WO2023248299A1 - Degradation diagnosis method and degradation diagnosis device - Google Patents

Degradation diagnosis method and degradation diagnosis device Download PDF

Info

Publication number
WO2023248299A1
WO2023248299A1 PCT/JP2022/024557 JP2022024557W WO2023248299A1 WO 2023248299 A1 WO2023248299 A1 WO 2023248299A1 JP 2022024557 W JP2022024557 W JP 2022024557W WO 2023248299 A1 WO2023248299 A1 WO 2023248299A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface resistivity
electrical equipment
metal wiring
insulator
deterioration
Prior art date
Application number
PCT/JP2022/024557
Other languages
French (fr)
Japanese (ja)
Inventor
宗一郎 藤原
勝 衣川
伸介 三木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/024557 priority Critical patent/WO2023248299A1/en
Publication of WO2023248299A1 publication Critical patent/WO2023248299A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/56Testing of electric apparatus

Definitions

  • the present disclosure relates to a deterioration diagnosis method and a deterioration diagnosis apparatus for diagnosing deterioration of electrical equipment including insulators.
  • Patent Document 1 International Publication No. 2021/166095
  • Patent Document 2 includes a database that defines the correlation between the resistance value of metal thin film wiring and the surface resistivity of insulators when coming into contact with a specific gas
  • a deterioration diagnosis device has been disclosed that estimates the surface resistivity of an insulator by comparing the resistance value of a metal thin film wiring installed in the vicinity of the insulator.
  • the deterioration diagnosis device calculates the life and remaining life of the electrical equipment from the estimated surface resistivity.
  • the present disclosure has been made to solve the above-mentioned problems, and it is an object of the present disclosure to provide a deterioration diagnosis method and a deterioration diagnosis device that can accurately diagnose the deterioration of electrical equipment over a long period of time.
  • a deterioration diagnosis method diagnoses deterioration of an electrical device including an insulator.
  • the deterioration diagnosis method includes the step of arranging an insulation deterioration sensor around an insulator, in which a plurality of metal wirings that corrode when exposed to a specific gas are connected in parallel.
  • the plurality of metal wires include first metal wires and second metal wires that have different corrosion progression rates when the insulation deterioration sensor is exposed to a specific gas.
  • the deterioration diagnosis method further includes creating in advance a database that defines a first correlation between the combined resistance of the insulation deterioration sensor and the surface resistivity of the insulator when both the insulator and the insulation deterioration sensor are exposed to a specific gas.
  • a step of measuring the composite resistance value of the insulation deterioration sensor at the measurement timing a step of estimating the surface resistivity of the insulator at the measurement timing using the composite resistance value at the measurement timing and the database;
  • the relationship between the operating time of the electrical equipment and the surface resistivity of the insulating material is determined from the operating time of the electrical equipment and the estimated surface resistivity of the insulating material, and the surface resistivity of the insulating material when the electrical equipment is not in use.
  • a step of creating a relational expression expressing the second correlation a step of calculating the life time of the electrical equipment corresponding to the reference surface resistivity when the insulating material loses its insulation performance in the relational expression, and a step of calculating the life time of the electrical equipment from the life time, and calculating the remaining life time of the electrical equipment by subtracting the operating time of the electrical equipment at the timing or the operating time of the electrical equipment at the timing when the insulation deterioration sensor is disposed around the insulator.
  • a deterioration diagnosis device diagnoses deterioration of an electrical device including an insulator.
  • the deterioration diagnosis device includes an insulation deterioration sensor in which a plurality of metal wirings that corrode when exposed to a specific gas are connected in parallel.
  • the plurality of metal wires include first metal wires and second metal wires that have different corrosion progression rates when the insulation deterioration sensor is exposed to a specific gas.
  • the deterioration diagnosis device further includes a database that defines a first correlation between the combined resistance value of the insulation deterioration sensor and the surface resistivity of the insulator when both the insulator and the insulation deterioration sensor are exposed to a specific gas; a measurement unit that measures the composite resistance value of the insulation deterioration sensor at the measurement timing; an estimation unit that estimates the surface resistivity of the insulator at the measurement timing using the composite resistance value at the measurement timing and a database; From the operating time of the equipment, the estimated surface resistivity of the insulating material, and the surface resistivity of the insulating material when the electrical equipment is not in use, the second difference between the operating time of the electrical equipment and the surface resistivity of the insulating material is calculated.
  • a relational expression creation section that creates a relational expression expressing a correlation
  • a life calculation section that calculates the life time of the electrical equipment corresponding to the reference surface resistivity when the insulating material loses its insulation performance in the relational expression
  • a remaining life calculation unit that calculates the remaining life time of the electrical equipment by subtracting the usage time of the electrical equipment at the measurement timing or the usage time of the electrical equipment at the timing when the insulation deterioration sensor is arranged around the insulator.
  • the corrosion progression rates of the first metal wiring and the second metal wiring due to the specific gas are different from each other. Therefore, the range of the surface resistivity of the insulator, which correlates with the combined resistance value of a plurality of metal interconnections including the first metal interconnection and the second metal interconnection, becomes wider. Thereby, the surface resistivity of the insulator can be estimated accurately over a wider range. As a result, the period during which deterioration of the insulator can be accurately diagnosed becomes longer.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of a switchgear that is an example of high-voltage electrical equipment.
  • 3 is a flowchart showing the flow of a deterioration diagnosis method according to the first embodiment. It is a graph schematically showing the relationship between the number of years of use (hours of use) and surface resistivity of electrical equipment.
  • 1 is a schematic diagram of an insulation deterioration sensor according to Embodiment 1.
  • FIG. FIG. 3 is a diagram showing the relationship between the exposure time and the resistance value of the metal wiring when the metal wiring according to the first embodiment is exposed to a specific gas.
  • FIG. 3 is a diagram showing the correlation between the surface resistivity of the insulator and the resistance value of the metal wiring when a specific gas is exposed to the insulator and the metal wiring to be diagnosed.
  • FIG. 3 is a diagram showing the correlation between the surface resistivity of the insulator and the combined resistance value of the metal wiring when a specific gas is exposed to the insulator and the metal wiring connected in parallel.
  • 1 is a block diagram showing a schematic configuration of a deterioration diagnosis device that executes a deterioration diagnosis method according to Embodiment 1.
  • FIG. FIG. 9 is a hardware configuration diagram of the main parts of the control section in FIG. 8; 9 is a block diagram showing a functional configuration of a control section shown in FIG. 8.
  • FIG. FIG. 2 is a schematic diagram of an insulation deterioration sensor according to a second embodiment.
  • FIG. 7 is a diagram showing the relationship between the exposure time and the resistance value of the metal wiring when the metal wiring according to Embodiment 2 is exposed to a specific
  • the method of diagnosing deterioration of electrical equipment according to the first embodiment is a method of diagnosing deterioration of electrical equipment including an insulator.
  • the electrical equipment is, for example, high-voltage electrical equipment or special high-voltage electrical equipment that includes main circuit components such as circuit breakers, disconnectors, transformers, busbars and conductors, and measuring equipment.
  • High voltage means that the DC voltage is more than 750V and less than 7000V, or the AC voltage is more than 600V and less than 7000V.
  • Extra high voltage means that the DC or AC voltage exceeds 7000V.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of a switchgear 49, which is an example of high-voltage electrical equipment.
  • the switchgear 49 includes main circuit components such as a circuit breaker, a disconnector, and a bus bar/conductor supported by an insulator, and a measuring device.
  • the X, Y, and Z axes are orthogonal to each other.
  • the + direction of the Z-axis is assumed to be the upper side, and the - direction of the Z-axis is assumed to be the lower side.
  • the switchgear 49 includes circuit breakers 50a, 50b, three horizontal busbars 52, connection conductors 53a, 54a, 53b, 54b, busbar support plate 56, and cables 57a, 57b. , and a plurality of insulators 58.
  • Circuit breaker 50a includes an operating mechanism 51a and a mold frame 55a.
  • Circuit breaker 50b includes an operating mechanism 51b and a mold frame 55b.
  • the connection conductors 53a, 54a, 53b, and 54b are supported by a plurality of insulators 58.
  • the three horizontal busbars 52 correspond to three phases of three-phase alternating current, respectively.
  • the busbar support plate 56 collectively supports the three horizontal busbars 52.
  • a mold frame 55a containing an operating mechanism 51a and a blocking section (not shown) is mounted on a trolley 61a.
  • a mold frame 55b containing an operating mechanism 51b and a blocking section (not shown) is mounted on a cart 61b.
  • the carts 61a and 61b are movable in the X-axis direction.
  • One end of the connection conductor 53a is electrically connected to the cable 57a.
  • the other end of the connection conductor 53a is electrically connected to the upper terminal of the circuit breaker 50a.
  • One end of the connection conductor 54a is electrically connected to a lower terminal of the circuit breaker 50a.
  • the other end of the connecting conductor 54a is electrically connected to one end of the connecting conductor 53b via the horizontal bus bar 52.
  • the other end of the connecting conductor 53b is connected to the upper terminal of the circuit breaker 50b.
  • One end of the connecting conductor 54b is connected to a lower terminal of the circuit breaker 50b.
  • the other end of the connecting conductor 54b is electrically connected to the cable 57b.
  • Each of the mold frames 55a and 55b, the bus bar support plate 56, or the insulator 58 is an insulator, and is a target of deterioration diagnosis (diagnosis target) in the present disclosure.
  • Examples of the material of the insulator include polyester resin, epoxy resin, or phenol resin.
  • the insulation deterioration sensor 10 is formed separately from the insulator that is the object of diagnosis, and is placed around the object of diagnosis. In FIG. 1, the insulation deterioration sensor 10 is placed near the mold frame 55b. By forming the insulation deterioration sensor 10 as a separate body from the object to be diagnosed, it is possible to suppress electric field concentration from the insulation deterioration sensor 10 to the object to be diagnosed. Furthermore, the insulation deterioration sensor 10 can be easily replaced.
  • FIG. 2 is a flowchart showing the flow of the deterioration diagnosis method according to the first embodiment.
  • FIG. 3 is a graph schematically showing the relationship between the years of use (hours of use) and surface resistivity of electrical equipment.
  • step S1 a specific gas (for example, nitrogen oxides (NOx) or sulfur oxides (SOx)) that affects the deterioration of the diagnosis target is used in the insulation deterioration sensor 10 and the electrical equipment. Exposure (contact) to the subject being diagnosed. By measuring the resistance value of the insulation deterioration sensor 10 and the surface resistivity of the insulator after exposure, a correlation (first correlation) between the resistance value of the insulation deterioration sensor 10 and the surface resistivity of the diagnosis target is defined. A database is created in advance.
  • step S2 the insulation deterioration sensor 10 is placed around the diagnostic target. The area around the diagnostic target is the area covered by the specific gas when the diagnostic target is exposed to the specific gas.
  • NOx nitrogen oxides
  • SOx sulfur oxides
  • step S3 the resistance value of the insulation deterioration sensor 10 is measured at each measurement timing using a simple resistance meter such as a tester. The resistance value is measured periodically or constantly.
  • step S4 the resistance value of the insulation deterioration sensor 10 measured in step S3 is checked against the database created in step S1, and the surface resistivity SR1 of the diagnosis target at the measurement timing of the resistance value is estimated. Note that the measurement timing of the resistance value at which the surface resistivity SR1 is estimated is the number of years of use L1 (years).
  • step S5 the correlation between the surface resistivity and the age of use of the electrical equipment (second A relational expression representing the relationship (correlation) is created.
  • the relational expression represents a deterioration straight line RF1 in which the logarithm of the surface resistivity and the number of years of use of the electrical equipment are linearly related.
  • step S6 the number of life years L2 (life time) corresponding to the threshold value SR2 (reference surface resistivity) of the surface resistivity is calculated from the deterioration straight line RF1.
  • the threshold value SR2 is the surface resistivity when the diagnostic target loses its insulation performance and discharge occurs in the diagnostic target.
  • step S7 by subtracting the service life L1 ( ⁇ L2) of the diagnosis target at the measurement timing of the insulation deterioration sensor 10 or the arrangement timing of the insulation deterioration sensor 10 from the life span L2 of the diagnosis target, the remaining life RL1 of the diagnosis target (remaining life time) is calculated.
  • FIG. 4 is a schematic diagram of the insulation deterioration sensor 10 according to the first embodiment.
  • metal wirings 31a and 31b connected in parallel are formed on the main surface of the insulating substrate 32.
  • the metal wirings 31a and 31b shown in FIG. 4 are made of metal thin films and have a comb shape.
  • the ratio (L/W) of the wiring length L to the wiring width W of the metal wirings 31a and 31b is adjusted (for example, the The shape of the metal wirings 31a and 31b may be other than a comb shape as long as the ratio is 1000 or more).
  • the metal wirings 31a, 31b are excessively thin or long, the impedance of the metal wirings 31a, 31b increases and the detection sensitivity decreases, so the metal wirings 31a, 31b should have appropriate widths and lengths. is desirable. Furthermore, if the metal wirings 31a, 31b are too short, it may become difficult to form and solder the metal wirings 31a, 31b, so it is desirable that the metal wirings 31a, 31b have appropriate lengths. Further, from the viewpoint of suppressing an increase in the impedance of the metal wirings 31a, 31b due to the cross-sectional area, it is desirable that the thickness of the metal wirings 31a, 31b is 0.1 ⁇ m or more.
  • the thickness of the metal wirings 31a and 31b is 30 ⁇ m or less so that the metal wirings 31a and 31b have a resistance (several hundred ⁇ level) that can be easily measured with a tester or the like. Furthermore, in order to measure the resistance of the metal wires 31a, 31b, the metal wires 31a, 31b need to be formed on an insulating substrate. Examples of the material for the insulating substrate 32 include glass, glass epoxy, or paper phenol.
  • the thickness or type of metal of the metal wirings 31a, 31b is set in advance so that the rate of corrosion of the metal wirings 31a, 31b by the specific gas when the insulation deterioration sensor 10 is exposed to the specific gas is different from each other.
  • the metal wirings 31a and 31b are made of the same material, and the thickness of the metal wiring 31b is set to be larger than the thickness of the metal wiring 31a. do.
  • the thickness of the metal wirings 31a and 31b may be made the same, and the material of the metal wiring 31b may be made more specific than the material of the metal wiring 31a. Select materials that are less corrosive to gases.
  • metal material for the metal wirings 31a and 31b As the metal material for the metal wirings 31a and 31b, a metal whose exposure environment to the specific gas can be accurately evaluated, that is, a metal that corrodes when it comes into contact with the specific gas is used.
  • metals that corrode when in contact with specific gases include copper (Cu), copper alloys, silver (Ag), silver alloys, nickel (Ni), nickel alloys, iron (Fe), and iron alloys. .
  • other metal materials may be used as long as they can evaluate the exposure environment of the specific gas.
  • Methods for forming the metal wirings 31a and 31b include sputtering, vapor deposition, and plating, but there is no need to be limited to these methods.
  • An electrode pad 33a_1 is arranged near one end of the metal wiring 31a, and an electrode pad 33a_2 is arranged near the other end of the metal wiring 31a.
  • An electrode pad 33b_1 is arranged near one end of the metal wiring 31b, and an electrode pad 33b_2 is arranged near the other end of the metal wiring 31b.
  • Electrode pads 33a_1, 33b_1 are connected to lead wire 34_1.
  • Electrode pads 33a_2, 33b_2 are connected to lead wire 34_2. Thereby, metal wirings 31a and 31b are connected in parallel.
  • FIG. 5 is a diagram showing the relationship between the exposure time and the resistance value of the metal wiring when the metal wiring according to the first embodiment is exposed to a specific gas.
  • FIG. 5 shows graphs 35a, 35b, and 37 in which the horizontal axis represents exposure time and the vertical axis represents resistance value.
  • a graph 35a shows a change in the resistance value of the metal wiring 31a between the electrode pads 33a_1 and 33a_2.
  • Graph 35b shows a change in the resistance value of metal wiring 31b between electrode pads 33b_1 and 33b_2.
  • a graph 37 shows a change in the resistance value between the lead wires 34_1 and 34_2, that is, the combined resistance value of the metal wires 31a and 31b connected in parallel.
  • the exposure time range 36b in which the resistance value of 31b changes has a region that does not overlap with each other.
  • the range 36a is an exposure time range in which the time rate of change in resistance value of the metal wiring 31a when exposed to the specific gas is equal to or greater than ⁇ Rmax_a, where ⁇ Rmax_a is the maximum value of the rate of change in resistance value over time. be.
  • the range 36b is the range of exposure time in which the time rate of change in resistance value of the metal wiring 31b when exposed to the specific gas is equal to or greater than ⁇ Rmax_b, where ⁇ Rmax_b is the maximum value of the rate of change in resistance value over time. It is. ⁇ is predetermined and is, for example, 0.1.
  • FIG. 6 is a diagram showing the correlation between the surface resistivity of the insulator and the resistance value of the metal wires 31a, 31b when the insulator and the metal wires 31a, 31b to be diagnosed are exposed to a specific gas.
  • FIG. 6 shows a case where the thickness or type of metal of the metal wirings 31a and 31b is set so that the rate of corrosion of the metal wiring 31b due to the specific gas is slower than the rate of corrosion of the metal wiring 31a due to the specific gas.
  • the correlation is shown.
  • the range of surface resistivity of the insulator (1 ⁇ 10 8 to 1 ⁇ 10 11 ⁇ / ⁇ ) that correlates with the resistance value of the metal interconnect 31b correlates with the resistance value of the metal interconnect 31a. It is smaller than the range of surface resistivity of insulators (1 ⁇ 10 11 to 1 ⁇ 10 15 ⁇ / ⁇ ).
  • FIG. 7 is a diagram showing the correlation between the surface resistivity of the insulator and the combined resistance value of the metal wires 31a, 31b when a specific gas is exposed to the insulator and the metal wires 31a, 31b connected in parallel.
  • the correlation shown in FIG. 7 is calculated from the correlation between the surface resistivity of the insulator and the resistance values of the metal wirings 31a and 31b shown in FIG.
  • the surface resistivity of the insulator can be estimated from the resistance value of the insulation deterioration sensor 10 (that is, the combined resistance value of the metal wirings 31a and 31b).
  • the correlation coefficient between the combined resistance value of the metal wirings 31a and 31b connected in parallel and the surface resistivity of the insulator should be 0.5 or more. is preferred. Therefore, the thickness, metal type, width, length, etc. of the metal wirings 31a, 31b are adjusted depending on the insulator to be diagnosed so that the correlation coefficient is 0.5 or more.
  • a single metal wiring is used.
  • the range of the surface resistivity of the insulator that correlates with the resistance value of the metal wiring is 1 ⁇ 10 11 to 1 ⁇ 10 15 ⁇ / ⁇ (Fig. (see 6). Therefore, the range in which the surface resistivity of the insulator can be estimated is also 1 ⁇ 10 11 to 1 ⁇ 10 15 ⁇ / ⁇ . Furthermore, when the metal wiring is disconnected, the resistance value changes rapidly, which may lead to incorrect diagnosis.
  • metal wirings 31a and 31b are used which are connected in parallel and have different corrosion progression rates due to a specific gas.
  • the rate of corrosion of the metal wiring 31b caused by the specific gas is slower than the rate of corrosion of the metal wiring 31a caused by the specific gas. Therefore, the range of surface resistivity of the insulator that correlates with the combined resistance value of the metal wirings 31a and 31b is 1 ⁇ 10 7 to 1 ⁇ 10 15 ⁇ / ⁇ , which correlates with the resistance value of the metal wiring 31a or the metal wiring 31b.
  • the range is wider than the range of surface resistivity of insulators. Thereby, the surface resistivity of the insulator can be estimated accurately over a wider range. Further, even if the metal wiring 31a is disconnected, the combined resistance value does not change suddenly. Therefore, incorrect diagnosis is suppressed.
  • FIG. 8 is a block diagram showing a schematic configuration of a deterioration diagnosis apparatus 100 that executes the deterioration diagnosis method according to the first embodiment.
  • the deterioration diagnosis device 100 is realized in the form of a control board whose operation is controlled by a program recorded on a recording medium such as a ROM (Read Only Memory).
  • the control board is an example of implementation of the deterioration diagnosis device 100, and the hardware configuration of the deterioration diagnosis device 100 is not limited to the configuration shown in FIG. 8.
  • the deterioration diagnosis device 100 includes an insulation deterioration sensor 10, a measurement section 20, an input section 101, a storage section 102, a control section 103, and an output section 104.
  • the measurement unit 20 measures the combined resistance value of a plurality of metal wirings connected in parallel in the insulation deterioration sensor 10. Specifically, the measuring unit 20 measures the resistance value between the lead wires 34_1 and 34_2 shown in FIG. 4 as the combined resistance value of the metal wires 31a and 31b connected in parallel.
  • the measuring unit 20 is configured by, for example, a tester, and measures the combined resistance value by applying a predetermined voltage (for example, 100 V) between the lead wires 34_1 and 34_2.
  • the input unit 101 includes, for example, an input device such as a keyboard, a mouse, or a tablet, and a communication port that can communicate with the measurement unit 20 or an external device.
  • the input unit 101 receives input of data necessary for diagnosing deterioration of a diagnosis target 55 (for example, mold frames 55a, 55b).
  • a diagnosis target 55 for example, mold frames 55a, 55b.
  • the resistance value of the insulation deterioration sensor 10 when the insulation deterioration sensor 10 and the polyester insulator are exposed to a specific gas (that is, the combined resistance value of a plurality of metal wirings connected in parallel) and the surface resistivity of the polyester insulator A database 70 defining correlations between the two is input to the input unit 101 prior to deterioration diagnosis.
  • the database 70 is created in advance based on preliminary experiments.
  • the resistance value of the insulation deterioration sensor 10 when the insulation deterioration sensor 10 and the polyester insulator are exposed to a specific gas that is, the combined resistance value of a plurality of metal wirings connected in parallel
  • Resistance change data indicating a change over time
  • the input unit 101 receives input of the combined resistance value measured by the measurement unit 20.
  • the storage unit 102 is a memory device including, for example, a ROM, a RAM (Random Access Memory), and a hard disk.
  • the storage unit 102 stores a program for executing the deterioration diagnosis method, a database 70 for calculating the surface resistivity from the combined resistance value, various data input to the input unit 101, and the like.
  • the database 70 defines the correlation between the surface resistivity of the insulator and the combined resistance value of the plurality of metal wirings (see FIG. 7) when a specific gas is exposed to the insulator and the plurality of metal wirings connected in parallel. .
  • the database 70 is created by an external device and stored in the storage unit 102 via the input unit 101. Alternatively, the database 70 may be created by the control unit 103 based on the resistance change data input to the input unit 101 and stored in the storage unit 102.
  • the control unit 103 is realized, for example, by a microprocessor (MPU: Micro-Processing Unit).
  • MPU Micro-Processing Unit
  • the control unit 103 reads the program stored in the storage unit 102 and executes processing related to deterioration diagnosis according to the procedure described in the program.
  • FIG. 9 is a hardware configuration diagram of the main parts of the control unit 103 in FIG. 8. Each function of the control unit 103 can be realized by the processing circuit 1.
  • the processing circuit 1 includes at least one processor 1b and at least one memory 1c.
  • the processing circuit 1 may include at least one dedicated hardware 1a together with a processor 1b and a memory 1c, or as a substitute thereof.
  • each function of the deterioration diagnosis device 100 is realized by software, firmware, or a combination of software and firmware. At least one of the software and firmware is written as a program. The program is stored in the memory 1c.
  • the processor 1b implements each function of the deterioration diagnosis device 100 by reading and executing programs stored in the memory 1c.
  • the processor 1b is also called a CPU (Central Processing Unit), a processing device, an arithmetic device, a microprocessor, a microcomputer, or a DSP.
  • the memory 1c is configured of a nonvolatile or volatile semiconductor memory, such as a RAM, a ROM, a flash memory, an Erasable Programmable Read Only Memory (EPROM), an Electrically Erasable Programmable Read Only Memory (EEPROM), or the like.
  • the processing circuit 1 may include, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field Programmable Circuit). Gate Array), or a combination of these.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Circuit
  • Each of the plurality of functions of the deterioration diagnosis device 100 can be realized by the processing circuit 1.
  • a plurality of functions of the deterioration diagnosis device 100 may be realized by the processing circuit 1 all at once.
  • a part may be realized by dedicated hardware 1a, and other parts may be realized by software or firmware.
  • the processing circuit 1 can realize each function of the deterioration diagnosis device 100 using the hardware 1a, software, firmware, or a combination thereof.
  • the output unit 104 shown in FIG. 8 outputs the diagnosis result based on the remaining life calculated by the control unit 103 to the external output device 200.
  • Output device 200 may include, for example, a wireless device, a printer, a display, or a combination thereof.
  • FIG. 10 is a block diagram showing the functional configuration of the control section shown in FIG. 8.
  • the control unit 103 includes an estimation unit 72, a relational expression creation unit 73, a lifespan calculation unit 74, and a remaining lifespan calculation unit 75.
  • the estimation unit 72 estimates the surface resistivity of the object to be diagnosed.
  • the relational expression creation unit 73 creates a relational expression between the number of years of use of the diagnostic target and the surface resistivity of the diagnostic target.
  • the lifespan calculation unit 74 calculates the lifespan of the diagnosis target.
  • the remaining life calculation unit 75 calculates the remaining life of the diagnostic target.
  • the estimating unit 72 compares the combined resistance value measured by the measuring unit 20 after the insulation deterioration sensor 10 is placed around the diagnostic target with the database 70, and estimates the surface resistivity of the diagnostic target. That is, the estimation unit 72 executes the process of step S4 in FIG.
  • the relational expression creation unit 73 connects the point corresponding to the estimated surface resistivity of the diagnostic target and the point corresponding to the surface resistivity of the diagnostic target whose usage age is 0 years (new or unused product) to determine the diagnostic target. Create a relational expression between the years of use and the surface resistivity of the diagnostic target. That is, the relational expression creation unit 73 executes the process of step S5 in FIG.
  • the lifespan calculation unit 74 calculates the number of years of lifespan of the diagnosis target based on the relational expression created by the relational expression creation unit 73 and a predetermined threshold value. That is, the life calculation unit 74 executes the process of step S6 in FIG. 2.
  • the remaining life calculation unit 75 subtracts the number of years of use of the diagnostic target at the measurement timing of the composite resistance value of the insulation deterioration sensor 10 or the placement timing of the insulation deterioration sensor 10 from the life years calculated by the life calculation unit 74, and calculates the remaining life. Calculate. That is, the remaining life calculation unit 75 executes the process of step S7 in FIG.
  • the corrosion progress rates of the metal wirings 31a and 31b due to the specific gas are different from each other. Therefore, the range of the surface resistivity of the insulator that correlates with the combined resistance value of the metal wirings 31a and 31b becomes wider. Thereby, the surface resistivity of the insulator can be estimated accurately over a wider range. As a result, the period during which deterioration of electrical equipment (for example, switchgear 49) including an insulator can be accurately diagnosed becomes longer.
  • the thickness or type of metal of the metal wirings 31a, 31b is set in advance so that the rate of corrosion of the metal wirings 31a, 31b by the specific gas is different from each other.
  • one of the metal wirings 31a and 31b may be covered with a coating film so that the rates of corrosion of the metal wirings 31a and 31b due to the specific gas are different from each other.
  • FIG. 11 is a schematic diagram of an insulation deterioration sensor according to the second embodiment.
  • the insulation deterioration sensor shown in FIG. 11 is different from the insulation deterioration sensor shown in FIG. 3 in that the metal wiring 31b is covered with a coating film 40.
  • the coating film 40 is formed by applying a coating agent onto the metal wiring 31b.
  • Coating agents used include polyurethane, silicone, and silica, but are not necessarily limited to these.
  • FIG. 12 is a diagram showing the relationship between the exposure time and the resistance value of the metal wiring when the metal wiring according to the second embodiment is exposed to a specific gas.
  • FIG. 12 shows graphs 45a, 45b, and 47 in which the horizontal axis represents exposure time and the vertical axis represents resistance value.
  • a graph 45a shows a change in the resistance value of the metal wiring 31a between the electrode pads 33a_1 and 33a_2.
  • Graph 45b shows a change in the resistance value of metal wiring 31b between electrode pads 33b_1 and 33b_2.
  • a graph 47 shows a change in the resistance value between the lead wires 34_1 and 34_2, that is, the combined resistance value of the metal wires 31a and 31b connected in parallel.
  • the range of exposure time in which the resistance value of the metal wiring 31a changes when the insulation deterioration sensor according to the second embodiment is exposed to a specific gas is 46a and an exposure time range 46b in which the resistance value of the metal wiring 31b changes when the metal wiring 31b is exposed to a specific gas have regions that do not overlap with each other.
  • the position of the range 46b depends on the length of the dead period of the metal wiring 31b.
  • the length of the dead period of the metal wiring 31b depends on the thickness of the coating film 40. Therefore, the thickness of the coating film 40 may be adjusted so that the range 46a and the range 46b do not overlap each other. Thereby, the range of the surface resistivity of the insulator that correlates with the combined resistance value of the metal wirings 31a and 31b becomes wider.
  • the coating film 40 By forming the coating film 40, contact between the metal wiring 31b and objects (for example, people, dust, etc.) that may cause detection failure is prevented. As a result, occurrence of phenomena such as unintentional disconnection of a part of the metal wiring 31b is suppressed.
  • the metal wiring 31a may also be covered with the coating film 40. This prevents contact between the object and the metal wiring 31a, which would cause detection failure.
  • the thickness of the coating film 40 covering the metal wiring 31a may be set to be thinner than the thickness of the coating film 40 covering the metal wiring 31b. As a result, the rate of corrosion of the metal wiring 31b becomes slower than the rate of corrosion of the metal wiring 31a.
  • Embodiment 3 In the first and second embodiments, an insulation deterioration sensor in which two metal wirings 31a and 31b are connected in parallel is used.
  • the number of metal wirings connected in parallel is not limited to two, and may be three or more. By using more metal wiring, multiple items that affect the insulation performance of the insulator can be taken into consideration, making it possible to diagnose deterioration that is more environmentally friendly.
  • the insulation deterioration sensor may include another metal wire connected in parallel to the metal wires 31a and 31b.
  • the range of exposure time in which the resistance value of the other metal wiring changes when the other metal wiring is exposed to the specific gas has a region that does not overlap with the ranges 36a and 36b corresponding to the metal wirings 31a and 31b.
  • Embodiments 1 to 3 a switchgear was used as an example of an electrical device, but the electrical device is not limited to a switchgear. If an insulating material is used to insulate the current-carrying parts of electrical equipment from ground to ground or between phases, and if the configuration is to diagnose the deterioration status of the insulation performance of the insulating material, Embodiments 1 to 3 may be used in the configuration. It is possible to obtain similar effects.
  • Examples of electrical equipment include switch gears, power receiving and distribution equipment, transformers, control gears such as motor control centers, generators, electric motors, and power supply devices for power supply (for example, AC power supplies, DC power supplies, or rectifiers).
  • 1 processing circuit 1a hardware, 1b processor, 1c memory, 10 insulation deterioration sensor, 20 measurement unit, 31a, 31b metal wiring, 32 insulating substrate, 33a_1, 33a_2, 33b_1, 33b-2 electrode pad, 34_1, 34_2 lead wire , 40 coating film, 49 switch gear, 50a, 50b circuit breaker, 51a, 51b operating mechanism, 52 horizontal busbar, 53a, 53b, 54a, 54b connection conductor, 55 diagnosis target, 55a, 55b mold frame, 56 busbar support plate, 57a, 57b cable, 58 insulator, 61a, 61b trolley, 70 database, 72 estimation section, 73 relational expression creation section, 74 lifespan calculation section, 75 remaining lifespan calculation section, 100 deterioration diagnosis device, 101 input section, 102 storage section, 103 control unit, 104 output unit, 200 output device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

A degradation diagnosis method according to the present invention includes a step for arranging an insulation degradation sensor in the environment of an insulator. A plurality of pieces of metal wiring are connected in parallel at the insulation degradation sensor. The plurality of pieces of metal wiring include first metal wiring and second metal wiring that have different corrosion progression speeds. The degradation diagnosis method includes a step (S4) in which a combined resistance value for the insulation degradation sensor at measurement timing and a database that defines a first correlation between the combined resistance value for the insulation degradation sensor and the surface resistivity of the insulator are used to estimate the surface resistivity of the insulator at the measurement timing, a step (S6) in which a relational expression that indicates a second correlation between the surface resistivity of the insulator and the time of use of an electrical apparatus is used calculate the lifetime of the electrical apparatus, and a step (S7) in which the remaining lifetime of the electrical apparatus having subtracted the time of use of the electrical apparatus at the measurement timing is calculated from the lifetime.

Description

劣化診断方法および劣化診断装置Deterioration diagnosis method and deterioration diagnosis device
 本開示は、絶縁物を含む電気機器の劣化を診断する劣化診断方法および劣化診断装置に関する。 The present disclosure relates to a deterioration diagnosis method and a deterioration diagnosis apparatus for diagnosing deterioration of electrical equipment including insulators.
 従来、絶縁物を含む電気機器の劣化を診断する劣化診断方法が知られている。例えば、国際公開第2021/166095号(特許文献1)には、特定気体に接触する場合における、金属薄膜配線の抵抗値と絶縁物の表面抵抗率との相関関係を規定するデータベースと、絶縁物の近傍に設置した金属薄膜配線の抵抗値とを照合し、絶縁物の表面抵抗率を推定する劣化診断装置が開示されている。当該劣化診断装置は、推定した表面抵抗率から、電気機器の寿命および余寿命を算出する。 Conventionally, deterioration diagnosis methods for diagnosing the deterioration of electrical equipment containing insulators have been known. For example, International Publication No. 2021/166095 (Patent Document 1) includes a database that defines the correlation between the resistance value of metal thin film wiring and the surface resistivity of insulators when coming into contact with a specific gas, and A deterioration diagnosis device has been disclosed that estimates the surface resistivity of an insulator by comparing the resistance value of a metal thin film wiring installed in the vicinity of the insulator. The deterioration diagnosis device calculates the life and remaining life of the electrical equipment from the estimated surface resistivity.
国際公開第2021/166095号International Publication No. 2021/166095
 特許文献1に記載の技術では、特定気体への曝露によって金属薄膜配線が断線してしまうと、絶縁物の表面抵抗率を推定できない。そのため、電気機器の劣化を精度良く診断できる期間が限定される。 In the technique described in Patent Document 1, if the metal thin film wiring is disconnected due to exposure to a specific gas, the surface resistivity of the insulator cannot be estimated. Therefore, the period during which deterioration of electrical equipment can be accurately diagnosed is limited.
 本開示は、上記のような課題を解決するためになされたもので、電気機器の劣化を精度良く診断できる期間が長い劣化診断方法および劣化診断装置を提供することである。 The present disclosure has been made to solve the above-mentioned problems, and it is an object of the present disclosure to provide a deterioration diagnosis method and a deterioration diagnosis device that can accurately diagnose the deterioration of electrical equipment over a long period of time.
 本開示の一局面に係る劣化診断方法は、絶縁物を含む電気機器の劣化を診断する。劣化診断方法は、特定気体に曝露されることによって腐食する複数の金属配線が並列接続された絶縁劣化センサを絶縁物の周囲に配置するステップを備える。複数の金属配線は、絶縁劣化センサを特定気体に曝露したときの腐食進行速度が互いに異なる第1金属配線と第2金属配線とを含む。劣化診断方法は、さらに、絶縁物および絶縁劣化センサがともに特定気体に曝露された場合における、絶縁劣化センサの合成抵抗と絶縁物の表面抵抗率との第1相関関係を規定するデータベースを予め作成するステップと、測定タイミングにおける絶縁劣化センサの合成抵抗値を測定するステップと、測定タイミングにおける合成抵抗値とデータベースとを用いて、測定タイミングにおける絶縁物の表面抵抗率を推定するステップと、測定タイミングにおける電気機器の使用時間および推定された絶縁物の表面抵抗率と、電気機器が未使用である場合の絶縁物の表面抵抗率とから、電気機器の使用時間と絶縁物の表面抵抗率との第2相関関係を表す関係式を作成するステップと、関係式において、絶縁物が絶縁性能を失う場合の基準表面抵抗率に対応する電気機器の寿命時間を算出するステップと、寿命時間から、測定タイミングにおける電気機器の使用時間または絶縁劣化センサが絶縁物の周囲に配置されたタイミングにおける電気機器の使用時間を減算した電気機器の余寿命時間を算出するステップとを含む。 A deterioration diagnosis method according to one aspect of the present disclosure diagnoses deterioration of an electrical device including an insulator. The deterioration diagnosis method includes the step of arranging an insulation deterioration sensor around an insulator, in which a plurality of metal wirings that corrode when exposed to a specific gas are connected in parallel. The plurality of metal wires include first metal wires and second metal wires that have different corrosion progression rates when the insulation deterioration sensor is exposed to a specific gas. The deterioration diagnosis method further includes creating in advance a database that defines a first correlation between the combined resistance of the insulation deterioration sensor and the surface resistivity of the insulator when both the insulator and the insulation deterioration sensor are exposed to a specific gas. a step of measuring the composite resistance value of the insulation deterioration sensor at the measurement timing; a step of estimating the surface resistivity of the insulator at the measurement timing using the composite resistance value at the measurement timing and the database; The relationship between the operating time of the electrical equipment and the surface resistivity of the insulating material is determined from the operating time of the electrical equipment and the estimated surface resistivity of the insulating material, and the surface resistivity of the insulating material when the electrical equipment is not in use. a step of creating a relational expression expressing the second correlation, a step of calculating the life time of the electrical equipment corresponding to the reference surface resistivity when the insulating material loses its insulation performance in the relational expression, and a step of calculating the life time of the electrical equipment from the life time, and calculating the remaining life time of the electrical equipment by subtracting the operating time of the electrical equipment at the timing or the operating time of the electrical equipment at the timing when the insulation deterioration sensor is disposed around the insulator.
 本開示の他の局面に係る劣化診断装置は、絶縁物を含む電気機器の劣化を診断する。劣化診断装置は、特定気体に曝露されることによって腐食する複数の金属配線が並列接続された絶縁劣化センサを備える。複数の金属配線は、絶縁劣化センサを特定気体に曝露したときの腐食進行速度が互いに異なる第1金属配線と第2金属配線とを含む。劣化診断装置は、さらに、絶縁物および絶縁劣化センサがともに特定気体に曝露された場合における、絶縁劣化センサの合成抵抗値と絶縁物の表面抵抗率との第1相関関係を規定するデータベースと、測定タイミングにおける絶縁劣化センサの合成抵抗値を測定する測定部と、測定タイミングにおける合成抵抗値とデータベースとを用いて、測定タイミングにおける絶縁物の表面抵抗率を推定する推定部と、測定タイミングにおける電気機器の使用時間および推定された絶縁物の表面抵抗率と、電気機器が未使用である場合の絶縁物の表面抵抗率とから、電気機器の使用時間と絶縁物の表面抵抗率との第2相関関係を表す関係式を作成する関係式作成部と、関係式において、絶縁物が絶縁性能を失う場合の基準表面抵抗率に対応する電気機器の寿命時間を算出する寿命算出部と、寿命時間から、測定タイミングにおける電気機器の使用時間または絶縁劣化センサが絶縁物の周囲に配置されたタイミングにおける電気機器の使用時間を減算した電気機器の余寿命時間を算出する余寿命算出部とを備える。 A deterioration diagnosis device according to another aspect of the present disclosure diagnoses deterioration of an electrical device including an insulator. The deterioration diagnosis device includes an insulation deterioration sensor in which a plurality of metal wirings that corrode when exposed to a specific gas are connected in parallel. The plurality of metal wires include first metal wires and second metal wires that have different corrosion progression rates when the insulation deterioration sensor is exposed to a specific gas. The deterioration diagnosis device further includes a database that defines a first correlation between the combined resistance value of the insulation deterioration sensor and the surface resistivity of the insulator when both the insulator and the insulation deterioration sensor are exposed to a specific gas; a measurement unit that measures the composite resistance value of the insulation deterioration sensor at the measurement timing; an estimation unit that estimates the surface resistivity of the insulator at the measurement timing using the composite resistance value at the measurement timing and a database; From the operating time of the equipment, the estimated surface resistivity of the insulating material, and the surface resistivity of the insulating material when the electrical equipment is not in use, the second difference between the operating time of the electrical equipment and the surface resistivity of the insulating material is calculated. A relational expression creation section that creates a relational expression expressing a correlation, a life calculation section that calculates the life time of the electrical equipment corresponding to the reference surface resistivity when the insulating material loses its insulation performance in the relational expression, and a remaining life calculation unit that calculates the remaining life time of the electrical equipment by subtracting the usage time of the electrical equipment at the measurement timing or the usage time of the electrical equipment at the timing when the insulation deterioration sensor is arranged around the insulator.
 本開示に係る劣化診断方法および劣化診断装置によれば、特定気体による第1金属配線と第2金属配線との腐食進行速度は互いに異なる。そのため、第1金属配線および第2金属配線を含む複数の金属配線の合成抵抗値に相関する、絶縁物の表面抵抗率の範囲が広くなる。これにより、絶縁物の表面抵抗率をより広い範囲で精度良く推定できる。その結果、絶縁物の劣化を精度良く診断できる期間が長くなる。 According to the deterioration diagnosis method and deterioration diagnosis device according to the present disclosure, the corrosion progression rates of the first metal wiring and the second metal wiring due to the specific gas are different from each other. Therefore, the range of the surface resistivity of the insulator, which correlates with the combined resistance value of a plurality of metal interconnections including the first metal interconnection and the second metal interconnection, becomes wider. Thereby, the surface resistivity of the insulator can be estimated accurately over a wider range. As a result, the period during which deterioration of the insulator can be accurately diagnosed becomes longer.
高圧電気機器の一例であるスイッチギヤの構成を概略的に示した断面図である。FIG. 1 is a cross-sectional view schematically showing the configuration of a switchgear that is an example of high-voltage electrical equipment. 実施の形態1に係る劣化診断方法の流れを示すフローチャートである。3 is a flowchart showing the flow of a deterioration diagnosis method according to the first embodiment. 電気機器の使用年数(使用時間)と表面抵抗率との関係を概略的に示すグラフである。It is a graph schematically showing the relationship between the number of years of use (hours of use) and surface resistivity of electrical equipment. 実施の形態1に係る絶縁劣化センサの概略図である。1 is a schematic diagram of an insulation deterioration sensor according to Embodiment 1. FIG. 実施の形態1に係る金属配線を特定気体に曝露したときの曝露時間と金属配線の抵抗値との関係を示す図である。FIG. 3 is a diagram showing the relationship between the exposure time and the resistance value of the metal wiring when the metal wiring according to the first embodiment is exposed to a specific gas. 特定気体を診断対象である絶縁物および金属配線に曝露したときの絶縁物の表面抵抗率と金属配線の抵抗値との相関関係を示す図である。FIG. 3 is a diagram showing the correlation between the surface resistivity of the insulator and the resistance value of the metal wiring when a specific gas is exposed to the insulator and the metal wiring to be diagnosed. 特定気体を絶縁物および並列接続された金属配線に曝露したときの絶縁物の表面抵抗率と金属配線の合成抵抗値との相関関係を示す図である。FIG. 3 is a diagram showing the correlation between the surface resistivity of the insulator and the combined resistance value of the metal wiring when a specific gas is exposed to the insulator and the metal wiring connected in parallel. 実施の形態1に係る劣化診断方法を実行する劣化診断装置の概略構成を示すブロック図である。1 is a block diagram showing a schematic configuration of a deterioration diagnosis device that executes a deterioration diagnosis method according to Embodiment 1. FIG. 図8の制御部の主要部のハードウェア構成図である。FIG. 9 is a hardware configuration diagram of the main parts of the control section in FIG. 8; 図8に示す制御部の機能構成を示すブロック図である。9 is a block diagram showing a functional configuration of a control section shown in FIG. 8. FIG. 実施の形態2に係る絶縁劣化センサの概略図である。FIG. 2 is a schematic diagram of an insulation deterioration sensor according to a second embodiment. 実施の形態2に係る金属配線を特定気体に曝露したときの曝露時間と金属配線の抵抗値との関係を示す図である。FIG. 7 is a diagram showing the relationship between the exposure time and the resistance value of the metal wiring when the metal wiring according to Embodiment 2 is exposed to a specific gas.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は原則として繰り返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In addition, the same reference numerals are given to the same or corresponding parts in the drawings, and the description thereof will not be repeated in principle.
 実施の形態1.
 実施の形態1に係る電気機器の劣化診断方法は、絶縁体を備える電気機器の劣化診断方法である。電気機器は、例えば遮断器、断路器、変圧器、母線・導体などの主回路構成品と、測定機器から構成される高圧電気機器または特別高圧電気機器である。「高圧」とは、直流電圧が750Vを超え7000V以下、または、交流電圧が600Vを超え7000V以下であることを意味する。「特別高圧」は、直流電圧または交流電圧が7000Vを超えることを意味する。
Embodiment 1.
The method of diagnosing deterioration of electrical equipment according to the first embodiment is a method of diagnosing deterioration of electrical equipment including an insulator. The electrical equipment is, for example, high-voltage electrical equipment or special high-voltage electrical equipment that includes main circuit components such as circuit breakers, disconnectors, transformers, busbars and conductors, and measuring equipment. "High voltage" means that the DC voltage is more than 750V and less than 7000V, or the AC voltage is more than 600V and less than 7000V. "Extra high voltage" means that the DC or AC voltage exceeds 7000V.
 図1は、高圧電気機器の一例であるスイッチギヤ49の構成を概略的に示した断面図である。スイッチギヤ49は、絶縁体により支持される遮断器、断路器、および母線・導体などの主回路構成品と、測定機器とを含む。図1において、X軸、Y軸、およびZ軸は、互いに直交している。なお、図1に関する説明においては、Z軸の+方向を上側、およびZ軸の-方向を下側とする。 FIG. 1 is a cross-sectional view schematically showing the configuration of a switchgear 49, which is an example of high-voltage electrical equipment. The switchgear 49 includes main circuit components such as a circuit breaker, a disconnector, and a bus bar/conductor supported by an insulator, and a measuring device. In FIG. 1, the X, Y, and Z axes are orthogonal to each other. In the explanation regarding FIG. 1, the + direction of the Z-axis is assumed to be the upper side, and the - direction of the Z-axis is assumed to be the lower side.
 図1に示されるように、スイッチギヤ49は、遮断器50a,50bと、3本の水平母線52と、接続導体53a,54a,53b,54bと、母線支持板56と、ケーブル57a,57bと、複数の碍子58とを備える。遮断器50aは、操作機構51aおよびモールドフレーム55aを含む。遮断器50bは、操作機構51bおよびモールドフレーム55bを含む。接続導体53a、54a、53b、および54bは、複数の碍子58によって支持されている。3本の水平母線52は、三相交流の三相にそれぞれ対応している。母線支持板56は、3本の水平母線52を一括して支持する。 As shown in FIG. 1, the switchgear 49 includes circuit breakers 50a, 50b, three horizontal busbars 52, connection conductors 53a, 54a, 53b, 54b, busbar support plate 56, and cables 57a, 57b. , and a plurality of insulators 58. Circuit breaker 50a includes an operating mechanism 51a and a mold frame 55a. Circuit breaker 50b includes an operating mechanism 51b and a mold frame 55b. The connection conductors 53a, 54a, 53b, and 54b are supported by a plurality of insulators 58. The three horizontal busbars 52 correspond to three phases of three-phase alternating current, respectively. The busbar support plate 56 collectively supports the three horizontal busbars 52.
 操作機構51aおよび遮断部(不図示)を内蔵するモールドフレーム55aは、台車61aに搭載されている。操作機構51bおよび遮断部(不図示)を内蔵するモールドフレーム55bは、台車61bに搭載されている。台車61a,61bは、X軸方向に移動可能である。接続導体53aの一端は、ケーブル57aに電気的に接続されている。接続導体53aの他端は、遮断器50aの上側の端子に電気的に接続されている。接続導体54aの一端は、遮断器50aの下側の端子に電気的に接続されている。接続導体54aの他端は、水平母線52を介して接続導体53bの一端に電気的に接続されている。接続導体53bの他端は、遮断器50bの上側の端子に接続されている。接続導体54bの一端は、遮断器50bの下側の端子に接続されている。接続導体54bの他端は、ケーブル57bに電気的に接続される。 A mold frame 55a containing an operating mechanism 51a and a blocking section (not shown) is mounted on a trolley 61a. A mold frame 55b containing an operating mechanism 51b and a blocking section (not shown) is mounted on a cart 61b. The carts 61a and 61b are movable in the X-axis direction. One end of the connection conductor 53a is electrically connected to the cable 57a. The other end of the connection conductor 53a is electrically connected to the upper terminal of the circuit breaker 50a. One end of the connection conductor 54a is electrically connected to a lower terminal of the circuit breaker 50a. The other end of the connecting conductor 54a is electrically connected to one end of the connecting conductor 53b via the horizontal bus bar 52. The other end of the connecting conductor 53b is connected to the upper terminal of the circuit breaker 50b. One end of the connecting conductor 54b is connected to a lower terminal of the circuit breaker 50b. The other end of the connecting conductor 54b is electrically connected to the cable 57b.
 モールドフレーム55a、55b、母線支持板56、あるいは碍子58の各々は、絶縁物であり、本開示における劣化診断の対象(診断対象)である。当該絶縁物の材料としては、たとえばポリエステル樹脂、エポキシ樹脂、あるいはフェノール樹脂を挙げることができる。 Each of the mold frames 55a and 55b, the bus bar support plate 56, or the insulator 58 is an insulator, and is a target of deterioration diagnosis (diagnosis target) in the present disclosure. Examples of the material of the insulator include polyester resin, epoxy resin, or phenol resin.
 絶縁劣化センサ10は、診断対象である絶縁物とは別体として形成され、診断対象の周囲に配置される。図1において絶縁劣化センサ10は、モールドフレーム55bの近傍に配置されている。絶縁劣化センサ10が診断対象とは別体として形成することにより、絶縁劣化センサ10から診断対象への電界集中を抑制することができる。また、絶縁劣化センサ10の交換が容易になる。 The insulation deterioration sensor 10 is formed separately from the insulator that is the object of diagnosis, and is placed around the object of diagnosis. In FIG. 1, the insulation deterioration sensor 10 is placed near the mold frame 55b. By forming the insulation deterioration sensor 10 as a separate body from the object to be diagnosed, it is possible to suppress electric field concentration from the insulation deterioration sensor 10 to the object to be diagnosed. Furthermore, the insulation deterioration sensor 10 can be easily replaced.
 次に、実施の形態1に係る劣化診断方法を、図2および図3を用いて説明する。図2は、実施の形態1に係る劣化診断方法の流れを示すフローチャートである。図3は、電気機器の使用年数(使用時間)と表面抵抗率との関係を概略的に示すグラフである。 Next, the deterioration diagnosis method according to Embodiment 1 will be explained using FIGS. 2 and 3. FIG. 2 is a flowchart showing the flow of the deterioration diagnosis method according to the first embodiment. FIG. 3 is a graph schematically showing the relationship between the years of use (hours of use) and surface resistivity of electrical equipment.
 図2に示されるように、ステップS1において、診断対象の劣化に影響を与える特定気体(たとえば窒素酸化物(NOx)、または硫黄酸化物(SOx))を、絶縁劣化センサ10および電気機器に使用されている診断対象に曝露(接触)させる。曝露後の絶縁劣化センサ10の抵抗値および絶縁物の表面抵抗率を測定することにより、絶縁劣化センサ10の抵抗値と診断対象の表面抵抗率との相関関係(第1相関関係)を規定するデータベースが予め作成される。次に、ステップS2において、絶縁劣化センサ10が診断対象の周囲に配置される。診断対象の周囲とは、診断対象が特定気体に曝露される場合、その特定気体に覆われる領域のことである。次に、ステップS3において、絶縁劣化センサ10の抵抗値がテスター等の簡易抵抗計によって測定タイミング毎に測定される。当該抵抗値は、定期的または常時に測定される。ステップS4において、ステップS3において測定された絶縁劣化センサ10の抵抗値がステップS1において作成されたデータベースに照合されて、当該抵抗値の測定タイミングにおける診断対象の表面抵抗率SR1が推定される。なお、表面抵抗率SR1が推定される抵抗値の測定タイミングを使用年数L1(年)とする。 As shown in FIG. 2, in step S1, a specific gas (for example, nitrogen oxides (NOx) or sulfur oxides (SOx)) that affects the deterioration of the diagnosis target is used in the insulation deterioration sensor 10 and the electrical equipment. Exposure (contact) to the subject being diagnosed. By measuring the resistance value of the insulation deterioration sensor 10 and the surface resistivity of the insulator after exposure, a correlation (first correlation) between the resistance value of the insulation deterioration sensor 10 and the surface resistivity of the diagnosis target is defined. A database is created in advance. Next, in step S2, the insulation deterioration sensor 10 is placed around the diagnostic target. The area around the diagnostic target is the area covered by the specific gas when the diagnostic target is exposed to the specific gas. Next, in step S3, the resistance value of the insulation deterioration sensor 10 is measured at each measurement timing using a simple resistance meter such as a tester. The resistance value is measured periodically or constantly. In step S4, the resistance value of the insulation deterioration sensor 10 measured in step S3 is checked against the database created in step S1, and the surface resistivity SR1 of the diagnosis target at the measurement timing of the resistance value is estimated. Note that the measurement timing of the resistance value at which the surface resistivity SR1 is estimated is the number of years of use L1 (years).
 図3に示されるように、ステップS5において、表面抵抗率SR1と診断対象の新品(未使用品)の表面抵抗率SR0とから、表面抵抗率と電気機器の使用年数との相関関係(第2相関関係)を表す関係式が作成される。例えば、関係式は、表面抵抗率の対数と電気機器の使用年数とが線形関係となる劣化直線RF1を表す。ステップS6において、劣化直線RF1から表面抵抗率の閾値SR2(基準表面抵抗率)に対応する寿命年数L2(寿命時間)が算出される。なお、閾値SR2は診断対象が絶縁性能を失って、診断対象に放電が発生する場合の表面抵抗率である。ステップS7において、診断対象の寿命年数L2から、絶縁劣化センサ10の測定タイミングまたは絶縁劣化センサ10の配置タイミングにおける診断対象の使用年数L1(<L2)を減算することで、診断対象の余寿命RL1(余寿命時間)が算出される。 As shown in FIG. 3, in step S5, the correlation between the surface resistivity and the age of use of the electrical equipment (second A relational expression representing the relationship (correlation) is created. For example, the relational expression represents a deterioration straight line RF1 in which the logarithm of the surface resistivity and the number of years of use of the electrical equipment are linearly related. In step S6, the number of life years L2 (life time) corresponding to the threshold value SR2 (reference surface resistivity) of the surface resistivity is calculated from the deterioration straight line RF1. Note that the threshold value SR2 is the surface resistivity when the diagnostic target loses its insulation performance and discharge occurs in the diagnostic target. In step S7, by subtracting the service life L1 (<L2) of the diagnosis target at the measurement timing of the insulation deterioration sensor 10 or the arrangement timing of the insulation deterioration sensor 10 from the life span L2 of the diagnosis target, the remaining life RL1 of the diagnosis target (remaining life time) is calculated.
 次に、図4および図5を用いて、実施の形態1に係る劣化診断方法の詳細について説明する。図4は、実施の形態1に係る絶縁劣化センサ10の概略図である。図4に示されるように、絶縁基板32の主面上に並列接続された金属配線31a,31bが形成される。図4に示される金属配線31a,31bは、金属薄膜によって構成され、櫛形形状を有する。ただし、テスター等で簡易に測定することができる抵抗(数百Ωレベル)を有するように、金属配線31a,31bの配線幅Wに対する配線長さLの比(L/W)が調整(たとえば当該比が1000以上)されたものであれば、金属配線31a,31bの形状は櫛型形状以外であってもよい。金属配線31a,31bが過度に細く、あるいは過度に長い場合には金属配線31a,31bのインピーダンスが増加して検出感度が低下するため、金属配線31a,31bは適度な幅および長さを有することが望ましい。また、金属配線31a,31bが過度に短い場合、金属配線31a,31bの成膜および半田付けが困難となり得るため、金属配線31a,31bは適度な長さを有することが望ましい。さらに、断面積による金属配線31a,31bのインピーダンスの増加を抑制するという観点から、金属配線31a,31bの厚さは、0.1μm以上であることが望ましい。ただし、テスター等で簡易に測定することができる抵抗(数百Ωレベル)を有するように、金属配線31a,31bの厚さは30μm以下であることが望ましい。さらに、金属配線31a,31bの抵抗を測定するため、金属配線31a,31bは絶縁性を有する基板上に形成される必要がある。絶縁基板32の材料としては、たとえばガラス、ガラス・エポキシ、あるいは紙フェノールを挙げることができる。 Next, details of the deterioration diagnosis method according to the first embodiment will be described using FIGS. 4 and 5. FIG. 4 is a schematic diagram of the insulation deterioration sensor 10 according to the first embodiment. As shown in FIG. 4, metal wirings 31a and 31b connected in parallel are formed on the main surface of the insulating substrate 32. The metal wirings 31a and 31b shown in FIG. 4 are made of metal thin films and have a comb shape. However, the ratio (L/W) of the wiring length L to the wiring width W of the metal wirings 31a and 31b is adjusted (for example, the The shape of the metal wirings 31a and 31b may be other than a comb shape as long as the ratio is 1000 or more). If the metal wirings 31a, 31b are excessively thin or long, the impedance of the metal wirings 31a, 31b increases and the detection sensitivity decreases, so the metal wirings 31a, 31b should have appropriate widths and lengths. is desirable. Furthermore, if the metal wirings 31a, 31b are too short, it may become difficult to form and solder the metal wirings 31a, 31b, so it is desirable that the metal wirings 31a, 31b have appropriate lengths. Further, from the viewpoint of suppressing an increase in the impedance of the metal wirings 31a, 31b due to the cross-sectional area, it is desirable that the thickness of the metal wirings 31a, 31b is 0.1 μm or more. However, it is desirable that the thickness of the metal wirings 31a and 31b is 30 μm or less so that the metal wirings 31a and 31b have a resistance (several hundred Ω level) that can be easily measured with a tester or the like. Furthermore, in order to measure the resistance of the metal wires 31a, 31b, the metal wires 31a, 31b need to be formed on an insulating substrate. Examples of the material for the insulating substrate 32 include glass, glass epoxy, or paper phenol.
 絶縁劣化センサ10を特定気体に曝露したときの特定気体による金属配線31a,31bの腐食進行速度は互いに異なるように、金属配線31a,31bの厚みまたは金属の種類が予め設定される。例えば、金属配線31bの腐食進行速度を金属配線31aの腐食進行速度よりも遅くするために、金属配線31a,31bの材料を同一とし、金属配線31bの厚みを金属配線31aの厚みよりも大きく設定する。あるいは、金属配線31bの腐食進行速度を金属配線31aの腐食進行速度よりも遅くするために、金属配線31a,31bの厚みを同一とし、金属配線31bの材料として、金属配線31aの材料よりも特定気体に対する腐食性の低い材料を設定する。 The thickness or type of metal of the metal wirings 31a, 31b is set in advance so that the rate of corrosion of the metal wirings 31a, 31b by the specific gas when the insulation deterioration sensor 10 is exposed to the specific gas is different from each other. For example, in order to make the corrosion progression rate of the metal wiring 31b slower than the corrosion progression rate of the metal wiring 31a, the metal wirings 31a and 31b are made of the same material, and the thickness of the metal wiring 31b is set to be larger than the thickness of the metal wiring 31a. do. Alternatively, in order to make the corrosion progression rate of the metal wiring 31b slower than the corrosion progression rate of the metal wiring 31a, the thickness of the metal wirings 31a and 31b may be made the same, and the material of the metal wiring 31b may be made more specific than the material of the metal wiring 31a. Select materials that are less corrosive to gases.
 金属配線31a,31bの金属材料として、特定気体の曝露環境を的確に評価できる金属、すなわち特定気体に接触することによって腐食する金属が使用される。特定気体に接触することによって腐食する金属として、例えば、銅(Cu)、銅合金、銀(Ag)、銀合金、ニッケル(Ni)、ニッケル合金、鉄(Fe)、および鉄合金などがあげられる。ただし、これ以外の金属材料であっても、特定気体の曝露環境を評価できる金属であれば他の金属材料が用いられていてもよい。金属配線31a,31bの成膜法としては、スパッタ法、蒸着法、めっき法などがあるが、特にこれだけにとらわれる必要はない。 As the metal material for the metal wirings 31a and 31b, a metal whose exposure environment to the specific gas can be accurately evaluated, that is, a metal that corrodes when it comes into contact with the specific gas is used. Examples of metals that corrode when in contact with specific gases include copper (Cu), copper alloys, silver (Ag), silver alloys, nickel (Ni), nickel alloys, iron (Fe), and iron alloys. . However, other metal materials may be used as long as they can evaluate the exposure environment of the specific gas. Methods for forming the metal wirings 31a and 31b include sputtering, vapor deposition, and plating, but there is no need to be limited to these methods.
 金属配線31aの一方の端部付近に電極パッド33a_1が配置され、金属配線31aの他方の端部付近に電極パッド33a_2が配置される。金属配線31bの一方の端部付近に電極パッド33b_1が配置され、金属配線31bの他方の端部付近に電極パッド33b_2が配置される。電極パッド33a_1,33b_1は、リード線34_1に接続されている。電極パッド33a_2,33b_2は、リード線34_2に接続されている。これにより、金属配線31a,31bが並列接続される。 An electrode pad 33a_1 is arranged near one end of the metal wiring 31a, and an electrode pad 33a_2 is arranged near the other end of the metal wiring 31a. An electrode pad 33b_1 is arranged near one end of the metal wiring 31b, and an electrode pad 33b_2 is arranged near the other end of the metal wiring 31b. Electrode pads 33a_1, 33b_1 are connected to lead wire 34_1. Electrode pads 33a_2, 33b_2 are connected to lead wire 34_2. Thereby, metal wirings 31a and 31b are connected in parallel.
 図5は、実施の形態1に係る金属配線を特定気体に曝露したときの曝露時間と金属配線の抵抗値との関係を示す図である。図5には、横軸を曝露時間、縦軸を抵抗値とするグラフ35a,35b,37が示される。グラフ35aは、電極パッド33a_1,33a_2間の金属配線31aの抵抗値の変化を示す。グラフ35bは、電極パッド33b_1,33b_2間の金属配線31bの抵抗値の変化を示す。グラフ37は、リード線34_1,34_2間の抵抗値、すなわち並列接続される金属配線31a,31bの合成抵抗値の変化を示す。 FIG. 5 is a diagram showing the relationship between the exposure time and the resistance value of the metal wiring when the metal wiring according to the first embodiment is exposed to a specific gas. FIG. 5 shows graphs 35a, 35b, and 37 in which the horizontal axis represents exposure time and the vertical axis represents resistance value. A graph 35a shows a change in the resistance value of the metal wiring 31a between the electrode pads 33a_1 and 33a_2. Graph 35b shows a change in the resistance value of metal wiring 31b between electrode pads 33b_1 and 33b_2. A graph 37 shows a change in the resistance value between the lead wires 34_1 and 34_2, that is, the combined resistance value of the metal wires 31a and 31b connected in parallel.
 金属配線31a,31bの腐食進行速度が互いに異なるため、特定気体に曝露されたときに金属配線31aの抵抗値が変化する曝露時間の範囲36aと金属配線31bを特定気体に曝露したときに金属配線31bの抵抗値が変化する曝露時間の範囲36bとは、互い重ならない領域を有する。なお、範囲36aは、特定気体に曝露したときの金属配線31aの抵抗値の時間変化率の最大値をΔRmax_aとするとき、抵抗値の時間変化率がα×ΔRmax_a以上となる曝露時間の範囲である。同様に、範囲36bは、特定気体に曝露したときの金属配線31bの抵抗値の時間変化率の最大値をΔRmax_bとするとき、抵抗値の時間変化率がα×ΔRmax_b以上となる曝露時間の範囲である。αは、予め定められ、例えば0.1である。 Since the corrosion progress rates of the metal wiring 31a and 31b are different from each other, the exposure time range 36a in which the resistance value of the metal wiring 31a changes when exposed to a specific gas and the range 36a of exposure time in which the resistance value of the metal wiring 31a changes when exposed to a specific gas and the metal wiring The exposure time range 36b in which the resistance value of 31b changes has a region that does not overlap with each other. Note that the range 36a is an exposure time range in which the time rate of change in resistance value of the metal wiring 31a when exposed to the specific gas is equal to or greater than α×ΔRmax_a, where ΔRmax_a is the maximum value of the rate of change in resistance value over time. be. Similarly, the range 36b is the range of exposure time in which the time rate of change in resistance value of the metal wiring 31b when exposed to the specific gas is equal to or greater than α×ΔRmax_b, where ΔRmax_b is the maximum value of the rate of change in resistance value over time. It is. α is predetermined and is, for example, 0.1.
 図6は、特定気体を診断対象である絶縁物および金属配線31a,31bに曝露したときの絶縁物の表面抵抗率と金属配線31a,31bの抵抗値との相関関係を示す図である。図6には、特定気体による金属配線31bの腐食進行速度が特定気体による金属配線31aの腐食進行速度よりも遅くなるように、金属配線31a,31bの厚みまたは金属の種類が設定されているときの相関関係が示される。図6に示されるように、金属配線31bの抵抗値と相関する絶縁物の表面抵抗率の範囲(1×108~1×1011Ω/□)は、金属配線31aの抵抗値と相関する絶縁物の表面抵抗率の範囲(1×1011~1×1015Ω/□)よりも小さい。 FIG. 6 is a diagram showing the correlation between the surface resistivity of the insulator and the resistance value of the metal wires 31a, 31b when the insulator and the metal wires 31a, 31b to be diagnosed are exposed to a specific gas. FIG. 6 shows a case where the thickness or type of metal of the metal wirings 31a and 31b is set so that the rate of corrosion of the metal wiring 31b due to the specific gas is slower than the rate of corrosion of the metal wiring 31a due to the specific gas. The correlation is shown. As shown in FIG. 6, the range of surface resistivity of the insulator (1×10 8 to 1×10 11 Ω/□) that correlates with the resistance value of the metal interconnect 31b correlates with the resistance value of the metal interconnect 31a. It is smaller than the range of surface resistivity of insulators (1×10 11 to 1×10 15 Ω/□).
 図7は、特定気体を絶縁物および並列接続された金属配線31a,31bに曝露したときの絶縁物の表面抵抗率と金属配線31a,31bの合成抵抗値との相関関係を示す図である。図7に示す相関関係は、図6に示す絶縁物の表面抵抗率と金属配線31a,31bの抵抗値との相関関係から算出される。図7に示されるように、並列接続された金属配線31a,31bの合成抵抗値と絶縁物の表面抵抗率とには相関関係がある。この相関関係を利用することで、絶縁劣化センサ10の抵抗値(すなわち、金属配線31a,31bの合成抵抗値)より、絶縁物の表面抵抗率を推定することができる。 FIG. 7 is a diagram showing the correlation between the surface resistivity of the insulator and the combined resistance value of the metal wires 31a, 31b when a specific gas is exposed to the insulator and the metal wires 31a, 31b connected in parallel. The correlation shown in FIG. 7 is calculated from the correlation between the surface resistivity of the insulator and the resistance values of the metal wirings 31a and 31b shown in FIG. As shown in FIG. 7, there is a correlation between the combined resistance value of the metal wirings 31a and 31b connected in parallel and the surface resistivity of the insulator. By using this correlation, the surface resistivity of the insulator can be estimated from the resistance value of the insulation deterioration sensor 10 (that is, the combined resistance value of the metal wirings 31a and 31b).
 絶縁物の表面抵抗率の推定精度をより高めるために、並列接続された金属配線31a,31bの合成抵抗値と絶縁物の表面抵抗率との間の相関係数は0.5以上であることが好ましい。そのため、相関係数が0.5以上となるように、診断対象の絶縁物に応じて金属配線31a,31bの厚み、金属の種類、幅、長さ等が調整される。 In order to further increase the accuracy of estimating the surface resistivity of the insulator, the correlation coefficient between the combined resistance value of the metal wirings 31a and 31b connected in parallel and the surface resistivity of the insulator should be 0.5 or more. is preferred. Therefore, the thickness, metal type, width, length, etc. of the metal wirings 31a, 31b are adjusted depending on the insulator to be diagnosed so that the correlation coefficient is 0.5 or more.
 特許文献1に開示の技術では単一の金属配線が使用される。例えば、単一の金属配線として金属配線31aを使用する場合、金属配線の抵抗値と相関する絶縁物の表面抵抗率の範囲は、1×1011~1×1015Ω/□である(図6参照)。そのため、絶縁物の表面抵抗率の推定可能範囲も1×1011~1×1015Ω/□となる。また、金属配線が断線したときに抵抗値が急激に変化し、その影響により誤った診断がされ得る。 In the technique disclosed in Patent Document 1, a single metal wiring is used. For example, when the metal wiring 31a is used as a single metal wiring, the range of the surface resistivity of the insulator that correlates with the resistance value of the metal wiring is 1×10 11 to 1×10 15 Ω/□ (Fig. (see 6). Therefore, the range in which the surface resistivity of the insulator can be estimated is also 1×10 11 to 1×10 15 Ω/□. Furthermore, when the metal wiring is disconnected, the resistance value changes rapidly, which may lead to incorrect diagnosis.
 本実施の形態では、並列接続され、かつ、特定気体による腐食進行速度が互いに異なる金属配線31a,31bを使用する。例えば、特定気体による金属配線31bの腐食進行速度が特定気体による金属配線31aの腐食進行速度よりも遅い。そのため、金属配線31a,31bの合成抵抗値に相関する絶縁物の表面抵抗率の範囲は、1×107~1×1015Ω/□となり、金属配線31aまたは金属配線31bの抵抗値と相関する絶縁物の表面抵抗率の範囲よりも広くなる。これにより、絶縁物の表面抵抗率をより広い範囲で精度良く推定できる。また、金属配線31aが断線したとしても、合成抵抗値は急激に変化しない。そのため、誤った診断が抑制される。 In this embodiment, metal wirings 31a and 31b are used which are connected in parallel and have different corrosion progression rates due to a specific gas. For example, the rate of corrosion of the metal wiring 31b caused by the specific gas is slower than the rate of corrosion of the metal wiring 31a caused by the specific gas. Therefore, the range of surface resistivity of the insulator that correlates with the combined resistance value of the metal wirings 31a and 31b is 1×10 7 to 1×10 15 Ω/□, which correlates with the resistance value of the metal wiring 31a or the metal wiring 31b. The range is wider than the range of surface resistivity of insulators. Thereby, the surface resistivity of the insulator can be estimated accurately over a wider range. Further, even if the metal wiring 31a is disconnected, the combined resistance value does not change suddenly. Therefore, incorrect diagnosis is suppressed.
 図8は、実施の形態1に係る劣化診断方法を実行する劣化診断装置100の概略構成を示すブロック図である。図8に示されるように、劣化診断装置100は、たとえばROM(Read Only Memory)等の記録媒体に記録されたプログラムによってその動作が制御される制御ボードの形態で実現される。ただし制御ボードは劣化診断装置100の一実現例であって、劣化診断装置100のハードウェア構成は図8に示される構成に限定されない。 FIG. 8 is a block diagram showing a schematic configuration of a deterioration diagnosis apparatus 100 that executes the deterioration diagnosis method according to the first embodiment. As shown in FIG. 8, the deterioration diagnosis device 100 is realized in the form of a control board whose operation is controlled by a program recorded on a recording medium such as a ROM (Read Only Memory). However, the control board is an example of implementation of the deterioration diagnosis device 100, and the hardware configuration of the deterioration diagnosis device 100 is not limited to the configuration shown in FIG. 8.
 劣化診断装置100は、絶縁劣化センサ10と、測定部20と、入力部101と、記憶部102と、制御部103と、出力部104とを備える。 The deterioration diagnosis device 100 includes an insulation deterioration sensor 10, a measurement section 20, an input section 101, a storage section 102, a control section 103, and an output section 104.
 測定部20は、絶縁劣化センサ10において並列接続された複数の金属配線の合成抵抗値を測定する。具体的には、測定部20は、並列接続された金属配線31a,31bの合成抵抗値として、図4に示すリード線34_1,34_2間の抵抗値を測定する。測定部20は、例えばテスター等によって構成され、予め定められた電圧(たとえば100V)をリード線34_1,34_2間に印加することにより、合成抵抗値を測定する。 The measurement unit 20 measures the combined resistance value of a plurality of metal wirings connected in parallel in the insulation deterioration sensor 10. Specifically, the measuring unit 20 measures the resistance value between the lead wires 34_1 and 34_2 shown in FIG. 4 as the combined resistance value of the metal wires 31a and 31b connected in parallel. The measuring unit 20 is configured by, for example, a tester, and measures the combined resistance value by applying a predetermined voltage (for example, 100 V) between the lead wires 34_1 and 34_2.
 入力部101は、たとえばキーボード、マウス、あるいはタブレット等の入力デバイス、および、測定部20または外部装置と通信可能な通信ポートを含む。入力部101は、診断対象55(たとえばモールドフレーム55a,55b)の劣化診断に必要なデータの入力を受ける。例えば、特定気体に絶縁劣化センサ10およびポリエステル絶縁物を曝露したときの絶縁劣化センサ10の抵抗値(つまり、並列接続された複数の金属配線の合成抵抗値)とポリエステル絶縁物の表面抵抗率との相関関係を規定するデータベース70が、劣化診断に先立って入力部101に入力される。データベース70は、事前実験に基づいて予め作成される。あるいは、特定気体に絶縁劣化センサ10およびポリエステル絶縁物を曝露したときの絶縁劣化センサ10の抵抗値(つまり、並列接続された複数の金属配線の合成抵抗値)とポリエステル絶縁物の表面抵抗率との時間変化を示す抵抗変化データが、劣化診断に先立って入力部101に入力されてもよい。抵抗変化データは、事前実験において取得される。さらに、入力部101は、測定部20によって測定された合成抵抗値の入力を受ける。 The input unit 101 includes, for example, an input device such as a keyboard, a mouse, or a tablet, and a communication port that can communicate with the measurement unit 20 or an external device. The input unit 101 receives input of data necessary for diagnosing deterioration of a diagnosis target 55 (for example, mold frames 55a, 55b). For example, the resistance value of the insulation deterioration sensor 10 when the insulation deterioration sensor 10 and the polyester insulator are exposed to a specific gas (that is, the combined resistance value of a plurality of metal wirings connected in parallel) and the surface resistivity of the polyester insulator, A database 70 defining correlations between the two is input to the input unit 101 prior to deterioration diagnosis. The database 70 is created in advance based on preliminary experiments. Alternatively, the resistance value of the insulation deterioration sensor 10 when the insulation deterioration sensor 10 and the polyester insulator are exposed to a specific gas (that is, the combined resistance value of a plurality of metal wirings connected in parallel) and the surface resistivity of the polyester insulator Resistance change data indicating a change over time may be input to the input unit 101 prior to deterioration diagnosis. Resistance change data is obtained in preliminary experiments. Further, the input unit 101 receives input of the combined resistance value measured by the measurement unit 20.
 記憶部102は、たとえばROM、RAM(Random Access Memory)、およびハードディスクを含むメモリデバイスである。記憶部102は、劣化診断方法を実行するためのプログラム、合成抵抗値から表面抵抗率を計算するためのデータベース70、入力部101に入力された各種データ等を記憶する。 The storage unit 102 is a memory device including, for example, a ROM, a RAM (Random Access Memory), and a hard disk. The storage unit 102 stores a program for executing the deterioration diagnosis method, a database 70 for calculating the surface resistivity from the combined resistance value, various data input to the input unit 101, and the like.
 データベース70は、特定気体を絶縁物および並列接続された複数の金属配線に曝露したときの絶縁物の表面抵抗率と複数の金属配線の合成抵抗値との相関関係(図7参照)を規定する。データベース70は、外部装置によって作成され、入力部101を介して記憶部102に格納される。あるいは、データベース70は、入力部101に入力された抵抗変化データに基づいて制御部103によって作成され、記憶部102に格納されてもよい。 The database 70 defines the correlation between the surface resistivity of the insulator and the combined resistance value of the plurality of metal wirings (see FIG. 7) when a specific gas is exposed to the insulator and the plurality of metal wirings connected in parallel. . The database 70 is created by an external device and stored in the storage unit 102 via the input unit 101. Alternatively, the database 70 may be created by the control unit 103 based on the resistance change data input to the input unit 101 and stored in the storage unit 102.
 制御部103は、たとえばマイクロプロセッサ(MPU:Micro-Processing Unit)によって実現される。制御部103は、記憶部102に記憶されたプログラムを読み込むことにより、当該プログラムに記述された手順に従って劣化診断に関する処理を実行する。   The control unit 103 is realized, for example, by a microprocessor (MPU: Micro-Processing Unit). The control unit 103 reads the program stored in the storage unit 102 and executes processing related to deterioration diagnosis according to the procedure described in the program.  
 図9は、図8の制御部103の主要部のハードウェア構成図である。制御部103の各機能は、処理回路1により実現し得る。処理回路1は、少なくとも1つのプロセッサ1bと少なくとも1つのメモリ1cとを備える。処理回路1は、プロセッサ1bおよびメモリ1cととともに、あるいはそれらの代用として、少なくとも1つの専用のハードウェア1aを備えてもよい。 FIG. 9 is a hardware configuration diagram of the main parts of the control unit 103 in FIG. 8. Each function of the control unit 103 can be realized by the processing circuit 1. The processing circuit 1 includes at least one processor 1b and at least one memory 1c. The processing circuit 1 may include at least one dedicated hardware 1a together with a processor 1b and a memory 1c, or as a substitute thereof.
 処理回路1がプロセッサ1bとメモリ1cとを備える場合、劣化診断装置100の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせで実現される。ソフトウェアおよびファームウェアの少なくとも一方は、プログラムとして記述される。当該プログラムはメモリ1cに格納される。プロセッサ1bは、メモリ1cに記憶されたプログラムを読み出して実行することにより、劣化診断装置100の各機能を実現する。 When the processing circuit 1 includes a processor 1b and a memory 1c, each function of the deterioration diagnosis device 100 is realized by software, firmware, or a combination of software and firmware. At least one of the software and firmware is written as a program. The program is stored in the memory 1c. The processor 1b implements each function of the deterioration diagnosis device 100 by reading and executing programs stored in the memory 1c.
 プロセッサ1bは、CPU(Central Processing Unit)、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、あるいはDSPとも呼ばれる。メモリ1cは、たとえば、RAM、ROM、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory))などの、不揮発性または揮発性の半導体メモリなどにより構成される。 The processor 1b is also called a CPU (Central Processing Unit), a processing device, an arithmetic device, a microprocessor, a microcomputer, or a DSP. The memory 1c is configured of a nonvolatile or volatile semiconductor memory, such as a RAM, a ROM, a flash memory, an Erasable Programmable Read Only Memory (EPROM), an Electrically Erasable Programmable Read Only Memory (EEPROM), or the like.
 処理回路1が専用のハードウェア1aを備える場合、処理回路1は、たとえば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、あるいはこれらの組み合わせによって実現される。 When the processing circuit 1 includes dedicated hardware 1a, the processing circuit 1 may include, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field Programmable Circuit). Gate Array), or a combination of these.
 劣化診断装置100の複数の機能の各々は、処理回路1によって実現され得る。あるいは、劣化診断装置100の複数の機能は、まとめて処理回路1によって実現され得る。劣化診断装置100の各機能について、一部を専用のハードウェア1aで実現し、他部をソフトウェアまたはファームウェアで実現してもよい。このように、処理回路1は、ハードウェア1a、ソフトウェア、ファームウェア、またはこれらの組み合わせによって劣化診断装置100の各機能を実現することができる。 Each of the plurality of functions of the deterioration diagnosis device 100 can be realized by the processing circuit 1. Alternatively, a plurality of functions of the deterioration diagnosis device 100 may be realized by the processing circuit 1 all at once. Regarding each function of the deterioration diagnosis device 100, a part may be realized by dedicated hardware 1a, and other parts may be realized by software or firmware. In this way, the processing circuit 1 can realize each function of the deterioration diagnosis device 100 using the hardware 1a, software, firmware, or a combination thereof.
 図8に示す出力部104は、制御部103によって算出された余寿命に基づく診断結果を外部の出力装置200に出力する。出力装置200は、たとえば、無線装置、プリンタ、ディスプレイまたはこれらの組み合わせを含み得る。 The output unit 104 shown in FIG. 8 outputs the diagnosis result based on the remaining life calculated by the control unit 103 to the external output device 200. Output device 200 may include, for example, a wireless device, a printer, a display, or a combination thereof.
 図10は、図8に示す制御部の機能構成を示すブロック図である。図10に示されるように、制御部103は、推定部72と、関係式作成部73と、寿命算出部74と、余寿命算出部75とを含む。推定部72は、診断対象の表面抵抗率を推定する。関係式作成部73は、診断対象の使用年数と診断対象の表面抵抗率との関係式を作成する。寿命算出部74は、診断対象の寿命を算出する。余寿命算出部75は、診断対象の余寿命を算出する。 FIG. 10 is a block diagram showing the functional configuration of the control section shown in FIG. 8. As shown in FIG. 10, the control unit 103 includes an estimation unit 72, a relational expression creation unit 73, a lifespan calculation unit 74, and a remaining lifespan calculation unit 75. The estimation unit 72 estimates the surface resistivity of the object to be diagnosed. The relational expression creation unit 73 creates a relational expression between the number of years of use of the diagnostic target and the surface resistivity of the diagnostic target. The lifespan calculation unit 74 calculates the lifespan of the diagnosis target. The remaining life calculation unit 75 calculates the remaining life of the diagnostic target.
 推定部72は、絶縁劣化センサ10が診断対象の周囲に配置された後に測定部20によって測定される合成抵抗値を、データベース70に照合し、診断対象の表面抵抗率を推定する。すなわち、推定部72は、図2のステップS4の処理を実行する。 The estimating unit 72 compares the combined resistance value measured by the measuring unit 20 after the insulation deterioration sensor 10 is placed around the diagnostic target with the database 70, and estimates the surface resistivity of the diagnostic target. That is, the estimation unit 72 executes the process of step S4 in FIG.
 関係式作成部73は、推定した診断対象の表面抵抗率に対応する点と使用年数が0年(新品または未使用品)の診断対象の表面抵抗率に対応する点とを結んで、診断対象の使用年数と診断対象の表面抵抗率との関係式を作成する。すなわち、関係式作成部73は、図2のステップS5の処理を実行する。 The relational expression creation unit 73 connects the point corresponding to the estimated surface resistivity of the diagnostic target and the point corresponding to the surface resistivity of the diagnostic target whose usage age is 0 years (new or unused product) to determine the diagnostic target. Create a relational expression between the years of use and the surface resistivity of the diagnostic target. That is, the relational expression creation unit 73 executes the process of step S5 in FIG.
 寿命算出部74は、関係式作成部73によって作成された関係式と予め定められた閾値とにより、診断対象の寿命年数を算出する。すなわち、寿命算出部74は、図2のステップS6の処理を実行する。 The lifespan calculation unit 74 calculates the number of years of lifespan of the diagnosis target based on the relational expression created by the relational expression creation unit 73 and a predetermined threshold value. That is, the life calculation unit 74 executes the process of step S6 in FIG. 2.
 余寿命算出部75は、寿命算出部74によって算出された寿命年数から、絶縁劣化センサ10の合成抵抗値の測定タイミングまたは絶縁劣化センサ10の配置タイミングにおける診断対象の使用年数を減算し、余寿命を算出する。すなわち、余寿命算出部75は、図2のステップS7の処理を実行する。 The remaining life calculation unit 75 subtracts the number of years of use of the diagnostic target at the measurement timing of the composite resistance value of the insulation deterioration sensor 10 or the placement timing of the insulation deterioration sensor 10 from the life years calculated by the life calculation unit 74, and calculates the remaining life. Calculate. That is, the remaining life calculation unit 75 executes the process of step S7 in FIG.
 以上、実施の形態1に係る劣化診断方法または劣化診断装置によれば、特定気体による金属配線31a,31bの腐食進行速度は互いに異なる。そのため、金属配線31a,31bの合成抵抗値に相関する絶縁物の表面抵抗率の範囲が広くなる。これにより、絶縁物の表面抵抗率をより広い範囲で精度良く推定できる。その結果、絶縁物を含む電気機器(例えばスイッチギヤ49)の劣化を精度良く診断できる期間が長くなる。 As described above, according to the deterioration diagnosis method or the deterioration diagnosis apparatus according to the first embodiment, the corrosion progress rates of the metal wirings 31a and 31b due to the specific gas are different from each other. Therefore, the range of the surface resistivity of the insulator that correlates with the combined resistance value of the metal wirings 31a and 31b becomes wider. Thereby, the surface resistivity of the insulator can be estimated accurately over a wider range. As a result, the period during which deterioration of electrical equipment (for example, switchgear 49) including an insulator can be accurately diagnosed becomes longer.
 実施の形態2.
 実施の形態1では、特定気体による金属配線31a,31bの腐食進行速度は互いに異なるように、金属配線31a,31bの厚みまたは金属の種類が予め設定される。しかしながら、特定気体による金属配線31a,31bの腐食進行速度は互いに異なるように、金属配線31a,31bのうちの一方をコーティング膜によって覆ってもよい。
Embodiment 2.
In the first embodiment, the thickness or type of metal of the metal wirings 31a, 31b is set in advance so that the rate of corrosion of the metal wirings 31a, 31b by the specific gas is different from each other. However, one of the metal wirings 31a and 31b may be covered with a coating film so that the rates of corrosion of the metal wirings 31a and 31b due to the specific gas are different from each other.
 図11は、実施の形態2に係る絶縁劣化センサの概略図である。図11に示す絶縁劣化センサは、図3に示す絶縁劣化センサと比較して、金属配線31bがコーティング膜40によって覆われている点で相違する。コーティング膜40は、コーティング剤を金属配線31b上に塗布することにより形成される。 FIG. 11 is a schematic diagram of an insulation deterioration sensor according to the second embodiment. The insulation deterioration sensor shown in FIG. 11 is different from the insulation deterioration sensor shown in FIG. 3 in that the metal wiring 31b is covered with a coating film 40. The coating film 40 is formed by applying a coating agent onto the metal wiring 31b.
 コーティング剤には、ポリウレタン系、シリコーン系、シリカなどが用いられるが、必ずしもこれらに限定されない。 Coating agents used include polyurethane, silicone, and silica, but are not necessarily limited to these.
 絶縁物の劣化に影響を及ぼす特定気体は、コーティング膜40を透過(侵入)する。そのため、特定気体によって金属配線31bが腐食される。ただし、特定気体がコーティング膜40を透過して金属配線31bに到達するまでは、金属配線31bの抵抗値の変化がない。すなわち、特定気体がコーティング膜40を透過して金属配線31bに到達するまでの期間は、金属配線31bの不感期間となる。その結果、金属配線31a,31bの厚みおよび金属の種類が同一であっても、コーティング膜40が形成されていない金属配線31aと比較して、金属配線31bの腐食進行速度が抑制される。 A specific gas that affects the deterioration of the insulator permeates (invades) the coating film 40. Therefore, the metal wiring 31b is corroded by the specific gas. However, the resistance value of the metal wiring 31b does not change until the specific gas passes through the coating film 40 and reaches the metal wiring 31b. That is, the period until the specific gas passes through the coating film 40 and reaches the metal wiring 31b is a dead period of the metal wiring 31b. As a result, even if the metal wirings 31a and 31b have the same thickness and the same metal type, the rate of corrosion of the metal wiring 31b is suppressed compared to the metal wiring 31a on which the coating film 40 is not formed.
 図12は、実施の形態2に係る金属配線を特定気体に曝露したときの曝露時間と金属配線の抵抗値との関係を示す図である。図12には、横軸を曝露時間、縦軸を抵抗値とするグラフ45a,45b,47が示される。グラフ45aは、電極パッド33a_1,33a_2間の金属配線31aの抵抗値の変化を示す。グラフ45bは、電極パッド33b_1,33b_2間の金属配線31bの抵抗値の変化を示す。グラフ47は、リード線34_1,34_2間の抵抗値、すなわち並列接続される金属配線31a,31bの合成抵抗値の変化を示す。 FIG. 12 is a diagram showing the relationship between the exposure time and the resistance value of the metal wiring when the metal wiring according to the second embodiment is exposed to a specific gas. FIG. 12 shows graphs 45a, 45b, and 47 in which the horizontal axis represents exposure time and the vertical axis represents resistance value. A graph 45a shows a change in the resistance value of the metal wiring 31a between the electrode pads 33a_1 and 33a_2. Graph 45b shows a change in the resistance value of metal wiring 31b between electrode pads 33b_1 and 33b_2. A graph 47 shows a change in the resistance value between the lead wires 34_1 and 34_2, that is, the combined resistance value of the metal wires 31a and 31b connected in parallel.
 金属配線31bの腐食進行速度が金属配線31aの腐食進行速度よりも遅いため、実施の形態2に係る絶縁劣化センサを特定気体に曝露したときに金属配線31aの抵抗値が変化する曝露時間の範囲46aと金属配線31bを特定気体に曝露したときに金属配線31bの抵抗値が変化する曝露時間の範囲46bとは、互い重ならない領域を有する。 Since the corrosion progression rate of the metal wiring 31b is slower than the corrosion progression rate of the metal wiring 31a, the range of exposure time in which the resistance value of the metal wiring 31a changes when the insulation deterioration sensor according to the second embodiment is exposed to a specific gas is 46a and an exposure time range 46b in which the resistance value of the metal wiring 31b changes when the metal wiring 31b is exposed to a specific gas have regions that do not overlap with each other.
 範囲46bの位置は、金属配線31bの不感期間の長さに依存する。金属配線31bの不感期間の長さは、コーティング膜40の厚みに依存する。そのため、範囲46aと範囲46bとが互いに重ならないように、コーティング膜40の厚みを調整してもよい。これにより、金属配線31a,31bの合成抵抗値に相関する絶縁物の表面抵抗率の範囲がより広くなる。 The position of the range 46b depends on the length of the dead period of the metal wiring 31b. The length of the dead period of the metal wiring 31b depends on the thickness of the coating film 40. Therefore, the thickness of the coating film 40 may be adjusted so that the range 46a and the range 46b do not overlap each other. Thereby, the range of the surface resistivity of the insulator that correlates with the combined resistance value of the metal wirings 31a and 31b becomes wider.
 コーティング膜40を形成することにより、検知不全の原因となる物体(例えば、人、塵埃等)と金属配線31bとの接触が防止される。その結果、金属配線31bの一部が意図せず切断される等の現象の発生が抑制される。 By forming the coating film 40, contact between the metal wiring 31b and objects (for example, people, dust, etc.) that may cause detection failure is prevented. As a result, occurrence of phenomena such as unintentional disconnection of a part of the metal wiring 31b is suppressed.
 なお、金属配線31aもコーティング膜40によって覆われてもよい。これにより、検知不全の原因となる物体と金属配線31aとの接触が防止される。この場合、金属配線31aを覆うコーティング膜40の厚みは、金属配線31bを覆うコーティング膜40の厚みよりも薄くなるように設定されてもよい。これにより、金属配線31bの腐食進行速度は、金属配線31aの腐食進行速度よりも遅くなる。 Note that the metal wiring 31a may also be covered with the coating film 40. This prevents contact between the object and the metal wiring 31a, which would cause detection failure. In this case, the thickness of the coating film 40 covering the metal wiring 31a may be set to be thinner than the thickness of the coating film 40 covering the metal wiring 31b. As a result, the rate of corrosion of the metal wiring 31b becomes slower than the rate of corrosion of the metal wiring 31a.
 実施の形態3.
 実施の形態1,2では、2つの金属配線31a,31bが並列接続された絶縁劣化センサを用いる。しかしながら、並列接続される金属配線の個数は、2に限定されず、3以上であってもよい。より多くの金属配線を用いることで、絶縁物の絶縁性能に影響を与える複数の項目を考慮することができ、より環境に対応した劣化診断が可能になる。
Embodiment 3.
In the first and second embodiments, an insulation deterioration sensor in which two metal wirings 31a and 31b are connected in parallel is used. However, the number of metal wirings connected in parallel is not limited to two, and may be three or more. By using more metal wiring, multiple items that affect the insulation performance of the insulator can be taken into consideration, making it possible to diagnose deterioration that is more environmentally friendly.
 例えば、絶縁劣化センサは、金属配線31a,31bと並列接続される別の金属配線を含んでもよい。当該別の金属配線を特定気体に曝露したときの当該別の金属配線の抵抗値が変化する曝露時間の範囲は、金属配線31a,31bに対応する範囲36a,36bと重ならない領域を有する。 For example, the insulation deterioration sensor may include another metal wire connected in parallel to the metal wires 31a and 31b. The range of exposure time in which the resistance value of the other metal wiring changes when the other metal wiring is exposed to the specific gas has a region that does not overlap with the ranges 36a and 36b corresponding to the metal wirings 31a and 31b.
 実施の形態1~3の説明では、電気機器としてスイッチギヤを例に説明をしたが、電気機器は、スイッチギヤに限定されない。電気機器の通電部の対地間あるいは相間の絶縁に絶縁物を使用しており、かつ当該絶縁物の絶縁性能の劣化状況の診断を行う構成であれば、当該構成において実施の形態1~3と同様の効果を得ることが可能である。 In the description of Embodiments 1 to 3, a switchgear was used as an example of an electrical device, but the electrical device is not limited to a switchgear. If an insulating material is used to insulate the current-carrying parts of electrical equipment from ground to ground or between phases, and if the configuration is to diagnose the deterioration status of the insulation performance of the insulating material, Embodiments 1 to 3 may be used in the configuration. It is possible to obtain similar effects.
 なお、電気機器としては、例えば、スイッチギヤ、受配電機器、変圧器、モータコントロールセンタのようなコントロールギヤ、発電機、電動機、あるいは給電のための電源装置(たとえば交流電源装置、直流電源装置、または整流器)などの高圧電気機器を挙げることができる。 Examples of electrical equipment include switch gears, power receiving and distribution equipment, transformers, control gears such as motor control centers, generators, electric motors, and power supply devices for power supply (for example, AC power supplies, DC power supplies, or rectifiers).
 上記の実施形態は、開示の内容を逸脱しない範囲で、省略、置き換え、または変更を行うことにより、その他の様々な形態で実施されても良い。省略、置き換え、または変更を行った実施の形態も、開示の範囲および内容に含まれ、請求の範囲、およびその内容と同等の範囲に含まれる。 The above embodiments may be implemented in various other forms by omitting, replacing, or changing them without departing from the content of the disclosure. Embodiments that are omitted, replaced, or modified are also included within the scope and content of the disclosure, and within the scope and equivalent scope of the claims and their content.
 今回開示された各実施の形態は、矛盾しない範囲で適宜組み合わせて実施することも予定されている。今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It is also planned that the embodiments disclosed herein will be implemented in combination as appropriate to the extent that they do not contradict each other. The embodiments disclosed this time should be considered to be illustrative in all respects and not restrictive. The scope of the present disclosure is indicated by the claims rather than the above description, and it is intended that equivalent meanings and all changes within the scope of the claims are included.
 1 処理回路、1a ハードウェア、1b プロセッサ、1c メモリ、10 絶縁劣化センサ、20 測定部、31a,31b 金属配線、32 絶縁基板、33a_1,33a_2,33b_1,33b-2 電極パッド、34_1,34_2 リード線、40 コーティング膜、49 スイッチギヤ、50a,50b 遮断器、51a,51b 操作機構、52 水平母線、53a,53b,54a,54b 接続導体、55 診断対象、55a,55b モールドフレーム、56 母線支持板、57a,57b ケーブル、58 碍子、61a,61b 台車、70 データベース、72 推定部、73 関係式作成部、74 寿命算出部、75 余寿命算出部、100 劣化診断装置、101 入力部、102 記憶部、103 制御部、104 出力部、200 出力装置。 1 processing circuit, 1a hardware, 1b processor, 1c memory, 10 insulation deterioration sensor, 20 measurement unit, 31a, 31b metal wiring, 32 insulating substrate, 33a_1, 33a_2, 33b_1, 33b-2 electrode pad, 34_1, 34_2 lead wire , 40 coating film, 49 switch gear, 50a, 50b circuit breaker, 51a, 51b operating mechanism, 52 horizontal busbar, 53a, 53b, 54a, 54b connection conductor, 55 diagnosis target, 55a, 55b mold frame, 56 busbar support plate, 57a, 57b cable, 58 insulator, 61a, 61b trolley, 70 database, 72 estimation section, 73 relational expression creation section, 74 lifespan calculation section, 75 remaining lifespan calculation section, 100 deterioration diagnosis device, 101 input section, 102 storage section, 103 control unit, 104 output unit, 200 output device.

Claims (12)

  1.  絶縁物を含む電気機器の劣化を診断する劣化診断方法であって、
     特定気体に曝露されることによって腐食する複数の金属配線が並列接続された絶縁劣化センサを前記絶縁物の周囲に配置するステップを備え、前記複数の金属配線は、前記絶縁劣化センサを前記特定気体に曝露したときの腐食進行速度が互いに異なる第1金属配線と第2金属配線とを含み、前記劣化診断方法は、さらに、
     前記絶縁物および前記絶縁劣化センサがともに前記特定気体に曝露された場合における、前記絶縁劣化センサの合成抵抗値と前記絶縁物の表面抵抗率との第1相関関係を規定するデータベースを予め作成するステップと、
     測定タイミングにおける前記絶縁劣化センサの合成抵抗値を測定するステップと、
     前記測定タイミングにおける合成抵抗値と前記データベースとを用いて、前記測定タイミングにおける前記絶縁物の表面抵抗率を推定するステップと、
     前記測定タイミングにおける前記電気機器の使用時間および推定された前記絶縁物の表面抵抗率と、前記電気機器が未使用である場合の前記絶縁物の表面抵抗率とから、前記電気機器の使用時間と前記絶縁物の表面抵抗率との第2相関関係を表す関係式を作成するステップと、
     前記関係式において、前記絶縁物が絶縁性能を失う場合の基準表面抵抗率に対応する前記電気機器の寿命時間を算出するステップと、
     前記寿命時間から、前記測定タイミングにおける前記電気機器の使用時間または前記絶縁劣化センサが前記絶縁物の周囲に配置されたタイミングにおける前記電気機器の使用時間を減算した前記電気機器の余寿命時間を算出するステップとを備える、劣化診断方法。
    A deterioration diagnosis method for diagnosing deterioration of electrical equipment including insulators,
    arranging, around the insulator, an insulation deterioration sensor in which a plurality of metal wirings that corrode when exposed to the specific gas are connected in parallel; The deterioration diagnosing method further includes a first metal wiring and a second metal wiring that have different corrosion progression rates when exposed to
    A database is created in advance that defines a first correlation between a composite resistance value of the insulation deterioration sensor and a surface resistivity of the insulator when both the insulator and the insulation deterioration sensor are exposed to the specific gas. step and
    measuring a combined resistance value of the insulation deterioration sensor at a measurement timing;
    estimating the surface resistivity of the insulator at the measurement timing using the combined resistance value at the measurement timing and the database;
    From the operating time of the electrical equipment at the measurement timing, the estimated surface resistivity of the insulating material, and the surface resistivity of the insulating material when the electrical equipment is unused, the operating time of the electrical equipment and the estimated surface resistivity of the insulating material are determined. creating a relational expression representing a second correlation with the surface resistivity of the insulator;
    In the relational expression, calculating the life time of the electrical equipment corresponding to the reference surface resistivity when the insulating material loses its insulation performance;
    Calculate the remaining life time of the electrical equipment by subtracting the usage time of the electrical equipment at the measurement timing or the usage time of the electrical equipment at the timing when the insulation deterioration sensor is arranged around the insulator from the life time. A method for diagnosing deterioration, comprising the steps of:
  2.  前記絶縁劣化センサを前記特定気体に曝露したとき、前記第1金属配線の抵抗値が変化する曝露時間の第1範囲と前記第2金属配線の抵抗値が変化する曝露時間の第2範囲とは、互いに重ならない領域を有する、請求項1に記載の劣化診断方法。 When the insulation deterioration sensor is exposed to the specific gas, a first range of exposure time in which the resistance value of the first metal wiring changes and a second range of exposure time in which the resistance value of the second metal wiring changes. The deterioration diagnosis method according to claim 1, wherein the deterioration diagnosis method has regions that do not overlap with each other.
  3.  前記第1範囲は、前記第2範囲と重ならない、請求項2に記載の劣化診断方法。 The deterioration diagnosis method according to claim 2, wherein the first range does not overlap with the second range.
  4.  前記第1相関関係の相関係数は0.5以上である、請求項1から3のいずれか1項に記載の劣化診断方法。 The deterioration diagnosis method according to any one of claims 1 to 3, wherein the correlation coefficient of the first correlation is 0.5 or more.
  5.  前記第1金属配線および前記第2金属配線のうちの少なくとも1つは、前記特定気体が透過可能なコーティング膜によって覆われている、請求項1から4のいずれか1項に記載の劣化診断方法。 The deterioration diagnosis method according to any one of claims 1 to 4, wherein at least one of the first metal wiring and the second metal wiring is covered with a coating film that is permeable to the specific gas. .
  6.  前記電気機器は、スイッチギヤ、受配電機器、変圧器、コントロールギヤ、発電機、電動機、および給電のための電源装置の少なくとも1つを含む、請求項1から5のいずれか1項に記載の劣化診断方法。 The electrical device according to any one of claims 1 to 5, wherein the electrical equipment includes at least one of a switchgear, a power receiving and distribution device, a transformer, a control gear, a generator, an electric motor, and a power supply device for power supply. Deterioration diagnosis method.
  7.  絶縁物を含む電気機器の劣化を診断する劣化診断装置であって、
     特定気体に曝露されることによって腐食する複数の金属配線が並列接続された絶縁劣化センサを備え、前記複数の金属配線は、前記絶縁劣化センサを前記特定気体に曝露したときの腐食進行速度が互いに異なる第1金属配線と第2金属配線とを含み、前記劣化診断装置は、さらに、
     前記絶縁物および前記絶縁劣化センサがともに前記特定気体に曝露された場合における、前記絶縁劣化センサの合成抵抗値と前記絶縁物の表面抵抗率との第1相関関係を規定するデータベースと、
     測定タイミングにおける前記絶縁劣化センサの合成抵抗値を測定する測定部と、
     前記測定タイミングにおける合成抵抗値と前記データベースとを用いて、前記測定タイミングにおける前記絶縁物の表面抵抗率を推定する推定部と、
     前記測定タイミングにおける前記電気機器の使用時間および推定された前記絶縁物の表面抵抗率と、前記電気機器が未使用である場合の前記絶縁物の表面抵抗率とから、前記電気機器の使用時間と前記絶縁物の表面抵抗率との第2相関関係を表す関係式を作成する関係式作成部と、
     前記関係式において、前記絶縁物が絶縁性能を失う場合の基準表面抵抗率に対応する前記電気機器の寿命時間を算出する寿命算出部と、
     前記寿命時間から、前記測定タイミングにおける前記電気機器の使用時間または前記絶縁劣化センサが前記絶縁物の周囲に配置されたタイミングにおける前記電気機器の使用時間を減算した前記電気機器の余寿命時間を算出する余寿命算出部とを備える、劣化診断装置。
    A deterioration diagnostic device for diagnosing deterioration of electrical equipment including insulators,
    An insulation deterioration sensor is provided in which a plurality of metal wirings that corrode when exposed to a specific gas are connected in parallel, and the plurality of metal wirings have corrosion progression rates that are different from each other when the insulation deterioration sensor is exposed to the specific gas. The deterioration diagnosing device further includes different first metal wiring and second metal wiring,
    a database that defines a first correlation between a combined resistance value of the insulation deterioration sensor and a surface resistivity of the insulator when both the insulator and the insulation deterioration sensor are exposed to the specific gas;
    a measuring unit that measures a combined resistance value of the insulation deterioration sensor at a measurement timing;
    an estimation unit that estimates the surface resistivity of the insulator at the measurement timing using the combined resistance value at the measurement timing and the database;
    From the operating time of the electrical equipment at the measurement timing, the estimated surface resistivity of the insulating material, and the surface resistivity of the insulating material when the electrical equipment is unused, the operating time of the electrical equipment and the estimated surface resistivity of the insulating material are determined. a relational expression creation unit that creates a relational expression representing a second correlation with the surface resistivity of the insulator;
    In the relational expression, a life calculation unit that calculates a life time of the electrical equipment corresponding to a reference surface resistivity when the insulating material loses insulation performance;
    Calculate the remaining life time of the electrical equipment by subtracting the usage time of the electrical equipment at the measurement timing or the usage time of the electrical equipment at the timing when the insulation deterioration sensor is arranged around the insulator from the life time. A deterioration diagnosis device comprising a remaining life calculation unit.
  8.  前記絶縁劣化センサを前記特定気体に曝露したとき、前記第1金属配線の抵抗値が変化する曝露時間の第1範囲と前記第2金属配線の抵抗値が変化する曝露時間の第2範囲とは、互いに重ならない領域を有する、請求項7に記載の劣化診断装置。 When the insulation deterioration sensor is exposed to the specific gas, a first range of exposure time in which the resistance value of the first metal wiring changes and a second range of exposure time in which the resistance value of the second metal wiring changes. The deterioration diagnosis device according to claim 7, having regions that do not overlap with each other.
  9.  前記第1範囲は、前記第2範囲と重ならない、請求項8に記載の劣化診断装置。 The deterioration diagnosis device according to claim 8, wherein the first range does not overlap with the second range.
  10.  前記第1相関関係の相関係数は0.5以上である、請求項7から9のいずれか1項に記載の劣化診断装置。 The deterioration diagnosis device according to any one of claims 7 to 9, wherein the first correlation has a correlation coefficient of 0.5 or more.
  11.  前記第1金属配線および前記第2金属配線のうちの少なくとも1つは、前記特定気体が透過可能なコーティング膜によって覆われている、請求項7から10のいずれか1項に記載の劣化診断装置。 The deterioration diagnosis device according to any one of claims 7 to 10, wherein at least one of the first metal wiring and the second metal wiring is covered with a coating film that is permeable to the specific gas. .
  12.  前記電気機器は、スイッチギヤ、受配電機器、変圧器、コントロールギヤ、発電機、電動機、および給電のための電源装置の少なくとも1つを含む、請求項7から11のいずれか1項に記載の劣化診断装置。 The electrical device according to any one of claims 7 to 11, wherein the electrical equipment includes at least one of a switch gear, a power receiving and distribution device, a transformer, a control gear, a generator, an electric motor, and a power supply device for power supply. Deterioration diagnosis device.
PCT/JP2022/024557 2022-06-20 2022-06-20 Degradation diagnosis method and degradation diagnosis device WO2023248299A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/024557 WO2023248299A1 (en) 2022-06-20 2022-06-20 Degradation diagnosis method and degradation diagnosis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/024557 WO2023248299A1 (en) 2022-06-20 2022-06-20 Degradation diagnosis method and degradation diagnosis device

Publications (1)

Publication Number Publication Date
WO2023248299A1 true WO2023248299A1 (en) 2023-12-28

Family

ID=89379588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024557 WO2023248299A1 (en) 2022-06-20 2022-06-20 Degradation diagnosis method and degradation diagnosis device

Country Status (1)

Country Link
WO (1) WO2023248299A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131363A (en) * 1998-10-20 2000-05-12 Toshiba Corp Method and apparatus for diagnosis of service life of electronic device
JP2001215187A (en) * 2000-02-01 2001-08-10 Toshiba Corp Method and apparatus for diagnosing deterioration
JP2015002600A (en) * 2013-06-14 2015-01-05 三菱電機株式会社 Remaining lifetime diagnosis method of power reception/distribution equipment, and remaining lifetime diagnosis device
JP2016151466A (en) * 2015-02-17 2016-08-22 富士電機株式会社 Insulation characteristic measurement device, method for measuring insulation characteristic using the same, and remaining life diagnosis method
JP2017198547A (en) * 2016-04-27 2017-11-02 株式会社東芝 Insulation degradation testing device and method for testing insulation deterioration
JP2020003277A (en) * 2018-06-27 2020-01-09 三菱電機株式会社 Method and system for diagnosing shorted residual life of power receiving/distributing apparatus
WO2021166095A1 (en) * 2020-02-19 2021-08-26 三菱電機株式会社 Deterioration diagnosis method and deterioration diagnosis device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131363A (en) * 1998-10-20 2000-05-12 Toshiba Corp Method and apparatus for diagnosis of service life of electronic device
JP2001215187A (en) * 2000-02-01 2001-08-10 Toshiba Corp Method and apparatus for diagnosing deterioration
JP2015002600A (en) * 2013-06-14 2015-01-05 三菱電機株式会社 Remaining lifetime diagnosis method of power reception/distribution equipment, and remaining lifetime diagnosis device
JP2016151466A (en) * 2015-02-17 2016-08-22 富士電機株式会社 Insulation characteristic measurement device, method for measuring insulation characteristic using the same, and remaining life diagnosis method
JP2017198547A (en) * 2016-04-27 2017-11-02 株式会社東芝 Insulation degradation testing device and method for testing insulation deterioration
JP2020003277A (en) * 2018-06-27 2020-01-09 三菱電機株式会社 Method and system for diagnosing shorted residual life of power receiving/distributing apparatus
WO2021166095A1 (en) * 2020-02-19 2021-08-26 三菱電機株式会社 Deterioration diagnosis method and deterioration diagnosis device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Y. TODO, K. KIMURA, M. URANO: "Life Assessment of Printed Circuit Boards. ", TOSHIBA REVIEW, vol. 56, no. 5, 24 May 2001 (2001-05-24), pages 48 - 51, XP009551397, ISSN: 2432-1168 *

Similar Documents

Publication Publication Date Title
RU2394250C2 (en) Method and device to pinpoint faulty grounding section
WO2023248299A1 (en) Degradation diagnosis method and degradation diagnosis device
JP7183473B2 (en) Deterioration diagnosis method and deterioration diagnosis device
JP5009950B2 (en) Test method and apparatus for grounding device
JP5562287B2 (en) Remaining life diagnosis method and remaining life diagnosis device for power distribution equipment
JP4045776B2 (en) Life diagnosis method for power distribution facilities
JP2015002600A (en) Remaining lifetime diagnosis method of power reception/distribution equipment, and remaining lifetime diagnosis device
Anders et al. Calculation of the internal thermal resistance and ampacity of 3-core screened cables with fillers
US8854068B2 (en) Diagnostic method for oil-filled electrical device, diagnostic device for implementing the diagnostic method, and oil-filled electrical device provided with the diagnostic device
JP6656247B2 (en) Method and system for diagnosing remaining short-circuit life of power receiving and distribution equipment
US20140266241A1 (en) Apparatus to verify an electrically safe work condition
Nukaiyama et al. Principal decomposition by-products generated at various abnormalities in gas-insulated transformers
CN210690686U (en) Measuring system for continuous insulation monitoring of conductor arrangements
JP7395077B1 (en) Method, device and program for diagnosing deterioration of electrical equipment including insulators
JP4469763B2 (en) High voltage power cable insulation diagnosis and monitoring device
JP6069051B2 (en) Power cable high resistance insulation failure location method and apparatus
JP2003259511A (en) Power receiving and distributing facility and method of diagnosing deterioration of insulation
Dyck et al. Investigation of conductor packages and contact geometries for stranded copper wires
KR100202831B1 (en) Insulation degradation detection method for hot-line and device therefor
JPH06331665A (en) Diagnostic monitoring system for insulation of power cable
JPH063390A (en) Diagnostic method for deterioration of cable
JPS6091272A (en) Diagnosis of deterioration in insulating properties of power cable
JPH11326436A (en) Diagnostic device for insulation deterioration of closed bus bar
CN117214557A (en) Transformer lead overload heating test device and lead temperature rise prediction method
JP3454845B2 (en) Closed switchboard

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947863

Country of ref document: EP

Kind code of ref document: A1