JP6069051B2 - Power cable high resistance insulation failure location method and apparatus - Google Patents

Power cable high resistance insulation failure location method and apparatus Download PDF

Info

Publication number
JP6069051B2
JP6069051B2 JP2013056895A JP2013056895A JP6069051B2 JP 6069051 B2 JP6069051 B2 JP 6069051B2 JP 2013056895 A JP2013056895 A JP 2013056895A JP 2013056895 A JP2013056895 A JP 2013056895A JP 6069051 B2 JP6069051 B2 JP 6069051B2
Authority
JP
Japan
Prior art keywords
cable
voltage
guard
shielding layer
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013056895A
Other languages
Japanese (ja)
Other versions
JP2014182014A (en
Inventor
京二 矢野
京二 矢野
茂雄 中井
茂雄 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Original Assignee
Kyushu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc filed Critical Kyushu Electric Power Co Inc
Priority to JP2013056895A priority Critical patent/JP6069051B2/en
Publication of JP2014182014A publication Critical patent/JP2014182014A/en
Application granted granted Critical
Publication of JP6069051B2 publication Critical patent/JP6069051B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Locating Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Electric Cable Installation (AREA)

Description

本発明は、電力ケーブルにおける絶縁不良箇所が高抵抗であっても、その絶縁不良箇所の位置を高い精度で標定可能とする方法及び装置に関する。   The present invention relates to a method and an apparatus that can determine the position of an insulation failure location with high accuracy even if the insulation failure location in a power cable has a high resistance.

従来、電力ケーブルにおける絶縁不良箇所標定装置が、絶縁不良箇所を有する電力ケーブル(以下、「事故発生ケーブル」という。)における絶縁不良箇所の位置をつきとめることを目的に開発されている。
その絶縁不良箇所標定装置の概念図は、図5に示すように、検流計メータ(G)及び測定辺抵抗(Ra・Rb)を、事故発生ケーブルの導体の一端と健全な電力ケーブル(以下、「健全ケーブル」という。)の導体の一端との間に並列に接続し、測定辺抵抗の按分位置を変化させることが可能な摺動接点と接地点との間に標定用直流電圧源を接続し、事故発生ケーブルの導体の他端と健全ケーブルの導体の他端を短絡線で接続するとともに、事故発生ケーブルの遮蔽層を接地するものである。
2. Description of the Related Art Conventionally, an insulation failure location locating device in a power cable has been developed for the purpose of locating an insulation failure location in a power cable having an insulation failure location (hereinafter referred to as “accident occurrence cable”).
As shown in FIG. 5, a conceptual diagram of the poor insulation location locating device is as follows. (Referred to as a “sound cable”) in parallel with one end of the conductor of the conductor, and a DC voltage source for positioning between the ground contact and the sliding contact that can change the apportioning position of the measuring side resistance. The other end of the conductor of the accident occurrence cable and the other end of the conductor of the sound cable are connected by a short-circuit wire, and the shielding layer of the accident occurrence cable is grounded.

絶縁不良箇所(Fp)の位置を標定する装置の等価回路は図6に示すブリッジ回路となる。この図において、Eは標定用直流電圧源の電圧、Lは事故発生ケーブル及び健全ケーブルの一端から他端までの長さ、lは事故発生ケーブルの一端から絶縁不良箇所までの長さ、Raは測定辺抵抗の摺動接点より健全ケーブル寄りの抵抗値、Rbは測定辺抵抗の摺動接点より事故発生ケーブル寄りの抵抗値、Rcは健全ケーブルの一端から絶縁不良箇所までの導体及び短絡線の抵抗値、Rdは事故発生ケーブルの一端から絶縁不良箇所までの導体の抵抗値、Reは絶縁不良箇所の抵抗値(以下、「地絡抵抗」という。)、Rgは検流計メータの内部抵抗値、Roは標定用直流電圧源の内部抵抗値を示す記号である。   An equivalent circuit of the device for locating the position of the insulation failure point (Fp) is a bridge circuit shown in FIG. In this figure, E is the voltage of the DC voltage source for orientation, L is the length from one end to the other end of the accident occurrence cable and the sound cable, l is the length from one end of the accident occurrence cable to the location of poor insulation, and Ra is Rb is the resistance value closer to the sound cable than the sliding contact of the measurement side resistance, Rb is the resistance value closer to the cable where the accident occurred than the sliding contact of the measurement side resistance, and Rc is the conductor and short-circuit line from one end of the healthy cable to the location of poor insulation The resistance value, Rd is the resistance value of the conductor from one end of the cable where the accident occurred to the poor insulation location, Re is the resistance value of the poor insulation location (hereinafter referred to as “ground fault resistance”), and Rg is the internal resistance of the galvanometer meter. The value Ro is a symbol indicating the internal resistance value of the DC voltage source for orientation.

この等価回路で、測定辺抵抗の摺動接点を動かして測定辺抵抗の按分位置を変化させ、検流計メータに流れる電流を零に調整した場合、Ra×Rd=Rb×Rcが成立する。
ここで、健全ケーブル及び事故発生ケーブルの導体の単位長さ当たりの抵抗値をρとしたとき、Rc=ρ×(2L−l)及びRd=ρ×となるので、Ra×Rd=Rb×Rcにこれらの関係を代入して整理すると、l=L×2×Rb/(Ra+Rb)となる。
そして、Lは事故発生ケーブル又は健全ケーブルの一端から他端までの長さを計測して知り得る値、Rbは測定辺抵抗の按分位置から知り得る値、Ra+Rbは一定値であるので、lすなわち事故発生ケーブルの一端から絶縁不良箇所までの長さが分かり、絶縁不良箇所(Fp)の位置を標定できる。
In this equivalent circuit, when the apportioning position of the measurement side resistance is changed by moving the sliding contact of the measurement side resistance and the current flowing through the galvanometer meter is adjusted to zero, Ra × Rd = Rb × Rc is established.
Here, when the resistance value per unit length of the conductor of the healthy cable and the cable having the accident occurrence is ρ, Rc = ρ × (2L−1) and Rd = ρ × l , so Ra × Rd = Rb × Substituting these relationships into Rc and rearranging results in l = L × 2 × Rb / (Ra + Rb).
L is a value that can be obtained by measuring the length from one end to the other end of the accident-occurring cable or the healthy cable, Rb is a value that can be obtained from the prorated position of the measured side resistance, and Ra + Rb is a constant value. The length from one end of the cable where the accident occurred to the insulation failure location is known, and the location of the insulation failure location (Fp) can be determined.

ところが、地絡抵抗(Re)が高い場合、図6のブリッジ回路では地絡抵抗(Re)での電圧降下が大きくなる上に、電力ケーブルの導体抵抗が小さい(0.02〜0.08Ω/km)ことから、検流計メータ(G)の両端における電位差が非常に小さくなってしまい、絶縁不良箇所の標定は不可能であった。そのため従来、地絡抵抗が高い場合には、高電圧課電による焼成で絶縁不良箇所を低抵抗にして標定していた。
そして、高抵抗の絶縁不良は電力ケーブルの端末部や接続部で発生する場合も多いところ、高電圧課電による焼成を行った場合、焼成の対象となった電力ケーブルは損傷を受ける可能性があるため、電力ケーブル自体には絶縁不良箇所が発生していないにもかかわらず、標定後にその電力ケーブルを交換していた。
However, when the ground fault resistance (Re) is high, the voltage drop at the ground fault resistance (Re) increases in the bridge circuit of FIG. 6 and the conductor resistance of the power cable is low (0.02 to 0.08 Ω / km), the potential difference between both ends of the galvanometer meter (G) becomes very small, and it is impossible to determine the location of the insulation failure. For this reason, conventionally, when the ground fault resistance is high, the insulation failure location is reduced to a low resistance by firing by high voltage application.
In many cases, high-resistance insulation failures occur at the ends and connections of power cables. When firing by high-voltage power, the fired power cables may be damaged. For this reason, the power cable itself was replaced after standardization even though there was no defective insulation in the power cable itself.

そこで、特許文献1(特開2006−267002号公報)に記載されるように、高電圧課電による焼成を避けるために、従来の標定装置の検出感度を大幅に向上させ、標定範囲を10倍程度拡大させた新型の標定装置が開発された。この標定装置によれば、ケーブル導体の断面積が150mm(直径13.8mm)、測定される電力ケーブルの長さ(以下、「亘長」という。)が1000mの場合、地絡抵抗が200MΩ程度までであれば、絶縁不良箇所の位置を標定可能である。
しかし、最近は送電容量の大容量化に伴ってケーブル導体の断面積は大きくなっており、325mm(直径20.3mm)、さらには725mm(直径30.4mm)のものが用いられるようになっているところ、標定可能な地絡抵抗は、ケーブル導体の単位長さ当たりの抵抗値及び亘長に比例し、現場における標定の際の亘長は100m程度の場合もあるため、新型の標定装置を用いたとしても、標定可能な地絡抵抗は、断面積150mm、亘長100mの場合20MΩ(200MΩ×0.1)、断面積325mm、亘長100mの場合9.2MΩ(200MΩ×150÷325×0.1)となり、断面積725mm、亘長100mの場合4.1MΩ(200MΩ×150÷725×0.1)に過ぎない。
そして、地絡抵抗は200MΩ程度となる場合も多いため、標定能力を通常の標定装置の100倍から500倍(新型の標定装置の10倍から50倍)に拡大することが、絶縁不良箇所標定の現場において強く求められている。
Therefore, as described in Patent Document 1 (Japanese Patent Laid-Open No. 2006-267002), in order to avoid firing due to high voltage application, the detection sensitivity of the conventional orientation device is greatly improved, and the orientation range is increased by 10 times. A new type of orientation device has been developed. According to this orientation apparatus, when the cross-sectional area of the cable conductor is 150 mm 2 (diameter 13.8 mm), and the length of the power cable to be measured (hereinafter referred to as “cross length”) is 1000 m, the ground fault resistance is 200 MΩ. If it is to the extent, the position of the insulation failure location can be determined.
However, recently the cross-sectional area of the cable conductor with the capacity of transmission capacity is larger, 325 mm 2 (diameter 20.3 mm), more so is used as a 725 mm 2 (diameter 30.4 mm) Therefore, the ground fault resistance that can be determined is proportional to the resistance value per unit length of the cable conductor and the length of the cable conductor, and the length at the time of standardization in the field may be about 100 m. Even if the apparatus is used, the ground fault resistance that can be determined is 20 MΩ (200 MΩ × 0.1) when the cross-sectional area is 150 mm 2 and the total length is 100 m, 9.2 MΩ (200 MΩ × when the cross-sectional area is 325 mm 2 and the total length is 100 m. 150 ÷ 325 × 0.1), and when the cross-sectional area is 725 mm 2 and the span length is 100 m, it is only 4.1 MΩ (200 MΩ × 150 ÷ 725 × 0.1).
And since the ground fault resistance is often about 200 MΩ, it is possible to increase the location ability from 100 times to 500 times that of a normal orientation device (10 times to 50 times that of a new orientation device). Is strongly demanded in the field.

特開2006−267002号公報JP 2006-267002 A

本発明の課題は、亘長が短くても電力ケーブルを焼成せずに絶縁不良箇所を標定できるようにすること、ケーブルサイズが大きくても電力ケーブルを焼成せずに絶縁不良箇所を標定できるようにすること及び標定誤差をできるだけ小さくすることである。   It is an object of the present invention to be able to determine an insulation failure location without firing the power cable even if the span is short, and to be able to identify the insulation failure location without firing the power cable even if the cable size is large. And making the orientation error as small as possible.

請求項1に係る発明の電力ケーブル高抵抗絶縁不良箇所標定方法は、検流計メータ及び測定辺抵抗を、事故発生ケーブルの遮蔽層の一端と健全ケーブルの遮蔽層の一端との間に並列に接続し、一部に可変抵抗を含む測定辺抵抗の所定の接点又は測定辺抵抗の按分位置を変化させることが可能な摺動接点と接地点との間に標定用直流電圧を印加し、前記事故発生ケーブルの遮蔽層の他端と前記健全ケーブルの遮蔽層の他端を短絡線で接続前記事故発生ケーブルにおける検流計メータ及び測定辺抵抗の接続点に対する一端側近傍の周囲に、前記事故発生ケーブルの導体及び遮蔽層とは絶縁された導電性の第1高圧ガードを配置し、前記事故発生ケーブルにおける短絡線の接続点に対する他端側近傍の周囲に、前記事故発生ケーブルの導体及び遮蔽層とは絶縁された導電性の第2高圧ガードを配置し、前記第1高圧ガード及び第2高圧ガードを電気的に接続し、前記第1高圧ガード及び第2高圧ガードに前記標定用直流電圧程度の直流電圧を印加するとともに、前記事故発生ケーブルの導体を接地してブリッジ回路を形成し、前記測定辺抵抗の一部の抵抗値を変化させるか、前記測定辺抵抗の按分位置を変化させることによって、前記検流計メータに流れる電流を零に調整し、前記測定辺抵抗の一部の抵抗値又は前記測定辺抵抗の按分位置に基づいて電力ケーブルの絶縁不良箇所の位置を標定することを特徴とする。 In the power cable high resistance insulation failure location method according to the first aspect of the invention, the galvanometer meter and the measurement side resistance are arranged in parallel between one end of the shielding layer of the accident cable and one end of the shielding layer of the sound cable. Connecting, applying a DC voltage for orientation between a predetermined contact of the measurement side resistance including a variable resistance in part or a sliding contact capable of changing a prorated position of the measurement side resistance and the grounding point, the other end of the shielding layer of the other end and the healthy cable shielding layer of accident cable connected by short-circuit line, around the one end near to the connection point of the galvanometer meter and the measurement side resistance in the accident cable, A conductive first high-voltage guard insulated from the conductor and shielding layer of the accident occurrence cable is disposed, and the conductor of the accident occurrence cable is arranged around the other end side of the connection point of the short circuit line in the accident occurrence cable. as well as A conductive second high-voltage guard insulated from the shielding layer is disposed, the first high-voltage guard and the second high-voltage guard are electrically connected, and the orientation DC is connected to the first high-voltage guard and the second high-voltage guard. Apply a DC voltage of about the same voltage, and ground the conductor of the cable where the accident occurred to form a bridge circuit, change the resistance value of a part of the measurement side resistance, or change the prorated position of the measurement side resistance The current flowing through the galvanometer meter is adjusted to zero, and the position of the insulation failure location of the power cable is determined based on the partial resistance value of the measurement side resistance or the prorated position of the measurement side resistance. It is characterized by that.

請求項2に係る発明の電力ケーブル高抵抗絶縁不良箇所標定方法は、請求項1に記載の電力ケーブル高抵抗絶縁不良箇所標定方法において、前記事故発生ケーブルにおける検流計メータ及び測定辺抵抗の接続点に対する他端側近傍の周囲に、前記事故発生ケーブルの導体及び遮蔽層とは絶縁された導電性の第3高圧ガードを配置し、前記事故発生ケーブルにおける短絡線の接続点に対する一端側近傍の周囲に、前記事故発生ケーブルの導体及び遮蔽層とは絶縁された導電性の第4高圧ガードを配置し、前記健全ケーブルにおける検流計メータ及び測定辺抵抗の接続点に対する他端側近傍の周囲に、前記健全ケーブルの導体及び遮蔽層とは絶縁された導電性の第5高圧ガードを配置し、前記健全ケーブルにおける短絡線の接続点に対する一端側近傍の周囲に、前記健全ケーブルの導体及び遮蔽層とは絶縁された導電性の第6高圧ガードを配置し、前記第1高圧ガードないし前記第6高圧ガードを電気的に接続するとともに、前記第1高圧ガードないし前記第6高圧ガードに前記標定用直流電圧程度の直流電圧を印加することを特徴とする。 The power cable high resistance insulation failure location determination method of the invention according to claim 2 is the power cable high resistance insulation failure location determination method according to claim 1, wherein the galvanometer meter and the measurement side resistance in the accident occurrence cable are connected. A conductive third high-voltage guard insulated from the conductor and shielding layer of the accident occurrence cable is disposed around the other end side vicinity of the point, and the vicinity of one end side of the connection point of the short-circuit line in the accident occurrence cable is arranged. A conductive fourth high-voltage guard insulated from the conductor and shielding layer of the accident cable is arranged around the periphery, and the vicinity of the other end side with respect to the connection point of the galvanometer meter and the measurement side resistance in the healthy cable A conductive fifth high-voltage guard insulated from the conductor and shielding layer of the healthy cable, and one end side with respect to the connection point of the short-circuit line in the healthy cable A conductive sixth high voltage guard insulated from the conductor and shielding layer of the sound cable is disposed around the side, and the first high voltage guard to the sixth high voltage guard are electrically connected, and the first A DC voltage of about the DC voltage for orientation is applied to one high voltage guard or the sixth high voltage guard .

請求項3に係る発明の電力ケーブル高抵抗絶縁不良箇所標定方法は、請求項1又は2に記載の電力ケーブル高抵抗絶縁不良箇所標定方法において、前記標定用直流電圧を前記電力ケーブルに接続される開閉装置の許容直流電圧値以下の電圧とするとともに、前記検流計メータと、前記事故発生ケーブルの遮蔽層の一端及び前記健全ケーブルの遮蔽層の一端との間に、前記電力ケーブルに重畳するノイズが前記検流計メータに入力されることを防止するノイズ防止回路を接続することを特徴とする。 A power cable high resistance insulation failure location determination method according to claim 3 is the power cable high resistance insulation failure location determination method according to claim 1 or 2, wherein the orientation DC voltage is connected to the power cable. The voltage is equal to or lower than the allowable DC voltage value of the switchgear, and is superimposed on the power cable between the galvanometer meter and one end of the shielding layer of the accident cable and one end of the shielding layer of the sound cable. A noise prevention circuit for preventing noise from being input to the galvanometer meter is connected .

請求項に係る発明の電力ケーブル高抵抗絶縁不良箇所標定装置は、事故発生ケーブルの遮蔽層の一端と健全ケーブルの遮蔽層の一端との間に並列に接続される検流計メータ及び測定辺抵抗、一部に可変抵抗を含む測定辺抵抗の所定の接点又は測定辺抵抗の按分位置を変化させることが可能な摺動接点、前記所定の接点又は前記摺動接点と接地点との間に標定用直流電圧を印加する標定用直流電圧源、前記事故発生ケーブルの遮蔽層の他端と前記健全ケーブルの遮蔽層の他端を接続する短絡線、前記事故発生ケーブルにおける検流計メータ及び測定辺抵抗の接続点に対する一端側近傍の周囲に、前記事故発生ケーブルの導体及び遮蔽層とは絶縁されて配置される導電性の第1高圧ガード、前記事故発生ケーブルにおける短絡線の接続点に対する他端側近傍の周囲に、前記事故発生ケーブルの導体及び遮蔽層とは絶縁されて配置される導電性の第2高圧ガード、前記第1高圧ガード及び第2高圧ガードを電気的に接続する相互接続線、前記第1高圧ガード及び第2高圧ガードに前記標定用直流電圧程度の直流電圧を印加する直流電圧源、並びに前記事故発生ケーブルの導体と接地点とを接続するアース線を備えることを特徴とする。 A power cable high resistance insulation failure location device of the invention according to claim 4 includes a galvanometer meter and a measurement side connected in parallel between one end of the shielding layer of the accident cable and one end of the shielding layer of the sound cable. Resistance, a predetermined contact of a measurement side resistance including a variable resistance in part, or a sliding contact capable of changing a prorated position of the measurement side resistance, between the predetermined contact or the sliding contact and a ground point DC voltage source for orientation to apply DC voltage for orientation, short-circuit line connecting the other end of the shielding layer of the accident cable and the other end of the shielding layer of the sound cable, a galvanometer meter and measurement in the accident cable A conductive first high voltage guard disposed around one end side of the connection point of the side resistance and insulated from the conductor and shielding layer of the accident occurrence cable, and to the connection point of the short circuit line in the accident occurrence cable The conductive second high-voltage guard, the first high-voltage guard, and the second high-voltage guard are electrically connected to each other around the other end side so as to be insulated from the conductor and the shielding layer of the accident occurrence cable. A connection line, a DC voltage source for applying a DC voltage about the DC voltage for orientation to the first high voltage guard and the second high voltage guard, and a ground line for connecting the conductor of the accident occurrence cable and a grounding point. Features.

請求項に係る発明の電力ケーブル高抵抗絶縁不良箇所標定装置は、請求項に記載の電力ケーブル高抵抗絶縁不良箇所標定装置において、前記事故発生ケーブルにおける検流計メータ及び測定辺抵抗の接続点に対する他端側近傍の周囲に、前記事故発生ケーブルの導体及び遮蔽層とは絶縁されて配置される導電性の第3高圧ガード、前記事故発生ケーブルにおける短絡線の接続点に対する一端側近傍の周囲に、前記事故発生ケーブルの導体及び遮蔽層とは絶縁されて配置される導電性の第4高圧ガード、前記健全ケーブルにおける検流計メータ及び測定辺抵抗の接続点に対する他端側近傍の周囲に、前記健全ケーブルの導体及び遮蔽層とは絶縁されて配置される導電性の第5高圧ガード、前記健全ケーブルにおける短絡線の接続点に対する一端側近傍の周囲に、前記健全ケーブルの導体及び遮蔽層とは絶縁されて配置される導電性の第6高圧ガード、前記第1高圧ガードないし前記第6高圧ガードを電気的に接続する相互接続線、並びに前記第1高圧ガードないし前記第6高圧ガードに前記標定用直流電圧程度の直流電圧を印加する直流電圧源を備えることを特徴とする。 The power cable high resistance insulation failure location determination device according to claim 5 is the power cable high resistance insulation failure location determination device according to claim 4 , wherein the galvanometer meter and the measurement side resistance in the accident occurrence cable are connected. A conductive third high-voltage guard arranged around the other end side of the point and insulated from the conductor and shielding layer of the accident occurrence cable, near one end side of the connection point of the short-circuit line in the accident occurrence cable Around the other end side of the connection point of the conductive galvanometer meter and the measurement side resistance in the sound cable, the conductive fourth high-voltage guard arranged insulated from the conductor and the shielding layer of the accident cable In addition, the conductive fifth high-voltage guard arranged insulated from the conductor and shielding layer of the healthy cable, with respect to the connection point of the short-circuit line in the healthy cable A conductive sixth high-voltage guard, the first high-voltage guard, and the sixth high-voltage guard are electrically connected to each other in the vicinity of the end side so as to be insulated from the conductor and shielding layer of the sound cable. And a DC voltage source for applying a DC voltage about the orientation DC voltage to the wire and the first high voltage guard to the sixth high voltage guard .

請求項に係る発明の電力ケーブル高抵抗絶縁不良箇所標定装置は、請求項又はに記載の電力ケーブル高抵抗絶縁不良箇所標定装置において、前記検流計メータ及び前記測定辺抵抗を配置している基板を大地から絶縁し支持する絶縁棒等の絶縁物に、基板及び大地とは絶縁されて配置される導電性の第7高圧ガード、前記第1高圧ガードないし前記第7高圧ガードを電気的に接続する相互接続線、並びに前記第1高圧ガードないし前記第7高圧ガードに前記標定用直流電圧程度の直流電圧を印加する直流電圧源を備えることを特徴とする。 A power cable high resistance insulation failure location determination device according to claim 6 is the power cable high resistance insulation failure location determination device according to claim 4 or 5 , wherein the galvanometer meter and the measurement side resistance are arranged. An electrically conductive seventh high-voltage guard, the first high-voltage guard, and the seventh high-voltage guard are electrically insulated from an insulating material such as an insulating rod that insulates and supports the substrate from the ground. And a direct-current voltage source for applying a direct-current voltage about the orientation direct-current voltage to the first high-voltage guard and the seventh high-voltage guard .

請求項に係る発明の電力ケーブル高抵抗絶縁不良箇所標定装置は、請求項4〜6のいずれかに記載の電力ケーブル高抵抗絶縁不良箇所標定装置において、前記検流計メータと前記事故発生ケーブルの遮蔽層の一端及び前記健全ケーブルの遮蔽層の一端との間に接続され、前記電力ケーブルに重畳するノイズが前記検流計メータに入力されることを防止するノイズ侵入防止回路を備えることを特徴とする。 Power cable high resistance insulating defective portion locating system of the invention according to claim 7, in the power cable high resistance insulating defective portion locating system according to claim 4, wherein the galvanometer meter and the accident cable A noise intrusion prevention circuit that is connected between one end of the shielding layer and one end of the shielding layer of the sound cable and prevents noise superimposed on the power cable from being input to the galvanometer meter. Features.

請求項1又はに係る発明によれば、電力ケーブルの焼成を行う必要がないため、亘長を長くとっても格別の問題が発生しない。
また、検流計メータ及び測定辺抵抗が接続される事故発生ケーブルの遮蔽層の一端と事故発生ケーブルの導体、並びに短絡線が接続される事故発生ケーブルの遮蔽層の他端と事故発生ケーブルの導体が近接しているために、沿面漏洩電流の影響を排除することができるので、絶縁不良箇所の位置を標定する際の標定誤差を小さくすることができるという効果がある。
According to the invention of claim 1 or 4, it is not necessary to perform the firing of a power cable, even for long route length has a occurred rated Another problem.
In addition, one end of the shielding layer of the accident occurrence cable to which the galvanometer meter and the measuring side resistance are connected, the conductor of the accident occurrence cable, the other end of the shielding layer of the accident occurrence cable to which the short-circuit wire is connected, and the accident occurrence cable Since the conductors are close to each other, it is possible to eliminate the influence of the creeping leakage current, so that it is possible to reduce an orientation error when locating the location of the insulation failure location.

請求項2、5又はに係る発明によれば、請求項1又は4に係る発明による効果に加えて、シースの外面を伝う沿面漏洩電流の影響を排除することができるため、絶縁不良箇所の位置を標定する際の標定誤差をより小さくすることができるという効果がある。
そして、請求項1、2、4、5又は6に係る発明による効果は、亘長を長くとった場合には特に重要である。
According to the invention of claim 2, 5 or 6 , in addition to the effect of the invention of claim 1 or 4, it is possible to eliminate the influence of creeping leakage current that propagates on the outer surface of the sheath . There is an effect that an orientation error in locating the position can be further reduced.
And the effect by the invention which concerns on Claim 1, 2, 4, 5 or 6 is especially important when taking a long length.

請求項又はに係る発明によれば、請求項1、2又は4〜6に係る発明による効果に加えて、ケーブル導体の断面積が325mm の場合、ケーブル導体の抵抗値が0.0579Ω/kmであるのに対して、遮蔽層の抵抗値は1.71Ω/kmと29.5倍高くなっているため、標定可能な地絡抵抗は29.5倍、すなわち亘長100mの場合でも271.4MΩ(9.2MΩ×29.5)となり、ケーブル導体の断面積が725mm の場合、ケーブル導体の抵抗値が0.026Ω/kmであるのに対して、遮蔽層の抵抗値は1.26Ω/kmと48.5倍高くなっているため、標定可能な地絡抵抗は48.5倍、すなわち亘長100mの場合でも198.9MΩ(4.1MΩ×48.5)となって、現場の要求を満足することができる。 According to the invention according to claim 3 or 7 , in addition to the effect of the invention according to claim 1, 2 or 4-6, when the cross-sectional area of the cable conductor is 325 mm 2 , the resistance value of the cable conductor is 0.0579Ω. The resistance value of the shielding layer is 1.71 Ω / km, which is 29.5 times higher than that of / km, so that the ground fault resistance that can be determined is 29.5 times, that is, even when the span length is 100 m. When the cross-sectional area of the cable conductor is 725 mm 2 , the resistance value of the cable conductor is 0.026 Ω / km, whereas the resistance value of the shielding layer is 1 (271.4 MΩ (9.2 MΩ × 29.5)). .26Ω / km, which is 48.5 times higher, the ground fault resistance that can be determined is 48.5 times, that is, 198.9 MΩ (4.1 MΩ × 48.5) even when the span is 100 m, It can satisfy the demands of the site.

請求項1〜に係る発明によれば、地絡抵抗が高い場合でも高電圧課電による焼成を行うことなく、絶縁不良箇所の位置を標定することができるので、その絶縁不良箇所のみを取り替えるだけで済むため、復旧に要するコストを低減することができる。
特に標定の結果、電力ケーブルの端末部や接続部で絶縁不良が発生していた場合には、その端末部や接続部のみを交換するだけで復旧でき、ケーブル本体の交換が不要となるため、復旧時間と復旧に要するコストを大幅に低減することができる。
さらに、絶縁不良箇所の位置標定に際して操作する装置(測定辺抵抗)には、これまで用いてきたものと同じ方式での標定であり作業者が慣れやすく、これまでの経験で蓄積してきたノウハウを生かせるというメリットもある。
According to the inventions according to claims 1 to 7 , since the position of the insulation failure location can be determined without firing by high voltage application even when the ground fault resistance is high, only the insulation failure location is replaced. Therefore, the cost required for recovery can be reduced.
In particular, if insulation failure has occurred at the terminal or connection part of the power cable as a result of the orientation, it can be recovered by replacing only the terminal part or connection part, and the cable body need not be replaced. Recovery time and cost required for recovery can be greatly reduced.
In addition, the device (measurement side resistance) that is operated when locating defective insulation locations is standardized using the same method as used so far, making it easy for workers to get used to and know-how accumulated through previous experience. There is also an advantage of being able to make use of it.

実施例1の電力ケーブル高抵抗絶縁不良箇所標定装置の概念図。The conceptual diagram of the electric power cable high resistance insulation defect location apparatus of Example 1. FIG. 電力ケーブルの断面図。Sectional drawing of an electric power cable. 実施例2の電力ケーブル高抵抗絶縁不良箇所標定装置の概念図。The conceptual diagram of the electric power cable high resistance insulation defect location apparatus of Example 2. FIG. 参考例の電力ケーブル高抵抗絶縁不良箇所標定装置の概念図。The conceptual diagram of the power cable high resistance insulation defect location apparatus of a reference example. 絶縁不良箇所を標定する装置の概念図。The conceptual diagram of the apparatus which pinpoints an insulation defect location. 絶縁不良箇所を標定する装置の等価回路。Equivalent circuit for equipment that locates defective insulation.

以下、実施例によって本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described by way of examples.

[実施例1]
実施例1の電力ケーブル高抵抗絶縁不良箇所標定装置の概念図を図1に示す。
実施例1で標定の対象となる電力ケーブルの断面図は図2に示すような構造であり、中心部から順に、導体4、架橋ポリエチレン等の絶縁体5、銅テープを巻き付けた遮蔽層6、遮水テープ層やビニール被覆層からなるシース7となっている。
実施例1においては、検流計メータ8及び測定辺抵抗9を、事故発生ケーブル1の遮蔽層6の一端と第1の健全ケーブル2の遮蔽層26の一端との間に並列に接続し、測定辺抵抗9の按分位置を変化させることが可能な摺動接点10と接地点との間に標定用直流電圧源11を接続する。
また、遮蔽層6の他端と遮蔽層26の他端を短絡線12で接続するとともに、事故発生ケーブル1の導体4の他端を接地してブリッジ回路を形成している。
[Example 1]
The conceptual diagram of the power cable high resistance insulation defect location apparatus of Example 1 is shown in FIG.
The cross-sectional view of the power cable to be standardized in Example 1 has a structure as shown in FIG. 2, and in order from the center, the conductor 4, the insulator 5 such as cross-linked polyethylene, the shielding layer 6 wound with copper tape, The sheath 7 is made of a water shielding tape layer or a vinyl coating layer.
In the first embodiment, the galvanometer meter 8 and the measurement side resistance 9 are connected in parallel between one end of the shielding layer 6 of the accident occurrence cable 1 and one end of the shielding layer 26 of the first sound cable 2, An orientation DC voltage source 11 is connected between the sliding contact 10 capable of changing the prorated position of the measurement side resistor 9 and the grounding point.
In addition, the other end of the shielding layer 6 and the other end of the shielding layer 26 are connected by a short-circuit wire 12, and the other end of the conductor 4 of the accident occurrence cable 1 is grounded to form a bridge circuit.

実施例1の接続状態の場合、検流計メータ8及び測定辺抵抗9が接続される遮蔽層6の一端と導体4の一端、及び短絡線12が接続される遮蔽層6の他端と導体4の他端が近接しているとともに、導体4が接地されているため、これらの間で沿面漏洩電流が発生して標定結果に誤差を生じるおそれがあり、さらに、シース7の外面を伝う沿面漏洩電流が発生して標定結果に誤差を生じるおそれもある。
そこで、実施例1においては、遮蔽層6の検流計メータ8及び測定辺抵抗9が接続される点よりも一端側近傍の周囲に、導体4及び遮蔽層6とは絶縁されて配置される導電性の第1高圧ガード14、遮蔽層6の短絡線12が接続される点よりも他端側近傍の周囲に、導体4及び遮蔽層6とは絶縁されて配置される導電性の第2高圧ガード15、遮蔽層6の検流計メータ8及び測定辺抵抗9が接続される点よりも他端側近傍のシース7の周囲に、導体4及び遮蔽層6とは絶縁されて配置される導電性の第3高圧ガード16、遮蔽層6の短絡線12が接続される点よりも一端側近傍のシース7の周囲に、導体4及び遮蔽層6とは絶縁されて配置される導電性の第4高圧ガード17、遮蔽層26の検流計メータ8及び測定辺抵抗9が接続される点よりも他端側近傍のシース27の周囲に、遮蔽層6とは絶縁されて配置される導電性の第5高圧ガード18、遮蔽層26の短絡線12が接続される点よりも一端側近傍のシース7の周囲に、遮蔽層26とは絶縁されて配置される導電性の第6高圧ガード19、並びに検流計メータ8及び測定辺抵抗9を配置している基板28を大地から絶縁し支持する絶縁棒29の周囲に、基板28及び大地とは絶縁されて配置される導電性の第7高圧ガード30を配置し、これら第1〜第7高圧ガード14〜19及び30を相互接続線で電気的に接続するとともに、これらに標定用直流電圧程度の電圧を印加している。
より具体的には、第1高圧ガード14と第3高圧ガード16、第2高圧ガード15と第4高圧ガード17、第3高圧ガード16と第5高圧ガード18、第4高圧ガード17と第6高圧ガード19、第5高圧ガード18と第2の健全ケーブル3の導体34の一端、第5高圧ガード14と摺動接点10、第6高圧ガード19と導体34の他端、第7高圧ガード30と摺動接点10を、それぞれ相互接続線で電気的に接続することにより、第1〜第7高圧ガード14〜19及び30に標定用直流電圧Eとほぼ同じ電圧を印加している。
In the case of the connection state of Example 1, one end of the shielding layer 6 and one end of the conductor 4 to which the galvanometer meter 8 and the measurement side resistance 9 are connected, and the other end and conductor of the shielding layer 6 to which the short-circuit wire 12 is connected. Since the other end of 4 is close and the conductor 4 is grounded, a creeping leakage current may occur between them, which may cause an error in the orientation result. Further, the creeping surface that travels on the outer surface of the sheath 7 Leakage current may be generated and an error may be caused in the orientation result.
Therefore, in the first embodiment, the conductor 4 and the shielding layer 6 are disposed so as to be insulated in the vicinity of one end side from the point where the galvanometer meter 8 and the measurement side resistance 9 of the shielding layer 6 are connected. A conductive second high-voltage guard 14 and a second conductive second disposed around the other end of the shield layer 6 near the point where the short-circuit line 12 is connected and insulated from the conductor 4 and the shield layer 6. The conductor 4 and the shielding layer 6 are disposed around the sheath 7 in the vicinity of the other end side from the point where the high voltage guard 15, the galvanometer meter 8 of the shielding layer 6 and the measurement side resistance 9 are connected. The conductive third high voltage guard 16 and the conductor 4 and the shielding layer 6 are arranged around the sheath 7 near one end from the point where the shorting line 12 of the shielding layer 6 is connected. The fourth high voltage guard 17, the galvanometer meter 8 of the shielding layer 26 and the measurement side resistance 9 are connected. Also, around the sheath 27 near the other end side, the conductive fifth high voltage guard 18 disposed so as to be insulated from the shielding layer 6 and the point near the one end side from the point where the short-circuit line 12 of the shielding layer 26 is connected. Around the sheath 7, a conductive sixth high-voltage guard 19 disposed so as to be insulated from the shielding layer 26 and a substrate 28 on which the galvanometer meter 8 and the measurement side resistor 9 are disposed are insulated and supported from the ground. A conductive seventh high-voltage guard 30 disposed so as to be insulated from the substrate 28 and the ground is disposed around the insulating rod 29, and the first to seventh high-voltage guards 14 to 19 and 30 are interconnected. While being electrically connected, a voltage of about the DC voltage for orientation is applied to them.
More specifically, the first high pressure guard 14 and the third high pressure guard 16, the second high pressure guard 15 and the fourth high pressure guard 17, the third high pressure guard 16 and the fifth high pressure guard 18, the fourth high pressure guard 17 and the sixth high pressure guard 17. One end of the conductor 34 of the high voltage guard 19, the fifth high voltage guard 18 and the second sound cable 3, the fifth high voltage guard 14 and the sliding contact 10, the sixth high voltage guard 19 and the other end of the conductor 34, the seventh high voltage guard 30 And the sliding contact 10 are electrically connected to each other by an interconnection line, so that a voltage substantially equal to the DC voltage E for orientation is applied to the first to seventh high voltage guards 14 to 19 and 30.

実施例1の電力ケーブル高抵抗絶縁不良箇所標定装置によって、絶縁不良箇所の位置を標定するに際しては、従来の装置によって標定する場合と同様、測定辺抵抗9の摺動接点10を操作して按分位置を変化させ、検流計メータ8に流れる電流を零に調整する。その時の測定辺抵抗9の摺動接点10より事故発生ケーブル1側の抵抗値又は測定辺抵抗9における按分位置を読み取る。
そして、実施例1の等価回路は、RcとRdが異なるだけで従来の装置における等価回路と何ら変わるものではないので、上記背景技術の項で説明したと同様、l=L×2×Rb/(Ra+Rb)を計算することにより、lすなわち事故発生ケーブル1の一端から絶縁不良箇所Fpまでの長さが分かり、絶縁不良箇所Fpの位置を標定できる。
When the position of the insulation failure location is determined by the power cable high resistance insulation failure location device of Example 1, the sliding contact 10 of the measurement side resistance 9 is operated and distributed as in the case of the location by the conventional device. The position is changed and the current flowing through the galvanometer meter 8 is adjusted to zero. The resistance value on the accident cable 1 side or the prorated position in the measurement side resistance 9 is read from the sliding contact 10 of the measurement side resistance 9 at that time.
The equivalent circuit of the first embodiment is not different from the equivalent circuit in the conventional apparatus except that Rc and Rd are different. Therefore, as described in the background section above, l = L × 2 × Rb / By calculating (Ra + Rb), it is possible to know l, that is, the length from one end of the fault occurrence cable 1 to the insulation failure location Fp, and the position of the insulation failure location Fp can be determined.

[実施例2]
実施例2の電力ケーブル高抵抗絶縁不良箇所標定装置の概念図を図3に示す。
実施例2は、検流計メータ8が遮蔽層6の一端及び遮蔽層26の一端と直接接続されていない点と補助装置が追加されている点を除き、図1に示した実施例1の電力ケーブル高抵抗絶縁不良箇所標定装置と基本的な構成は同じである。
そして、実施例1との相違点は、ノイズ侵入防止回路20を、測定辺抵抗9と並列に、遮蔽層6の一端と遮蔽層26の一端との間に接続するとともに、検流計メータ8をノイズ侵入防止回路20に接続している点、摺動接点10が測定辺抵抗9を按分している位置を検出し、按分比率を演算して表示する比率演算部21及び按分比率表示器22を備えている点、並びにノイズ侵入防止回路20及び比率演算部21に電力を供給するバッテリー23を備えている点である。
実施例1と実施例2との具体的な構成の相違については、特許文献1(特開2006−267002号公報)の図1、図2、段落0019〜0028及び段落0035〜0037に記載されているとおりであるので詳述は避けるが、高感度で絶縁不良箇所の位置を標定できるように以下のような工夫を施している。
[Example 2]
The conceptual diagram of the power cable high resistance insulation defect location apparatus of Example 2 is shown in FIG.
Example 2 is the same as Example 1 shown in FIG. 1 except that the galvanometer 8 is not directly connected to one end of the shielding layer 6 and one end of the shielding layer 26 and an auxiliary device is added. The basic configuration is the same as that of the power cable high resistance insulation failure location determination device.
The difference from the first embodiment is that the noise intrusion prevention circuit 20 is connected in parallel with the measurement side resistance 9 between one end of the shielding layer 6 and one end of the shielding layer 26, and the galvanometer 8. Is connected to the noise intrusion prevention circuit 20, the position where the sliding contact 10 apportions the measurement side resistance 9 is detected, and the ratio calculating unit 21 and the apportioning ratio indicator 22 for calculating and displaying the apportioning ratio. And a battery 23 for supplying power to the noise intrusion prevention circuit 20 and the ratio calculation unit 21.
The specific difference between Example 1 and Example 2 is described in FIG. 1, FIG. 2, paragraphs 0019 to 0028, and paragraphs 0035 to 0037 of Patent Document 1 (Japanese Patent Laid-Open No. 2006-267002). Although not described in detail, the following measures are taken so that the position of the insulation failure location can be determined with high sensitivity.

(1)標定用直流電圧源11の電圧を、電力ケーブルに接続される開閉装置の許容直流電圧値以下にするとともに、内部抵抗が低抵抗の直流安定化電源を採用したこと。
(2)ノイズ侵入防止回路20を設けて、電力ケーブルに重畳するノイズが検流計メータ8に入力されることを防止するようにしたこと。
(3)ノイズ侵入防止回路20、検流計メータ8、摺動接点10、比率演算部21、按分比率表示器22、バッテリー23等の絶縁性能を向上させるとともに、検流計メータ8や摺動接点10の操作部(操作スイッチ、操作ダイアル、操作つまみ等)の絶縁性能を向上させ、接地点と所定の絶縁強度を保ち漏れ電流を小さくしたこと。
(1) The voltage of the DC voltage source for orientation 11 is set to be equal to or lower than the allowable DC voltage value of the switchgear connected to the power cable, and a DC stabilized power source having a low internal resistance is adopted.
(2) The noise intrusion prevention circuit 20 is provided to prevent noise superimposed on the power cable from being input to the galvanometer meter 8.
(3) Improve the insulation performance of the noise intrusion prevention circuit 20, the galvanometer meter 8, the sliding contact 10, the ratio calculation unit 21, the proportional distribution indicator 22, the battery 23, etc., and the galvanometer meter 8 and the sliding The insulation performance of the operation part (operation switch, operation dial, operation knob, etc.) of the contact 10 is improved, and the leakage current is reduced while maintaining a predetermined insulation strength with the grounding point.

このうち、高感度で絶縁不良箇所を標定するために最低限必要な構成は標定用直流電圧源11の電圧を電力ケーブルに接続される開閉装置の許容直流電圧値以下とする点、及びノイズ侵入防止回路20を設けて、電力ケーブルに重畳するノイズが検流計メータ8に入力されることを防止する点である。   Among these, the minimum configuration necessary for locating a poorly insulated portion with high sensitivity is that the voltage of the locating DC voltage source 11 is less than or equal to the allowable DC voltage value of the switchgear connected to the power cable, and noise intrusion. The prevention circuit 20 is provided to prevent noise superimposed on the power cable from being input to the galvanometer meter 8.

実施例2の電力ケーブル高抵抗絶縁不良箇所標定方法及び装置によって、絶縁不良箇所を標定するに際しての操作は、実施例1の場合と全く同じである。
また、実施例2においては、按分比率表示器22に測定辺抵抗9の按分比率、すなわち2×Rb/(Ra+Rb)が表示されるので、L×按分比率の計算だけで、lすなわち事故発生ケーブル1の一端から絶縁不良箇所Fpまでの長さが分かり、簡単に絶縁不良箇所Fpの位置を標定できる。
The operation for locating the insulation failure location by the power cable high resistance insulation failure location method and apparatus of the second embodiment is exactly the same as that of the first embodiment.
In the second embodiment, since the proportional distribution ratio indicator 22 displays the proportional ratio of the measured side resistance 9, that is, 2 × Rb / (Ra + Rb), only the calculation of L × proportional ratio results in l, that is, the cable where the accident occurred. The length from one end of 1 to the defective insulation point Fp is known, and the position of the defective insulation point Fp can be easily determined.

[参考例]
実施例1、2においては、検流計メータ8及び測定辺抵抗9を、事故発生ケーブル1の遮蔽層6の一端と第1の健全ケーブル2の遮蔽層26の一端との間に並列に接続し、また、遮蔽層6の他端と遮蔽層26の他端を短絡線12で接続するとともに、事故発生ケーブル1の導体4の他端を接地してブリッジ回路を形成しているが、従来の導体課電方式において、複数の高圧ガードを設けることによっても、発生し易い沿面漏洩電流の影響を排除できる電力ケーブル高抵抗絶縁不良箇所標定装置を構成できる。
[Reference example]
In the first and second embodiments, the galvanometer meter 8 and the measurement side resistance 9 are connected in parallel between one end of the shielding layer 6 of the accident occurrence cable 1 and one end of the shielding layer 26 of the first sound cable 2. In addition, the other end of the shielding layer 6 and the other end of the shielding layer 26 are connected by a short-circuit wire 12, and the other end of the conductor 4 of the accident cable 1 is grounded to form a bridge circuit. In the conductor voltage application system, a power cable high resistance insulation failure location system that can eliminate the influence of creeping leakage current that is likely to occur can also be configured by providing a plurality of high voltage guards.

図4は参考例の導体課電方式による電力ケーブル高抵抗絶縁不良箇所標定装置の概念図である。
この電力ケーブル高抵抗絶縁不良箇所標定装置は、事故発生ケーブル1の導体4の一端と健全ケーブル2の導体24の一端との間に並列に接続される検流計メータ8及び測定辺抵抗9、一部に可変抵抗を含む測定辺抵抗9の所定の接点又は測定辺抵抗9の按分位置を変化させることが可能な摺動接点10、所定の接点又は摺動接点10と接地点との間に標定用直流電圧Eを印加する標定用直流電圧源11、事故発生ケーブル1の導体4の他端と健全ケーブル2の導体24の他端を接続する短絡線12、並びに事故発生ケーブル1の遮蔽層6と接地点とを接続するアース線33を備え、事故発生ケーブル1における検流計メータ8及び測定辺抵抗9の接続点に対する他端側近傍の周囲に、事故発生ケーブル1の導体4及び遮蔽層6とは絶縁されて配置される導電性の第1高圧ガード14、事故発生ケーブル1における短絡線12の接続点に対する一端側近傍の周囲に、事故発生ケーブル1の導体4及び遮蔽層6とは絶縁されて配置される導電性の第2高圧ガード15、検流計メータ8及び測定辺抵抗9を配置している基板28を大地から絶縁し支持する絶縁棒29の周囲に、基板28及び大地とは絶縁されて配置される導電性の第7高圧ガード30、健全ケーブル2における検流計メータ8及び測定辺抵抗9の接続点に対する他端側近傍の周囲に、健全ケーブル2の導体24及び遮蔽層26とは絶縁されて配置される導電性の第8高圧ガード31、健全ケーブル2における短絡線12の接続点に対する一端側近傍の周囲に、健全ケーブル2の導体24及び遮蔽層26とは絶縁されて配置される導電性の第9高圧ガード32を配置し、第1高圧ガード14、第2高圧ガード15、第7高圧ガード30、第8高圧ガード31及び第9高圧ガード32を相互接続線で電気的に接続するとともに、これらに標定用直流電圧程度の電圧を印加している。
より具体的には、第1高圧ガード14と第8高圧ガード31、第2高圧ガード15と第9高圧ガード32、第8高圧ガード31と第2の健全ケーブル3の導体34の一端、第9高圧ガード32と導体34の他端、第7高圧ガード30と摺動接点10を、それぞれ相互接続線で電気的に接続することにより、第1高圧ガード14、第2高圧ガード15、第7高圧ガード30、第8高圧ガード31及び第9高圧ガード32に標定用直流電圧Eとほぼ同じ電圧を印加している。
FIG. 4 is a conceptual diagram of a power cable high resistance insulation failure location apparatus according to a conductor voltage application method of a reference example.
This power cable high resistance insulation fault location device has a galvanometer meter 8 and a measurement side resistor 9 connected in parallel between one end of the conductor 4 of the accident cable 1 and one end of the conductor 24 of the sound cable 2. A predetermined contact of the measurement side resistance 9 including a variable resistance in part or a sliding contact 10 capable of changing a prorated position of the measurement side resistance 9, a predetermined contact or between the sliding contact 10 and the grounding point DC power source 11 for orientation that applies DC voltage E for orientation, short-circuit wire 12 that connects the other end of conductor 4 of accident occurrence cable 1 and the other end of conductor 24 of sound cable 2, and shielding layer of accident occurrence cable 1 6 and a grounding wire 33 for connecting the grounding point, the conductor 4 of the accident occurrence cable 1 and the shield around the other end side of the accident occurrence cable 1 with respect to the connection point of the galvanometer meter 8 and the measurement side resistance 9. Insulated from layer 6 The conductive first high-voltage guard 14 and the conductor 4 of the accident cable 1 and the shielding layer 6 are disposed around the vicinity of one end side of the connection point of the short-circuit line 12 in the accident cable 1. Around the insulating rod 29 that insulates and supports the substrate 28 on which the conductive second high-voltage guard 15, the galvanometer meter 8, and the measurement side resistor 9 are disposed, and is insulated from the ground, the substrate 28 and the ground are disposed. Conductive seventh high-voltage guard 30, insulation of conductor 24 and shielding layer 26 of sound cable 2 around the other end side with respect to the connection point of galvanometer meter 8 and measurement side resistance 9 in sound cable 2 The conductive eighth high-voltage guard 31 and the conductor 24 of the healthy cable 2 and the shielding layer 26 are insulated and arranged around the vicinity of one end side of the connection point of the short-circuit wire 12 in the healthy cable 2. The electrically conductive ninth high voltage guard 32 is disposed, and the first high voltage guard 14, the second high voltage guard 15, the seventh high voltage guard 30, the eighth high voltage guard 31, and the ninth high voltage guard 32 are electrically connected by an interconnection line. And a voltage of about the DC voltage for orientation is applied to them.
More specifically, the first high-pressure guard 14 and the eighth high-pressure guard 31, the second high-pressure guard 15 and the ninth high-pressure guard 32, the eighth high-pressure guard 31 and one end of the conductor 34 of the second healthy cable 3, the ninth By electrically connecting the high voltage guard 32 and the other end of the conductor 34, and the seventh high voltage guard 30 and the sliding contact 10 with respective interconnection lines, the first high voltage guard 14, the second high voltage guard 15, and the seventh high voltage guard. The guard 30, the eighth high-voltage guard 31, and the ninth high-voltage guard 32 are applied with substantially the same voltage as the orientation DC voltage E.

参考例の電力ケーブル高抵抗絶縁不良箇所標定装置によって、絶縁不良箇所の位置を標定するに際しても、実施例1及び2によって標定する場合と同様、測定辺抵抗9の摺動接点10を操作して按分位置を変化させ、検流計メータ8に流れる電流を零に調整する。その時の測定辺抵抗9の摺動接点10より事故発生ケーブル1側の抵抗値又は測定辺抵抗9における按分位置を読み取る。
そして、上記背景技術の項で説明したと同様、l=L×2×Rb/(Ra+Rb)を計算することにより、lすなわち事故発生ケーブル1の一端から絶縁不良箇所Fpまでの長さが分かり、絶縁不良箇所Fpの位置を標定できる。
When the location of the insulation failure location is determined by the power cable high resistance insulation failure location device of the reference example, the sliding contact 10 of the measurement side resistance 9 is operated as in the case of the location according to Examples 1 and 2. The apportioning position is changed, and the current flowing through the galvanometer meter 8 is adjusted to zero. The resistance value on the accident cable 1 side or the prorated position in the measurement side resistance 9 is read from the sliding contact 10 of the measurement side resistance 9 at that time.
Then, as described in the background section above, by calculating l = L × 2 × Rb / (Ra + Rb), it is possible to know the length from l, that is, one end of the fault occurrence cable 1 to the insulation failure point Fp, The position of the insulation failure location Fp can be determined.

参考例の電力ケーブル高抵抗絶縁不良箇所標定装置によれば、導体課電方式であるにもかかわらず、地絡抵抗が高くかつシース抵抗が低い場合でも高電圧課電による焼成を行うことなく、絶縁不良箇所の位置を標定することができ、その絶縁不良箇所のみを取り替えるだけで済むため、復旧に要するコストを低減することができる。   According to the power cable high resistance insulation fault location device of the reference example, even though it is a conductor charging method, even if the ground fault resistance is high and the sheath resistance is low, without firing by high voltage charging, Since the location of the insulation failure location can be determined and only the insulation failure location needs to be replaced, the cost required for recovery can be reduced.

さらに、参考例を実施例2と同様に、ノイズ侵入防止回路20を、測定辺抵抗9と並列に、遮蔽層6の一端と遮蔽層26の一端との間に接続し、検流計メータ8をノイズ侵入防止回路20に接続するとともに、摺動接点10が測定辺抵抗9を按分している位置を検出し、按分比率を演算して表示する比率演算部21及び按分比率表示器22、並びにノイズ侵入防止回路20及び比率演算部21に電力を供給するバッテリー23を備えるようにすれば、より高抵抗の絶縁不良箇所の位置を標定できるようになる。   Further, similarly to the second embodiment, the noise intrusion prevention circuit 20 is connected in parallel with the measurement side resistor 9 between one end of the shielding layer 6 and one end of the shielding layer 26, and the galvanometer 8. Is connected to the noise intrusion prevention circuit 20, detects the position where the sliding contact 10 apportions the measurement side resistance 9, calculates the apportioning ratio and displays the apportioning ratio indicator 22, and If the battery 23 for supplying power to the noise intrusion prevention circuit 20 and the ratio calculation unit 21 is provided, the position of the insulation failure location with higher resistance can be determined.

なお、参考例では、第1高圧ガード14、第2高圧ガード15、第7高圧ガード30、第8高圧ガード31及び第9高圧ガード32を設置したが、このうち、第1高圧ガード14、第2高圧ガード15、第8高圧ガード31及び第9高圧ガード32は、標定精度を向上するために特に重要である。   In the reference example, the first high-pressure guard 14, the second high-pressure guard 15, the seventh high-pressure guard 30, the eighth high-pressure guard 31, and the ninth high-pressure guard 32 are installed. The second high pressure guard 15, the eighth high pressure guard 31, and the ninth high pressure guard 32 are particularly important in order to improve the positioning accuracy.

実施例1、2及び参考例の変形例を列記する。
(1)実施例1、2及び参考例においては、測定辺抵抗9の按分位置を変化させることが可能な摺動接点10を採用したが、測定辺抵抗を可変抵抗Raと固定抵抗Rbを直列に接続したもの又は固定抵抗Raと可変抵抗Rbを直列に接続したものとし、可変抵抗と固定抵抗との間に標定用直流電圧を印加する接点を設けても良い。
その場合、Ra又はRbが変化し、同時にRa+Rbも変化することとなるが、RaとRbを確定できれば、2×Rb/(Ra+Rb)は計算できるので、lを求めることができることに変わりはない。
(2)実施例1及び2においては、第5高圧ガード18と第2の健全ケーブル3の導体34の一端及び第6高圧ガード19と導体34の他端を、それぞれ相互接続線で電気的に接続したが、第5高圧ガード18と第1の健全ケーブル2の導体24の一端及び第6高圧ガード19と導体24の他端を、それぞれ相互接続線で電気的に接続しても良いし、導体34や導体24を利用せずに直接第5高圧ガード18と第6高圧ガード19を相互接続線で接続しても良い。ただし、この場合は別途健全な高圧ケーブルが必要となるため不利である。
(3)実施例1及び2においては、検流計メータ8及び測定辺抵抗9を、事故発生ケーブル1の遮蔽層6の一端と第1の健全ケーブル2の遮蔽層26の一端との間に並列に接続しているが、第1の健全ケーブル2については遮蔽層26に代えて導体24としても、検出可能な地絡抵抗は低下するものの標定は可能である。
(4)実施例1及び2においては、第5高圧ガード14と摺動接点10を相互接続線で接続し、また、参考例においては、第8高圧ガード31と摺動接点10を相互接続線で接続し、標定用直流電圧源11を流用して標定用直流電圧Eとほぼ同じ電圧を印加したが、標定用直流電圧源11を流用せずに標定用直流電圧程度の電圧を印加できる専用の直流電圧源といずれかの高圧ガードを相互接続線で接続しても良い。
(5)実施例2においては、按分比率を演算して表示する比率演算部21及び按分比率表示器22を採用したが、比率演算部21に亘長を入力できる入力部を追加して、L×2×Rb/(Ra+Rb)を演算して表示する位置演算部及び絶縁不良箇所位置表示器とすれば、作業時の計算間違い等を防止でき、確実に事故発生ケーブル1の一端から絶縁不良箇所Fpまでの長さを標定できる。
Examples 1 and 2 and modifications of the reference example are listed.
(1) In the first and second embodiments and the reference example, the sliding contact 10 capable of changing the prorated position of the measurement side resistor 9 is adopted, but the measurement side resistance is composed of the variable resistor Ra and the fixed resistor Rb in series. Or a fixed resistor Ra and a variable resistor Rb may be connected in series, and a contact for applying an orientation DC voltage may be provided between the variable resistor and the fixed resistor.
In that case, Ra or Rb changes, and Ra + Rb also changes at the same time. However, if Ra and Rb can be determined, 2 × Rb / (Ra + Rb) can be calculated, so that l can be obtained.
(2) In Embodiments 1 and 2, one end of the conductor 34 of the fifth high-voltage guard 18 and the second sound cable 3 and the other end of the sixth high-voltage guard 19 and the conductor 34 are electrically connected to each other by an interconnection line. Although connected, the one end of the conductor 24 of the fifth high-voltage guard 18 and the first sound cable 2 and the other end of the sixth high-voltage guard 19 and the conductor 24 may be electrically connected by an interconnection line, The fifth high voltage guard 18 and the sixth high voltage guard 19 may be directly connected by an interconnection line without using the conductor 34 or the conductor 24. However, this is disadvantageous because a separate high-voltage cable is required.
(3) In the first and second embodiments, the galvanometer meter 8 and the measurement side resistance 9 are placed between one end of the shielding layer 6 of the accident occurrence cable 1 and one end of the shielding layer 26 of the first sound cable 2. Although connected in parallel, the first sound cable 2 can be positioned as the conductor 24 instead of the shielding layer 26, although the detectable ground fault resistance is reduced.
(4) In Examples 1 and 2, the fifth high-voltage guard 14 and the sliding contact 10 are connected by an interconnection line, and in the reference example, the eighth high-voltage guard 31 and the sliding contact 10 are connected by an interconnection line. The standard DC voltage source 11 is diverted and the same voltage as the standard DC voltage E is applied. However, the standard DC voltage source 11 is not diverted and can be applied with a voltage equivalent to the standard DC voltage. The DC voltage source and any one of the high-voltage guards may be connected by an interconnection line.
(5) In the second embodiment, the ratio calculator 21 and the proportional ratio indicator 22 that calculate and display the proportional ratio are employed. However, an input unit that can input the length over the ratio calculator 21 is added, and L X2 x Rb / (Ra + Rb) is calculated and displayed position calculation unit and insulation fault location position indicator, you can prevent miscalculation at the time of work, and surely fault insulation location from one end of the cable 1 The length up to Fp can be determined.

1 事故発生ケーブル 2 第1の健全ケーブル 3 第2の健全ケーブル
4、24、34 導体 5 絶縁体 6、26 遮蔽層
7、27 シース 8 検流計メータ 9 測定辺抵抗 10 摺動接点
11 標定用直流電圧源 12 短絡線 13、33 アース線
14 第1高圧ガード 15 第2高圧ガード 16 第3高圧ガード
17 第4高圧ガード 18 第5高圧ガード 19 第6高圧ガード
20 ノイズ侵入防止回路 21 比率演算部 22 按分比率表示器
23 バッテリー 28 基板 29 絶縁棒 30 第7高圧ガード
31 第8高圧ガード 32 第9高圧ガード
DESCRIPTION OF SYMBOLS 1 Accident generation cable 2 1st sound cable 3 2nd sound cable 4, 24, 34 Conductor 5 Insulator 6, 26 Shielding layer 7, 27 Sheath 8 Galvanometer 9 Measurement side resistance 10 Sliding contact 11 For standardization DC voltage source 12 short-circuit line 13, 33 ground line 14 first high-voltage guard 15 second high-voltage guard 16 third high-voltage guard 17 fourth high-voltage guard 18 fifth high-voltage guard 19 sixth high-voltage guard 20 noise intrusion prevention circuit 21 ratio calculation unit 22 Proportion ratio indicator 23 Battery 28 Substrate 29 Insulating rod 30 Seventh high-pressure guard 31 Eighth high-pressure guard 32 Ninth high-pressure guard

Claims (7)

検流計メータ及び測定辺抵抗を、事故発生ケーブルの遮蔽層の一端と健全ケーブルの遮蔽層の一端との間に並列に接続し、
一部に可変抵抗を含む測定辺抵抗の所定の接点又は測定辺抵抗の按分位置を変化させることが可能な摺動接点と接地点との間に標定用直流電圧を印加し、
前記事故発生ケーブルの遮蔽層の他端と前記健全ケーブルの遮蔽層の他端を短絡線で接続
前記事故発生ケーブルにおける検流計メータ及び測定辺抵抗の接続点に対する一端側近傍の周囲に、前記事故発生ケーブルの導体及び遮蔽層とは絶縁された導電性の第1高圧ガードを配置し、
前記事故発生ケーブルにおける短絡線の接続点に対する他端側近傍の周囲に、前記事故発生ケーブルの導体及び遮蔽層とは絶縁された導電性の第2高圧ガードを配置し、
前記第1高圧ガード及び第2高圧ガードを電気的に接続し、
前記第1高圧ガード及び第2高圧ガードに前記標定用直流電圧程度の直流電圧を印加するとともに、
前記事故発生ケーブルの導体を接地してブリッジ回路を形成し、
前記測定辺抵抗の一部の抵抗値を変化させるか、前記測定辺抵抗の按分位置を変化させることによって、前記検流計メータに流れる電流を零に調整し、前記測定辺抵抗の一部の抵抗値又は前記測定辺抵抗の按分位置に基づいて電力ケーブルの絶縁不良箇所の位置を標定する
ことを特徴とする電力ケーブル高抵抗絶縁不良箇所標定方法。
Connect the galvanometer meter and the measurement side resistance in parallel between one end of the shielding layer of the accident cable and one end of the shielding layer of the sound cable,
Apply a DC voltage for orientation between a predetermined contact of the measurement side resistance including a variable resistance or a sliding contact that can change the prorated position of the measurement side resistance and the grounding point,
The other end of the shielding layer of the other end and the healthy cable shielding layer of the accident cable connected by short-circuit line,
A conductive first high-voltage guard insulated from the conductor and shielding layer of the accident occurrence cable is disposed around the vicinity of one end side with respect to the connection point of the galvanometer meter and the measurement side resistance in the accident occurrence cable,
Around the vicinity of the other end side of the connection point of the short-circuit line in the accident occurrence cable, a conductive second high-voltage guard insulated from the conductor and the shielding layer of the accident occurrence cable is disposed,
Electrically connecting the first high pressure guard and the second high pressure guard;
While applying a direct current voltage about the orientation direct current voltage to the first high voltage guard and the second high voltage guard,
Grounding the conductor of the accident occurrence cable to form a bridge circuit,
By changing the resistance value of a part of the measurement side resistance or changing the prorated position of the measurement side resistance, the current flowing through the galvanometer meter is adjusted to zero, and a part of the measurement side resistance is adjusted. A power cable high resistance insulation failure location determination method characterized in that the location of an insulation failure location of a power cable is determined based on a resistance value or an apportioned position of the measurement side resistance.
前記事故発生ケーブルにおける検流計メータ及び測定辺抵抗の接続点に対する他端側近傍の周囲に、前記事故発生ケーブルの導体及び遮蔽層とは絶縁された導電性の第3高圧ガードを配置し、  Around the vicinity of the other end side of the connection point of the galvanometer meter and the measurement side resistance in the accident occurrence cable, a conductive third high voltage guard insulated from the conductor and the shielding layer of the accident occurrence cable is disposed,
前記事故発生ケーブルにおける短絡線の接続点に対する一端側近傍の周囲に、前記事故発生ケーブルの導体及び遮蔽層とは絶縁された導電性の第4高圧ガードを配置し、  A conductive fourth high-voltage guard insulated from the conductor and the shielding layer of the accident occurrence cable is disposed around the vicinity of one end side of the connection point of the short-circuit line in the accident occurrence cable,
前記健全ケーブルにおける検流計メータ及び測定辺抵抗の接続点に対する他端側近傍の周囲に、前記健全ケーブルの導体及び遮蔽層とは絶縁された導電性の第5高圧ガードを配置し、  Around the vicinity of the other end side of the connection point of the galvanometer meter and the measurement side resistance in the sound cable, a conductive fifth high voltage guard insulated from the conductor and the shielding layer of the sound cable is disposed,
前記健全ケーブルにおける短絡線の接続点に対する一端側近傍の周囲に、前記健全ケーブルの導体及び遮蔽層とは絶縁された導電性の第6高圧ガードを配置し、  A conductive sixth high-voltage guard insulated from the conductor and shielding layer of the healthy cable is disposed around the vicinity of one end side of the connection point of the short-circuit line in the healthy cable,
前記第1高圧ガードないし前記第6高圧ガードを電気的に接続するとともに、  Electrically connecting the first high pressure guard to the sixth high pressure guard;
前記第1高圧ガードないし前記第6高圧ガードに前記標定用直流電圧程度の直流電圧を印加する  A direct current voltage of about the orientation direct current voltage is applied to the first high voltage guard to the sixth high voltage guard.
ことを特徴とする請求項1に記載の電力ケーブル高抵抗絶縁不良箇所標定方法。  The power cable high resistance insulation failure location method according to claim 1.
前記標定用直流電圧を前記電力ケーブルに接続される開閉装置の許容直流電圧値以下の電圧とするとともに、
前記検流計メータと、前記事故発生ケーブルの遮蔽層の一端及び前記健全ケーブルの遮蔽層の一端との間に、前記電力ケーブルに重畳するノイズが前記検流計メータに入力されることを防止するノイズ防止回路を接続する
ことを特徴とする請求項1又は2に記載の電力ケーブル高抵抗絶縁不良箇所標定方法。
The orientation DC voltage is set to a voltage equal to or lower than an allowable DC voltage value of a switching device connected to the power cable,
Prevents noise superimposed on the power cable from being input to the galvanometer meter between the galvanometer meter and one end of the shielding layer of the accident cable and one end of the shielding layer of the sound cable. A power cable high resistance insulation failure location method according to claim 1 or 2 , wherein a noise prevention circuit is connected.
事故発生ケーブルの遮蔽層の一端と健全ケーブルの遮蔽層の一端との間に並列に接続される検流計メータ及び測定辺抵抗、
一部に可変抵抗を含む測定辺抵抗の所定の接点又は測定辺抵抗の按分位置を変化させることが可能な摺動接点、
前記所定の接点又は前記摺動接点と接地点との間に標定用直流電圧を印加する標定用直流電圧源、
前記事故発生ケーブルの遮蔽層の他端と前記健全ケーブルの遮蔽層の他端を接続する短絡線、
前記事故発生ケーブルにおける検流計メータ及び測定辺抵抗の接続点に対する一端側近傍の周囲に、前記事故発生ケーブルの導体及び遮蔽層とは絶縁されて配置される導電性の第1高圧ガード、
前記事故発生ケーブルにおける短絡線の接続点に対する他端側近傍の周囲に、前記事故発生ケーブルの導体及び遮蔽層とは絶縁されて配置される導電性の第2高圧ガード、
前記第1高圧ガード及び第2高圧ガードを電気的に接続する相互接続線、
及び前記第1高圧ガード及び第2高圧ガードに前記標定用直流電圧程度の直流電圧を印加する直流電圧源、
並びに前記事故発生ケーブルの導体と接地点とを接続するアース線を備える
ことを特徴とする電力ケーブル高抵抗絶縁不良箇所標定装置。
A galvanometer meter and a side resistance connected in parallel between one end of the shield layer of the accident cable and one end of the shield layer of the sound cable;
A predetermined contact of a measuring side resistance including a variable resistance in part or a sliding contact capable of changing a prorated position of the measuring side resistance;
An orientation DC voltage source for applying an orientation DC voltage between the predetermined contact or the sliding contact and a ground point;
A short-circuit wire connecting the other end of the shielding layer of the accident cable and the other end of the shielding layer of the sound cable;
A conductive first high-voltage guard disposed around one end side of a connection point between the galvanometer meter and the measurement side resistance in the accident occurrence cable and insulated from a conductor and a shielding layer of the accident occurrence cable;
A conductive second high-voltage guard disposed around the other end side of the accident occurrence cable in the vicinity of the connection point of the short-circuit line and insulated from the conductor and the shielding layer of the accident occurrence cable;
An interconnection line for electrically connecting the first high voltage guard and the second high voltage guard;
And a DC voltage source for applying a DC voltage of about the DC voltage for orientation to the first high voltage guard and the second high voltage guard,
And a grounding wire for connecting a conductor of the accident cable and a grounding point.
前記事故発生ケーブルにおける検流計メータ及び測定辺抵抗の接続点に対する他端側近傍の周囲に、前記事故発生ケーブルの導体及び遮蔽層とは絶縁されて配置される導電性の第3高圧ガード、  A conductive third high-voltage guard disposed around the other end side of the connection point of the galvanometer meter and the measurement side resistance in the accident occurrence cable, insulated from the conductor and the shielding layer of the accident occurrence cable;
前記事故発生ケーブルにおける短絡線の接続点に対する一端側近傍の周囲に、前記事故発生ケーブルの導体及び遮蔽層とは絶縁されて配置される導電性の第4高圧ガード、  A conductive fourth high-voltage guard disposed around the one end side near the connection point of the short-circuit line in the accident occurrence cable and insulated from the conductor and the shielding layer of the accident occurrence cable;
前記健全ケーブルにおける検流計メータ及び測定辺抵抗の接続点に対する他端側近傍の周囲に、前記健全ケーブルの導体及び遮蔽層とは絶縁されて配置される導電性の第5高圧ガード、  A conductive fifth high-voltage guard disposed around the other end side of the connection point of the galvanometer meter and the measurement side resistance in the sound cable and insulated from the conductor and the shielding layer of the sound cable;
前記健全ケーブルにおける短絡線の接続点に対する一端側近傍の周囲に、前記健全ケーブルの導体及び遮蔽層とは絶縁されて配置される導電性の第6高圧ガード、  A conductive sixth high-voltage guard disposed around the one end side of the connection point of the short-circuit line in the healthy cable and insulated from the conductor and the shielding layer of the healthy cable;
前記第1高圧ガードないし前記第6高圧ガードを電気的に接続する相互接続線、  An interconnection line for electrically connecting the first high-voltage guard to the sixth high-voltage guard;
並びに前記第1高圧ガードないし前記第6高圧ガードに前記標定用直流電圧程度の直流電圧を印加する直流電圧源を備える  And a DC voltage source for applying a DC voltage of about the DC voltage for orientation to the first high voltage guard to the sixth high voltage guard.
ことを特徴とする請求項4に記載の電力ケーブル高抵抗絶縁不良箇所標定装置。  The power cable high resistance insulation defect location apparatus according to claim 4.
前記検流計メータ及び前記測定辺抵抗を配置している基板を大地から絶縁し支持する絶縁棒等の絶縁物に、基板及び大地とは絶縁されて配置される導電性の第7高圧ガード、  A conductive seventh high-voltage guard disposed on an insulator such as an insulating rod that insulates and supports the substrate on which the galvanometer meter and the measurement side resistance are disposed from the ground, and is insulated from the substrate;
前記第1高圧ガードないし前記第7高圧ガードを電気的に接続する相互接続線、  An interconnection line for electrically connecting the first high-voltage guard to the seventh high-voltage guard;
並びに前記第1高圧ガードないし前記第7高圧ガードに前記標定用直流電圧程度の直流電圧を印加する直流電圧源を備える  And a DC voltage source for applying a DC voltage on the order of the DC voltage for orientation to the first high voltage guard to the seventh high voltage guard.
ことを特徴とする請求項4又は5に記載の電力ケーブル高抵抗絶縁不良箇所標定装置。  The power cable high resistance insulation defect location device according to claim 4 or 5.
前記検流計メータと前記事故発生ケーブルの遮蔽層の一端及び前記健全ケーブルの遮蔽層の一端との間に接続され、前記電力ケーブルに重畳するノイズが前記検流計メータに入力されることを防止するノイズ侵入防止回路を備える
ことを特徴とする請求項4〜6のいずれかに記載の電力ケーブル高抵抗絶縁不良箇所標定装置。
The galvanometer meter is connected between one end of the shielding layer of the accident cable and one end of the shielding layer of the sound cable, and noise superimposed on the power cable is input to the galvanometer meter. A power cable high resistance insulation failure location system according to any one of claims 4 to 6, further comprising a noise intrusion prevention circuit for preventing.
JP2013056895A 2013-03-19 2013-03-19 Power cable high resistance insulation failure location method and apparatus Active JP6069051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013056895A JP6069051B2 (en) 2013-03-19 2013-03-19 Power cable high resistance insulation failure location method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013056895A JP6069051B2 (en) 2013-03-19 2013-03-19 Power cable high resistance insulation failure location method and apparatus

Publications (2)

Publication Number Publication Date
JP2014182014A JP2014182014A (en) 2014-09-29
JP6069051B2 true JP6069051B2 (en) 2017-01-25

Family

ID=51700864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013056895A Active JP6069051B2 (en) 2013-03-19 2013-03-19 Power cable high resistance insulation failure location method and apparatus

Country Status (1)

Country Link
JP (1) JP6069051B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109507540A (en) * 2018-12-20 2019-03-22 孟小晶 High value ground short circuit fault point is pressed to search instrument and lookup method in one kind
CN111983268A (en) * 2020-09-27 2020-11-24 华润电力投资有限公司中西分公司 High-voltage power distribution cabinet and interface device thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032456A (en) * 1973-07-28 1975-03-29
JPH03214073A (en) * 1990-01-19 1991-09-19 Hitachi Cable Ltd Measuring method for dc leakage current of power cable
JP4984411B2 (en) * 2005-03-25 2012-07-25 東京電力株式会社 Insulation degradation position evaluation apparatus and method

Also Published As

Publication number Publication date
JP2014182014A (en) 2014-09-29

Similar Documents

Publication Publication Date Title
US20160103157A1 (en) Ratio metric current measurement
RU2394250C2 (en) Method and device to pinpoint faulty grounding section
EP2676148B1 (en) Fault detection system and method, and power system for subsea pipeline direct electrical heating cables
JP5009950B2 (en) Test method and apparatus for grounding device
JP6069051B2 (en) Power cable high resistance insulation failure location method and apparatus
EP4067921B1 (en) Sheath integrity monitoring
JP2011242206A (en) Insulation deterioration diagnosis method and insulation deterioration diagnosis device of power cable
KR101984432B1 (en) Diagnosis device for monitoring degradation of cable and diagnosis method thereof
KR100852039B1 (en) Water leakage sensing device of heat piping and its method
JP4984411B2 (en) Insulation degradation position evaluation apparatus and method
CN105988061B (en) A kind of method of high voltage single-core cable protective layer fault location
US8854068B2 (en) Diagnostic method for oil-filled electrical device, diagnostic device for implementing the diagnostic method, and oil-filled electrical device provided with the diagnostic device
US4410850A (en) Water-compensated open fault locator
JP2014202696A (en) Electrical leak detection method
JP2012103063A (en) Conduction inspection method
JP4215656B2 (en) Ground fault detection device and ground fault detection method
CN207909571U (en) A kind of medium-pressure power cable with protection copper strips
JP2020106407A (en) Device and method for diagnosing deterioration of insulator of connection body for high voltage overhead cable
EP4257987A1 (en) Method for locating a fault point on a high-voltage three-phase ac cable, and system for locating a fault point
KR101391146B1 (en) On-Line Cable Status Monitoring Apparatus and Method thereof
RU2321009C1 (en) Method and device for measurement of earth rod resistance
CN111913126B (en) Insulation pad arcing fault detection method
KR20200004620A (en) Trouble monitoring apparatus and method of underground cable protection plate
CN215813274U (en) Breakpoint detection sheath and cable comprising same
KR20240094786A (en) Power Equipment System Capable of Self-Diagnosis and Remote Failure Detection System of Power Equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161226

R150 Certificate of patent or registration of utility model

Ref document number: 6069051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250