on the preliminary experiment and the surface resistivity of the diagnosis target.
  • the estimation unit 72 collates the resistance value of the metal thin film wiring 10 measured after the metal thin film wiring 10 is arranged around the diagnosis target with the database 71, and estimates the surface resistivity of the diagnosis target. That is, the estimation unit 72 executes the process of step S4.
  • the relational expression creation unit 73 corresponds to the surface resistivity of the diagnosis target estimated from the resistance value of the metal thin film wiring 10 and the surface resistivity of the diagnosis target having been used for 0 years (new or unused product). By connecting the points, a relational expression between the years of use of the diagnosis target and the surface resistivity of the diagnosis target is created. That is, the relational expression creation unit 73 executes the process of step S5.
  • the lifespan calculation unit 74 calculates the lifespan of the diagnosis target from the relational expression created by the relational expression creation unit 73 and a predetermined threshold value. That is, the life calculation unit 74 executes the process of step S6.
  • the remaining life calculation unit 75 subtracts the number of years of use of the diagnosis target at the measurement timing of the resistance value of the metal thin film wiring 10 or the arrangement timing of the metal thin film wiring 10 from the life years calculated by the life calculation unit 74 to obtain the remaining life. calculate. That is, the remaining life calculation unit 75 executes the process of step S7.
  • deterioration of high-voltage electrical equipment can be easily diagnosed without being affected by humidity.
  • Embodiment 2 In the first embodiment, by using the metal thin film wiring and the database in which the correlation between the resistance value of the metal thin film wiring and the surface resistivity of the diagnosis target is defined, a high resistance measuring meter is not required and it is easy to use. A deterioration diagnosis method that can measure resistance and does not require humidity control has been described.
  • the resistance value of the metal thin film wiring stored in the database in the first embodiment is a value at a constant temperature (for example, 20 ° C.). Therefore, in the second embodiment, the temperature coefficient of resistance of each metal species (e.g., in the copper was 4.3 ⁇ 10 -3 / °C, 4.3 ⁇ 10 -3 / °C in silver) utilizing Calculates the resistance value for each environment in which the diagnosis target is installed.
  • FIG. 9 is a block diagram showing a functional configuration of a deterioration diagnosis device 200 that executes the deterioration diagnosis method according to the second embodiment.
  • the configuration of the deterioration diagnosis device 200 is that the control unit 103 in FIG. 6 is replaced with 103B, and the temperature from the temperature sensor 80 is input to the input unit 101. Other than these, the description is the same, so the description will not be repeated.
  • the temperature sensor 80 outputs the ambient temperature of the metal thin film wiring 10 to the input unit 101.
  • the control unit 103B has the temperature difference measured by the temperature sensor 80 at the temperature at which the data used for creating the database was measured and the measurement timing of the metal thin film wiring 10 or the arrangement timing of the metal thin film wiring 10, and the metal thin film wiring.
  • the resistance temperature coefficient of the metal contained in 10 is used to correct the resistance value of the metal thin film wiring 10 in the database.
  • FIG. 10 is a flowchart showing the flow of the deterioration diagnosis method according to the second embodiment.
  • the flowchart shown in FIG. 10 is a point in which step S3B is added between steps S3 and S4 of the flowchart shown in FIG. Other than this, the explanation is not repeated because it is the same.
  • FIG. 11 is a functional block diagram of the control unit 103B of FIG.
  • the configuration of the control unit 103B is such that the estimation unit 72 of FIG. 8 is replaced with 72B. Other than this, the explanation is not repeated because it is the same.
  • the estimation unit 72B executes steps S3B and S4 of FIG.
  • deterioration of high-voltage electrical equipment can be easily diagnosed without being affected by humidity. Further, since the surface resistivity for each environment in which the diagnosis target is installed can be estimated, the deterioration diagnosis can be performed with higher accuracy than that of the first embodiment.
  • Embodiment 3 a high resistance measuring instrument can be obtained by using a database that summarizes the relationship between one metal thin film wiring and the resistance value of the metal thin film wiring and the surface resistivity of the diagnosis target. A deterioration diagnosis method that is unnecessary and can easily measure resistance and does not require humidity control was explained. In the third embodiment, the case where the number of metal thin film wirings is 2 or more will be described.
  • FIG. 12 is a block diagram showing a functional configuration of the deterioration diagnosis device 300 that executes the deterioration diagnosis method according to the third embodiment.
  • the configuration of the deterioration diagnosis device 300 is that the metal thin film wiring 10B and the measurement unit 20B are added to the configuration of the deterioration diagnosis device 100 of FIG. 6, and the resistance value from the measurement unit 20B is input to the input unit 101. Other than these, the description is the same, so the description will not be repeated.
  • the metal thin film wiring 10B is arranged around the diagnosis target 55.
  • the measuring unit 20B measures the resistance of the metal thin film wiring 10B and outputs the resistance to the input unit 101.
  • deterioration of high-voltage electrical equipment can be easily diagnosed without being affected by humidity. Further, by installing a plurality of metal thin film wirings, it is possible to consider a plurality of items that affect the insulation performance of the diagnosis target, and it is possible to perform deterioration diagnosis that is more suitable for the environment in which the diagnosis target is installed.
  • Embodiment 4 a high resistance measuring meter is not required by using a database that summarizes the relationship between one metal thin film wiring and the resistance value of the metal thin film wiring and the surface resistivity of the diagnosis target.
  • a coating agent may be applied to the metal thin film wiring and covered with the coating film.
  • FIG. 13 is a schematic view of the metal thin film wiring 10D according to the fourth embodiment.
  • the configuration shown in FIG. 13 is a configuration in which a coating agent is applied to the metal thin film wiring 10 of FIG. 4 to form a coating film 31.
  • the explanation is not repeated because it is the same.
  • the coating agent for example, a polyurethane-based coating agent or a silicone-based coating agent can be used, but these are not necessarily used.
  • the coating film 31 is formed on the metal thin film wiring 10D, the gas that affects the deterioration of the diagnosis target 55 permeates the coating film 31, so that the metal thin film wiring 10D is almost the same as when the coating film 31 is not present. It is possible to detect the deterioration of the diagnosis target 55. Further, false detection of deterioration or detection failure can be reduced. Examples of the detection failure include a case where a person, dust, or the like comes into contact with the metal thin film wiring, and a part of the metal thin film wiring is cut.
  • deterioration of high-voltage electrical equipment can be easily diagnosed without being affected by humidity.
  • the influence of false detection or detection failure in deterioration diagnosis can be reduced.
  • high-voltage electric equipment examples include switch gears, power receiving and distribution equipment, transformers, control gears such as motor control centers, generators, motors, and power supply devices for power supply (for example, AC power supply devices and DC power supply devices). , Or a rectifier).
  • 1 Processing circuit 1a hardware, 1b processor, 1c memory, 10,10B, 10D metal thin film wiring, 20,20B measuring unit, 31 coating film, 32 insulating substrate, 33 electrode pad, 34 lead wire, 49 switchgear, 50a , 50b circuit breaker, 51a, 51b operation mechanism, 52 horizontal bus, 53a, 53b, 54a, 54b connection conductor, 55 diagnosis target, 55a, 55b mold frame, 56 bus support plate, 57a, 57b cable, 58 porcelain, 61a, 61b trolley, 71 database, 72, 72B estimation unit, 73 relational expression creation unit, 74 life calculation unit, 75 remaining life calculation unit, 80 temperature sensor, 100, 200, 300 deterioration diagnostic device, 101 input unit, 102 storage unit, 103, 103B control unit, 104 output unit, 105 output device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

This deterioration diagnosis method comprises: a step (S2) for placing metal thin film wiring around an insulator; a step (S1) for creating, in advance, a database defining a first correlation between the surface resistivity of the insulator and the resistance value of the metal thin film wiring during contact with a specific gas; a step (S3) for measuring resistance values of the metal thin film wiring at various measurement times; a step (S4) for using the database and the resistance values at the measurement times to estimate the surface resistivities of the insulator at the measurement times; a step (S5) for creating a relational expression expressing a second correlation between the amount of time for which high-voltage electrical equipment has been used and the surface resistivity of the insulator; a step (S6) for calculating the lifetime of the high-voltage electrical equipment corresponding, in the relational expression, to a reference surface resistivity at which the insulator will lose insulation performance; and a step (S7) for calculating the remaining lifetime of the high-voltage electrical equipment obtained by subtracting, from the lifetime, the time for which the high-voltage electrical equipment had been used at a measurement time.

Description

劣化診断方法および劣化診断装置Deterioration diagnosis method and deterioration diagnosis device
 本開示は、絶縁物を含む高圧電気機器の劣化を診断する劣化診断方法および劣化診断装置に関する。 The present disclosure relates to a deterioration diagnosis method and a deterioration diagnosis device for diagnosing deterioration of high-voltage electrical equipment including an insulator.
 従来、絶縁物を含む高圧電気機器の劣化を診断する劣化診断方法が知られている。たとえば、特開2002-372561号公報(特許文献1)には、受配電設備の余寿命を算出する余寿命診断方法が開示されている。当該余寿命診断方法においては、高圧電気機器に用いられている絶縁材料と同等材料が未劣化の状態の未劣化部位と、劣化した状態の劣化部位にそれぞれ櫛型電極を設けた構成の絶縁診断センサを用い、センサの劣化部位と未劣化部位の表面抵抗率の変化を測定し、予め測定された表面抵抗率の時間依存性基準曲線に基づいて劣化を診断する。 Conventionally, a deterioration diagnosis method for diagnosing deterioration of high-voltage electrical equipment including an insulator is known. For example, Japanese Patent Application Laid-Open No. 2002-372651 (Patent Document 1) discloses a method for diagnosing the remaining life of a power receiving and distributing facility. In the remaining life diagnosis method, insulation diagnosis is performed in which a comb-shaped electrode is provided in each of an undeteriorated part in which the material equivalent to the insulating material used in high-voltage electrical equipment is in an undeteriorated state and a deteriorated part in a deteriorated state. Using a sensor, the change in the surface resistivity of the deteriorated part and the undeteriorated part of the sensor is measured, and the deterioration is diagnosed based on the time-dependent reference curve of the surface resistivity measured in advance.
特開2002-372561号公報Japanese Unexamined Patent Publication No. 2002-372561
 特許文献1のような、従来の劣化診断方法では、絶縁物(絶縁診断センサ)の表面抵抗率を測定する必要がある。絶縁物の表面抵抗率の測定には、n(10-9)A,p(10-12)Aレベルの電流測定が必要である。そのためには高抵抗測定計などの高機能な測定機器が必要である。また、櫛型電極を取り付けた絶縁物の表面抵抗率は、湿度の影響を受け得る。湿度の影響を受けると、測定される表面抵抗率が変化し、絶縁物の真の表面抵抗率が不明確になり得る。さらに、湿度によって影響される程度は絶縁物の劣化度により異なるため、湿度に影響された表面抵抗率を真の値に補正することが困難になり得る。 In the conventional deterioration diagnosis method as in Patent Document 1, it is necessary to measure the surface resistivity of the insulator (insulation diagnosis sensor). To measure the surface resistivity of an insulator , current measurement at n (10-9 ) A and p ( 10-12 ) A levels is required. For that purpose, high-performance measuring equipment such as a high resistance measuring instrument is required. In addition, the surface resistivity of the insulator to which the comb-shaped electrode is attached can be affected by humidity. Under the influence of humidity, the measured surface resistivity changes and the true surface resistivity of the insulation can be obscured. Further, since the degree of influence by humidity depends on the degree of deterioration of the insulating material, it may be difficult to correct the surface resistivity affected by humidity to a true value.
 本開示は、上記のような課題を解決するためになされたもので、高圧電気機器の劣化を湿度の影響を受けずに簡易に診断することである。 This disclosure is made to solve the above-mentioned problems, and is to simply diagnose the deterioration of high-voltage electrical equipment without being affected by humidity.
 本開示の一局面に係る劣化診断方法は、絶縁物を含む高圧電気機器の劣化を診断する。劣化診断方法は、少なくとも1つの金属薄膜配線を絶縁物の周囲に配置するステップと、絶縁物および少なくとも1つの金属薄膜配線がともに特定気体に接触する場合における、少なくとも1つの金属薄膜配線の抵抗値と絶縁物の表面抵抗率との第1相関関係を規定するデータベースを予め作成するステップと、少なくとも1つの金属薄膜配線の各々の測定タイミングにおける抵抗値を測定するステップと、データベースおよび測定タイミングにおける抵抗値を用いて、測定タイミングにおける絶縁物の表面抵抗率を推定するステップと、測定タイミングにおける高圧電気機器の使用時間および測定タイミングにおける絶縁物の表面抵抗率と、高圧電気機器が未使用である場合の絶縁物の表面抵抗率とから、高圧電気機器の使用時間と絶縁物の表面抵抗率との第2相関関係を表す関係式を作成するステップと、当該関係式において、絶縁物が絶縁性能を失う場合の基準表面抵抗率に対応する高圧電気機器の寿命時間を算出するステップと、寿命時間から、測定タイミングにおける高圧電気機器の使用時間または少なくとも1つの金属薄膜配線が絶縁物の周囲に配置されたタイミングにおける高圧電気機器の使用時間を減算した高圧電気機器の余寿命時間を算出するステップとを含む。 The deterioration diagnosis method according to one aspect of the present disclosure diagnoses deterioration of high-voltage electrical equipment including an insulator. The deterioration diagnosis method includes a step of arranging at least one metal thin film wiring around the insulator and a resistance value of at least one metal thin film wiring when both the insulator and at least one metal thin film wiring come into contact with a specific gas. A step of preliminarily creating a database that defines the first correlation between and the surface resistance of the insulator, a step of measuring the resistance value at each measurement timing of at least one metal thin film wiring, and a step of measuring the resistance value at the database and the measurement timing. The step of estimating the surface resistance of the insulator at the measurement timing using the values, the usage time of the high-voltage electrical equipment at the measurement timing, the surface resistance of the insulator at the measurement timing, and the case where the high-voltage electrical equipment is unused. From the surface resistance of the insulation, the step of creating a relational expression expressing the second correlation between the usage time of high-voltage electrical equipment and the surface resistance of the insulation, and in the relational expression, the insulation performs insulation performance. From the step of calculating the lifetime of the high-voltage electrical equipment corresponding to the reference surface resistance in case of loss and the lifetime, the usage time of the high-voltage electrical equipment at the measurement timing or at least one metal thin film wiring is arranged around the insulator. It includes a step of calculating the remaining life time of the high-pressure electric device by subtracting the usage time of the high-pressure electric device at the same timing.
 本開示の他の局面に係る劣化診断装置は、絶縁物を含む高圧電気機器の劣化を診断する。劣化診断装置は、少なくとも1つの金属薄膜配線と、データベースと、測定部と、推定部と、関係式作成部と、寿命算出部と、余寿命算出部とを含む。少なくとも1つの金属薄膜配線は、絶縁物の周囲に配置されている。データベースは、絶縁物および少なくとも1つの金属薄膜配線がともに特定気体に接触する場合における、少なくとも1つの金属薄膜配線の抵抗値と絶縁物の表面抵抗率との第1相関関係を規定する。測定部は、少なくとも1つの金属薄膜配線の各々の測定タイミングにおける抵抗値を測定する。推定部は、データベースおよび測定タイミングにおける抵抗値を用いて、測定タイミングにおける絶縁物の表面抵抗率を推定する。関係式作成部は、測定タイミングにおける高圧電気機器の使用時間および測定タイミングにおける絶縁物の表面抵抗率と、高圧電気機器が未使用である場合の絶縁物の表面抵抗率とから、高圧電気機器の使用時間と絶縁物の表面抵抗率との第2相関関係を表す関係式を作成する。寿命算出部は、当該関係式において、絶縁物が絶縁性能を失う場合の基準表面抵抗率に対応する高圧電気機器の寿命時間を算出する。余寿命算出部は、測定タイミングにおける高圧電気機器の使用時間または少なくとも1つの金属薄膜配線が絶縁物の周囲に配置されたタイミングにおける高圧電気機器の使用時間を減算した高圧電気機器の余寿命時間を算出する。 The deterioration diagnostic apparatus according to another aspect of the present disclosure diagnoses deterioration of high-voltage electrical equipment including an insulator. The deterioration diagnosis device includes at least one metal thin film wiring, a database, a measurement unit, an estimation unit, a relational expression creation unit, a life calculation unit, and a remaining life calculation unit. At least one metal thin film wiring is arranged around the insulation. The database defines the first correlation between the resistance value of at least one metal thin film wiring and the surface resistivity of the insulator when both the insulation and at least one metal thin film wiring come into contact with a specific gas. The measuring unit measures the resistance value at each measurement timing of at least one metal thin film wiring. The estimation unit estimates the surface resistivity of the insulator at the measurement timing by using the database and the resistance value at the measurement timing. The relational expression creation unit is based on the usage time of the high-voltage electrical equipment at the measurement timing, the surface resistivity of the insulator at the measurement timing, and the surface resistivity of the insulator when the high-voltage electrical equipment is unused. Create a relational expression that expresses the second correlation between the usage time and the surface resistivity of the insulator. In the relational expression, the life calculation unit calculates the life time of the high-voltage electrical equipment corresponding to the reference surface resistivity when the insulator loses the insulation performance. The remaining life calculation unit calculates the remaining life time of the high-voltage electrical equipment by subtracting the usage time of the high-voltage electrical equipment at the measurement timing or the usage time of the high-voltage electrical equipment at the timing when at least one metal thin film wiring is arranged around the insulator. calculate.
 本開示に係る劣化診断方法および劣化診断装置によれば、絶縁物および少なくとも1つの金属薄膜配線がともに特定気体に接触する場合における、少なくとも1つの金属薄膜配線の抵抗値と絶縁物の表面抵抗率との第1相関関係を規定するデータベースを用いることにより、高圧電気機器の劣化を湿度の影響を受けずに簡易に診断することができる。 According to the deterioration diagnosis method and the deterioration diagnosis apparatus according to the present disclosure, the resistance value of at least one metal thin film wiring and the surface resistivity of the insulation when both the insulation and at least one metal thin film wiring come into contact with a specific gas. By using a database that defines the first correlation with, deterioration of high-voltage electrical equipment can be easily diagnosed without being affected by humidity.
高圧電気機器の一例であるスイッチギヤの構成を概略的に示した断面図である。It is sectional drawing which showed schematicly the structure of the switchgear which is an example of a high voltage electric device. 実施の形態1に係る劣化診断方法の流れを示すフローチャートである。It is a flowchart which shows the flow of the deterioration diagnosis method which concerns on Embodiment 1. 高圧電気機器の使用年数(使用時間)と表面抵抗率との関係を概略的に示すグラフである。It is a graph which shows roughly the relationship between the years of use (use time) of a high-voltage electric device, and the surface resistivity. 実施の形態1に係る金属薄膜配線の概略図である。It is the schematic of the metal thin film wiring which concerns on Embodiment 1. FIG. 絶縁劣化に影響を及ぼすNOx曝露試験後の診断対象である絶縁物の表面抵抗率および金属薄膜配線の抵抗値の相関関係を規定するデータベースである。This database defines the correlation between the surface resistivity of the insulator to be diagnosed after the NOx exposure test, which affects the insulation deterioration, and the resistance value of the metal thin film wiring. 実施の形態1に係る劣化診断方法を実行する劣化診断装置の機能構成を示すブロック図である。It is a block diagram which shows the functional structure of the deterioration diagnosis apparatus which executes the deterioration diagnosis method which concerns on Embodiment 1. FIG. 図6の制御部の主要部のハードウェア構成図である。It is a hardware block diagram of the main part of the control part of FIG. 図6の制御部の機能ブロック図である。It is a functional block diagram of the control part of FIG. 実施の形態2に係る劣化診断方法を実行する劣化診断装置の機能構成を示すブロック図である。It is a block diagram which shows the functional structure of the deterioration diagnosis apparatus which executes the deterioration diagnosis method which concerns on Embodiment 2. FIG. 実施の形態2に係る劣化診断方法の流れを示すフローチャートである。It is a flowchart which shows the flow of the deterioration diagnosis method which concerns on Embodiment 2. 図10の制御部の機能ブロック図である。It is a functional block diagram of the control part of FIG. 実施の形態3に係る劣化診断方法を実行する劣化診断装置の機能構成を示すブロック図である。It is a block diagram which shows the functional structure of the deterioration diagnosis apparatus which executes the deterioration diagnosis method which concerns on Embodiment 3. 実施の形態4に係る金属薄膜配線の概略図である。It is the schematic of the metal thin film wiring which concerns on Embodiment 4. FIG.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は原則として繰り返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In principle, the same or corresponding parts in the drawings are designated by the same reference numerals and the description is not repeated.
 実施の形態1.
 実施の形態1に係る高圧電気機器の劣化診断方法は、絶縁体を備える高圧電気機器の劣化診断方法である。高圧電気機器は、例えば遮断器、断路器、変圧器、母線・導体などの主回路構成品と、測定機器から構成される。
Embodiment 1.
The method for diagnosing deterioration of high-voltage electrical equipment according to the first embodiment is a method for diagnosing deterioration of high-voltage electrical equipment provided with an insulator. High-voltage electrical equipment is composed of main circuit components such as circuit breakers, disconnectors, transformers, buses and conductors, and measuring equipment.
 図1は、高圧電気機器の一例であるスイッチギヤ49の構成を概略的に示した断面図である。スイッチギヤ49は、絶縁体により支持される遮断器、断路器、および母線・導体などの主回路構成品と、測定機器とを含む。図1において、X軸、Y軸、およびZ軸は、互いに直交している。なお、図1に関する説明においては、Z軸の+方向を上側、およびZ軸の-方向を下側とする。 FIG. 1 is a cross-sectional view schematically showing the configuration of a switchgear 49, which is an example of high-voltage electrical equipment. The switchgear 49 includes a circuit breaker supported by an insulator, a disconnector, a main circuit component such as a bus / conductor, and a measuring device. In FIG. 1, the X-axis, Y-axis, and Z-axis are orthogonal to each other. In the description of FIG. 1, the + direction of the Z-axis is the upper side, and the-direction of the Z-axis is the lower side.
 図1を参照して、スイッチギヤ49は、遮断器50a,50bと、3本の水平母線52と、接続導体53a,54a,53b,54bと、母線支持板56と、ケーブル57a,57bと、複数の碍子58とを備える。遮断器50aは、操作機構51aおよびモールドフレーム55aを含む。遮断器50bは、操作機構51bおよびモールドフレーム55bを含む。接続導体53a、54a、53b、および54bは、複数の碍子58によって支持されている。3本の水平母線52は、三相交流の三相にそれぞれ対応している。母線支持板56は、3本の水平母線52を一括して支持する。 With reference to FIG. 1, the switchgear 49 includes circuit breakers 50a, 50b, three horizontal bus 52s, connecting conductors 53a, 54a, 53b, 54b, bus support plates 56, cables 57a, 57b, and the like. A plurality of insulators 58 are provided. The circuit breaker 50a includes an operating mechanism 51a and a mold frame 55a. The circuit breaker 50b includes an operating mechanism 51b and a mold frame 55b. The connecting conductors 53a, 54a, 53b, and 54b are supported by a plurality of insulators 58. The three horizontal bus 52s correspond to the three phases of three-phase alternating current. The bus support plate 56 collectively supports the three horizontal bus 52s.
 操作機構51aおよび遮断部(不図示)を内蔵するモールドフレーム55aは、台車61aに搭載されている。操作機構51bおよび遮断部(不図示)を内蔵するモールドフレーム55bは、台車61bに搭載されている。台車61a,61bは、X軸方向に移動可能である。接続導体53aの一端は、ケーブル57aに電気的に接続されている。接続導体53aの他端は、遮断器50aの上側の端子に電気的に接続されている。接続導体54aの一端は、遮断器50aの下側の端子に電気的に接続されている。接続導体54aの他端は、水平母線52を介して接続導体53bの一端に電気的に接続されている。接続導体53bの他端は、遮断器50bの上側の端子に接続されている。接続導体54bの一端は、遮断器50bの下側の端子に接続されている。接続導体54bの他端は、ケーブル57bに電気的に接続される。 The mold frame 55a incorporating the operation mechanism 51a and the blocking portion (not shown) is mounted on the trolley 61a. A mold frame 55b incorporating an operation mechanism 51b and a blocking portion (not shown) is mounted on a carriage 61b. The carriages 61a and 61b can move in the X-axis direction. One end of the connecting conductor 53a is electrically connected to the cable 57a. The other end of the connecting conductor 53a is electrically connected to the upper terminal of the circuit breaker 50a. One end of the connecting conductor 54a is electrically connected to the lower terminal of the circuit breaker 50a. The other end of the connecting conductor 54a is electrically connected to one end of the connecting conductor 53b via the horizontal bus 52. The other end of the connecting conductor 53b is connected to the upper terminal of the circuit breaker 50b. One end of the connecting conductor 54b is connected to the lower terminal of the circuit breaker 50b. The other end of the connecting conductor 54b is electrically connected to the cable 57b.
 モールドフレーム55a、55b、母線支持板56、あるいは碍子58の各々は、絶縁物であり、本開示における劣化診断の対象(診断対象)である。当該絶縁物の材料としては、たとえばポリエステル樹脂、エポキシ樹脂、あるいはフェノール樹脂を挙げることができる。 Each of the mold frames 55a and 55b, the bus support plate 56, and the insulator 58 is an insulator, and is a target of deterioration diagnosis (diagnosis target) in the present disclosure. Examples of the material of the insulator include polyester resin, epoxy resin, and phenol resin.
 金属薄膜配線10は、診断対象とは別体として形成され、診断対象の周囲に設置される。図1において金属薄膜配線10は、モールドフレーム55bの近傍に設置されている。金属薄膜配線10が診断対象とは別体として形成することにより、金属薄膜配線10から診断対象への電界集中を抑制することができる。また、金属薄膜配線10の交換が容易になる。 The metal thin film wiring 10 is formed as a separate body from the diagnosis target and is installed around the diagnosis target. In FIG. 1, the metal thin film wiring 10 is installed in the vicinity of the mold frame 55b. By forming the metal thin film wiring 10 as a separate body from the diagnosis target, it is possible to suppress the electric field concentration from the metal thin film wiring 10 to the diagnosis target. In addition, the metal thin film wiring 10 can be easily replaced.
 次に、実施の形態1に係る劣化診断方法を、図2および図3を用いて説明する。図2は、実施の形態1に係る劣化診断方法の流れを示すフローチャートである。図3は、高圧電気機器の使用年数(使用時間)と表面抵抗率との関係を概略的に示すグラフである。 Next, the deterioration diagnosis method according to the first embodiment will be described with reference to FIGS. 2 and 3. FIG. 2 is a flowchart showing the flow of the deterioration diagnosis method according to the first embodiment. FIG. 3 is a graph schematically showing the relationship between the years of use (use time) of high-voltage electrical equipment and the surface resistivity.
 図2を参照しながら、ステップS1において、診断対象の劣化に影響を与える特定気体(たとえば窒素酸化物(NOx)、または硫黄酸化物(SOx))を、金属薄膜配線および高圧電気機器に使用されている診断対象に曝露(接触)させる。曝露後の金属薄膜配線の抵抗値および診断対象の表面抵抗率を測定することにより、金属薄膜配線の抵抗値と診断対象の表面抵抗率との相関関係(第1相関関係)を規定するデータベースが予め作成される。次に、ステップS2において、金属薄膜配線が診断対象の周囲に配置される。診断対象の周囲とは、診断対象が診断対象の劣化に影響を与える特定気体に曝露される場合、その特定気体に覆われる領域のことである。次に、ステップS3において、金属薄膜配線の抵抗値がテスター等の簡易抵抗計によって測定タイミング毎に測定される。当該抵抗値は、定期的または常時に測定される。ステップS4において、ステップS3において測定された金属薄膜配線の抵抗値がステップS1において作成されたデータベースに照合されて、当該抵抗値の測定タイミングにおける診断対象の表面抵抗率SR1が推定される。なお、表面抵抗率SR1が推定される抵抗値の測定タイミングを使用年数L1(年)とする。 With reference to FIG. 2, in step S1, a specific gas (for example, nitrogen oxide (NOx) or sulfur oxide (SOx)) that affects the deterioration of the diagnosis target is used for metal thin film wiring and high-voltage electrical equipment. Expose (contact) the subject to be diagnosed. By measuring the resistance value of the metal thin film wiring after exposure and the surface resistivity of the diagnosis target, a database that defines the correlation (first correlation) between the resistance value of the metal thin film wiring and the surface resistivity of the diagnosis target is available. Created in advance. Next, in step S2, the metal thin film wiring is arranged around the diagnosis target. The periphery of the diagnosis target is an area covered with the specific gas when the diagnosis target is exposed to a specific gas that affects the deterioration of the diagnosis target. Next, in step S3, the resistance value of the metal thin film wiring is measured at each measurement timing by a simple resistance meter such as a tester. The resistance value is measured regularly or constantly. In step S4, the resistance value of the metal thin film wiring measured in step S3 is collated with the database created in step S1, and the surface resistivity SR1 of the diagnosis target at the measurement timing of the resistance value is estimated. The measurement timing of the resistance value at which the surface resistivity SR1 is estimated is defined as the number of years of use L1 (year).
 図3も併せて参照しながら、ステップS5において、表面抵抗率SR1と診断対象の新品(未使用品)の表面抵抗率SR0とから、表面抵抗率と高圧電気機器の使用年数との相関関係(第2相関関係)を表す劣化直線RF1(線形関係)を表す関係式が作成される。ステップS6において、劣化直線RF1から表面抵抗率の閾値SR2(基準表面抵抗率)に対応する寿命年数L2(寿命時間)が算出される。なお、閾値SR2は診断対象が絶縁性能を失って、診断対象に放電が発生する場合の表面抵抗率である。ステップS7において、診断対象の寿命年数L2から、金属薄膜配線の測定タイミングまたは金属薄膜配線の配置タイミングにおける診断対象の使用年数L1(<L2)を減算することで、診断対象の余寿命RL1(余寿命時間)が算出される。 With reference to FIG. 3, in step S5, from the surface resistivity SR1 and the surface resistivity SR0 of the new product (unused product) to be diagnosed, the correlation between the surface resistivity and the years of use of the high-voltage electrical equipment ( A relational expression representing the deterioration straight line RF1 (linear relation) representing the second correlation) is created. In step S6, the life period L2 (life time) corresponding to the surface resistivity threshold SR2 (reference surface resistivity) is calculated from the deterioration straight line RF1. The threshold value SR2 is the surface resistivity when the diagnosis target loses the insulation performance and a discharge occurs in the diagnosis target. In step S7, by subtracting the years of use L1 (<L2) of the diagnosis target at the measurement timing of the metal thin film wiring or the arrangement timing of the metal thin film wiring from the life years L2 of the diagnosis target, the remaining life RL1 (remaining) of the diagnosis target is subtracted. Life time) is calculated.
 次に、図4および図5を用いて、実施の形態1に係る劣化診断方法の詳細について説明する。図4は、実施の形態1に係る金属薄膜配線10の概略図である。図4に示されるように、絶縁基板32の主面上に櫛型形状の金属薄膜配線10が形成される。テスター等で簡易に測定することができる抵抗(数百Ωレベル)を有するように、金属薄膜配線10の配線長さLに対する金属薄膜配線10の配線幅Wの比(W/L)が調整(たとえば当該比が1000以上)されたものであれば、金属薄膜配線10の形状は櫛型形状以外であってもよい。金属薄膜配線10が過度に細く、あるいは過度に長い場合には金属薄膜配線10のインピーダンスが増加して検出感度が低下するため、金属薄膜配線10は適度な幅および長さを有することが望ましい。また、金属薄膜配線10が過度に短い場合、金属薄膜配線10の成膜および半田付けが困難となり得るため、金属薄膜配線10は適度な長さを有することが望ましい。金属薄膜配線10の断面積による金属薄膜配線10のインピーダンスの増加を抑制するという観点、および金属薄膜配線10の成膜時の膜厚付近位置における金属薄膜配線10のインピーダンスの増加を抑制するという観点から、金属薄膜配線10の厚さは、0.1μm以上であることが望ましい。さらに、金属薄膜配線10の抵抗を測定するため、金属薄膜配線10は絶縁性を有する基板上に形成される必要がある。絶縁基板32の材料としては、たとえばガラス、ガラス・エポキシ、あるいは紙フェノールを挙げることができる。 Next, the details of the deterioration diagnosis method according to the first embodiment will be described with reference to FIGS. 4 and 5. FIG. 4 is a schematic view of the metal thin film wiring 10 according to the first embodiment. As shown in FIG. 4, a comb-shaped metal thin film wiring 10 is formed on the main surface of the insulating substrate 32. The ratio (W / L) of the wiring width W of the metal thin film wiring 10 to the wiring length L of the metal thin film wiring 10 is adjusted so as to have a resistance (several hundred Ω level) that can be easily measured by a tester or the like (W / L). For example, the shape of the metal thin film wiring 10 may be other than the comb shape as long as the ratio is 1000 or more). If the metal thin film wiring 10 is excessively thin or excessively long, the impedance of the metal thin film wiring 10 increases and the detection sensitivity decreases. Therefore, it is desirable that the metal thin film wiring 10 has an appropriate width and length. Further, if the metal thin film wiring 10 is excessively short, it may be difficult to form and solder the metal thin film wiring 10. Therefore, it is desirable that the metal thin film wiring 10 has an appropriate length. From the viewpoint of suppressing the increase in the impedance of the metal thin film wiring 10 due to the cross-sectional area of the metal thin film wiring 10, and from the viewpoint of suppressing the increase in the impedance of the metal thin film wiring 10 at a position near the film thickness at the time of film formation of the metal thin film wiring 10. Therefore, the thickness of the metal thin film wiring 10 is preferably 0.1 μm or more. Further, in order to measure the resistance of the metal thin film wiring 10, the metal thin film wiring 10 needs to be formed on an insulating substrate. Examples of the material of the insulating substrate 32 include glass, glass epoxy, and paper phenol.
 金属薄膜配線10の両端部の各々には、電極パッド33が配置されている。電極パッド33は、リード線34に接続されている。金属薄膜配線10の金属材料としては、特定気体に曝露される環境を的確に評価することができる金属(たとえば、銅(Cu)、銅合金、銀(Ag)、銀合金、ニッケル(Ni)、ニッケル合金、鉄(Fe)、および鉄合金)であることが望ましい。これら以外の金属材料であっても、曝露環境を評価可能であれば他の金属材料が用いられても良い。金属薄膜配線10の成膜法としては、たとえばスパッタ法、蒸着法、めっき法を挙げることができる。 Electrode pads 33 are arranged at both ends of the metal thin film wiring 10. The electrode pad 33 is connected to the lead wire 34. As the metal material of the metal thin film wiring 10, a metal that can accurately evaluate the environment exposed to a specific gas (for example, copper (Cu), copper alloy, silver (Ag), silver alloy, nickel (Ni), etc. It is preferably a nickel alloy, iron (Fe), and iron alloy). Even if it is a metal material other than these, other metal materials may be used as long as the exposure environment can be evaluated. Examples of the film forming method of the metal thin film wiring 10 include a sputtering method, a vapor deposition method, and a plating method.
 図5は、絶縁劣化に影響を及ぼすNOx曝露試験後の診断対象である絶縁物の表面抵抗率および金属薄膜配線10の抵抗値の相関関係を規定するデータベースである。図5に示されるデータは、診断対象としてポリエステル絶縁物が用いられ、金属薄膜配線10として銅薄膜配線が用いられた場合のデータである。図5に示されるように、金属薄膜配線10の抵抗値と診断対象の表面抵抗率との間には近似的に直線関係が成り立つ。当該直線を利用することで金属薄膜配線10の抵抗値から、診断対象の表面抵抗率を推定することができる。 FIG. 5 is a database that defines the correlation between the surface resistivity of the insulator to be diagnosed after the NOx exposure test, which affects the insulation deterioration, and the resistance value of the metal thin film wiring 10. The data shown in FIG. 5 is data when a polyester insulator is used as a diagnostic target and a copper thin film wiring is used as the metal thin film wiring 10. As shown in FIG. 5, a linear relationship is approximately established between the resistance value of the metal thin film wiring 10 and the surface resistivity of the diagnosis target. By using the straight line, the surface resistivity of the diagnosis target can be estimated from the resistance value of the metal thin film wiring 10.
 なお、金属薄膜配線10および診断対象は、銅薄膜配線およびポリエステル絶縁物にそれぞれ限定されない。金属薄膜配線10は、たとえば、銅合金、銀、銀合金、ニッケル、ニッケル合金、鉄、あるいは鉄合金から形成されてもよい。また、診断対象は、たとえばエポキシ絶縁物、あるいはフェノール絶縁物であってもよい。また、銅薄膜の膜厚および幅等が変わっても、銅薄膜配線の抵抗値とポリエステル絶縁物の表面抵抗率との間には直線関係が成り立つため、銅薄膜の膜厚および幅に対応した抵抗値とポリエステル絶縁物の表面抵抗率との相関関係が規定されたデータベースを利用しても良い。 The metal thin film wiring 10 and the diagnostic target are not limited to the copper thin film wiring and the polyester insulator, respectively. The metal thin film wiring 10 may be formed of, for example, a copper alloy, silver, silver alloy, nickel, nickel alloy, iron, or iron alloy. Further, the diagnosis target may be, for example, an epoxy insulator or a phenol insulator. In addition, even if the film thickness and width of the copper thin film change, a linear relationship is established between the resistance value of the copper thin film wiring and the surface resistivity of the polyester insulator, so it corresponds to the film thickness and width of the copper thin film. A database that defines the correlation between the resistance value and the surface resistivity of the polyester insulator may be used.
 金属薄膜配線10の抵抗値は、診断対象の表面抵抗率とは異なり湿度の影響を受けない。そのため、金属薄膜配線10、および金属薄膜配線10の抵抗値と診断対象の表面抵抗率との関係が規定されたデータベースを利用することにより、診断対象の表面抵抗率から湿度の影響による誤差を排除することができる。また、診断対象の表面抵抗率の測定に必要な高抵抗測定計などの高機能な測定機器が不要であり、テスター等で簡易に当該抵抗値を測定することができる。簡易に測定された抵抗値をデータベースに照合することにより、診断対象の表面抵抗率を推定することができる。その結果、湿度の影響を受けずに、簡易に高圧電気機器の劣化を診断することができる。 The resistance value of the metal thin film wiring 10 is not affected by humidity, unlike the surface resistivity of the diagnosis target. Therefore, by using the metal thin film wiring 10 and the database in which the relationship between the resistance value of the metal thin film wiring 10 and the surface resistivity of the diagnosis target is defined, the error due to the influence of humidity is eliminated from the surface resistivity of the diagnosis target. can do. Further, a high-performance measuring device such as a high resistance measuring instrument necessary for measuring the surface resistivity of the diagnostic object is not required, and the resistance value can be easily measured by a tester or the like. The surface resistivity of the diagnosis target can be estimated by collating the simply measured resistance value with the database. As a result, deterioration of high-voltage electrical equipment can be easily diagnosed without being affected by humidity.
 図6は、実施の形態1に係る劣化診断方法を実行する劣化診断装置100の機能構成を示すブロック図である。図6を参照して、劣化診断装置100は、たとえばROM(Read Only Memory)等の記録媒体に記録されたプログラムによってその動作が制御される制御ボードの形態で実現される。ただし制御ボードは劣化診断装置100の一実現例であって、劣化診断装置100のハードウェア構成は図6に示される構成に限定されない。 FIG. 6 is a block diagram showing a functional configuration of the deterioration diagnosis device 100 that executes the deterioration diagnosis method according to the first embodiment. With reference to FIG. 6, the deterioration diagnosis device 100 is realized in the form of a control board whose operation is controlled by a program recorded on a recording medium such as a ROM (Read Only Memory). However, the control board is an example of realization of the deterioration diagnosis device 100, and the hardware configuration of the deterioration diagnosis device 100 is not limited to the configuration shown in FIG.
 劣化診断装置100は、入力部101と、記憶部102と、制御部103と、出力部104とを備える。入力部101は、たとえばキーボード、マウス、あるいはタブレット等の入力デバイスを含む。入力部101は、診断対象55(たとえばモールドフレーム55a,55b)の劣化診断に必要なデータベースからの入力を受けるとともに、入力されたデータベースを記憶部102へ送信する。たとえば銅薄膜配線の抵抗値とポリエステル絶縁物の表面抵抗率とのデータが、劣化診断に先立って入力部101に入力される。また、金属薄膜配線10には予め定められた電圧(たとえば100V)がテスター等の測定部20によって印加され、金属薄膜配線10からの出力値が測定部20によって測定される。測定部20から送られた測定値が入力部101に入力される。 The deterioration diagnosis device 100 includes an input unit 101, a storage unit 102, a control unit 103, and an output unit 104. The input unit 101 includes an input device such as a keyboard, a mouse, or a tablet. The input unit 101 receives the input from the database necessary for the deterioration diagnosis of the diagnosis target 55 (for example, the mold frames 55a and 55b), and transmits the input database to the storage unit 102. For example, data of the resistance value of the copper thin film wiring and the surface resistivity of the polyester insulator is input to the input unit 101 prior to the deterioration diagnosis. Further, a predetermined voltage (for example, 100 V) is applied to the metal thin film wiring 10 by a measuring unit 20 such as a tester, and an output value from the metal thin film wiring 10 is measured by the measuring unit 20. The measured value sent from the measuring unit 20 is input to the input unit 101.
 記憶部102は、たとえばROM、RAM(Random Access Memory)、およびハードディスクを含むメモリデバイスである。記憶部102は、劣化診断方法を実行するためのプログラム、測定値から表面抵抗率を計算するための金属薄膜配線10に関するデータなどの各種データを記憶する。記憶部102は、入力部101に入力された各種データを記憶する。 The storage unit 102 is a memory device including, for example, a ROM, a RAM (Random Access Memory), and a hard disk. The storage unit 102 stores various data such as a program for executing the deterioration diagnosis method and data on the metal thin film wiring 10 for calculating the surface resistivity from the measured value. The storage unit 102 stores various data input to the input unit 101.
 制御部103は、たとえばマイクロプロセッサ(MPU:Micro-Processing Unit)によって実現される。制御部103は、記憶部102に記憶されたプログラムを読み込むことにより、当該プログラムに記述された手順に従って劣化診断に関する処理を実行する。   The control unit 103 is realized by, for example, a microprocessor (MPU: Micro-Processing Unit). By reading the program stored in the storage unit 102, the control unit 103 executes the process related to the deterioration diagnosis according to the procedure described in the program. Twice
 図7は、図6の制御部103の主要部のハードウェア構成図である。制御部103の各機能は、処理回路1により実現し得る。処理回路1は、少なくとも1つのプロセッサ1bと少なくとも1つのメモリ1cとを備える。処理回路1は、プロセッサ1bおよびメモリ1cととともに、あるいはそれらの代用として、少なくとも1つの専用のハードウェア1aを備えてもよい。 FIG. 7 is a hardware configuration diagram of the main part of the control unit 103 of FIG. Each function of the control unit 103 can be realized by the processing circuit 1. The processing circuit 1 includes at least one processor 1b and at least one memory 1c. The processing circuit 1 may include at least one dedicated hardware 1a together with the processor 1b and the memory 1c, or as a substitute for them.
 処理回路1がプロセッサ1bとメモリ1cとを備える場合、劣化診断装置100の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせで実現される。ソフトウェアおよびファームウェアの少なくとも一方は、プログラムとして記述される。当該プログラムはメモリ1cに格納される。プロセッサ1bは、メモリ1cに記憶されたプログラムを読み出して実行することにより、劣化診断装置100の各機能を実現する。 When the processing circuit 1 includes the processor 1b and the memory 1c, each function of the deterioration diagnosis device 100 is realized by software, firmware, or a combination of software and firmware. At least one of the software and firmware is written as a program. The program is stored in the memory 1c. The processor 1b realizes each function of the deterioration diagnosis device 100 by reading and executing the program stored in the memory 1c.
 プロセッサ1bは、CPU(Central Processing Unit)、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、あるいはDSPとも呼ばれる。メモリ1cは、たとえば、RAM、ROM、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory))などの、不揮発性または揮発性の半導体メモリなどにより構成される。 The processor 1b is also called a CPU (Central Processing Unit), a processing device, an arithmetic unit, a microprocessor, a microcomputer, or a DSP. The memory 1c is composed of, for example, a non-volatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM (Erasable Programmable Read Only Memory), or an EEPROM (Electrically Erasable Programmable Read Only Memory).
 処理回路1が専用のハードウェア1aを備える場合、処理回路1は、たとえば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、あるいはこれらの組み合わせによって実現される。 When the processing circuit 1 includes dedicated hardware 1a, the processing circuit 1 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field Programmable). It is realized by Gate Array) or a combination of these.
 劣化診断装置100の複数の機能の各々は、処理回路1によって実現され得る。あるいは、劣化診断装置100の複数の機能は、まとめて処理回路1によって実現され得る。劣化診断装置100の各機能について、一部を専用のハードウェア1aで実現し、他部をソフトウェアまたはファームウェアで実現してもよい。このように、処理回路1は、ハードウェア1a、ソフトウェア、ファームウェア、またはこれらの組み合わせによって劣化診断装置100の各機能を実現することができる。 Each of the plurality of functions of the deterioration diagnosis device 100 can be realized by the processing circuit 1. Alternatively, the plurality of functions of the deterioration diagnosis device 100 can be collectively realized by the processing circuit 1. For each function of the deterioration diagnosis device 100, a part may be realized by the dedicated hardware 1a, and the other part may be realized by software or firmware. In this way, the processing circuit 1 can realize each function of the deterioration diagnosis device 100 by the hardware 1a, the software, the firmware, or a combination thereof.
 出力部104は、制御部103によって算出された余寿命に基づく診断結果を外部の出力装置105に出力する。出力装置105は、たとえば、無線装置、プリンタ、ディスプレイまたはこれらの両方を含み得る。 The output unit 104 outputs the diagnosis result based on the remaining life calculated by the control unit 103 to the external output device 105. The output device 105 may include, for example, a wireless device, a printer, a display, or both.
 図8は、図6の制御部103の機能ブロック図である。図8および図2を併せて参照して、制御部103は、推定部72と、関係式作成部73と、寿命算出部74と、余寿命算出部75とを含む。推定部72は、診断対象の表面抵抗率を推定する。関係式作成部73は、診断対象の使用年数と診断対象の表面抵抗率との関係式を作成する。寿命算出部74は、診断対象の寿命を算出する。余寿命算出部75は、診断対象の余寿命を算出する。データベース71は、事前実験に基づいて導かれた金属薄膜配線10の抵抗値と診断対象の表面抵抗率との相関関係を規定する。 FIG. 8 is a functional block diagram of the control unit 103 of FIG. With reference to FIGS. 8 and 2, the control unit 103 includes an estimation unit 72, a relational expression creation unit 73, a life calculation unit 74, and a remaining life calculation unit 75. The estimation unit 72 estimates the surface resistivity of the diagnosis target. The relational expression creation unit 73 creates a relational expression between the years of use of the diagnosis target and the surface resistivity of the diagnosis target. The life calculation unit 74 calculates the life of the diagnosis target. The remaining life calculation unit 75 calculates the remaining life of the diagnosis target. The database 71 defines the correlation between the resistance value of the metal thin film wiring 10 derived based on the preliminary experiment and the surface resistivity of the diagnosis target.
 推定部72は、金属薄膜配線10が診断対象の周囲に配置された後に測定される金属薄膜配線10の抵抗値を、データベース71に照合し、診断対象の表面抵抗率を推定する。すなわち、推定部72は、ステップS4の処理を実行する。 The estimation unit 72 collates the resistance value of the metal thin film wiring 10 measured after the metal thin film wiring 10 is arranged around the diagnosis target with the database 71, and estimates the surface resistivity of the diagnosis target. That is, the estimation unit 72 executes the process of step S4.
 関係式作成部73は、金属薄膜配線10の抵抗値より推定した診断対象の表面抵抗率に対応する点と使用年数が0年(新品または未使用品)の診断対象の表面抵抗率に対応する点とを結んで、診断対象の使用年数と診断対象の表面抵抗率との関係式を作成する。すなわち、関係式作成部73は、ステップS5の処理を実行する。 The relational expression creation unit 73 corresponds to the surface resistivity of the diagnosis target estimated from the resistance value of the metal thin film wiring 10 and the surface resistivity of the diagnosis target having been used for 0 years (new or unused product). By connecting the points, a relational expression between the years of use of the diagnosis target and the surface resistivity of the diagnosis target is created. That is, the relational expression creation unit 73 executes the process of step S5.
 寿命算出部74は、関係式作成部73によって作成された関係式と予め定められた閾値とにより、診断対象の寿命年数を算出する。すなわち、寿命算出部74は、ステップS6の処理を実行する。 The lifespan calculation unit 74 calculates the lifespan of the diagnosis target from the relational expression created by the relational expression creation unit 73 and a predetermined threshold value. That is, the life calculation unit 74 executes the process of step S6.
 余寿命算出部75は、寿命算出部74によって算出された寿命年数から、金属薄膜配線10の抵抗値の測定タイミングまたは金属薄膜配線10の配置タイミングにおける診断対象の使用年数を減算し、余寿命を算出する。すなわち、余寿命算出部75は、ステップS7の処理を実行する。 The remaining life calculation unit 75 subtracts the number of years of use of the diagnosis target at the measurement timing of the resistance value of the metal thin film wiring 10 or the arrangement timing of the metal thin film wiring 10 from the life years calculated by the life calculation unit 74 to obtain the remaining life. calculate. That is, the remaining life calculation unit 75 executes the process of step S7.
 以上、実施の形態1に係る劣化診断方法または劣化診断装置によれば、高圧電気機器の劣化を湿度の影響を受けずに簡易に診断することができる。 As described above, according to the deterioration diagnosis method or deterioration diagnosis device according to the first embodiment, deterioration of high-voltage electrical equipment can be easily diagnosed without being affected by humidity.
 実施の形態2.
 実施の形態1では、金属薄膜配線、および金属薄膜配線の抵抗値と診断対象の表面抵抗率との相関関係が規定されたデータベースを利用することで、高抵抗測定計が不要となって簡易に抵抗測定を行うことができ、さらに、湿度管理が不要の劣化診断方法について説明した。実施の形態1においてデータベース化している金属薄膜配線の抵抗値は一定温度(たとえば20℃)の場合における値である。そこで、実施の形態2では、各金属種における抵抗温度係数(たとえば、銅においては4.3×10-3/℃であり、銀においては4.3×10-3/℃)を利用することにより、診断対象が設置されている環境ごとの抵抗値を算出する。
Embodiment 2.
In the first embodiment, by using the metal thin film wiring and the database in which the correlation between the resistance value of the metal thin film wiring and the surface resistivity of the diagnosis target is defined, a high resistance measuring meter is not required and it is easy to use. A deterioration diagnosis method that can measure resistance and does not require humidity control has been described. The resistance value of the metal thin film wiring stored in the database in the first embodiment is a value at a constant temperature (for example, 20 ° C.). Therefore, in the second embodiment, the temperature coefficient of resistance of each metal species (e.g., in the copper was 4.3 × 10 -3 / ℃, 4.3 × 10 -3 / ℃ in silver) utilizing Calculates the resistance value for each environment in which the diagnosis target is installed.
 図9は、実施の形態2に係る劣化診断方法を実行する劣化診断装置200の機能構成を示すブロック図である。劣化診断装置200の構成は、図6の制御部103が103Bに置き換えられているとともに、入力部101に温度センサ80からの温度が入力されている点である。これら以外は同様であるため、説明を繰り返さない。 FIG. 9 is a block diagram showing a functional configuration of a deterioration diagnosis device 200 that executes the deterioration diagnosis method according to the second embodiment. The configuration of the deterioration diagnosis device 200 is that the control unit 103 in FIG. 6 is replaced with 103B, and the temperature from the temperature sensor 80 is input to the input unit 101. Other than these, the description is the same, so the description will not be repeated.
 図9を参照して、温度センサ80は、金属薄膜配線10の周囲の温度を入力部101に出力する。制御部103Bは、データベースの作成に用いられたデータが測定された温度および金属薄膜配線10の測定タイミングまたは金属薄膜配線10の配置タイミングにおいて温度センサ80によって測定された温度の差、ならびに金属薄膜配線10に含まれる金属の抵抗温度係数を用いて、データベースにおける金属薄膜配線10の抵抗値を補正する。 With reference to FIG. 9, the temperature sensor 80 outputs the ambient temperature of the metal thin film wiring 10 to the input unit 101. The control unit 103B has the temperature difference measured by the temperature sensor 80 at the temperature at which the data used for creating the database was measured and the measurement timing of the metal thin film wiring 10 or the arrangement timing of the metal thin film wiring 10, and the metal thin film wiring. The resistance temperature coefficient of the metal contained in 10 is used to correct the resistance value of the metal thin film wiring 10 in the database.
 図10は、実施の形態2に係る劣化診断方法の流れを示すフローチャートである。図10に示されるフローチャートは、図2に示されるフローチャートのステップS3とS4との間にステップS3Bが追加された点である。これ以外は同様であるため、説明を繰り返さない。 FIG. 10 is a flowchart showing the flow of the deterioration diagnosis method according to the second embodiment. The flowchart shown in FIG. 10 is a point in which step S3B is added between steps S3 and S4 of the flowchart shown in FIG. Other than this, the explanation is not repeated because it is the same.
 図11は、図10の制御部103Bの機能ブロック図である。制御部103Bの構成は、図8の推定部72が72Bに置き換えられた構成である。これ以外は同様であるため説明を繰り返さない。推定部72Bは、図10のステップS3BおよびS4を実行する。 FIG. 11 is a functional block diagram of the control unit 103B of FIG. The configuration of the control unit 103B is such that the estimation unit 72 of FIG. 8 is replaced with 72B. Other than this, the explanation is not repeated because it is the same. The estimation unit 72B executes steps S3B and S4 of FIG.
 以上、実施の形態2に係る劣化診断方法または劣化診断装置によれば、高圧電気機器の劣化を湿度の影響を受けずに簡易に診断することができる。また、診断対象が設置されている環境毎の表面抵抗率を推定することができるため、劣化診断を実施の形態1よりも高精度に行うことができる。 As described above, according to the deterioration diagnosis method or deterioration diagnosis device according to the second embodiment, deterioration of high-voltage electrical equipment can be easily diagnosed without being affected by humidity. Further, since the surface resistivity for each environment in which the diagnosis target is installed can be estimated, the deterioration diagnosis can be performed with higher accuracy than that of the first embodiment.
 実施の形態3.
 発明の実施の形態1,2においては、1つの金属薄膜配線、当該金属薄膜配線の抵抗値と診断対象の表面抵抗率との関係がまとめられたデータベースを利用することにより、高抵抗測定計が不要となって簡易に抵抗測定を行うことができ、さらに、湿度管理が不要の劣化診断方法について説明した。実施の形態3においては、金属薄膜配線の数が2以上である場合について説明する。
Embodiment 3.
In the first and second embodiments of the present invention, a high resistance measuring instrument can be obtained by using a database that summarizes the relationship between one metal thin film wiring and the resistance value of the metal thin film wiring and the surface resistivity of the diagnosis target. A deterioration diagnosis method that is unnecessary and can easily measure resistance and does not require humidity control was explained. In the third embodiment, the case where the number of metal thin film wirings is 2 or more will be described.
 図12は、実施の形態3に係る劣化診断方法を実行する劣化診断装置300の機能構成を示すブロック図である。劣化診断装置300の構成は、図6の劣化診断装置100の構成に金属薄膜配線10Bおよび測定部20Bが追加され、入力部101に測定部20Bからの抵抗値が入力されている点である。これら以外は同様であるため、説明を繰り返さない。 FIG. 12 is a block diagram showing a functional configuration of the deterioration diagnosis device 300 that executes the deterioration diagnosis method according to the third embodiment. The configuration of the deterioration diagnosis device 300 is that the metal thin film wiring 10B and the measurement unit 20B are added to the configuration of the deterioration diagnosis device 100 of FIG. 6, and the resistance value from the measurement unit 20B is input to the input unit 101. Other than these, the description is the same, so the description will not be repeated.
 図12を参照しながら、金属薄膜配線10Bは、診断対象55の周囲に配置されている。測定部20Bは、金属薄膜配線10Bの抵抗を測定し、入力部101に出力する。 With reference to FIG. 12, the metal thin film wiring 10B is arranged around the diagnosis target 55. The measuring unit 20B measures the resistance of the metal thin film wiring 10B and outputs the resistance to the input unit 101.
 実施の形態3に係る劣化診断方法または劣化診断装置によれば、高圧電気機器の劣化を湿度の影響を受けずに簡易に診断することができる。また、複数の金属薄膜配線を設置することにより、診断対象の絶縁性能に影響を与える複数の項目を考慮することができ、診断対象が設置されている環境により適合する劣化診断が可能になる。 According to the deterioration diagnosis method or deterioration diagnosis device according to the third embodiment, deterioration of high-voltage electrical equipment can be easily diagnosed without being affected by humidity. Further, by installing a plurality of metal thin film wirings, it is possible to consider a plurality of items that affect the insulation performance of the diagnosis target, and it is possible to perform deterioration diagnosis that is more suitable for the environment in which the diagnosis target is installed.
 実施の形態4.
 実施の形態1~3においては、1つの金属薄膜配線、当該金属薄膜配線の抵抗値と診断対象の表面抵抗率との関係がまとめられたデータベースを利用することにより、高抵抗測定計が不要となって簡易に抵抗測定を行うことができ、さらに、湿度管理が不要の劣化診断方法について説明した。金属薄膜配線には、コーティング剤が塗布され、コーティング膜に覆われていても良い。
Embodiment 4.
In the first to third embodiments, a high resistance measuring meter is not required by using a database that summarizes the relationship between one metal thin film wiring and the resistance value of the metal thin film wiring and the surface resistivity of the diagnosis target. In addition, we explained a deterioration diagnosis method that enables simple resistance measurement and does not require humidity control. A coating agent may be applied to the metal thin film wiring and covered with the coating film.
 図13は、実施の形態4に係る金属薄膜配線10Dの概略図である。図13に示される構成は、図4の金属薄膜配線10に、コーティング剤が塗布されてコーティング膜31が形成されている構成である。これ以外は同様であるため、説明を繰り返さない。 FIG. 13 is a schematic view of the metal thin film wiring 10D according to the fourth embodiment. The configuration shown in FIG. 13 is a configuration in which a coating agent is applied to the metal thin film wiring 10 of FIG. 4 to form a coating film 31. Other than this, the explanation is not repeated because it is the same.
 コーティング剤としては、たとえばポリウレタン系のコーティング剤、あるいはシリコーン系のコーティング剤を使用することができるが、必ずしもこれらが使用される必要はない。コーティング膜31を金属薄膜配線10D上に成膜した場合においても、診断対象55の劣化に影響を及ぼす気体はコーティング膜31を透過するため、コーティング膜31がない場合とほぼ同様に金属薄膜配線10Dによって診断対象55の劣化を検知することができる。さらに、劣化の誤検知、または検知不全を低減することができる。検知不全としては、たとえば、人、塵埃等が金属薄膜配線に接触し、当該金属薄膜配線の一部が切断された場合を挙げることができる。 As the coating agent, for example, a polyurethane-based coating agent or a silicone-based coating agent can be used, but these are not necessarily used. Even when the coating film 31 is formed on the metal thin film wiring 10D, the gas that affects the deterioration of the diagnosis target 55 permeates the coating film 31, so that the metal thin film wiring 10D is almost the same as when the coating film 31 is not present. It is possible to detect the deterioration of the diagnosis target 55. Further, false detection of deterioration or detection failure can be reduced. Examples of the detection failure include a case where a person, dust, or the like comes into contact with the metal thin film wiring, and a part of the metal thin film wiring is cut.
 以上、実施の形態4に係る劣化診断方法または劣化診断装置によれば、高圧電気機器の劣化を湿度の影響を受けずに簡易に診断することができる。また、劣化診断における誤検知または検知不全の影響を低減させることができる。 As described above, according to the deterioration diagnosis method or deterioration diagnosis device according to the fourth embodiment, deterioration of high-voltage electrical equipment can be easily diagnosed without being affected by humidity. In addition, the influence of false detection or detection failure in deterioration diagnosis can be reduced.
 実施の形態としていくつかの例を示したが、これらはあくまで例示であり、開示の範囲を限定することは意図されていない。 Although some examples have been shown as embodiments, these are merely examples and are not intended to limit the scope of disclosure.
 実施の形態1~4の説明では、高圧電気機器としてスイッチギヤを例に説明をしたが、高圧電気機器は、スイッチギヤに限定されない。高圧電気機器の通電部の対地間あるいは相間の絶縁に絶縁物を使用しており、かつ当該絶縁物の絶縁性能の劣化状況の診断を行う構成であれば、当該構成において実施の形態1~4と同様の効果を得ることが可能である。 In the description of the first to fourth embodiments, the switchgear has been described as an example of the high-voltage electric device, but the high-voltage electric device is not limited to the switchgear. If an insulator is used for insulation between the ground or the phase of the energized portion of the high-voltage electric device and the state of deterioration of the insulation performance of the insulator is diagnosed, the first to fourth embodiments of the configuration are used. It is possible to obtain the same effect as.
 なお、高圧電気機器としては、たとえば、スイッチギヤ、受配電機器、変圧器、モータコントロールセンタのようなコントロールギヤ、発電機、電動機、あるいは給電のための電源装置(たとえば交流電源装置、直流電源装置、または整流器)を挙げることができる。 Examples of high-voltage electric equipment include switch gears, power receiving and distribution equipment, transformers, control gears such as motor control centers, generators, motors, and power supply devices for power supply (for example, AC power supply devices and DC power supply devices). , Or a rectifier).
 上記の実施形態は、開示の内容を逸脱しない範囲で、省略、置き換え、または変更を行うことにより、その他の様々な形態で実施されても良い。省略、置き換え、または変更を行った実施の形態も、開示の範囲および内容に含まれ、請求の範囲、およびその内容と同等の範囲に含まれる。 The above embodiment may be implemented in various other embodiments by omitting, replacing, or changing the contents of the disclosure without departing from the content of the disclosure. Embodiments that have been omitted, replaced, or modified are also included in the scope and content of the disclosure, and are also included in the scope of claims and the equivalent scope thereof.
 今回開示された各実施の形態は、矛盾しない範囲で適宜組み合わせて実施することも予定されている。今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It is also planned that the embodiments disclosed this time will be appropriately combined and implemented within a consistent range. It should be considered that the embodiments disclosed this time are exemplary in all respects and not restrictive. The scope of the present disclosure is indicated by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope of the claims.
 1 処理回路、1a ハードウェア、1b プロセッサ、1c メモリ、10,10B,10D 金属薄膜配線、20,20B 測定部、31 コーティング膜、32 絶縁基板、33 電極パッド、34 リード線、49 スイッチギヤ、50a,50b 遮断器、51a,51b 操作機構、52 水平母線、53a,53b,54a,54b 接続導体、55 診断対象、55a,55b モールドフレーム、56 母線支持板、57a,57b ケーブル、58 碍子、61a,61b 台車、71 データベース、72,72B 推定部、73 関係式作成部、74 寿命算出部、75 余寿命算出部、80 温度センサ、100,200,300 劣化診断装置、101 入力部、102 記憶部、103,103B 制御部、104 出力部、105 出力装置。 1 Processing circuit, 1a hardware, 1b processor, 1c memory, 10,10B, 10D metal thin film wiring, 20,20B measuring unit, 31 coating film, 32 insulating substrate, 33 electrode pad, 34 lead wire, 49 switchgear, 50a , 50b circuit breaker, 51a, 51b operation mechanism, 52 horizontal bus, 53a, 53b, 54a, 54b connection conductor, 55 diagnosis target, 55a, 55b mold frame, 56 bus support plate, 57a, 57b cable, 58 porcelain, 61a, 61b trolley, 71 database, 72, 72B estimation unit, 73 relational expression creation unit, 74 life calculation unit, 75 remaining life calculation unit, 80 temperature sensor, 100, 200, 300 deterioration diagnostic device, 101 input unit, 102 storage unit, 103, 103B control unit, 104 output unit, 105 output device.

Claims (18)

  1.  絶縁物を含む高圧電気機器の劣化を診断する劣化診断方法であって、
     少なくとも1つの金属薄膜配線を前記絶縁物の周囲に配置するステップと、
     前記絶縁物および前記少なくとも1つの金属薄膜配線がともに特定気体に接触する場合における、前記少なくとも1つの金属薄膜配線の抵抗値と前記絶縁物の表面抵抗率との第1相関関係を規定するデータベースを予め作成するステップと、
     前記少なくとも1つの金属薄膜配線の各々の測定タイミングにおける抵抗値を測定するステップと、
     前記データベースおよび前記測定タイミングにおける抵抗値を用いて、前記測定タイミングにおける前記絶縁物の表面抵抗率を推定するステップと、
     前記測定タイミングにおける前記高圧電気機器の使用時間および前記測定タイミングにおける前記絶縁物の表面抵抗率と、前記高圧電気機器が未使用である場合の前記絶縁物の表面抵抗率とから、前記高圧電気機器の使用時間と前記絶縁物の表面抵抗率との第2相関関係を表す関係式を作成するステップと、
     前記関係式において、前記絶縁物が絶縁性能を失う場合の基準表面抵抗率に対応する前記高圧電気機器の寿命時間を算出するステップと、
     前記寿命時間から、前記測定タイミングにおける前記高圧電気機器の使用時間または前記少なくとも1つの金属薄膜配線が前記絶縁物の周囲に配置されたタイミングにおける前記高圧電気機器の使用時間を減算した前記高圧電気機器の余寿命時間を算出するステップとを含む、劣化診断方法。
    It is a deterioration diagnosis method for diagnosing deterioration of high-voltage electrical equipment including insulation.
    A step of arranging at least one metal thin film wiring around the insulator,
    A database that defines the first correlation between the resistance value of the at least one metal thin film wiring and the surface resistivity of the insulator when both the insulator and the at least one metal thin film wiring come into contact with a specific gas. Steps to create in advance and
    The step of measuring the resistance value at each measurement timing of the at least one metal thin film wiring, and
    A step of estimating the surface resistivity of the insulator at the measurement timing using the database and the resistance value at the measurement timing, and
    From the usage time of the high-voltage electric device at the measurement timing, the surface resistivity of the insulator at the measurement timing, and the surface resistivity of the insulator when the high-voltage electrical device is unused, the high-voltage electrical device And the step of creating a relational expression expressing the second correlation between the usage time of the insulation and the surface resistivity of the insulator.
    In the relational expression, the step of calculating the life time of the high-voltage electric device corresponding to the reference surface resistivity when the insulating material loses the insulating performance, and
    The high-voltage electrical device obtained by subtracting the usage time of the high-voltage electrical device at the measurement timing or the usage time of the high-voltage electrical device at the timing when the at least one metal thin film wiring is arranged around the insulation from the life time. Deterioration diagnosis method including a step of calculating the remaining life time of.
  2.  前記少なくとも1つの金属薄膜配線は、前記絶縁物とは別体として形成されている、請求項1に記載の劣化診断方法。 The deterioration diagnosis method according to claim 1, wherein the at least one metal thin film wiring is formed as a separate body from the insulator.
  3.  前記第1相関関係は、線形関係である、請求項1または2に記載の劣化診断方法。 The deterioration diagnosis method according to claim 1 or 2, wherein the first correlation is a linear relationship.
  4.  前記少なくとも1つの金属薄膜配線は、銅、銅合金、銀、銀合金、ニッケル、ニッケル合金、鉄、および鉄合金の少なくとも1つを含む、請求項1~3のいずれか1項に記載の劣化診断方法。 The deterioration according to any one of claims 1 to 3, wherein the at least one metal thin film wiring contains at least one of copper, copper alloy, silver, silver alloy, nickel, nickel alloy, iron, and iron alloy. Diagnostic method.
  5.  前記データベースの作成に用いられたデータが測定された温度および前記少なくとも1つの金属薄膜配線の周囲の温度の差、ならびに前記少なくとも1つの金属薄膜配線に含まれる金属の抵抗温度係数を用いて、前記データベースにおける前記少なくとも1つの金属薄膜配線の抵抗値を補正するステップをさらに含む、請求項1~4のいずれか1項に記載の劣化診断方法。 Using the temperature difference between the measured temperature and the ambient temperature of the at least one metal thin film wiring, and the temperature coefficient of resistance of the metal contained in the at least one metal thin film wiring, the data used to create the database was used. The deterioration diagnosis method according to any one of claims 1 to 4, further comprising a step of correcting the resistance value of the at least one metal thin film wiring in the database.
  6.  前記少なくとも1つの金属薄膜配線の数は、2以上である、請求項1~5のいずれか1項に記載の劣化診断方法。 The deterioration diagnosis method according to any one of claims 1 to 5, wherein the number of at least one metal thin film wiring is 2 or more.
  7.  前記少なくとも1つの金属薄膜配線の各々は、前記特定気体が透過可能なコーティング膜によって覆われている、請求項1~6のいずれか1項に記載の劣化診断方法。 The deterioration diagnosis method according to any one of claims 1 to 6, wherein each of the at least one metal thin film wiring is covered with a coating film through which the specific gas can permeate.
  8.  前記高圧電気機器は、スイッチギヤ、受配電機器、変圧器、コントロールギヤ、発電機、電動機、および給電のための電源装置の少なくとも1つを含む、請求項1~7のいずれか1項に記載の劣化診断方法。 13. Deterioration diagnosis method.
  9.  前記特定気体は、窒素酸化物および硫黄酸化物の少なくとも1つを含む、請求項1~8のいずれか1項に記載の劣化診断方法。 The deterioration diagnosis method according to any one of claims 1 to 8, wherein the specific gas contains at least one of nitrogen oxide and sulfur oxide.
  10.  絶縁物を含む高圧電気機器の劣化を診断する劣化診断装置であって、
     前記絶縁物の周囲に配置された少なくとも1つの金属薄膜配線と、
     前記絶縁物および前記少なくとも1つの金属薄膜配線がともに特定気体に接触する場合における、前記少なくとも1つの金属薄膜配線の抵抗値と前記絶縁物の表面抵抗率との第1相関関係を規定するデータベースと、
     前記少なくとも1つの金属薄膜配線の各々の測定タイミングにおける抵抗値を測定する測定部と、
     前記データベースおよび前記測定タイミングにおける抵抗値を用いて、前記測定タイミングにおける前記絶縁物の表面抵抗率を推定する推定部と、
     前記測定タイミングにおける前記高圧電気機器の使用時間および前記測定タイミングにおける前記絶縁物の表面抵抗率と、前記高圧電気機器が未使用である場合の前記絶縁物の表面抵抗率とから、前記高圧電気機器の使用時間と前記絶縁物の表面抵抗率との第2相関関係を表す関係式を作成する関係式作成部と、
     前記関係式において、前記絶縁物が絶縁性能を失う場合の基準表面抵抗率に対応する前記高圧電気機器の寿命時間を算出する寿命算出部と、
     前記測定タイミングにおける前記高圧電気機器の使用時間または前記少なくとも1つの金属薄膜配線が前記絶縁物の周囲に配置されたタイミングにおける前記高圧電気機器の使用時間を減算した前記高圧電気機器の余寿命時間を算出する余寿命算出部とを備える、劣化診断装置。
    A deterioration diagnostic device that diagnoses deterioration of high-voltage electrical equipment including insulation.
    With at least one metal thin film wiring arranged around the insulator,
    A database that defines the first correlation between the resistance value of the at least one metal thin film wiring and the surface resistivity of the insulator when both the insulator and the at least one metal thin film wiring come into contact with a specific gas. ,
    A measuring unit that measures the resistance value at each measurement timing of the at least one metal thin film wiring, and a measuring unit.
    An estimation unit that estimates the surface resistivity of the insulator at the measurement timing using the database and the resistance value at the measurement timing.
    From the usage time of the high-voltage electric device at the measurement timing, the surface resistivity of the insulator at the measurement timing, and the surface resistivity of the insulator when the high-voltage electrical device is unused, the high-voltage electrical device A relational expression creation unit that creates a relational expression expressing a second correlation between the usage time of the insulation and the surface resistivity of the insulating material.
    In the relational expression, a life calculation unit for calculating the life time of the high-voltage electric device corresponding to the reference surface resistivity when the insulation loses the insulation performance, and a life calculation unit.
    The remaining life time of the high-voltage electrical equipment obtained by subtracting the usage time of the high-voltage electrical equipment at the measurement timing or the usage time of the high-voltage electrical equipment at the timing when the at least one metal thin film wiring is arranged around the insulation. A deterioration diagnosis device including a remaining life calculation unit for calculation.
  11.  前記少なくとも1つの金属薄膜配線は、前記絶縁物とは別体として形成されている、請求項10に記載の劣化診断装置。 The deterioration diagnosis device according to claim 10, wherein the at least one metal thin film wiring is formed as a separate body from the insulator.
  12.  前記第1相関関係は、線形関係である、請求項10または11に記載の劣化診断装置。 The deterioration diagnostic apparatus according to claim 10 or 11, wherein the first correlation is a linear relationship.
  13.  前記少なくとも1つの金属薄膜配線は、銅、銅合金、銀、銀合金、ニッケル、ニッケル合金、鉄、および鉄合金の少なくとも1つを含む、請求項10~12のいずれか1項に記載の劣化診断装置。 The deterioration according to any one of claims 10 to 12, wherein the at least one metal thin film wiring comprises at least one of copper, copper alloy, silver, silver alloy, nickel, nickel alloy, iron, and iron alloy. Diagnostic device.
  14.  前記推定部は、前記データベースの作成に用いられたデータが測定された温度および前記少なくとも1つの金属薄膜配線の周囲の温度の差、ならびに前記少なくとも1つの金属薄膜配線に含まれる金属の抵抗温度係数を用いて、前記データベースにおける前記少なくとも1つの金属薄膜配線の抵抗値を補正する、請求項10~13のいずれか1項に記載の劣化診断装置。 The estimation unit determines the difference between the measured temperature of the data used to create the database and the temperature around the at least one metal thin film wiring, and the temperature coefficient of resistance of the metal contained in the at least one metal thin film wiring. The deterioration diagnostic apparatus according to any one of claims 10 to 13, wherein the resistance value of the at least one metal thin film wiring in the database is corrected by using the above.
  15.  前記少なくとも1つの金属薄膜配線の数は、2以上である、請求項10~14のいずれか1項に記載の劣化診断装置。 The deterioration diagnostic apparatus according to any one of claims 10 to 14, wherein the number of the at least one metal thin film wiring is two or more.
  16.  前記少なくとも1つの金属薄膜配線の各々は、前記特定気体が透過可能なコーティング膜によって覆われている、請求項10~15のいずれか1項に記載の劣化診断装置。 The deterioration diagnostic apparatus according to any one of claims 10 to 15, wherein each of the at least one metal thin film wiring is covered with a coating film through which the specific gas can permeate.
  17.  前記高圧電気機器は、スイッチギヤ、受配電機器、変圧器、コントロールギヤ、発電機、電動機、および給電のための電源装置の少なくとも1つを含む、請求項10~16のいずれか1項に記載の劣化診断装置。 13. Deterioration diagnostic equipment.
  18.  前記特定気体は、窒素酸化物および硫黄酸化物の少なくとも1つを含む、請求項10~17のいずれか1項に記載の劣化診断装置。 The deterioration diagnostic apparatus according to any one of claims 10 to 17, wherein the specific gas contains at least one of nitrogen oxide and sulfur oxide.
PCT/JP2020/006415 2020-02-19 2020-02-19 Deterioration diagnosis method and deterioration diagnosis device WO2021166095A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/006415 WO2021166095A1 (en) 2020-02-19 2020-02-19 Deterioration diagnosis method and deterioration diagnosis device
JP2022501458A JP7183473B2 (en) 2020-02-19 2020-02-19 Deterioration diagnosis method and deterioration diagnosis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/006415 WO2021166095A1 (en) 2020-02-19 2020-02-19 Deterioration diagnosis method and deterioration diagnosis device

Publications (1)

Publication Number Publication Date
WO2021166095A1 true WO2021166095A1 (en) 2021-08-26

Family

ID=77390728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006415 WO2021166095A1 (en) 2020-02-19 2020-02-19 Deterioration diagnosis method and deterioration diagnosis device

Country Status (2)

Country Link
JP (1) JP7183473B2 (en)
WO (1) WO2021166095A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248299A1 (en) * 2022-06-20 2023-12-28 三菱電機株式会社 Degradation diagnosis method and degradation diagnosis device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5332961A (en) * 1986-11-06 1994-07-26 Ford Motor Company Resistive oil quality sensor
JP2003009316A (en) * 2001-04-17 2003-01-10 Mitsubishi Electric Corp Life time diagnosis method for power-receiving and distributing facility
JP2005061901A (en) * 2003-08-08 2005-03-10 Mitsubishi Electric Corp Insulation diagnostic method for electric equipment
JP2012231633A (en) * 2011-04-27 2012-11-22 Mitsubishi Electric Corp Method and device for diagnosing remaining life of reception/distribution apparatus
JP2014023401A (en) * 2012-07-24 2014-02-03 Hitachi Ltd Remaining lifetime diagnosing method of insulator in power receiving/transforming facility
JP2015002600A (en) * 2013-06-14 2015-01-05 三菱電機株式会社 Remaining lifetime diagnosis method of power reception/distribution equipment, and remaining lifetime diagnosis device
JP2017198547A (en) * 2016-04-27 2017-11-02 株式会社東芝 Insulation degradation testing device and method for testing insulation deterioration
JP2020003277A (en) * 2018-06-27 2020-01-09 三菱電機株式会社 Method and system for diagnosing shorted residual life of power receiving/distributing apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5332961A (en) * 1986-11-06 1994-07-26 Ford Motor Company Resistive oil quality sensor
JP2003009316A (en) * 2001-04-17 2003-01-10 Mitsubishi Electric Corp Life time diagnosis method for power-receiving and distributing facility
JP2005061901A (en) * 2003-08-08 2005-03-10 Mitsubishi Electric Corp Insulation diagnostic method for electric equipment
JP2012231633A (en) * 2011-04-27 2012-11-22 Mitsubishi Electric Corp Method and device for diagnosing remaining life of reception/distribution apparatus
JP2014023401A (en) * 2012-07-24 2014-02-03 Hitachi Ltd Remaining lifetime diagnosing method of insulator in power receiving/transforming facility
JP2015002600A (en) * 2013-06-14 2015-01-05 三菱電機株式会社 Remaining lifetime diagnosis method of power reception/distribution equipment, and remaining lifetime diagnosis device
JP2017198547A (en) * 2016-04-27 2017-11-02 株式会社東芝 Insulation degradation testing device and method for testing insulation deterioration
JP2020003277A (en) * 2018-06-27 2020-01-09 三菱電機株式会社 Method and system for diagnosing shorted residual life of power receiving/distributing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248299A1 (en) * 2022-06-20 2023-12-28 三菱電機株式会社 Degradation diagnosis method and degradation diagnosis device

Also Published As

Publication number Publication date
JPWO2021166095A1 (en) 2021-08-26
JP7183473B2 (en) 2022-12-05

Similar Documents

Publication Publication Date Title
WO2021166095A1 (en) Deterioration diagnosis method and deterioration diagnosis device
US9476944B2 (en) Insulation inspection instrument
JP4045776B2 (en) Life diagnosis method for power distribution facilities
JP5944773B2 (en) Method for diagnosing remaining life of insulators in substation equipment
JP6045444B2 (en) Remaining life diagnosis method and remaining life diagnosis device for power distribution equipment
JP2019132695A (en) Coil testing device
WO2023248299A1 (en) Degradation diagnosis method and degradation diagnosis device
EP3958002B1 (en) Current sensor element, current sensor unit, and method of measuring a current
Schleif Corrections for Dielectric Absorption in High-Voltage DC Insulation Tests [includes discussion]
JP5179587B2 (en) Diagnostic method for oil-filled electrical equipment, diagnostic device for implementing the diagnostic method, and oil-filled electrical equipment equipped with the diagnostic device
JP6656247B2 (en) Method and system for diagnosing remaining short-circuit life of power receiving and distribution equipment
JP2013210333A (en) Internal resistance detecting method and internal resistance detecting device for secondary battery
CN110794290B (en) Substrate detection device and substrate detection method
JP2020063988A (en) Corrosion sensor
Nukaiyama et al. Principal decomposition by-products generated at various abnormalities in gas-insulated transformers
JP7395077B1 (en) Method, device and program for diagnosing deterioration of electrical equipment including insulators
JP6069051B2 (en) Power cable high resistance insulation failure location method and apparatus
JPS6228655A (en) Diagnosing method for insulation deterioration
CN113552455B (en) Online testing method for voltage division of buffer layer of power cable
JP4469763B2 (en) High voltage power cable insulation diagnosis and monitoring device
JP3873785B2 (en) Fault location method
KR100805872B1 (en) Method and device for estimating remaining service life of coil
US20230184811A1 (en) Shunt resistor for a current measurement apparatus of a busbar, current measurement apparatus and busbar
WO2022176799A1 (en) Partial discharge measurement system and partial discharge measurement method
JPS6091272A (en) Diagnosis of deterioration in insulating properties of power cable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919958

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022501458

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919958

Country of ref document: EP

Kind code of ref document: A1