JP3280547B2 - Insulation diagnosis method - Google Patents

Insulation diagnosis method

Info

Publication number
JP3280547B2
JP3280547B2 JP23414195A JP23414195A JP3280547B2 JP 3280547 B2 JP3280547 B2 JP 3280547B2 JP 23414195 A JP23414195 A JP 23414195A JP 23414195 A JP23414195 A JP 23414195A JP 3280547 B2 JP3280547 B2 JP 3280547B2
Authority
JP
Japan
Prior art keywords
insulating layer
peeling
state
insulation
breakdown voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23414195A
Other languages
Japanese (ja)
Other versions
JPH0980029A (en
Inventor
博 宮尾
隆徳 佐藤
修哉 萩原
宏之 神谷
満 小野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23414195A priority Critical patent/JP3280547B2/en
Publication of JPH0980029A publication Critical patent/JPH0980029A/en
Application granted granted Critical
Publication of JP3280547B2 publication Critical patent/JP3280547B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Relating To Insulation (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は高電圧が印加される電気
機器の絶縁診断法に関するものであり、特に信頼度の高
い余寿命予測が要求される電気機器に好適な絶縁診断法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulation diagnosis method for electric equipment to which a high voltage is applied, and more particularly to an insulation diagnosis method suitable for electric equipment which requires highly reliable estimation of remaining life. is there.

【0002】[0002]

【従来の技術】従来の電気機器の絶縁診断法としては、
電気的パラメータを測定しその値をもとに残存破壊電圧
を推定することで、余寿命を予測する方法があった。こ
の方法は、残存破壊電圧(Vr)と、放電パラメータ
(Δ)と、最大放電電荷量(Qm)との関係式が一般に下
記数1のごとく与えられるとの前提の下に成り立つ方法
である。
2. Description of the Related Art Conventional insulation diagnosis methods for electrical equipment include:
There has been a method of predicting a remaining life by measuring an electric parameter and estimating a residual breakdown voltage based on the value. This method is a method that is established under the premise that a relational expression between the residual breakdown voltage (Vr), the discharge parameter (Δ), and the maximum discharge charge (Qm) is generally given by the following equation (1).

【0003】[0003]

【数1】Vr=100−a・(Δ−b)−c・log(Qm/d) 数1中のa,b,cは、絶縁層の材料等に応じて別途定
められる係数である。dは、絶縁層の厚さである。な
お、放電パラメータ(Δ)は、誘電体損増加率(Δ2)
と、交流電流増加率(ΔI)との和である また、使用年数あるいは起動停止回数のような運転経歴
に基づいて余寿命を推定する方法があった。
Vr = 100−a · (Δ−b) −c · log (Qm / d) “a”, “b” and “c” in Equation 1 are coefficients separately determined according to the material of the insulating layer and the like. d is the thickness of the insulating layer. The discharge parameter (Δ) is the dielectric loss increase rate (Δ2)
In addition, there is a method of estimating the remaining life based on the operating history such as the number of years of use or the number of times of starting and stopping.

【0004】これら従来の絶縁診断方法については、例
えば、電気学会論文誌B,110巻4号,p267-p276(199
0)に記載されている。
[0004] These conventional insulation diagnosis methods are described in, for example, IEEJ Transactions on Electronics, Vol. 110, No. 4, p. 267-p. 276 (199).
0).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、電気機
器の絶縁層は、電気的パラメータの値や運転経歴のみで
は判断することが困難な劣化形態を示すことがある。こ
のような場合、従来行われていたような電気的パラメー
タや運転経歴にのみ基づいた絶縁診断では精度のよい判
断ができなかった。例えば、上記数1によれば、Qmが大
きければ、Vrは小さくなるはずである。しかし、実際に
はQmが大きいにも関わらず、Vrが大きい場合も少なくな
かった。そのため、余寿命が十分ある機器を余寿命が無
いと判断したり、余寿命が残り少ないにもかかわらず余
寿命が長いと判断する可能性があった。
However, the insulating layer of an electric device sometimes shows a deteriorated form which is difficult to judge only by the value of the electric parameter or the operation history. In such a case, the insulation diagnosis based on only the electric parameters and the operation history as conventionally performed cannot make an accurate determination. For example, according to Equation 1, if Qm is large, Vr should be small. However, in many cases, Vr was large despite the fact that Qm was large. For this reason, there is a possibility that a device having a sufficient remaining life is determined to have no remaining life, or a remaining life is determined to be long even though the remaining life is short.

【0006】本発明は、電気機器の絶縁劣化状態をより
精度良く診断可能な絶縁診断方法を提供することを目的
とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an insulation diagnosis method capable of more accurately diagnosing an insulation deterioration state of an electric device.

【0007】[0007]

【課題を解決するための手段】本発明では、電気的パラ
メータに加えて、機器の絶縁の劣化状態を表しうる非電
気的なパラメータを、診断に導入することで精度の高い
絶縁診断を行うものである。
According to the present invention, a high-precision insulation diagnosis is performed by introducing a non-electric parameter which can indicate a deterioration state of the insulation of a device in addition to an electric parameter into a diagnosis. It is.

【0008】本発明の第1の態様としては、最大放電電
荷量を含んだ演算によって絶縁劣化の程度を表す残存破
壊電圧を求める絶縁診断方法において、絶縁層内部の剥
離状態を検査し、その検査結果に応じて上記最大放電電
荷量を補正し、該補正後の最大放電電荷量を用いて上記
残存破壊電圧を求めること、を特徴とする絶縁診断方法
が提供される。
According to a first aspect of the present invention, there is provided an insulation diagnosis method for obtaining a residual breakdown voltage indicating a degree of insulation deterioration by an operation including a maximum discharge charge amount, wherein a peeling state inside the insulating layer is inspected, and the inspection is performed. An insulation diagnosis method is provided, wherein the maximum discharge charge amount is corrected according to a result, and the residual breakdown voltage is obtained using the corrected maximum discharge charge amount.

【0009】上記剥離状態の検査は、絶縁層の打音を解
析することで行ってもよい。
[0009] The inspection of the peeling state may be performed by analyzing the sound of the insulating layer.

【0010】上記打音の解析は、オクターブスペクトル
分析分布をパターン分けすることで行うことが好まし
い。
[0010] The analysis of the tapping sound is preferably performed by patterning an octave spectrum analysis distribution.

【0011】本発明の第2の態様としては、絶縁層の化
学的劣化状態を検査し、その検査結果に応じて放電パラ
メータを補正した上で、絶縁劣化の程度を表す残存破壊
電圧を補正後の該放電パラメータを含んだ演算によって
求めることを特徴とする絶縁診断方法が提供される 上記化学的劣化状態の検査は、絶縁層の色に基づいて行
ってもよい。この場合、上記絶縁層の色は、分光スペク
トルの最大強度の波長に代表させてもよい。
According to a second aspect of the present invention, a state of chemical deterioration of an insulating layer is inspected, a discharge parameter is corrected in accordance with a result of the inspection, and a residual breakdown voltage indicating a degree of insulation deterioration is corrected. An insulation diagnosis method is provided, wherein the inspection is performed based on a color of an insulation layer. In this case, the color of the insulating layer may be represented by the wavelength of the maximum intensity of the spectrum.

【0012】上記化学的劣化状態の検査は、絶縁物の赤
外線分光スペクトルの吸光度のピーク位置に基づいて行
ってもよい。
The inspection of the chemical deterioration state may be performed based on the peak position of the absorbance in the infrared spectrum of the insulator.

【0013】[0013]

【作用】第1の態様の作用について説明する。The operation of the first embodiment will be described.

【0014】絶縁層内部の剥離状態を検査する。この検
査は、絶縁層の打音を解析することで行えば非破壊で可
能である。打音の解析は、例えば、オクターブスペクト
ル分析分布をパターン分けすることで可能である。
The peeling state inside the insulating layer is inspected. This inspection can be performed nondestructively by analyzing the sound of the insulating layer. The hitting sound can be analyzed, for example, by patterning the octave spectrum analysis distribution.

【0015】剥離状態の検査結果に応じて上記最大放電
電荷量を補正する。そして、該補正後の最大放電電荷量
を用いて所定の演算を行うことで上記残存破壊電圧を求
める。
The maximum discharge charge amount is corrected in accordance with the inspection result of the peeled state. The residual breakdown voltage is obtained by performing a predetermined operation using the corrected maximum discharge charge amount.

【0016】第2の態様の作用について説明する。The operation of the second embodiment will be described.

【0017】絶縁層の化学的劣化状態を検査する。絶縁
層の色、吸光度等は、化学的劣化状態に応じて変化す
る。そのため、この検査は、絶縁層の色(これは、分光
スペクトルの最大強度の波長に代表させてもよい)に基
づいて行うことができる。あるいは、絶縁物の赤外線分
光スペクトルの吸光度のピーク位置に基づいて行うこと
ができる。
The state of chemical deterioration of the insulating layer is inspected. The color, absorbance, and the like of the insulating layer change according to the state of chemical deterioration. Therefore, this inspection can be performed based on the color of the insulating layer (which may be represented by the wavelength of the maximum intensity of the spectrum). Alternatively, it can be performed based on the peak position of the absorbance in the infrared spectrum of the insulator.

【0018】化学的劣化状態の検査結果に応じて上記放
電パラメータを補正する。そして、該補正後の最大放電
電荷量を用いて所定の演算を行うことで上記残存破壊電
圧を求める。
The discharge parameter is corrected in accordance with the result of the inspection for the state of chemical deterioration. The residual breakdown voltage is obtained by performing a predetermined operation using the corrected maximum discharge charge amount.

【0019】このように、電気的パラメータ(例えば、
最大放電電荷量、放電パラメータ)に、剥離状態、化学
的劣化状態等を反映したパラメータを組み合わせること
により、絶縁層の状態をより詳しく分類可能になるため
劣化状態の判定の精度が向上する。
Thus, the electrical parameters (for example,
By combining the parameters reflecting the exfoliated state, the chemically degraded state, and the like with the maximum discharge charge amount and discharge parameters), the state of the insulating layer can be classified in more detail, so that the accuracy of the determination of the degraded state is improved.

【0020】[0020]

【実施例】以下、本発明の実施例を図面を用いて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0021】実施例1 図1は、本発明によって得られた新Dマップである。図
1の横軸は最大放電電荷量(Qm)に剥離係数(A)を乗
算した値である。図1の縦軸は放電パラメータ(Δ)の
値である。図1のグラフ中に描いた曲線は、等残存破壊
電圧カーブである。従って、各パラメータ( Qm,A,
Δ )の値を求め、図1を参照することで、残存破壊電
圧を知ることができる。なお、図1は、本発明を高圧回
転機のコイルの絶縁余寿命診断に適用した場合の例であ
る。
Embodiment 1 FIG. 1 is a new D map obtained by the present invention. The horizontal axis in FIG. 1 is a value obtained by multiplying the maximum discharge charge (Qm) by the peeling coefficient (A). The vertical axis in FIG. 1 is the value of the discharge parameter (Δ). The curve drawn in the graph of FIG. 1 is an equal residual breakdown voltage curve. Therefore, each parameter (Qm, A,
By determining the value of Δ) and referring to FIG. 1, the residual breakdown voltage can be known. FIG. 1 shows an example in which the present invention is applied to a diagnosis of remaining insulation life of a coil of a high-voltage rotating machine.

【0022】この図1に示したマップは、下記数2に各
種データを代入した結果をプロットすることで得られる
ものである。本発明では本願発明者が実験によって得た
知見に基づいて、上述の数1に剥離係数Aを新たに導入
することでこの数2を得た。該数2は本願発明者が初め
て提案するものである。
The map shown in FIG. 1 is obtained by plotting the result of substituting various data into the following equation (2). In the present invention, based on the findings obtained by the inventor of the present application through experiments, Equation 2 was obtained by newly introducing the peeling coefficient A into Equation 1 described above. The equation (2) is proposed by the present inventor for the first time.

【0023】[0023]

【数2】Vr=100−a・(Δ−b)−c・log(Qm・A/d) 数2に含まれている最大放電電荷量(Qm)および放電パ
ラメータ(Δ)は、電気的パラメータである。なお、放
電パラメータ(Δ)は、誘電体損増加率(Δ2)と、交
流電流増加率(ΔI)との和である。a,b,cは、絶
縁層の材料等に応じて別途定められる係数である。d
は、絶縁層の厚さである。
Vr = 100−a · (Δ−b) −c · log (Qm · A / d) The maximum discharge charge amount (Qm) and the discharge parameter (Δ) contained in Expression 2 are electric Parameter. The discharge parameter (Δ) is the sum of the dielectric loss increase rate (Δ2) and the AC current increase rate (ΔI). a, b, and c are coefficients separately determined according to the material of the insulating layer and the like. d
Is the thickness of the insulating layer.

【0024】剥離係数Aは、非電気的なパラメータであ
る。剥離係数Aは、絶縁層内部での剥離の状態を反映し
たものである。詳細は後ほど説明する。
The peeling coefficient A is a non-electrical parameter. The peeling coefficient A reflects the state of peeling inside the insulating layer. Details will be described later.

【0025】以下、数2の導出過程(あるいは、根拠)
を、順を追って説明する。
Hereinafter, the derivation process (or basis) of Equation 2
Will be described step by step.

【0026】 剥離状態− 残存破壊電圧(Vr) 回転機のコイル等に形成される絶縁層は一般に多層で構
成される。本願発明者は、様々なパラメータ間の相関を
調査した結果、Vrと、絶縁層内部での剥離状態とに関係
があることを見いだした。剥離状態と、モデルとしたコ
イルのVrとの関係を示す実測データを図2に示した。
Exfoliated State—Residual Breakdown Voltage (Vr) The insulating layer formed on the coil or the like of the rotating machine is generally composed of multiple layers. As a result of investigating the correlation between various parameters, the inventor of the present application has found that there is a relationship between Vr and a peeling state inside the insulating layer. FIG. 2 shows actual measurement data indicating the relationship between the peeled state and Vr of the model coil.

【0027】 剥離状態− Qm 本願発明者は、さらに詳細な実験を行った結果、剥離状
態は、Vrを決定づけているパラメータのうちのQmと特に
関係があることを見いだした。剥離状態と、Qmとの関係
を示す実測データを図3に示した。両者の間に相関が見
られるのは、最大放電電荷量(Qm)に影響を与えるボイ
ドは、コイル絶縁層の剥離により生じるためと思われ
る。
Exfoliation State—Qm As a result of further detailed experiments, the present inventor has found that the exfoliation state is particularly related to Qm, a parameter that determines Vr. FIG. 3 shows actually measured data indicating the relationship between the peeled state and Qm. The reason why there is a correlation between the two is thought to be that voids affecting the maximum discharge charge (Qm) are generated by peeling of the coil insulating layer.

【0028】 Qmの補正 上述の、の結果から、本願発明者は、上述の数1に
おけるQmを剥離状態に応じて補正することで、より正確
な残存破壊電圧Vrおよび余寿命の予測が可能になると結
論づけた。このQmの補正は、剥離状態に応じて定まるパ
ラメータ(すなわち、上述の剥離係数A)を、Qmに乗算
することで行うこととした。このようにして得られたの
が、上述の数2である。
Correction of Qm From the results described above, the present inventor can correct the above-described Qm in Equation 1 according to the peeling state, thereby enabling more accurate prediction of the residual breakdown voltage Vr and the remaining life. Concluded. The correction of Qm is performed by multiplying Qm by a parameter determined according to the peeling state (that is, the peeling coefficient A described above). Equation 2 described above is obtained in this manner.

【0029】 剥離係数Aの決定 次に、本願発明者はQmの補正の程度、すなわち、剥離係
数Aの具体的値を決定すべく、Vrの経時変化を絶縁層の
剥離状態毎に測定した。この測定結果を図4に示した。
但し、該図4に示した剥離状態は、後述する打音を用い
た検査方法によって判定した結果である。
Determination of Peeling Coefficient A Next, the inventor of the present invention measured the degree of correction of Qm, that is, the temporal change of Vr for each peeling state of the insulating layer in order to determine a specific value of the peeling coefficient A. FIG. 4 shows the measurement results.
However, the peeled state shown in FIG. 4 is a result determined by an inspection method using a tapping sound described later.

【0030】この測定結果(図4)と上述の数2とを比
較することで、コイルの絶縁層の剥離状態毎に剥離係数
Aの具体的値を以下の通り決定した。
By comparing this measurement result (FIG. 4) with the above-mentioned Expression 2, a specific value of the peeling coefficient A was determined for each peeling state of the insulating layer of the coil as follows.

【0031】絶縁層が健全な場合:A=1 単層剥離に近い場合:A=0.3 単層剥離+多重剥離の場合:A=0.6 多重剥離がほとんどの場合:A=1 以上のようにして数2および剥離係数Aの具体的値が求
められた。しかし、これらを実際に用いるには、絶縁層
を破壊することなくその剥離状態を知る必要がある。本
願発明者は様々な試行を繰り返した結果、絶縁層の打音
を分析することでその内部における剥離状態を非破壊で
検査できることを見いだした。以下、該検査方法につい
て述べる。
When the insulating layer is sound: A = 1 When near single-layer peeling: A = 0.3 When single-layer peeling + multiple-layer peeling: A = 0.6 When multiple-layer peeling is almost: A = 1 Specific values of Equation 2 and the peeling coefficient A were obtained. However, in order to actually use them, it is necessary to know the peeled state without breaking the insulating layer. As a result of repeating various trials, the inventor of the present application has found that the peeling state inside the insulating layer can be inspected nondestructively by analyzing the tapping sound of the insulating layer. Hereinafter, the inspection method will be described.

【0032】絶縁層の剥離状態は、コイル絶縁層の打音
のオクターブ分析により得られるスペクトルパターンに
より分類することができる。オクターブスペクトル分析
は人間の聴覚に近い分析法であり、専門家の打音による
剥離状態判定と良い一致を示す。本実施例では剥離状態
を、4つの状態に場合分けしている。すなわち、打音良
で健全な場合と、単層剥離の場合、単層剥離+多重剥
離、多重剥離のみの4つの場合である。図5に1/3オク
ターブスペクトルでパターン分類した結果を示す。な
お、打音の発生のさせ方を変えても、ここで述べた4つ
のパターンは、基本的には変化しなかった。
The state of peeling of the insulating layer can be classified according to the spectrum pattern obtained by octave analysis of the sound of the coil insulating layer. Octave spectrum analysis is an analysis method close to human hearing, and shows good agreement with the judgment of the peeling state by the sound of an expert. In this embodiment, the peeled state is divided into four states. That is, there are four cases of good sound and good sound, single-layer peeling, single-layer peeling + multiple peeling, and only multiple peeling. FIG. 5 shows the result of pattern classification using the 1/3 octave spectrum. It should be noted that the four patterns described here basically did not change even if the method of generating the hitting sound was changed.

【0033】絶縁皮膜に単層剥離が生じている場合、従
来の絶縁診断方法(数1)では、最大放電電荷量が大き
な値をとっている場合には残存破壊電圧が大きく低下し
ているかのように診断されていた。しかし、本実施例
(数2)ではこのような場合でも残存破壊電圧が高い値
となり、実際の状況により適合した結果が得られること
が確認された。
In the case where a single layer peeling has occurred in the insulating film, the conventional insulation diagnostic method (Equation 1) indicates whether the residual breakdown voltage is significantly reduced when the maximum discharge charge is a large value. Had been diagnosed as such. However, in this example (Equation 2), the residual breakdown voltage was high even in such a case, and it was confirmed that a more suitable result could be obtained depending on the actual situation.

【0034】上述の図1は、横軸としてQmにAを乗算し
た値をとっている。従って、Aの値が、直接、等残存破
壊電圧線1の曲線形状に影響を与えることはない。つま
り、図1は、診断対象となる絶縁層の剥離状態によらず
適用可能である。
In FIG. 1, the value obtained by multiplying Qm by A is shown on the horizontal axis. Therefore, the value of A does not directly affect the curve shape of the equal residual breakdown voltage line 1. That is, FIG. 1 is applicable regardless of the peeling state of the insulating layer to be diagnosed.

【0035】残存余寿命を知るには、このようにして得
られる残存破壊電圧(数2参照)と、運転時間との関係
をグラフ上にプロットし、該プロット点を外挿すればよ
い(図6参照)。
In order to know the remaining residual life, the relationship between the residual breakdown voltage (see Equation 2) obtained in this way and the operating time is plotted on a graph, and the plot points may be extrapolated (see FIG. 4). 6).

【0036】本実施例の絶縁診断法によれば、絶縁層の
剥離状態によらず、常に正確な絶縁診断が可能である。
According to the insulation diagnosis method of the present embodiment, accurate insulation diagnosis can always be performed irrespective of the state of peeling of the insulating layer.

【0037】既に述べたとおり上述の図1は横軸にQmと
Aを乗算した値をとっていたため、等残存破壊電圧線1
の位置および形状は、絶縁層の剥離状態(つまり、A)
によらず一定である。従って、図1は、どのような剥離
状態の絶縁層の診断にもそのまま使用可能なものであっ
た。
As described above, in FIG. 1 described above, a value obtained by multiplying Qm by A is taken on the horizontal axis, so that the residual voltage line 1
The position and the shape of are determined by the peeling state of the insulating layer (that is, A).
It is constant regardless of Therefore, FIG. 1 can be used as it is for diagnosis of the insulating layer in any peeled state.

【0038】しかし、絶縁層の剥離状態毎に等残存破壊
電圧線(すなわち、残存破壊電圧を求める式)を用意し
てもよい。このような例を実施例2として説明する。
However, an equi-residual breakdown voltage line (that is, an equation for obtaining the residual breakdown voltage) may be prepared for each peeling state of the insulating layer. Such an example will be described as a second embodiment.

【0039】実施例2 この場合には、図7に示すとおり、横軸にQmをとる。そ
して、剥離状態(すなわち、剥離係数Aの値)ごとに、
等残存破壊電圧線を描く。図7の例では、実施例1と同
様に、剥離状態を4種類(健全,単層剥離,単層+多重
剥離,多重剥離)に分類している。このうち、健全な場
合と多重剥離の場合とでは同じ曲線となる。
Embodiment 2 In this case, the horizontal axis represents Qm, as shown in FIG. Then, for each peeling state (that is, the value of the peeling coefficient A),
Draw an equal residual breakdown voltage line. In the example of FIG. 7, similarly to the first embodiment, the peeling states are classified into four types (healthy, single-layer peeling, single-layer + multiple peeling, and multiple peeling). Among them, the same curve is obtained in the case of sound and the case of multiple peeling.

【0040】図7を実際に使用して残存破壊電圧を求め
るには、打音に基づいて剥離状態を4種類に分類し、そ
の分類に対応した図を参照すればよい。
In order to obtain the residual breakdown voltage by actually using FIG. 7, it is sufficient to classify the peeled state into four types based on the hitting sound and refer to the diagram corresponding to the classification.

【0041】絶縁余寿命は、実施例1と同様にして推定
できる。
The remaining insulation life can be estimated in the same manner as in the first embodiment.

【0042】本実施例の絶縁診断法によれば剥離状態に
応じて正しい絶縁余寿命推定が可能である。また、等残
存破壊電圧線を読みとる際に、横軸上での位置は、Qmそ
のままでよい。実施例1のごとくQmとAとの乗算を行っ
た上で、横軸上での位置を決定する必要はない。そのた
め、読み取り作業が容易である。
According to the insulation diagnosis method of this embodiment, it is possible to estimate the remaining insulation life correctly according to the state of separation. When reading the equal residual breakdown voltage line, the position on the horizontal axis may be Qm as it is. It is not necessary to determine the position on the horizontal axis after multiplying Qm and A as in the first embodiment. Therefore, the reading operation is easy.

【0043】実施例3 実施例3は、絶縁層の化学的劣化を考慮した絶縁劣化診
断を行うものである。該実施例3では、該化学的劣化状
態を絶縁層の色に基づいて判断している。
Embodiment 3 In Embodiment 3, an insulation deterioration diagnosis is performed in consideration of the chemical deterioration of the insulating layer. In the third embodiment, the state of chemical deterioration is determined based on the color of the insulating layer.

【0044】絶縁層の色は、その劣化状態に応じて変化
してゆく。そこで、絶縁層のスペクトル(380nm〜780n
m)中、最も強度の強い主波長の波長位置に基づいて、
図8に示すとおり、絶縁層の化学的劣化状態を健全、劣
化中、劣化大に分類する。そして、各分類毎にあらかじ
め定めた色係数Bを、上述の数1に導入することで下記
数3を得ている。
The color of the insulating layer changes according to the state of deterioration. Therefore, the spectrum of the insulating layer (380 nm to 780 n
m), based on the wavelength position of the strongest dominant wavelength,
As shown in FIG. 8, the state of chemical degradation of the insulating layer is classified into sound, degraded, and large. Then, the following equation 3 is obtained by introducing the color coefficient B predetermined for each classification into the above equation 1.

【0045】[0045]

【数3】Vr=100−a・(B・Δ−b)−c・log(Qm・d) 数3において、色係数Bを放電パラメータに乗算してい
るのは、色係数Bは絶縁物の平均的劣化状態を代表する
ものであり、放電パラメータと同様な意味を有するから
である。このような取り扱いは、色係数Bによって(つ
まり、化学的劣化状態に応じて)放電パラメータ(Δ)
を補正しているとみることもできる。
Vr = 100−a · (B · Δ−b) −c · log (Qm · d) In Equation 3, the color coefficient B is multiplied by the discharge parameter because the color coefficient B is an insulator. This is because it represents the average deterioration state and has the same meaning as the discharge parameter. Such a treatment depends on the color coefficient B (that is, depending on the state of chemical deterioration) and the discharge parameter (Δ).
It can be considered that is corrected.

【0046】本実施例によれば電気的パラメータだけで
は判定できなかった絶縁物の化学的劣化状態を考慮して
残存破壊電圧を表せるので、残存破壊電圧をより正確に
推定することが可能となる。該数3に各種データを代入
し計算した結果をプロットしたのが、図9である。該図
9では、縦軸に放電パラメータ(Δ)と色係数Bを乗算
した値をとっている。従って、等残存破壊電圧線1は、
色係数Bの値(すなわち、化学的劣化状態)に応じてそ
の位置、形状が変化することはない。そのため、図9
は、診断対象となっている絶縁層の化学的劣化状態によ
らず適用可能である。
According to this embodiment, the residual breakdown voltage can be expressed in consideration of the chemical degradation state of the insulator, which could not be determined only by the electric parameters, so that the residual breakdown voltage can be more accurately estimated. . FIG. 9 is a plot of the result obtained by substituting various data into the equation (3). In FIG. 9, the vertical axis represents a value obtained by multiplying the discharge parameter (Δ) by the color coefficient B. Therefore, the equal residual breakdown voltage line 1 is
The position and shape do not change according to the value of the color coefficient B (that is, the state of chemical deterioration). Therefore, FIG.
Is applicable irrespective of the chemical deterioration state of the insulating layer to be diagnosed.

【0047】縦軸に放電パラメータをとってプロットし
てもよい。この場合には、色係数Bごとに等残存破壊電
圧線の位置および形状が異なる。そのため、色係数B
(絶縁層の化学的劣化状態)の分類毎に図を用意する必
要がある。
The discharge parameters may be plotted on the vertical axis. In this case, the position and shape of the equal residual breakdown voltage line differ for each color coefficient B. Therefore, the color coefficient B
It is necessary to prepare a diagram for each classification of (chemically degraded state of insulating layer).

【0048】実施例4 実施例4は、絶縁層の化学的劣化を考慮した診断を行う
例である。該実施例4では、該化学的劣化を絶縁層の赤
外線分光スペクトルの吸光度のピーク位置に基づいて判
断している。
Embodiment 4 Embodiment 4 is an example in which a diagnosis is performed in consideration of the chemical deterioration of the insulating layer. In the fourth embodiment, the chemical deterioration is determined based on the peak position of the absorbance in the infrared spectrum of the insulating layer.

【0049】絶縁層の赤外線分光スペクトルの特性ピー
クの波数位置は、絶縁層の劣化の程度に応じてシフトし
てゆく(図10参照)。例えば、絶縁物の劣化に関係す
るカルボニル基の赤外線吸収係数は、絶縁物の劣化が進
むと低波数側にシフトする。そこで吸光度のピークの波
数(あるいは、そのシフト量)に応じて吸収係数Fを決
定する。そして、この吸収係数Fを、上述の数1に導入
することで下記数4を得ている。
The wave number position of the characteristic peak of the infrared spectrum of the insulating layer shifts according to the degree of deterioration of the insulating layer (see FIG. 10). For example, the infrared absorption coefficient of the carbonyl group related to the deterioration of the insulator shifts to a lower wavenumber as the deterioration of the insulator proceeds. Therefore, the absorption coefficient F is determined according to the wave number of the peak of the absorbance (or the shift amount thereof). Then, by introducing this absorption coefficient F into the above-described Equation 1, the following Equation 4 is obtained.

【0050】[0050]

【数4】Vr=100−a・(F・Δ−b)−c・log(Qm・d) ここで、吸収係数Fを放電パラメータ(Δ)に乗算して
いるのは、赤外分光スペクトルは絶縁物の平均的劣化状
態を代表するものであり、放電パラメータ(Δ)と同様
な意味を有するからである。このような取り扱いは、吸
収係数Fによって(つまり、絶縁層の化学的劣化状態に
応じて)放電パラメータを補正しているとみることもで
きる。
Vr = 100−a · (F · Δ−b) −c · log (Qm · d) where the absorption coefficient F is multiplied by the discharge parameter (Δ) to obtain the infrared spectrum. Represents the average deterioration state of the insulator, and has the same meaning as the discharge parameter (Δ). It can be considered that such treatment corrects the discharge parameter by the absorption coefficient F (that is, according to the state of chemical deterioration of the insulating layer).

【0051】吸収係数Fの具体的値は、上記数4の計算
結果Vrが破壊電圧の実測値とが一致するように、ピーク
波数の位置ごとに(つまり、劣化状態ごとに)あらかじ
め決定しておく。
The specific value of the absorption coefficient F is determined in advance for each position of the peak wavenumber (that is, for each deterioration state) so that the calculation result Vr of the above equation 4 matches the actually measured value of the breakdown voltage. deep.

【0052】なお、赤外線分光スペクトルの特性ピーク
の波数位置は、非電気的パラメータである。
The wave number position of the characteristic peak of the infrared spectrum is a non-electrical parameter.

【0053】本実施例によれば電気的パラメータだけで
は判定できなかった絶縁物の化学的劣化状態を考慮し
て、一つの図または式で残存破壊電圧を表現することが
できる。従って、残存破壊電圧をより正確に推定するこ
とが可能となる。
According to the present embodiment, the residual breakdown voltage can be expressed by one diagram or equation in consideration of the chemical deterioration state of the insulator that could not be determined only by the electric parameters. Therefore, it is possible to more accurately estimate the residual breakdown voltage.

【0054】さらに分光係数Fごとに残存破壊電圧の式
または図をわけて用いるようにしても構わない。このよ
うにしても絶縁層の化学的劣化状態を考慮しつつ、残存
破壊電圧を正確に推定できる。
Further, the residual breakdown voltage equation or figure may be used separately for each spectral coefficient F. Even in this case, the residual breakdown voltage can be accurately estimated while considering the chemical deterioration state of the insulating layer.

【0055】以上説明した各実施例の構成を必要に応じ
て組み合わせても構わない。例えば、剥離係数A、色係
数B、吸収係数Fを一つの式に一度に含めるようにして
もよい。
The configurations of the embodiments described above may be combined as needed. For example, the peeling coefficient A, the color coefficient B, and the absorption coefficient F may be included in one equation at a time.

【0056】[0056]

【発明の効果】本発明によれば絶縁層の残存破壊電圧が
正確に推定できるため、高電界,高温,高機械力といっ
た過酷な条件で使用される電気機器の絶縁システムの余
寿命を正確に推定できる。
According to the present invention, since the residual breakdown voltage of the insulating layer can be accurately estimated, the remaining life of the insulating system of the electrical equipment used under severe conditions such as high electric field, high temperature and high mechanical force can be accurately determined. Can be estimated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1によって得られる等残存破壊
電圧線を示す図である。
FIG. 1 is a diagram showing an equal residual breakdown voltage line obtained by Example 1 of the present invention.

【図2】剥離状態と破壊電圧と相関を示す図である。FIG. 2 is a diagram showing a correlation between a peeled state and a breakdown voltage.

【図3】剥離状態と最大放電電荷量との相関を示す図で
ある。
FIG. 3 is a diagram showing a correlation between a peeled state and a maximum discharge charge amount.

【図4】剥離状態と、破壊電圧の課電時間依存性との関
係を示す図である。
FIG. 4 is a diagram showing a relationship between a peeled state and the dependency of breakdown voltage on application time.

【図5】剥離状態と打音の1/3オクターブスペクトルパ
ターンの関係を示す図である。
FIG. 5 is a diagram showing a relationship between a peeling state and a 1/3 octave spectrum pattern of a tapping sound.

【図6】残存寿命の求め方を示す図である。FIG. 6 is a diagram showing a method for obtaining a remaining life.

【図7】本発明の実施例2における、絶縁層の剥離状態
毎の等残存破壊電圧線である。
FIG. 7 is an equal residual breakdown voltage line for each peeling state of an insulating layer in Example 2 of the present invention.

【図8】本発明の実施例3において用いられている、可
視光のスペクトル強度と絶縁物劣化との関係を示す図で
ある。
FIG. 8 is a diagram illustrating the relationship between the spectral intensity of visible light and the deterioration of an insulator used in Example 3 of the present invention.

【図9】実施例3における等残存破壊電圧を示す図であ
る。
FIG. 9 is a view showing an equal residual breakdown voltage in Example 3.

【図10】本発明の実施例4において用いられている、
赤外線波数と特性吸収ピークと絶縁物劣化との関係を示
す図である。
FIG. 10 shows a graph used in Example 4 of the present invention.
It is a figure which shows the relationship between an infrared wave number, a characteristic absorption peak, and insulator deterioration.

【符号の説明】[Explanation of symbols]

1…等残存破壊電圧線 1… Equivalent residual breakdown voltage line

───────────────────────────────────────────────────── フロントページの続き (72)発明者 萩原 修哉 茨城県日立市大みか町七丁目2番1号 株式会社日立製作所 電力・電機開発本 部内 (72)発明者 神谷 宏之 茨城県日立市幸町三丁目1番1号 株式 会社日立製作所 日立工場内 (72)発明者 小野田 満 茨城県日立市幸町三丁目1番1号 株式 会社日立製作所 日立工場内 (56)参考文献 特開 平7−221150(JP,A) 特開 昭56−74664(JP,A) 特開 昭58−139066(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 27/92 G01R 31/12 G01N 29/00 - 29/28 G01N 21/00 - 21/61 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shuya Hagiwara 7-2-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Power & Electricity Development Division, Hitachi, Ltd. Hitachi 1-1, Hitachi, Ltd. Hitachi Plant (72) Inventor Mitsuru Onoda 3-1-1, Sakaicho, Hitachi-shi, Ibaraki Pref. Hitachi, Ltd. Hitachi Plant (56) References JP-A-7-221150 ( JP, A) JP-A-56-74664 (JP, A) JP-A-58-139066 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 27/92 G01R 31/12 G01N 29/00-29/28 G01N 21/00-21/61

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絶縁層について絶縁劣化の程度を表す残存
破壊電圧を求める絶縁診断方法であって、 前記絶縁層の内部を検査し、剥離状態を求め、 予め定めておいた剥離状態と剥離係数Aとの関係によ
り、前記検査により求めた前記剥離状態に対応する剥離
係数Aを求め、 該剥離係数Aを数式: =100−a・(Δ−b)−c・log(Q ・A/d) (ただし、a,b,c:予め定められた係数 Δ:前記絶縁層について測定した放電パラメータ :前記絶縁層について測定した最大放電電荷量) に代入することにより残存破壊電圧V を求めることを
特徴とする絶縁診断方法。
1. An insulating layer having a degree of insulation deterioration.
An insulation diagnostic method for determining a breakdown voltage, wherein the inside of the insulating layer is inspected to determine a peeled state, and a relationship between a predetermined peeled state and a peeling coefficient A is determined.
And peeling corresponding to the peeling state obtained by the inspection.
Obtains the coefficients A, equation a該剥release factor A: V r = 100-a · (Δ-b) -c · log (Q m · A / d) ( however, a, b, c: predetermined coefficient delta: the discharge were measured for the insulating layer parameter Q m: the determination of the residual breakdown voltage V r by substituting the maximum discharge charge quantity) was measured for the insulating layer
Characterized insulation diagnosis method.
【請求項2】請求項1の絶縁診断方法において、前記絶
縁層の内部の検査を、前記絶縁層の打音の解析により行
ことを特徴とする絶縁診断方法
2. The insulation diagnosis method according to claim 1, wherein
An insulation diagnosis method , wherein the inspection of the inside of the edge layer is performed by analyzing the sound of the insulation layer.
【請求項3】請求項2に記載の絶縁診断方法において、
前記打音の解析は、オクターブスペクトル分析分布をパ
ターン分けすることにより行うことを特徴とする絶縁診
断方法
3. The insulation diagnostic method according to claim 2, wherein
Analysis of the hitting sound is insulated diagnosis and performing by pattern division of the octave spectral analysis distribution
Cutting method .
JP23414195A 1995-09-12 1995-09-12 Insulation diagnosis method Expired - Lifetime JP3280547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23414195A JP3280547B2 (en) 1995-09-12 1995-09-12 Insulation diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23414195A JP3280547B2 (en) 1995-09-12 1995-09-12 Insulation diagnosis method

Publications (2)

Publication Number Publication Date
JPH0980029A JPH0980029A (en) 1997-03-28
JP3280547B2 true JP3280547B2 (en) 2002-05-13

Family

ID=16966292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23414195A Expired - Lifetime JP3280547B2 (en) 1995-09-12 1995-09-12 Insulation diagnosis method

Country Status (1)

Country Link
JP (1) JP3280547B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4553421B2 (en) * 1999-07-14 2010-09-29 東洋電機製造株式会社 Estimation method of residual breakdown voltage value of rotating electrical machine
JP4550537B2 (en) * 2004-09-30 2010-09-22 三菱電機ビルテクノサービス株式会社 System and method for estimating residual insulation life of high-pressure rotating machine
JP2007135349A (en) * 2005-11-11 2007-05-31 Kansai Electric Power Co Inc:The Deterioration diagnosing method for power transmission facility
JP7241476B2 (en) * 2018-06-27 2023-03-17 三菱電機株式会社 Short-circuit remaining life diagnostic method and short-circuit remaining life diagnostic system for power receiving and distributing equipment

Also Published As

Publication number Publication date
JPH0980029A (en) 1997-03-28

Similar Documents

Publication Publication Date Title
KR100541996B1 (en) A dignosis method of insulation of electric apparatus
CN113419147B (en) Radar spectrum diagram based visualized cable insulation state diagnosis and evaluation method
FR2848300A1 (en) Method for diagnosing winding fault on transformer, comprises measurement of impedance over ranges of frequency and calculation of three correlation parameters and fourth transformer parameter
JP3280547B2 (en) Insulation diagnosis method
JP6164022B2 (en) Interlayer insulation diagnosis method for winding equipment
JPS6159242A (en) Method for diagnosing deterioration of insulating material
CA2483567A1 (en) Coil deterioration diagnostic method and coil deterioration diagnostic apparatus
JP2001349924A (en) Remaining life estimating method of cv cable
Lahcène et al. Detecting rotor faults of SCIG based wind turbine using PSD estimation methods
RU2610854C1 (en) Method for remote inspection of technical state of electric power generating equipment
US20050212524A1 (en) Electric power line on-line diagnostic method
JPH0580112A (en) Failure diagnostic device for power cable
JP3092335B2 (en) Identification method of partial discharge pulse
JPH0580630B2 (en)
EP0219266B1 (en) Method for evaluating the breakdown time of an insulating film
JP2000002743A (en) Insulation deterioration diagnostic method for high- voltage equipment such as high-voltage overhead cable branch connecting body for power distribution
JP2866533B2 (en) High frequency partial discharge detection system
JP3923257B2 (en) Insulation deterioration diagnosis method
US20060091892A1 (en) Method of determining the impedance of an electrochemical system
CN111352056A (en) Temperature correction device and method for polarization and depolarization current test
JPH09304467A (en) Method for diagnosing insulation deterioration of electric insulator
CN117470976B (en) Transmission line defect detection method and system based on voiceprint features
JPH09152424A (en) Method for detecting generating position of maximum discharged amount of charges of high voltage insulation exciting coil
CN116148571A (en) Cable state monitoring method based on magnetic field detection
JPH0743414A (en) Aging diagnostic method of insulating paper for oil-filled electric equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term