JP2013210333A - Internal resistance detecting method and internal resistance detecting device for secondary battery - Google Patents

Internal resistance detecting method and internal resistance detecting device for secondary battery Download PDF

Info

Publication number
JP2013210333A
JP2013210333A JP2012081866A JP2012081866A JP2013210333A JP 2013210333 A JP2013210333 A JP 2013210333A JP 2012081866 A JP2012081866 A JP 2012081866A JP 2012081866 A JP2012081866 A JP 2012081866A JP 2013210333 A JP2013210333 A JP 2013210333A
Authority
JP
Japan
Prior art keywords
resistance
secondary battery
harness
internal resistance
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012081866A
Other languages
Japanese (ja)
Inventor
Koichi Yokoyama
浩一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Furukawa Automotive Systems Inc
Original Assignee
Furukawa Electric Co Ltd
Furukawa Automotive Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Furukawa Automotive Systems Inc filed Critical Furukawa Electric Co Ltd
Priority to JP2012081866A priority Critical patent/JP2013210333A/en
Publication of JP2013210333A publication Critical patent/JP2013210333A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an internal resistance detecting method and an internal resistance detecting device for a secondary battery, in which internal resistance of the secondary battery can be detected with high accuracy while reducing influences of resistance of a harness.SOLUTION: Resistance Rm is calculated from a current measurement and a voltage measurement inputted from a current measuring section 120 and a voltage measuring section 130, harness resistance Rh is subtracted therefrom, and internal resistance Rb of a secondary battery 10 is calculated. The harness resistance Rh is used after performing temperature correction to be a resistance value at a harness temperature detected by temperature detecting means 150 with respect to harness resistance Rhs at a predetermined reference temperature which is actually measured or calculated beforehand.

Description

本発明は、主に自動車に搭載される二次電池の内部抵抗を検知するための二次電池の内部抵抗検知方法及び内部抵抗検知装置に関するものである。   The present invention mainly relates to a secondary battery internal resistance detection method and an internal resistance detection device for detecting internal resistance of a secondary battery mounted on an automobile.

自動車に搭載される二次電池の内部抵抗を検知する方法として、アクティブ方式によるものと、パッシブ方式によるものが知られている。アクティブ方式による内部抵抗検知方法では、任意のタイミングで能動的に(アクティブに)二次電池から放電させ、そのときの電圧の変化(電流電圧応答)から二次電池の内部抵抗を検知する。また、パッシブ方式による内部抵抗検知方法では、車両のエンジンクランキング時や負荷使用時、発電機による充電時など、二次電池に電流が流れたときに電流電圧応答を測定し、これから電池の内部抵抗を検知する。パッシブ方式による内部抵抗検知方法は、アクティブ方式のように事前に電流が流れるタイミングを知ることはできない方法であることから、受動的(パッシブ)方式と呼ばれる。   As a method for detecting the internal resistance of a secondary battery mounted on an automobile, an active method and a passive method are known. In the internal resistance detection method using the active method, the secondary battery is actively (actively) discharged at an arbitrary timing, and the internal resistance of the secondary battery is detected from a change in voltage (current voltage response) at that time. In the internal resistance detection method using the passive method, the current-voltage response is measured when current flows through the secondary battery, such as when the engine is cranked or when a load is used, or when the generator is charged. Sense resistance. The internal resistance detection method by the passive method is called a passive method because it cannot know the timing of current flow in advance as in the active method.

車両に搭載された二次電池に、電流電圧応答を測定するための内部抵抗検知装置を接続した一例を図5に示す。二次電池10は、まず電線30を介して電気接続箱(リレーボックス、ジャンクションボックス、あるいはヒューズボックスなどとも呼ばれる)20−1に接続され、ここでバスバー21及びヒューズ22を経由して別の電気接続箱20―2、20―3、及びスタータ40等に接続される。ヒューズ22は、車両電子機器(電気部品)を保護するために設けられている。図5に示す例では、内部抵抗検知装置50が電気接続箱20−1に接続された別の電気接続箱の一つである電気接続箱20−2に接続されている。   FIG. 5 shows an example in which an internal resistance detection device for measuring a current-voltage response is connected to a secondary battery mounted on a vehicle. The secondary battery 10 is first connected to an electrical connection box (also called a relay box, a junction box, or a fuse box) 20-1 through an electric wire 30, and here, another electrical connection is made via a bus bar 21 and a fuse 22. The connection boxes 20-2 and 20-3 are connected to the starter 40 and the like. The fuse 22 is provided to protect the vehicle electronic device (electric part). In the example shown in FIG. 5, the internal resistance detection device 50 is connected to an electrical connection box 20-2 that is one of the other electrical connection boxes connected to the electrical connection box 20-1.

内部抵抗検知装置50が電気接続箱20−2に接続されていると、内部抵抗検知装置50で測定される電流及び電圧は、二次電池10の電池端子と電気接続箱20−1とを接続する電線30、電気接続箱20−1の内部のバスバー21及びヒューズ22、電気接続箱20−1と電気接続箱20−2とを接続する電線31、さらに電気接続箱20−2内部のバスバー23、等の抵抗の影響を受ける。その結果、内部抵抗検知装置50で測定された電流、電圧から求めた二次電池10の内部抵抗には、電線30、31、バスバー21、23及びヒューズ22等の抵抗成分が加算されている。そのため、二次電池10の正確な内部抵抗を検知することができない。   When the internal resistance detection device 50 is connected to the electrical junction box 20-2, the current and voltage measured by the internal resistance detection device 50 connect the battery terminal of the secondary battery 10 and the electrical junction box 20-1. The electric wire 30, the bus bar 21 and the fuse 22 inside the electric connection box 20-1, the electric wire 31 connecting the electric connection box 20-1 and the electric connection box 20-2, and the bus bar 23 inside the electric connection box 20-2. Affected by resistance. As a result, resistance components such as the electric wires 30 and 31, the bus bars 21 and 23, and the fuse 22 are added to the internal resistance of the secondary battery 10 obtained from the current and voltage measured by the internal resistance detection device 50. Therefore, the accurate internal resistance of the secondary battery 10 cannot be detected.

従来の二次電池の内部抵抗検知方法では、電流経路である電線やバスバー、ヒューズ等(以下では、これらをまとめてハーネスという)の抵抗成分の影響を考慮せずに、内部抵抗検知装置で測定した電流測定値と電圧測定値から抵抗値を求め、これを二次電池の内部抵抗としていた。従来の二次電池の内部抵抗検知方法の一例として、特許文献1では、二次電池に所定の電流値で略矩形波のパルス放電を行わせ、パルス放電時の応答電圧と放電電流値から二次電池の内部抵抗を検知している。   In the conventional method of detecting internal resistance of a secondary battery, measurement is performed with an internal resistance detector without considering the influence of the resistance component of the current path such as electric wires, bus bars, fuses, etc. (hereinafter collectively referred to as harness). The resistance value was obtained from the measured current value and the measured voltage value, and this was used as the internal resistance of the secondary battery. As an example of a conventional method for detecting the internal resistance of a secondary battery, in Patent Document 1, a secondary battery is caused to perform a pulse discharge of a substantially rectangular wave with a predetermined current value. The internal resistance of the secondary battery is detected.

また特許文献2では、車両のエンジンスタータ始動に際して、スタータ電流の増大期間に二次電池の電圧・電流をサンプリングし、電圧と電流の単位時間当たりの変化量から二次電池の内部抵抗を検知している。さらに特許文献3では、ヒューズ及びサービスプラグで構成されたサービスプラグボックスを有する組電池について、組電池の内部抵抗値を算出し、これをサービスプラグボックスの抵抗値を用いて補正している。サービスプラグボックスの抵抗値は、充放電電流、電池温度、及び周囲温度に基づいてサービスプラグボックスの温度を算出し、これを用いて算出している。   In Patent Document 2, when starting an engine starter of a vehicle, the voltage and current of the secondary battery are sampled during the starter current increasing period, and the internal resistance of the secondary battery is detected from the amount of change in voltage and current per unit time. ing. Further, in Patent Document 3, for an assembled battery having a service plug box composed of a fuse and a service plug, the internal resistance value of the assembled battery is calculated and corrected using the resistance value of the service plug box. The resistance value of the service plug box is calculated by calculating the temperature of the service plug box based on the charge / discharge current, the battery temperature, and the ambient temperature.

特開2006−284537号公報JP 2006-284537 A 特開2002−168929号公報JP 2002-168929 A 特開2010−160026号公報JP 2010-160026 JP

しかしながら、特許文献1および特許文献2で開示されている方法では、ハーネスの抵抗の影響が考慮されていないため、検知された二次電池の内部抵抗にはハーネスの抵抗分が含まれており、二次電池の内部抵抗のみを正確に知ることはできない。また、特許文献3の方法では、サービスプラグボックスの抵抗分を補正して組電池の内部抵抗値を求めているが、やはりハーネスの抵抗については考慮されておらず、補正された内部抵抗にはハーネスの抵抗分が含まれている。上記従来の二次電池の内部抵抗検知方法では、何れも二次電池の内部抵抗を正確に検知することができないといった問題がある。   However, in the methods disclosed in Patent Document 1 and Patent Document 2, since the influence of the resistance of the harness is not considered, the detected internal resistance of the secondary battery includes the resistance of the harness, It is not possible to accurately know only the internal resistance of the secondary battery. Further, in the method of Patent Document 3, the resistance value of the service plug box is corrected to obtain the internal resistance value of the assembled battery. However, the resistance of the harness is not taken into consideration, and the corrected internal resistance is The resistance of the harness is included. Any of the conventional methods for detecting the internal resistance of a secondary battery has a problem that the internal resistance of the secondary battery cannot be accurately detected.

本発明は上記問題を解決するためになされたものであり、ハーネスの抵抗の影響を低減して二次電池の内部抵抗を高精度に検知することが可能な二次電池の内部抵抗検知方法及び内部抵抗検知装置を提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problem, and a method for detecting the internal resistance of a secondary battery capable of detecting the internal resistance of the secondary battery with high accuracy by reducing the influence of the resistance of the harness and An object is to provide an internal resistance detection device.

本発明の二次電池の内部抵抗検知方法の第1の態様は、二次電池を充放電させたときの充放電電流及び応答電圧をそれぞれ電流測定手段及び電圧測定手段を用いて測定し、前記電流測定手段及び前記電圧測定手段からそれぞれ入力した電流測定値及び電圧測定値を用いて前記二次電池の内部抵抗を算出する二次電池の内部抵抗検知方法であって、前記二次電池の端子から前記充放電電流が流れる電流経路の所定の位置までのハーネス抵抗Rhを算出し、前記電流測定値及び前記電圧測定値から算出される抵抗値Rmから前記ハーネス抵抗Rhを減算して前記内部抵抗を算出することを特徴とする。   In the first aspect of the method for detecting the internal resistance of the secondary battery of the present invention, the charge / discharge current and the response voltage when the secondary battery is charged / discharged are measured using current measuring means and voltage measuring means, respectively, A secondary battery internal resistance detection method for calculating an internal resistance of the secondary battery using a current measurement value and a voltage measurement value respectively input from a current measurement unit and the voltage measurement unit, the terminal of the secondary battery To the predetermined position of the current path through which the charging / discharging current flows is calculated, and the harness resistance Rh is subtracted from the resistance value Rm calculated from the current measurement value and the voltage measurement value. Is calculated.

本発明の二次電池の内部抵抗検知方法の他の態様は、前記電流経路のハーネス温度をTh、前記電流経路の抵抗温度係数をα、事前に決定された基準温度Tsにおける前記ハーネス抵抗をRhs、前記ハーネス温度Thにおける前記ハーネス抵抗をRh、とするとき、前記ハーネス抵抗Rhを次式
Rh=Rhs×(1+α×(Th−Ts))
より算出し、算出された前記ハーネス抵抗Rhを前記抵抗値Rmから減算して前記内部抵抗を算出することを特徴とする。
According to another aspect of the method of detecting the internal resistance of the secondary battery of the present invention, the harness temperature of the current path is Th, the resistance temperature coefficient of the current path is α, and the harness resistance at the reference temperature Ts determined in advance is Rhs. When the harness resistance at the harness temperature Th is Rh, the harness resistance Rh is expressed by the following formula: Rh = Rhs × (1 + α × (Th−Ts))
The internal resistance is calculated by subtracting the calculated harness resistance Rh from the resistance value Rm.

本発明の二次電池の内部抵抗検知方法の他の態様は、前記二次電池の端子から前記所定の位置までの電流経路がヒューズと導体からなるとき、所定の温度における前記ヒューズの抵抗値RFと前記導体の抵抗値RCを事前に決定し、前記導体の抵抗温度係数をα1、前記ヒューズの抵抗温度係数をα2、とするとき、前記電流経路の抵抗温度係数αを次式
α=α1×RC/(RC+RF)+α2×RF/(RC+RF)
で算出することを特徴とする。
According to another aspect of the method of detecting the internal resistance of the secondary battery of the present invention, when the current path from the terminal of the secondary battery to the predetermined position is composed of a fuse and a conductor, the resistance value RF of the fuse at a predetermined temperature. And the resistance value RC of the conductor is determined in advance, the resistance temperature coefficient of the conductor is α1, and the resistance temperature coefficient of the fuse is α2, the resistance temperature coefficient α of the current path is expressed by the following equation: α = α1 × RC / (RC + RF) + α2 × RF / (RC + RF)
It is characterized by calculating by.

本発明の二次電池の内部抵抗検知方法の他の態様は、前記二次電池から所定の放電電流を放電させる放電手段を有し、前記放電手段を用いて前記二次電池から放電させたときの前記放電電流及び前記応答電圧を測定して前記内部抵抗を算出することを特徴とする。   Another aspect of the method for detecting the internal resistance of the secondary battery according to the present invention has a discharge means for discharging a predetermined discharge current from the secondary battery, and the secondary battery is discharged from the secondary battery using the discharge means. The internal resistance is calculated by measuring the discharge current and the response voltage.

本発明の二次電池の内部抵抗検知方法の他の態様は、前記二次電池から所定値以上の大電流が放電されたときの前記放電電流及び前記応答電圧を測定して前記内部抵抗を算出することを特徴とする。   In another aspect of the method for detecting the internal resistance of the secondary battery of the present invention, the internal resistance is calculated by measuring the discharge current and the response voltage when a large current of a predetermined value or more is discharged from the secondary battery. It is characterized by doing.

本発明の二次電池の内部抵抗検知装置の第1の態様は、二次電池を充放電させたときの充放電電流及び応答電圧を測定して前記二次電池の内部抵抗を算出する二次電池の内部抵抗検知装置であって、前記充放電電流を測定する電流測定部と、前記応答電圧を測定する電圧測定部と、前記内部抵抗を算出する演算処理部と、を備え、前記演算処理部は、前記二次電池の端子から前記充放電電流が流れる電流経路の所定の位置までのハーネス抵抗Rhを算出し、前記電流測定部及び前記電圧測定部から電流測定値及び電圧測定値を入力し、前記電流測定値及び前記電圧測定値から抵抗値Rmを算出し、該抵抗値Rmから前記ハーネス抵抗Rhを減算して前記内部抵抗を算出することを特徴とする。   The 1st aspect of the internal resistance detection apparatus of the secondary battery of this invention calculates the internal resistance of the said secondary battery by measuring the charging / discharging current and response voltage when charging / discharging a secondary battery. An internal resistance detection device for a battery, comprising: a current measurement unit that measures the charge / discharge current; a voltage measurement unit that measures the response voltage; and an arithmetic processing unit that calculates the internal resistance. The unit calculates a harness resistance Rh from a terminal of the secondary battery to a predetermined position of a current path through which the charge / discharge current flows, and inputs a current measurement value and a voltage measurement value from the current measurement unit and the voltage measurement unit. Then, a resistance value Rm is calculated from the current measurement value and the voltage measurement value, and the harness resistance Rh is subtracted from the resistance value Rm to calculate the internal resistance.

本発明の二次電池の内部抵抗検知装置の他の態様は、前記充放電電流が流れる電流経路のハーネス温度を検知する温度検知手段をさらに備え、前記温度検知手段で検知された前記ハーネス温度をTh、前記電流経路の抵抗温度係数をα、事前に決定された基準温度Tsにおける前記ハーネス抵抗をRhs、前記ハーネス温度Thにおける前記ハーネス抵抗をRh、とするとき、前記演算処理部は、前記ハーネス抵抗Rhを次式
Rh=Rhs×(1+α×(Th−Ts))
より算出し、算出された前記ハーネス抵抗Rhを前記抵抗値Rmから減算して前記内部抵抗を算出することを特徴とする。
Another aspect of the internal resistance detection device for a secondary battery of the present invention further includes temperature detection means for detecting a harness temperature of a current path through which the charge / discharge current flows, and the harness temperature detected by the temperature detection means is detected. When the Th, the resistance temperature coefficient of the current path is α, the harness resistance at a predetermined reference temperature Ts is Rhs, and the harness resistance at the harness temperature Th is Rh, the arithmetic processing unit is the harness The resistance Rh is expressed by the following formula: Rh = Rhs × (1 + α × (Th−Ts))
The internal resistance is calculated by subtracting the calculated harness resistance Rh from the resistance value Rm.

本発明によれば、ハーネスの抵抗の影響を低減して二次電池の内部抵抗を高精度に検知することが可能な二次電池の内部抵抗検知方法及び内部抵抗検知装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the internal resistance detection method and internal resistance detection apparatus of a secondary battery which can reduce the influence of resistance of a harness and can detect the internal resistance of a secondary battery with high precision can be provided. .

本発明の第1実施形態に係る内部抵抗検知装置を二次電池に接続した接続図である。It is the connection diagram which connected the internal resistance detection apparatus which concerns on 1st Embodiment of this invention to the secondary battery. 内部抵抗及びハーネス抵抗の温度特性の一例を示すグラフである。It is a graph which shows an example of the temperature characteristic of internal resistance and harness resistance. 電線及びバスバーの温度特性とヒューズの温度特性との比較を示すグラフである。It is a graph which shows the comparison with the temperature characteristic of an electric wire and a bus-bar, and the temperature characteristic of a fuse. 本発明の第2実施形態に係る内部抵抗検知装置を二次電池に接続した接続図である。It is the connection diagram which connected the internal resistance detection apparatus which concerns on 2nd Embodiment of this invention to the secondary battery. 電流電圧応答を測定するための内部抵抗検知装置を二次電池に接続した接続図である。It is the connection diagram which connected the internal resistance detection apparatus for measuring a current voltage response to the secondary battery.

本発明の好ましい実施の形態における二次電池の内部抵抗検知方法について、図面を参照して詳細に説明する。なお、同一機能を有する各構成部については、図示及び説明簡略化のため、同一符号を付して示す。   A method for detecting the internal resistance of a secondary battery in a preferred embodiment of the present invention will be described in detail with reference to the drawings. In addition, about each structural part which has the same function, the same code | symbol is attached | subjected and shown for simplification of illustration and description.

(第1実施形態)
本発明の第1の実施形態に係る二次電池の内部抵抗検知方法を、図1を用いて説明する。図1は、第1実施形態の二次電池の内部抵抗検知方法で用いる内部抵抗検知装置100を二次電池10に接続した接続図である。本実施形態では、アクティブ方式により二次電池の内部抵抗を検知する方法を提供する。図1において、二次電池10の内部抵抗を検知する本実施形態の内部抵抗検知装置100は、電線32、33で電気接続箱20−2のバスバー23に接続されている。また、電気接続箱20−2は電線31で電気接続箱20−1のバスバー21の端子に接続され、電気接続箱20−1が電線30で二次電池10の端子(プラスターミナル)に接続されている。
(First embodiment)
A method for detecting the internal resistance of a secondary battery according to the first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a connection diagram in which an internal resistance detection device 100 used in the secondary battery internal resistance detection method of the first embodiment is connected to a secondary battery 10. In the present embodiment, a method for detecting the internal resistance of a secondary battery by an active method is provided. In FIG. 1, the internal resistance detection device 100 of the present embodiment that detects the internal resistance of the secondary battery 10 is connected to the bus bar 23 of the electrical connection box 20-2 by electric wires 32 and 33. In addition, the electric connection box 20-2 is connected to the terminal of the bus bar 21 of the electric connection box 20-1 by the electric wire 31, and the electric connection box 20-1 is connected to the terminal (plus terminal) of the secondary battery 10 by the electric wire 30. ing.

内部抵抗検知装置100は、二次電池10の放電を行わせるための放電制御部110と、二次電池10の電流を測定する電流測定部120と、二次電池10の電圧を測定する電圧測定部130と、二次電池10の内部抵抗を演算処理する演算処理部140と、を備えている。放電制御部110により所定のタイミングで二次電池10の放電が行われると、演算処理部140は放電開始後の二次電池の電流、電圧をそれぞれ電流測定部120及び電圧測定部130から入力し、これを用いて二次電池10の内部抵抗を算出する。   The internal resistance detection device 100 includes a discharge control unit 110 for causing the secondary battery 10 to discharge, a current measurement unit 120 for measuring the current of the secondary battery 10, and a voltage measurement for measuring the voltage of the secondary battery 10. Unit 130 and an arithmetic processing unit 140 that performs arithmetic processing on the internal resistance of the secondary battery 10. When the secondary battery 10 is discharged at a predetermined timing by the discharge control unit 110, the arithmetic processing unit 140 inputs the current and voltage of the secondary battery after the start of discharge from the current measurement unit 120 and the voltage measurement unit 130, respectively. Using this, the internal resistance of the secondary battery 10 is calculated.

放電制御部110は、図示しない電流制限抵抗やスイッチング素子等を有しており、二次電池10を任意の電流波形(例えば、略矩形波や正弦波等)で放電させることができる。また、内部抵抗検知装置100は、電源用電線32で電気接続箱20−2のバスバー23のコネクタ端子に接続されて電源が供給されるとともに、アクティブ方式で二次電池10の放電を行わせるために、放電用電線33でバスバー23の別のコネクタ端子に接続されている。なお、内部抵抗検知装置100における電圧測定は、電源用電線32のラインで行われる。   The discharge control unit 110 includes a current limiting resistor, a switching element, and the like (not shown), and can discharge the secondary battery 10 with an arbitrary current waveform (for example, a substantially rectangular wave or a sine wave). In addition, the internal resistance detection device 100 is connected to the connector terminal of the bus bar 23 of the electrical connection box 20-2 by the power supply wire 32 and supplied with power, and discharges the secondary battery 10 in an active manner. In addition, the discharge wire 33 is connected to another connector terminal of the bus bar 23. The voltage measurement in the internal resistance detection device 100 is performed on the line of the power supply wire 32.

図1において、放電制御部110を用いて二次電池10の放電を行わせると、二次電池10のプラスターミナルから電線30、バスバー21、ヒューズ22、電線31、及び電気接続箱20−2内のバスバー23及びヒューズ25を経由して放電用電線33に電流が流れる。また、放電開始後の電圧測定では、放電電流が流れる電気接続箱20−2内のバスバー23に現れる電圧が、電源用電線32及びヒューズ24を介して電圧測定部130で測定される。電源用電線32に流れる電流は放電用電線33に流れる電流に比べて小さいことから、電気接続箱20−2内のバスバー23から電圧測定部130までの間での電圧降下は小さく、これを無視しても問題ない。   In FIG. 1, when the secondary battery 10 is discharged using the discharge control unit 110, the inside of the electric wire 30, the bus bar 21, the fuse 22, the electric wire 31, and the electric connection box 20-2 from the plus terminal of the secondary battery 10. Current flows through the discharge wire 33 via the bus bar 23 and the fuse 25. Further, in the voltage measurement after the start of discharge, the voltage appearing on the bus bar 23 in the electrical connection box 20-2 through which the discharge current flows is measured by the voltage measuring unit 130 via the power supply wire 32 and the fuse 24. Since the current flowing through the power supply wire 32 is smaller than the current flowing through the discharge wire 33, the voltage drop between the bus bar 23 and the voltage measuring unit 130 in the electrical connection box 20-2 is small and ignored. There is no problem.

上記より、電圧測定部130で測定される電圧は、電気接続箱20−2内のバスバー23の電源用電線32が接続されているヒューズ24との接続点における電圧である。そこで、以下では二次電池10の内部抵抗をRb、電線30の抵抗をRh1、電線31の抵抗をRh2とし、電気接続箱20−1内のバスバー21と電線31との間に接続されるヒューズ22の抵抗をRfとする。また、バスバー21の電線30との接続点からヒューズ22との接続点までの抵抗をRh3とし、バスバー23の電線31との接続点からヒューズ24との接続点までの抵抗をRh4とする。さらに、二次電池10のプラスターミナルからバスバー23のヒューズ24との接続点までのハーネスの全抵抗をRhとする。   From the above, the voltage measured by the voltage measuring unit 130 is the voltage at the connection point with the fuse 24 to which the power supply wire 32 of the bus bar 23 in the electrical connection box 20-2 is connected. Therefore, in the following, the internal resistance of the secondary battery 10 is Rb, the resistance of the electric wire 30 is Rh1, the resistance of the electric wire 31 is Rh2, and the fuse connected between the bus bar 21 and the electric wire 31 in the electric junction box 20-1. The resistance of 22 is Rf. Further, the resistance from the connection point of the bus bar 21 to the electric wire 30 to the connection point to the fuse 22 is Rh3, and the resistance from the connection point of the bus bar 23 to the electric wire 31 to the connection point to the fuse 24 is Rh4. Furthermore, the total resistance of the harness from the plus terminal of the secondary battery 10 to the connection point with the fuse 24 of the bus bar 23 is Rh.

上記より、ハーネスの抵抗Rhは、電線30の抵抗Rh1、電気接続箱20−1内のバスバー21の抵抗Rh3、ヒューズ22の抵抗Rf、電線31の抵抗Rh2、及びバスバー23の抵抗Rh4を合計したものに略等しく、Rh=Rh1+Rh2+Rh3+Rh4+Rfで与えることができる。   From the above, the resistance Rh of the harness is the sum of the resistance Rh1 of the electric wire 30, the resistance Rh3 of the bus bar 21 in the electrical connection box 20-1, the resistance Rf of the fuse 22, the resistance Rh2 of the electric wire 31, and the resistance Rh4 of the bus bar 23. Rh = Rh1 + Rh2 + Rh3 + Rh4 + Rf.

内部抵抗検知装置100は、所定のタイミングで放電制御部110により二次電池10から所定の放電パターンで放電させ、そのときの電流、電圧をそれぞれ電流測定部120及び電圧測定部130で測定する。演算処理部140は、放電開始後の所定の期間の電流測定値及び電圧測定値をそれぞれ電流測定部120及び電圧測定部130から入力し、これを用いて二次電池10の内部抵抗を算出する。   The internal resistance detection device 100 causes the discharge control unit 110 to discharge the secondary battery 10 with a predetermined discharge pattern at a predetermined timing, and measures the current and voltage at that time with the current measurement unit 120 and the voltage measurement unit 130, respectively. The arithmetic processing unit 140 inputs a current measurement value and a voltage measurement value for a predetermined period after the start of discharge from the current measurement unit 120 and the voltage measurement unit 130, respectively, and uses them to calculate the internal resistance of the secondary battery 10. .

演算処理部140において、電流測定値及び電圧測定値から算出される抵抗をRmとすると、抵抗Rmは二次電池10の内部抵抗Rbにハーネス抵抗Rhが加わったものに相当する。すなわち、抵抗Rmは、Rm=Rb+Rhと表すことができる。これより、二次電池の内部抵抗Rbは
Rb=Rm−Rh (1)
で与えられる。
When the resistance calculated from the current measurement value and the voltage measurement value is Rm in the arithmetic processing unit 140, the resistance Rm corresponds to the internal resistance Rb of the secondary battery 10 plus the harness resistance Rh. That is, the resistance Rm can be expressed as Rm = Rb + Rh. Thus, the internal resistance Rb of the secondary battery is Rb = Rm−Rh (1)
Given in.

ハーネス抵抗Rhは、内部抵抗検知装置100を二次電池10に接続したときに、二次電池10のプラスターミナルから電気接続箱20−2のバスバー23のヒューズ24が接続されるコネクタ端子までの抵抗値を実測し、これを演算処理部140に保存しておいて用いることができる。あるいは、電源配線図や電気接続箱の設計図等から読み取れる電線やバスバーの線径、長さ、厚さ等をもとに抵抗値を算出して用いてもよい。   The harness resistance Rh is the resistance from the plus terminal of the secondary battery 10 to the connector terminal to which the fuse 24 of the bus bar 23 of the electrical connection box 20-2 is connected when the internal resistance detection device 100 is connected to the secondary battery 10. The value can be measured and stored in the arithmetic processing unit 140 for use. Or you may calculate and use resistance value based on the wire diameter, length, thickness, etc. of the electric wire and bus bar which can be read from a power supply wiring diagram, the electrical connection box design drawing, etc.

ハーネスは、それに流れる電流による発熱等によって温度が変化し、その影響によって抵抗値Rhも変化する。そのため、式(1)の二次電池10の内部抵抗Rbの算出に用いるハーネス抵抗Rhには、そのときのハーネス温度における抵抗値を用いる必要がある。これに対し、事前に実測されるかあるいは電源配線図等から算出されるハーネス抵抗Rhは、所定の基準温度のときの抵抗値である。そこで、本実施形態の内部抵抗検知方法では、基準温度におけるハーネス抵抗(以下では、これをRhsとする。)を、実際のハーネス温度における抵抗値に温度補正して用いている。   The temperature of the harness changes due to heat generated by the current flowing through it, and the resistance value Rh also changes due to the influence. Therefore, it is necessary to use the resistance value at the harness temperature at that time as the harness resistance Rh used for calculating the internal resistance Rb of the secondary battery 10 of the formula (1). On the other hand, the harness resistance Rh that is measured in advance or calculated from the power supply wiring diagram or the like is a resistance value at a predetermined reference temperature. Therefore, in the internal resistance detection method of the present embodiment, the harness resistance at the reference temperature (hereinafter, this is referred to as Rhs) is used by correcting the resistance value at the actual harness temperature.

二次電池10の内部抵抗Rb及びハーネス抵抗Rhの温度特性(温度に対するインピーダンスの変化)の一例を図2に示す。同図では、内部抵抗Rbの温度特性として、二次電池10の劣化状態(SOH)が異なる5ケースについて示している。また、ハーネス抵抗Rhとして実測値を示している。同図に示すように、内部抵抗Rbの温度特性とハーネス抵抗Rhの温度特性とでは、温度に対する変化の傾向が異なっている。そのため、実際のハーネス温度に対応するハーネス抵抗Rhを求め、これを用いて式(1)から二次電池10の内部抵抗Rbを算出する必要がある。   An example of temperature characteristics (change in impedance with respect to temperature) of the internal resistance Rb and the harness resistance Rh of the secondary battery 10 is shown in FIG. In the figure, five cases with different deterioration states (SOH) of the secondary battery 10 are shown as temperature characteristics of the internal resistance Rb. Further, an actual measurement value is shown as the harness resistance Rh. As shown in the figure, the temperature characteristic of the internal resistance Rb and the temperature characteristic of the harness resistance Rh are different in change tendency with respect to temperature. Therefore, it is necessary to obtain the harness resistance Rh corresponding to the actual harness temperature and use this to calculate the internal resistance Rb of the secondary battery 10 from the equation (1).

内部抵抗検知装置100は、ハーネス温度を検出するための温度検知手段150をさらに備えている。温度検知手段150は、電線30、31、バスバー21、23及びヒューズ22の温度を直接測定する手段であってもよいし、いずれかの温度あるいは周囲温度等を測定し、これからハーネス温度を推定する手段であってもよい。   The internal resistance detection device 100 further includes temperature detection means 150 for detecting the harness temperature. The temperature detection means 150 may be a means for directly measuring the temperatures of the electric wires 30, 31, the bus bars 21, 23, and the fuse 22, or may measure any temperature or ambient temperature, and estimate the harness temperature therefrom. It may be a means.

温度検知手段150でハーネス温度が検知されると、基準温度におけるハーネス抵抗Rhsに対して次式を用いて温度補正を行う。
Rh=Rhs×(1+α×(Th−Ts)) (2)
ここで、
Rh:温度補正後のハーネス抵抗値
α :ハーネスの抵抗温度係数
Th:ハーネス温度
Ts:基準温度
When the harness temperature is detected by the temperature detecting means 150, the temperature correction is performed on the harness resistance Rhs at the reference temperature using the following equation.
Rh = Rhs × (1 + α × (Th−Ts)) (2)
here,
Rh: Harness resistance value after temperature correction α: Resistance temperature coefficient of harness Th: Harness temperature Ts: Reference temperature

基準温度Tsには、一般的に室温25℃が用いられる。式(2)に用いられる抵抗温度係数αは、ハーネス温度Thに対するハーネス抵抗Rhの変化率に相当しており、電線30、31、バスバー21、23及びヒューズ22のそれぞれの抵抗温度係数に基づいて決定されるものである。電線やバスバーには一般に銅、アルミ、あるいはステンレスが用いられており、通常用いられる抵抗温度係数は、銅の場合には0.00433、アルミの場合には0.0042、ステンレスの場合には0.011である。   A room temperature of 25 ° C. is generally used as the reference temperature Ts. The resistance temperature coefficient α used in equation (2) corresponds to the rate of change of the harness resistance Rh with respect to the harness temperature Th, and is based on the resistance temperature coefficients of the electric wires 30, 31, bus bars 21, 23 and the fuse 22. It is to be decided. Generally, copper, aluminum, or stainless steel is used for the electric wires and bus bars, and the resistance temperature coefficient generally used is 0.00433 for copper, 0.0042 for aluminum, and 0 for stainless steel. .011.

これに対し、ヒューズ22は錫や亜鉛からなる金属化合物で形成されることが多い。そのため、電線30、31、及びバスバー21、23とヒューズ22とでは抵抗温度係数が異なっている。電線及びバスバーを形成する導体(銅、アルミ)の抵抗変化率と、ヒューズ22の抵抗変化率とを比較したものを図3に示す。   On the other hand, the fuse 22 is often formed of a metal compound made of tin or zinc. Therefore, the resistance temperature coefficients of the electric wires 30 and 31 and the bus bars 21 and 23 and the fuse 22 are different. FIG. 3 shows a comparison between the resistance change rate of the conductors (copper and aluminum) forming the electric wires and the bus bars and the resistance change rate of the fuse 22.

図3では、それぞれの抵抗変化率を20℃における抵抗変化率で規格化して示している。また、ヒューズの抵抗変化率については、3種類のものを例示している。同図に示すように、電線及びバスバーを形成する銅とアルミでは、抵抗変化率がほぼ同程度となっているのに対し、ヒューズの抵抗変化率は種類によって大きく変化している。このように、電線30、31及びバスバー21、23を形成する導体とヒューズ22とでは抵抗変化率が大きく異なっていることから、両者の抵抗変化率の違いを反映してハーネスの抵抗温度係数αを決定する必要がある。   In FIG. 3, each resistance change rate is shown normalized by a resistance change rate at 20 ° C. Further, three types of resistance change rates of the fuses are illustrated. As shown in the figure, the resistance change rate of copper and aluminum forming the electric wires and bus bars is almost the same, whereas the resistance change rate of the fuse greatly varies depending on the type. Thus, since the resistance change rate is greatly different between the conductors forming the electric wires 30 and 31 and the bus bars 21 and 23 and the fuse 22, the resistance temperature coefficient α of the harness reflects the difference in both resistance change rates. Need to be determined.

そこで、本実施形態の内部抵抗検知方法では、ハーネスの抵抗温度係数αを、電線及びバスバーを形成する導体の抵抗温度係数とヒューズの抵抗温度係数とから次式を用いて算出している。
α=α1×RC/(RC+RF)+α2×RF/(RC+RF) (3)
Therefore, in the internal resistance detection method of this embodiment, the resistance temperature coefficient α of the harness is calculated from the resistance temperature coefficient of the conductor forming the electric wire and the bus bar and the resistance temperature coefficient of the fuse using the following equation.
α = α1 × RC / (RC + RF) + α2 × RF / (RC + RF) (3)

式(3)において、RCは所定温度における電線30、31、及びバスバー21、23の所定位置の抵抗値を合計したものであり、RFはヒューズ22の所定温度における抵抗値の合計である。また、α1及びα2は、それぞれ電線30、31とバスバー21、23を形成する導体の抵抗温度係数、及びヒューズ22の抵抗温度係数である。式(3)では、抵抗温度係数α1、α2を抵抗合計値RC、RFで重み付け(線形補間)したものをハーネスの抵抗温度係数αとしている。   In Equation (3), RC is the sum of the resistance values at the predetermined positions of the electric wires 30 and 31 and the bus bars 21 and 23 at a predetermined temperature, and RF is the total resistance value of the fuse 22 at the predetermined temperature. Α1 and α2 are the resistance temperature coefficient of the conductors forming the electric wires 30 and 31 and the bus bars 21 and 23, respectively, and the resistance temperature coefficient of the fuse 22. In the equation (3), the resistance temperature coefficient α1 and α2 are weighted (linearly interpolated) with the resistance total value RC and RF as the resistance temperature coefficient α of the harness.

本実施形態の内部抵抗検知方法では、導体の抵抗温度係数α1、及びヒューズ22の抵抗温度係数α2を用いて式(3)からハーネスの抵抗温度係数αを算出し、これを式(2)のハーネス抵抗値Rhの温度補正に用いている。そして、内部抵抗検知装置100において、アクティブ方式により二次電池10から放電させたときの電流、電圧を測定して抵抗Rmを算出する。それとともに、温度検知手段150でハーネス温度Thを検知し、これを用いて式(2)から温度補正されたハーネス抵抗Rhを算出する。さらに、抵抗Rmとハーネス抵抗Rhを用いて式(1)から内部抵抗Rbを算出する。これにより、ハーネスの抵抗の影響を低減して二次電池10の内部抵抗Rbを精度よく検知することが可能となる。   In the internal resistance detection method of the present embodiment, the resistance temperature coefficient α of the harness is calculated from the equation (3) using the resistance temperature coefficient α1 of the conductor and the resistance temperature coefficient α2 of the fuse 22, and this is calculated by the equation (2). It is used for temperature correction of the harness resistance value Rh. In the internal resistance detection device 100, the resistance Rm is calculated by measuring the current and voltage when the secondary battery 10 is discharged by the active method. At the same time, the harness temperature Th is detected by the temperature detection means 150, and the harness resistance Rh whose temperature is corrected is calculated from the equation (2) using the detected temperature. Further, the internal resistance Rb is calculated from the equation (1) using the resistance Rm and the harness resistance Rh. Thereby, the influence of the resistance of the harness can be reduced and the internal resistance Rb of the secondary battery 10 can be accurately detected.

なお、上記では式(2)を用いてハーネス抵抗Rhの温度補正を高精度に行うものとして説明したが、これに限定されず、例えばハーネス温度Thとハーネス抵抗Rhとを対比させたテーブルを事前に作成して用いるようにしてもよい。ハーネス温度Thとハーネス抵抗Rhとを対比させたテーブルの一例を、表1に示す。

Figure 2013210333
In the above description, it is assumed that the temperature correction of the harness resistance Rh is performed with high accuracy using the expression (2). However, the present invention is not limited to this. It may be created and used. Table 1 shows an example of a table in which the harness temperature Th is compared with the harness resistance Rh.
Figure 2013210333

(第2実施形態)
本発明の第2の実施形態に係る二次電池の内部抵抗検知方法を、図4を用いて説明する。図4は、第2実施形態の二次電池の内部抵抗検知方法で用いる内部抵抗検知装置200を二次電池10に接続した接続図である。本実施形態では、パッシブ方式により二次電池の内部抵抗を検知する方法を提供する。二次電池10の内部抵抗を検知する本実施形態の内部抵抗検知装置200は、第1実施形態の内部抵抗検知装置100と同様に、電気接続箱20−2に接続されている。
(Second Embodiment)
A method of detecting the internal resistance of the secondary battery according to the second embodiment of the present invention will be described with reference to FIG. FIG. 4 is a connection diagram in which the internal resistance detection device 200 used in the secondary battery internal resistance detection method according to the second embodiment is connected to the secondary battery 10. In the present embodiment, a method for detecting the internal resistance of a secondary battery by a passive method is provided. The internal resistance detection device 200 of the present embodiment that detects the internal resistance of the secondary battery 10 is connected to the electrical junction box 20-2 in the same manner as the internal resistance detection device 100 of the first embodiment.

本実施形態では、パッシブ方式により二次電池10の内部抵抗を検知することから、内部抵抗検知装置200には放電制御部110が設けられていない。これに代えて、内部抵抗検知装置200は、車両のエンジンクランキング時や大電流負荷動作時などに、電流測定部120及び電圧測定部130を用いて電流、電圧を測定し、演算処理部140が電流測定値及び電圧測定値を入力して二次電池10の内部抵抗を算出する。   In this embodiment, since the internal resistance of the secondary battery 10 is detected by a passive method, the internal resistance detection device 200 is not provided with the discharge control unit 110. Instead, the internal resistance detection device 200 measures the current and voltage using the current measurement unit 120 and the voltage measurement unit 130 when the engine is cranked or when a large current load is operated. Inputs the current measurement value and the voltage measurement value to calculate the internal resistance of the secondary battery 10.

内部抵抗検知装置200は、放電制御部110を有さないことから、電気接続箱20−2に電源用電線32のみで接続され、放電用電線33は接続されていない。二次電池10の内部抵抗を検知するタイミングは、エンジンクランキングや大電流負荷動作に伴う外部信号が入力されたとき、または手動要求があったときとすることができる。あるいは、電流測定部120で測定される電流を監視し、所定値以上の電流が検知されたときを、二次電池10の内部抵抗を検知するタイミングとしてもよい。ここでは、パッシブ方式による二次電池10の内部抵抗の検知タイミングを、エンジンクランキング時、すなわち二次電池10からエンジンスタータ40に大電流が放電されたときとする例について説明する。   Since the internal resistance detection device 200 does not have the discharge control unit 110, the internal resistance detection device 200 is connected to the electrical connection box 20-2 only by the power supply wire 32, and the discharge wire 33 is not connected. The timing for detecting the internal resistance of the secondary battery 10 can be set when an external signal associated with engine cranking or large current load operation is input or when a manual request is made. Alternatively, the current measured by the current measurement unit 120 may be monitored, and the time when the internal resistance of the secondary battery 10 is detected may be when a current of a predetermined value or more is detected. Here, an example will be described in which the internal resistance detection timing of the secondary battery 10 by the passive method is set at the time of engine cranking, that is, when a large current is discharged from the secondary battery 10 to the engine starter 40.

図4において、二次電池10からエンジンスタータ40に放電が行われると、二次電池10のプラスターミナルから電線30及びバスバー21を経由してエンジンスタータ40に大電流が流れる。また、放電開始後の電圧測定では、放電電流が流れるバスバー21の電圧が、電線31及び電源用電線32を介して電圧測定部130で測定される。バスバー21からヒューズ22、電線31、電気接続箱20−2内のバスバー23及びヒューズ24を経由して電源用電線32に流れる電流は、バスバー21からエンジンスタータ40に流れる電流に比べて小さいことから、バスバー21から電圧測定部130までの間での電圧降下は小さく、これを無視しても問題ない。   In FIG. 4, when the secondary battery 10 discharges to the engine starter 40, a large current flows from the plus terminal of the secondary battery 10 to the engine starter 40 via the electric wire 30 and the bus bar 21. In the voltage measurement after the start of discharge, the voltage of the bus bar 21 through which the discharge current flows is measured by the voltage measuring unit 130 via the electric wire 31 and the power supply wire 32. The current flowing from the bus bar 21 to the power supply wire 32 via the fuse 22, the electric wire 31, the bus bar 23 in the electric connection box 20-2 and the fuse 24 is smaller than the current flowing from the bus bar 21 to the engine starter 40. The voltage drop between the bus bar 21 and the voltage measuring unit 130 is small and can be ignored.

上記より、電圧測定部130で測定される電圧は、電気接続箱20−1内のバスバー21の電線31が接続されているヒューズ22との接続点における電圧である。これより、本実施形態の二次電池の内部抵抗検知方法では、ハーネスの抵抗Rhが電線30の抵抗Rh1と電気接続箱20−1内のバスバー21の抵抗Rh3とを合計したものに略等しく、Rh=Rh1+Rh3と表される。   From the above, the voltage measured by the voltage measuring unit 130 is the voltage at the connection point with the fuse 22 to which the electric wire 31 of the bus bar 21 in the electrical connection box 20-1 is connected. From this, in the internal resistance detection method of the secondary battery of this embodiment, the resistance Rh of the harness is substantially equal to the sum of the resistance Rh1 of the electric wire 30 and the resistance Rh3 of the bus bar 21 in the electrical connection box 20-1. Rh = Rh1 + Rh3.

内部抵抗検知装置200は、二次電池10からエンジンスタータ40に大電流が放電されると、そのときの電流、電圧をそれぞれ電流測定部120及び電圧測定部130で測定する。演算処理部140は、放電開始後の所定の期間の電流測定値及び電圧測定値をそれぞれ電流測定部120及び電圧測定部130から入力し、これを用いて抵抗Rmを算出する。抵抗Rmは、Rm=Rb+Rhと表わされることから、二次電池の内部抵抗Rbは式(1)を用いて算出することができる。   When a large current is discharged from the secondary battery 10 to the engine starter 40, the internal resistance detection device 200 measures the current and voltage at that time by the current measurement unit 120 and the voltage measurement unit 130, respectively. The arithmetic processing unit 140 inputs a current measurement value and a voltage measurement value for a predetermined period after the start of discharge from the current measurement unit 120 and the voltage measurement unit 130, respectively, and calculates the resistance Rm using them. Since the resistance Rm is expressed as Rm = Rb + Rh, the internal resistance Rb of the secondary battery can be calculated using the formula (1).

ハーネス抵抗Rhは、内部抵抗検知装置200を二次電池10に接続したときに、二次電池10のプラスターミナルから電気接続箱20−1内のバスバー21のヒューズ22との接続点までの抵抗値を実測し、これを演算処理部140に保存しておいて用いることができる。あるいは、電源配線図や電気接続箱の設計図等から読み取れる電線やバスバーの線径、長さ、厚さ等をもとに抵抗値を算出して用いてもよい。   The harness resistance Rh is a resistance value from the plus terminal of the secondary battery 10 to the connection point with the fuse 22 of the bus bar 21 in the electrical connection box 20-1 when the internal resistance detection device 200 is connected to the secondary battery 10. Can be measured and stored in the arithmetic processing unit 140 for use. Or you may calculate and use resistance value based on the wire diameter, length, thickness, etc. of the electric wire and bus bar which can be read from a power supply wiring diagram, the electrical connection box design drawing, etc.

ハーネス抵抗Rhとして、第1実施形態と同様に、ハーネス温度Thを検知して基準温度におけるハーネス抵抗Rhsを温度補正したものを用いる必要がある。そこで、本実施形態でも式(2)を用いてハーネス抵抗Rhを算出する。   As the harness resistance Rh, it is necessary to detect the harness temperature Th and correct the harness resistance Rhs at the reference temperature as in the first embodiment. Therefore, also in the present embodiment, the harness resistance Rh is calculated using Expression (2).

ところで、本実施形態では、ハーネス抵抗Rhにヒューズの抵抗は含まれず、電線30の抵抗とバスバー21の抵抗のみが含まれている。したがって、式(2)に用いられるハーネスの抵抗温度係数αには、電線30及びバスバー21を形成する導体の抵抗温度係数を用いればよい。一例として、電線30及びバスバー21が銅で形成されているときは銅の抵抗温度係数0.00433を用い、アルミで形成されているときはアルミの抵抗温度係数0.0042を用い、ステンレスで形成されているときはステンレスの抵抗温度係数0.011を用いればよい。   By the way, in this embodiment, the resistance of the fuse is not included in the harness resistance Rh, and only the resistance of the electric wire 30 and the resistance of the bus bar 21 are included. Therefore, the resistance temperature coefficient of the conductor used to form the electric wire 30 and the bus bar 21 may be used as the resistance temperature coefficient α of the harness used in Expression (2). As an example, when the electric wire 30 and the bus bar 21 are made of copper, the resistance temperature coefficient of copper is 0.00433, and when the electric wire 30 and the bus bar are made of aluminum, the resistance temperature coefficient of aluminum is 0.0042 and is formed of stainless steel. If it is, stainless steel having a temperature coefficient of resistance of 0.011 may be used.

本実施形態の内部抵抗検知方法では、エンジンスタータ40に大電流が放電されたとき、内部抵抗検知装置200において放電中の電流、電圧を測定して抵抗Rmを算出する。それとともに、温度検知手段150でハーネス温度Thを検知し、これを用いて式(2)から温度補正されたハーネス抵抗Rhを算出する。さらに、抵抗Rmとハーネス抵抗Rhを用いて式(1)から内部抵抗Rbを算出する。これにより、ハーネスの抵抗の影響を低減して二次電池10の内部抵抗Rbを精度よく検知することが可能となる。   In the internal resistance detection method of the present embodiment, when a large current is discharged to the engine starter 40, the internal resistance detection device 200 measures the current and voltage during discharge to calculate the resistance Rm. At the same time, the harness temperature Th is detected by the temperature detection means 150, and the harness resistance Rh whose temperature is corrected is calculated from the equation (2) using the detected temperature. Further, the internal resistance Rb is calculated from the equation (1) using the resistance Rm and the harness resistance Rh. Thereby, the influence of the resistance of the harness can be reduced and the internal resistance Rb of the secondary battery 10 can be accurately detected.

なお、本実施形態においても、式(2)を用いてハーネス抵抗Rhの温度補正を行うのに代えて、ハーネス温度Thとハーネス抵抗Rhとを対比させた表1に示すようなテーブルを事前に作成して用いるようにしてもよい。   Also in this embodiment, instead of performing the temperature correction of the harness resistance Rh using the formula (2), a table as shown in Table 1 in which the harness temperature Th and the harness resistance Rh are compared is previously provided. It may be created and used.

(第3実施形態)
本発明の第3実施形態に係る二次電池の内部抵抗検知方法を以下に説明する。第3実施形態として、第1実施形態の内部抵抗検知装置100を用いてパッシブ方式により二次電池の内部抵抗を検知する。すなわち、二次電池10からエンジンスタータ40に放電されると、そのときの電流、電圧を電流測定部120及び電圧測定部130を用いて測定し、第2実施形態と同様にして二次電池10の内部抵抗を検知する。
(Third embodiment)
A method for detecting the internal resistance of the secondary battery according to the third embodiment of the present invention will be described below. As 3rd Embodiment, the internal resistance of a secondary battery is detected by a passive system using the internal resistance detection apparatus 100 of 1st Embodiment. That is, when the secondary battery 10 is discharged to the engine starter 40, the current and voltage at that time are measured using the current measurement unit 120 and the voltage measurement unit 130, and the secondary battery 10 is measured in the same manner as in the second embodiment. Detect the internal resistance.

また、所定のタイミングで放電制御部110を用いて二次電池10の放電を行い、第1実施形態と同様にして二次電池10の内部抵抗を検知する。このときのハーネスの抵抗温度係数αは、式(3)を用いて算出されたものを用いる。放電制御部110を用いてアクティブ方式により二次電池10の内部抵抗を検知するタイミングは、例えばパッシブ方式により内部抵抗が検知されてから所定時間経過したときとすることができる。   Further, the secondary battery 10 is discharged using the discharge control unit 110 at a predetermined timing, and the internal resistance of the secondary battery 10 is detected in the same manner as in the first embodiment. The resistance temperature coefficient α of the harness at this time is calculated using the equation (3). The timing at which the internal resistance of the secondary battery 10 is detected by the active method using the discharge control unit 110 can be, for example, when a predetermined time has elapsed since the internal resistance was detected by the passive method.

本実施形態では、アクティブ方式による内部抵抗の検知を行うことで、二次電池10の内部抵抗を好適な頻度で監視することができる。   In the present embodiment, the internal resistance of the secondary battery 10 can be monitored at a suitable frequency by detecting the internal resistance by the active method.

なお、本実施の形態における記述は、本発明に係る二次電池の内部抵抗検知方法及び内部抵抗検知装置の一例を示すものであり、これに限定されるものではない。本実施の形態における二次電池の内部抵抗検知方法及び内部抵抗検知装置の細部構成及び詳細な動作等に関しては、本発明の趣旨を逸脱しない範囲で適宜変更可能である。   In addition, the description in this Embodiment shows an example of the internal resistance detection method and internal resistance detection apparatus of the secondary battery which concern on this invention, and is not limited to this. The detailed configuration and detailed operation of the internal resistance detection method and internal resistance detection device of the secondary battery in the present embodiment can be changed as appropriate without departing from the spirit of the present invention.

10 二次電池
20 電気接続箱
21、23 バスバー
22、24、25 ヒューズ
30、31 電線
32 電源用電線
33 放電用電線
40 エンジンスタータ
50、100、200 内部抵抗検知装置
110 放電制御部
120 電流測定部
130 電圧測定部
140 演算処理部
150 温度検知手段
DESCRIPTION OF SYMBOLS 10 Secondary battery 20 Electric junction box 21, 23 Bus bar 22, 24, 25 Fuse 30, 31 Electric wire 32 Power supply electric wire 33 Discharge electric wire 40 Engine starter 50, 100, 200 Internal resistance detection apparatus 110 Discharge control part 120 Current measurement part 130 voltage measurement unit 140 arithmetic processing unit 150 temperature detection means

Claims (7)

二次電池を充放電させたときの充放電電流及び応答電圧をそれぞれ電流測定手段及び電圧測定手段を用いて測定し、前記電流測定手段及び前記電圧測定手段からそれぞれ入力した電流測定値及び電圧測定値を用いて前記二次電池の内部抵抗を算出する二次電池の内部抵抗検知方法であって、
前記二次電池の端子から前記充放電電流が流れる電流経路の所定の位置までのハーネス抵抗Rhを算出し、
前記電流測定値及び前記電圧測定値から算出される抵抗値Rmから前記ハーネス抵抗Rhを減算して前記内部抵抗を算出する
ことを特徴とする二次電池の内部抵抗検知方法。
Charge / discharge current and response voltage when charging / discharging the secondary battery are measured using current measuring means and voltage measuring means, respectively, and current measurement values and voltage measurements respectively input from the current measuring means and the voltage measuring means. A secondary battery internal resistance detection method for calculating an internal resistance of the secondary battery using a value,
Calculating a harness resistance Rh from a terminal of the secondary battery to a predetermined position of a current path through which the charge / discharge current flows;
An internal resistance detection method for a secondary battery, wherein the internal resistance is calculated by subtracting the harness resistance Rh from a resistance value Rm calculated from the current measurement value and the voltage measurement value.
前記電流経路のハーネス温度をTh、前記電流経路の抵抗温度係数をα、事前に決定された基準温度Tsにおける前記ハーネス抵抗をRhs、前記ハーネス温度Thにおける前記ハーネス抵抗をRh、とするとき、前記ハーネス抵抗Rhを次式
Rh=Rhs×(1+α×(Th−Ts))
より算出し、算出された前記ハーネス抵抗Rhを前記抵抗値Rmから減算して前記内部抵抗を算出する
ことを特徴とする請求項1に記載の二次電池の内部抵抗検知方法。
When the harness temperature of the current path is Th, the resistance temperature coefficient of the current path is α, the harness resistance at a predetermined reference temperature Ts is Rhs, and the harness resistance at the harness temperature Th is Rh, The harness resistance Rh is represented by the following formula: Rh = Rhs × (1 + α × (Th−Ts))
The internal resistance detection method according to claim 1, wherein the internal resistance is calculated by subtracting the calculated harness resistance Rh from the resistance value Rm.
前記二次電池の端子から前記所定の位置までの電流経路がヒューズと導体からなるとき、所定の温度における前記ヒューズの抵抗値RFと前記導体の抵抗値RCを事前に決定し、
前記導体の抵抗温度係数をα1、前記ヒューズの抵抗温度係数をα2、とするとき、前記電流経路の抵抗温度係数αを次式で算出する
α=α1×RC/(RC+RF)+α2×RF/(RC+RF)
ことを特徴とする請求項2に記載の二次電池の内部抵抗検知方法。
When the current path from the terminal of the secondary battery to the predetermined position is composed of a fuse and a conductor, the resistance value RF of the fuse and the resistance value RC of the conductor at a predetermined temperature are determined in advance,
When the resistance temperature coefficient of the conductor is α1 and the resistance temperature coefficient of the fuse is α2, the resistance temperature coefficient α of the current path is calculated by the following equation: α = α1 × RC / (RC + RF) + α2 × RF / ( RC + RF)
The method for detecting the internal resistance of the secondary battery according to claim 2.
前記二次電池から所定の放電電流を放電させる放電手段を有し、
前記放電手段を用いて前記二次電池から放電させたときの前記放電電流及び前記応答電圧を測定して前記内部抵抗を算出する
ことを特徴とする請求項1乃至3のいずれか1項に記載の二次電池の内部抵抗検知方法。
Having discharge means for discharging a predetermined discharge current from the secondary battery;
4. The internal resistance is calculated by measuring the discharge current and the response voltage when the secondary battery is discharged from the discharge unit using the discharge unit. 5. Method for detecting internal resistance of secondary battery.
前記二次電池から所定値以上の大電流が放電されたときの前記放電電流及び前記応答電圧を測定して前記内部抵抗を算出する
ことを特徴とする請求項1乃至3のいずれか1項に記載の二次電池の内部抵抗検知方法。
4. The internal resistance is calculated by measuring the discharge current and the response voltage when a large current of a predetermined value or more is discharged from the secondary battery. 5. The internal resistance detection method of the secondary battery as described.
二次電池を充放電させたときの充放電電流及び応答電圧を測定して前記二次電池の内部抵抗を算出する二次電池の内部抵抗検知装置であって、
前記充放電電流を測定する電流測定部と、
前記応答電圧を測定する電圧測定部と、
前記内部抵抗を算出する演算処理部と、を備え、
前記演算処理部は、
前記二次電池の端子から前記充放電電流が流れる電流経路の所定の位置までのハーネス抵抗Rhを算出し、
前記電流測定部及び前記電圧測定部から電流測定値及び電圧測定値を入力し、
前記電流測定値及び前記電圧測定値から抵抗値Rmを算出し、該抵抗値Rmから前記ハーネス抵抗Rhを減算して前記内部抵抗を算出する
ことを特徴とする二次電池の内部抵抗検知装置。
An internal resistance detection device for a secondary battery that calculates the internal resistance of the secondary battery by measuring a charge / discharge current and a response voltage when charging and discharging the secondary battery,
A current measuring unit for measuring the charge / discharge current;
A voltage measuring unit for measuring the response voltage;
An arithmetic processing unit for calculating the internal resistance,
The arithmetic processing unit includes:
Calculating a harness resistance Rh from a terminal of the secondary battery to a predetermined position of a current path through which the charge / discharge current flows;
Input a current measurement value and a voltage measurement value from the current measurement unit and the voltage measurement unit,
A resistance value Rm is calculated from the current measurement value and the voltage measurement value, and the internal resistance is calculated by subtracting the harness resistance Rh from the resistance value Rm.
前記充放電電流が流れる電流経路のハーネス温度を検知する温度検知手段をさらに備え、
前記温度検知手段で検知された前記ハーネス温度をTh、前記電流経路の抵抗温度係数をα、事前に決定された基準温度Tsにおける前記ハーネス抵抗をRhs、前記ハーネス温度Thにおける前記ハーネス抵抗をRh、とするとき、
前記演算処理部は、前記ハーネス抵抗Rhを次式
Rh=Rhs×(1+α×(Th−Ts))
より算出し、算出された前記ハーネス抵抗Rhを前記抵抗値Rmから減算して前記内部抵抗を算出する
ことを特徴とする請求項6に記載の二次電池の内部抵抗検知装置。
A temperature detecting means for detecting a harness temperature of a current path through which the charge / discharge current flows;
The harness temperature detected by the temperature detection means is Th, the resistance temperature coefficient of the current path is α, the harness resistance at a predetermined reference temperature Ts is Rhs, and the harness resistance at the harness temperature Th is Rh, And when
The arithmetic processing unit uses the following equation for the harness resistance Rh: Rh = Rhs × (1 + α × (Th−Ts))
The internal resistance detection device of a secondary battery according to claim 6, wherein the internal resistance is calculated by subtracting the calculated harness resistance Rh from the resistance value Rm.
JP2012081866A 2012-03-30 2012-03-30 Internal resistance detecting method and internal resistance detecting device for secondary battery Pending JP2013210333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012081866A JP2013210333A (en) 2012-03-30 2012-03-30 Internal resistance detecting method and internal resistance detecting device for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012081866A JP2013210333A (en) 2012-03-30 2012-03-30 Internal resistance detecting method and internal resistance detecting device for secondary battery

Publications (1)

Publication Number Publication Date
JP2013210333A true JP2013210333A (en) 2013-10-10

Family

ID=49528281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012081866A Pending JP2013210333A (en) 2012-03-30 2012-03-30 Internal resistance detecting method and internal resistance detecting device for secondary battery

Country Status (1)

Country Link
JP (1) JP2013210333A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016045114A (en) * 2014-08-25 2016-04-04 日置電機株式会社 Impedance measurement method and measurement device therefor
WO2016067587A1 (en) * 2014-10-31 2016-05-06 カルソニックカンセイ株式会社 Battery parameter estimation device
JP2016080478A (en) * 2014-10-15 2016-05-16 株式会社ケーヒン Voltage detecting device
JP2017169407A (en) * 2016-03-17 2017-09-21 矢崎総業株式会社 Power relay apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05341022A (en) * 1992-06-10 1993-12-24 Mitsubishi Motors Corp Residual capacity calculating method for nickel type battery
JP2000298160A (en) * 1999-04-15 2000-10-24 Matsushita Electric Works Ltd Battery residual capacity detecting device
JP2007108063A (en) * 2005-10-14 2007-04-26 Furukawa Electric Co Ltd:The Method and device for determining secondary battery degradation, and power supply system
JP2010160026A (en) * 2009-01-07 2010-07-22 Nissan Motor Co Ltd Electric power control apparatus for vehicle and method for estimating internal resistance of assembly battery
JP2010270747A (en) * 2009-04-23 2010-12-02 Denso Corp Automatic engine control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05341022A (en) * 1992-06-10 1993-12-24 Mitsubishi Motors Corp Residual capacity calculating method for nickel type battery
JP2000298160A (en) * 1999-04-15 2000-10-24 Matsushita Electric Works Ltd Battery residual capacity detecting device
JP2007108063A (en) * 2005-10-14 2007-04-26 Furukawa Electric Co Ltd:The Method and device for determining secondary battery degradation, and power supply system
JP2010160026A (en) * 2009-01-07 2010-07-22 Nissan Motor Co Ltd Electric power control apparatus for vehicle and method for estimating internal resistance of assembly battery
JP2010270747A (en) * 2009-04-23 2010-12-02 Denso Corp Automatic engine control device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016045114A (en) * 2014-08-25 2016-04-04 日置電機株式会社 Impedance measurement method and measurement device therefor
JP2016080478A (en) * 2014-10-15 2016-05-16 株式会社ケーヒン Voltage detecting device
WO2016067587A1 (en) * 2014-10-31 2016-05-06 カルソニックカンセイ株式会社 Battery parameter estimation device
JP2016090330A (en) * 2014-10-31 2016-05-23 カルソニックカンセイ株式会社 Battery parameter estimation device
JP2017169407A (en) * 2016-03-17 2017-09-21 矢崎総業株式会社 Power relay apparatus

Similar Documents

Publication Publication Date Title
JP5718833B2 (en) Wire protector
US8767367B2 (en) Wire protection method and wire protection device
EP2296243B1 (en) Protection device for load circuit
US10955491B2 (en) Method for detecting a meter maintenance condition using winding resistance
US10209143B2 (en) Thermo wire testing circuit
KR101904578B1 (en) Device and method for protecting a load
JP6091554B2 (en) Anomaly detection system and anomaly detection method
JP2013210333A (en) Internal resistance detecting method and internal resistance detecting device for secondary battery
KR20180125546A (en) Multiple current sensor system
US11879955B2 (en) Verifying the metrological accuracy of an electricity meter
CN110088581B (en) Electronic circuit for driving thermocouple element, temperature sensing apparatus, and method for observing leakage resistance of thermocouple element
EP2834654B1 (en) Method and apparatus for detecting a glowing contact in a power circuit
US11656284B2 (en) Method for operating a battery sensor, and battery sensor
KR101460952B1 (en) Device and method for protecting a load
CN109900387B (en) Method and device for determining alarm temperature rise threshold of power equipment
Zhang et al. A remote and sensorless thermal protection scheme for soft-starter-connected induction motors
JP6462282B2 (en) Additional equipment
JP7330069B2 (en) Watt-hour meter and electrical equipment
JP2017116455A (en) Measuring method, and measuring apparatus, for resistances of power storage elements
CN116073326A (en) Electronic trip unit with thermal capacity measurement and display
JP2012037426A (en) Resistance value determination apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130801

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20131107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140414