JPH09152424A - Method for detecting generating position of maximum discharged amount of charges of high voltage insulation exciting coil - Google Patents

Method for detecting generating position of maximum discharged amount of charges of high voltage insulation exciting coil

Info

Publication number
JPH09152424A
JPH09152424A JP7336213A JP33621395A JPH09152424A JP H09152424 A JPH09152424 A JP H09152424A JP 7336213 A JP7336213 A JP 7336213A JP 33621395 A JP33621395 A JP 33621395A JP H09152424 A JPH09152424 A JP H09152424A
Authority
JP
Japan
Prior art keywords
maximum
discharge
charge amount
charges
discharged amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7336213A
Other languages
Japanese (ja)
Inventor
Shuichi Sakuma
秀一 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP7336213A priority Critical patent/JPH09152424A/en
Publication of JPH09152424A publication Critical patent/JPH09152424A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect whether or not a position of the maximum discharged amount of charges is within a core slot, by using a correlation of the maximum discharged amount of charges and a maximum amplitude value of an acoustic emission(AE) parameter. SOLUTION: A simulation core 2 is fitted at a part corresponding to a core slot of an insulating exciting coil 1 to be tested. An AE sensor 3 is connected to an AE analyzer via a preamplifier. Before an insulation deterioration is given rise to, the maximum discharged amount of charges and a maximum amplitude value of an AE parameter of the insulating coil 1 are simultaneously measured with the use of a voltage as a parameter, thereby checking a correlation of the discharged amount and the maximum amplitude value. Then, when the maximum discharged amount changes after the coil is operated, it is detected whether or not a position where the maximum discharged amount of charges is generated is within the core slot of the insulating coil 1 from the correlation with the maximum amplitude value of the AE parameter measured at the same time as the maximum discharged amount of charges. In this manner, whether or not even a large value of the maximum discharged amount of charges results from a creeping discharge outside the core slot can be detected without a guard electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高電圧絶縁線輪の高電圧
課電時に検出される最大放電電荷量の発生する位置が絶
縁線輪のスロット内か否かを判別する放電位置判別方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a discharge position discriminating method for discriminating whether or not the position where the maximum discharge charge amount detected when high voltage is applied to a high voltage insulating coil is generated is in the slot of the insulating coil. It is a thing.

【0002】[0002]

【従来の技術】高電圧絶縁線輪に高電圧を課電すると線
輪絶縁層内のボイドから発生するボイド放電、鉄心スロ
ット表面と絶縁線輪表面間から発生するスロット放電、
鉄心スロット端より外側の絶縁線輪表面から沿面放電な
どが発生する。高電圧絶縁線輪の表面にはスロット放電
・沿面放電による絶縁劣化を抑制するために、鉄心スロ
ット内に挿入される部分の絶縁線輪表面には低抵抗絶縁
層が設けられ、鉄心スロット端から外側の絶縁線輪表面
には絶縁線輪表面の電界を緩和するために半導電性テー
プが密着して巻き付けられている。
2. Description of the Related Art When a high voltage is applied to a high-voltage insulating coil, a void discharge is generated from a void in a coil insulating layer, a slot discharge is generated between a core slot surface and an insulating coil surface,
A creeping discharge is generated from the surface of the insulated wire outside the end of the iron core slot. In order to suppress insulation deterioration due to slot discharge and creeping discharge on the surface of the high-voltage insulation coil, a low-resistance insulation layer is provided on the surface of the insulation coil that is inserted into the iron core slot. A semiconductive tape is tightly wound around the outer surface of the insulating coil to alleviate the electric field on the surface of the insulating coil.

【0003】高電圧絶縁線輪から発生する部分放電を測
定するために各種の電気的検出法による部分放電測定器
がある。電気的検出法による部分放電測定器は欠陥部か
らの部分放電による微小なパルス電流を検出し、増幅す
るもので部分放電パルス波形、部分放電発生頻度及び部
分放電電荷量の定量的な測定ができる。検出感度は高
く、微小な部分放電の検出は可能であるが、部分放電の
発生位置を検出することはできない。これらの部分放電
測定器を用いて、絶縁線輪に高電圧を課電した時に鉄心
スロット外から発生する沿面放電を除去して、鉄心スロ
ット内で発生するボイド放電・スロット放電だけを測定
する方法としては、鉄心スロット外の絶縁線輪にガード
電極を取り付けてこの電極を接地することにより、沿面
放電を除去することが一般的に行われている。
In order to measure the partial discharge generated from the high voltage insulated coil, there are partial discharge measuring instruments using various electrical detection methods. The partial discharge measuring instrument by the electrical detection method detects and amplifies a minute pulse current due to partial discharge from the defective part, and can quantitatively measure the partial discharge pulse waveform, partial discharge occurrence frequency and partial discharge charge amount. . The detection sensitivity is high, and it is possible to detect minute partial discharges, but it is not possible to detect the position where partial discharges occur. Using these partial discharge measuring instruments, the creeping discharge generated from the outside of the iron core slot when a high voltage is applied to the insulated coil is removed, and only the void discharge and slot discharge generated inside the iron core slot are measured. As a general method, a creeping discharge is removed by attaching a guard electrode to an insulating coil outside the iron core slot and grounding the electrode.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、実機に
おける高電圧回転機絶縁線輪の部分放電測定に際しては
絶縁線輪にガード電極を取り付けることは不可能であ
る。 一方、鉄心スロット外の絶縁線輪最外層にある半
導電性テープは、新製時には規定の抵抗値を保持してス
ロット放電を抑制しているが、長期使用の間には劣化に
より抵抗値に変化が生じ、沿面放電が発生しやすくな
る。そのため長期使用の間に絶縁劣化が進行したと思わ
れる実機の高電圧絶縁線輪においては、部分放電測定結
果の大きな最大放電電荷量が検出されても、ガード電極
が取り付けてないために、それがボイド放電なのか沿面
放電によるものなのかが不明確であった。本発明は上記
の点につき創案されたもので、その目的とするところ
は、ガード電極を取り付けないで部分放電測定を行い大
きな最大放電電荷量が検出されてもそれが沿面放電によ
るものか否かを判定できる方法を提供することにある。
However, it is impossible to attach a guard electrode to the insulating wire ring when measuring partial discharge of the high voltage rotating machine insulating wire ring in an actual machine. On the other hand, the semi-conductive tape on the outermost layer of the insulated coil outside the iron core slot keeps the specified resistance value and suppresses the slot discharge at the time of new manufacturing, but it deteriorates due to deterioration during long-term use. A change occurs and creeping discharge easily occurs. Therefore, in the high voltage insulated wire loop of the actual machine, which seems to have deteriorated the insulation during long-term use, even if the large maximum discharge charge amount of the partial discharge measurement result is detected, the guard electrode is not attached. It was unclear whether the cause was void discharge or creeping discharge. The present invention was devised in view of the above points, and the purpose thereof is to determine whether or not a large maximum discharge charge amount is detected by performing partial discharge measurement without attaching a guard electrode, and whether it is due to creeping discharge. It is to provide a method of determining

【0005】[0005]

【課題を解決するための手段】つまり、その目的を達成
するための手段は、アコースティック・エミッション
(以後AEと省略する)センサを取り付けてある鉄心の
スロットに挿入された高電圧絶縁線輪において、絶縁劣
化前に電圧を媒介変数として高電圧絶縁線輪の最大放電
電荷量とAEパラメータの最大振幅値を同時に測定し両
者の相関関係を調べておくことで、その後の測定で最大
放電電荷量が変化したときに同時に測定しているAEパ
ラメータの最大振幅値との相関関係から、最大放電電荷
量が発生する位置が絶縁線輪の鉄心スロット内か否かを
判別するものである。
[Means for Solving the Problems] In other words, a means for achieving the object is a high-voltage insulated coil inserted into a slot of an iron core having an acoustic emission (hereinafter abbreviated as AE) sensor attached, By measuring the maximum discharge charge amount of the high-voltage insulated wire and the maximum amplitude value of the AE parameter at the same time using the voltage as a parameter before the insulation deterioration, and checking the correlation between them, the maximum discharge charge amount can be determined in the subsequent measurement. It is determined whether or not the position where the maximum discharge charge amount is generated is in the iron core slot of the insulating coil, from the correlation with the maximum amplitude value of the AE parameter that is measured at the same time when it changes.

【0006】あるいは、AEセンサを取り付けてある鉄
心のスロットに挿入された高電圧絶縁線輪において、電
圧を媒介変数として高電圧絶縁線輪の最大放電電荷量と
AEパラメータの最大振幅値を同時に測定し両者の相関
関係を調べて、その相関関係が途中で変化するか否か
で、最大放電電荷量が発生する位置が絶縁線輪の鉄心ス
ロット内か否かを判別するものである。
Alternatively, in a high-voltage insulated coil inserted in a slot of an iron core to which an AE sensor is attached, the maximum discharge charge amount of the high-voltage insulated coil and the maximum amplitude value of the AE parameter are simultaneously measured using voltage as a parameter. Then, the correlation between the two is examined, and whether the position at which the maximum discharge charge amount occurs is in the iron core slot of the insulated wire loop is determined by whether the correlation changes in the middle.

【0007】[0007]

【作用】次にその作用について説明する。ボイド放電か
らのAEは、放電によって解放されたエネルギーが気体
中の波動となってボイド壁を圧迫・膨張させることで生
じるとされている。そのためボイド放電による最大放電
電荷量とAEパラメーターの最大振幅値の間には図2の
Aに示すように一定の相関関係がある。 しかしなが
ら、鉄心スロット外の沿面放電では放電によって解放さ
れたエネルギーのかなりの部分が大気中に放出されてし
まうので、鉄心に取り付けられたAEセンサーに検出さ
れる最大振幅値は相対的に小さくなる。そのため、沿面
放電での最大放電電荷量とAEパラメータの最大振幅値
との関係は、ボイド放電による最大放電電荷量とAEパ
ラメーターの最大振幅値の間の相関関係とは異なる。ま
た半導電性テープが劣化して発生する沿面放電は一般的
に最大放電電荷量が大きくなる傾向があるので、この場
合は測定された最大放電電荷量に対してAEパラメータ
の最大振幅値は相対的に小さくなる。以上述べてきたこ
とから、測定した絶縁線輪の最大放電電荷量とAEパラ
メータの最大振幅値との関係を予め求めておいた相関関
係と較べて同じであれば、測定した最大放電電荷量はボ
イド放電のものであり、異なっていればボイド放電のも
のではない。このとき測定した最大放電電荷量に対して
AEパラメータの最大振幅値が相対的に小さければ鉄心
スロット外からの沿面放電と判断される。
Next, the operation will be described. It is said that the AE from the void discharge is generated when the energy released by the discharge becomes a wave in the gas to press and expand the void wall. Therefore, there is a certain correlation between the maximum discharge charge amount due to the void discharge and the maximum amplitude value of the AE parameter, as shown in A of FIG. However, a creeping discharge outside the iron core slot releases a considerable part of the energy released by the discharge into the atmosphere, so that the maximum amplitude value detected by the AE sensor attached to the iron core becomes relatively small. Therefore, the relationship between the maximum discharge charge amount in the creeping discharge and the maximum amplitude value of the AE parameter is different from the correlation between the maximum discharge charge amount due to the void discharge and the maximum amplitude value of the AE parameter. Further, since the maximum discharge charge amount generally tends to be large in the creeping discharge generated by the deterioration of the semi-conductive tape, in this case, the maximum amplitude value of the AE parameter is relative to the measured maximum discharge charge amount. Becomes smaller. From the above description, if the relationship between the measured maximum discharge charge amount of the insulated wire and the maximum amplitude value of the AE parameter is the same as the previously obtained correlation, the measured maximum discharge charge amount is It is a void discharge, and if it is different, it is not a void discharge. If the maximum amplitude value of the AE parameter is relatively small with respect to the maximum discharge charge amount measured at this time, it is determined that the creeping discharge is from outside the iron core slot.

【0008】絶縁線輪の全てが絶縁劣化前に、最大放電
電荷量とAEパラメータの最大振幅値との相関関係を予
め求めておくことが出来ない場合もある。その場合は電
圧を媒介変数として高電圧絶縁線輪の最大放電電荷量と
AEパラメータの最大振幅値を同時に測定し両者の相関
関係を調べて、その相関関係が途中で変化するか否か
で、最大放電電荷量が発生する位置が絶縁線輪の鉄心ス
ロット内か否かを判別するものである。両者の相関関係
は鉄心スロット外の沿面放電がなければ通常は直線関係
があるので、この直線関係からはずれれば鉄心スロット
外の沿面放電と判断できる。以下、本発明の一実施例を
図面に基づいて詳述する。
In some cases, it is not possible to obtain the correlation between the maximum discharge charge amount and the maximum amplitude value of the AE parameter in advance before the insulation deterioration of all of the insulating coils. In that case, the maximum discharge charge amount of the high voltage insulated wire and the maximum amplitude value of the AE parameter are measured at the same time by using the voltage as a parameter, and the correlation between the two is investigated, and whether the correlation changes in the middle, It is determined whether or not the position where the maximum amount of discharged charge is generated is in the iron core slot of the insulated wire. The correlation between the two is usually a linear relationship unless there is a creeping discharge outside the iron core slot, so if it deviates from this linear relationship, it can be determined that the creeping discharge is outside the iron core slot. An embodiment of the present invention will be described in detail below with reference to the drawings.

【0009】[0009]

【実施例】図1はAEセンサを固定した模擬鉄心を高電
圧絶縁線輪に取り付けた状態の斜視図であり、供試絶縁
線輪1は定格13.8kVの同期発電機固定子絶縁線輪
で鉄心スロット部に相当する部分に模擬鉄心2を取り付
けてある。絶縁線輪表面の鉄心スロット部分には低抵抗
絶縁層Lを設け、鉄心スロット端から外側には半導電性
テープSが密着して巻き付けてある。AEセンサ3は1
50kHz共振のものでシリコーングリスを介して図示
しないプリアンプを通してAEアナライザに接続する。
高電圧絶縁線輪の絶縁劣化前の「最大放電電荷量と最大
振幅値」の関係を図2のAに示す。最大放電電荷量を対
数値とし、最大振幅値をdBで表示してプロットすると
両者の相関関係は直線となる。最大放電電荷量を求める
部分放電測定器は低周波式を、測定回路は供試体検出法
を用いた。
EXAMPLE FIG. 1 is a perspective view showing a state in which a simulated iron core having an AE sensor fixed thereto is attached to a high-voltage insulated wire wheel, and a test insulated wire wheel 1 is a synchronous generator stator insulated wire wheel rated at 13.8 kV. The simulated iron core 2 is attached to the portion corresponding to the iron core slot portion. A low resistance insulating layer L is provided on the iron core slot portion on the surface of the insulating loop, and a semiconductive tape S is closely wound around the outer end of the iron core slot. AE sensor 3 is 1
It has a resonance of 50 kHz and is connected to an AE analyzer through a preamplifier (not shown) through silicone grease.
The relationship between the "maximum discharge charge amount and the maximum amplitude value" before the insulation deterioration of the high-voltage insulation coil is shown in A of FIG. When the maximum discharge charge amount is set to a logarithmic value and the maximum amplitude value is displayed in dB and plotted, the correlation between the two becomes a straight line. A low-frequency type was used as the partial discharge measuring instrument for obtaining the maximum discharge charge amount, and the specimen detection method was used as the measuring circuit.

【0010】上記の絶縁線輪を、高電圧で連続して課電
し強制的に絶縁劣化させた後で部分放電特性の最大放電
電荷量とAEパラメーターの最大振幅値を測定したとこ
ろ、両者の相関関係は図2のBのようになりb点では最
大放電電荷量が約4万pC、AEの最大振幅値は61d
Bであった。図2の中でb点は絶縁劣化前の相関関係を
示す直線からはずれていた。 そのため、この大きな放
電が絶縁線輪のどの位置から発生しているかを調べた。
高電圧絶縁線輪の放電状態を非接触で測定する方法を図
3の説明図に示す。測定にはドイツLD社製レムケプロ
ーブ4を使用し、C−センサ5を用いる非接触検出法で
高電圧絶縁線輪の各部分の相対的な放電レベルを測定し
た。レムケプローブは放電によって生じる放射電磁波を
検出して測定するので、大気中の沿面放電でも絶縁物内
のボイド放電でも容量性のC−センサで相対的な放電レ
ベルを測定することが可能である。そのために絶縁線輪
の模擬鉄心2をはずし、かわりに細い金属の撚り線6を
鉄心スロット部分に巻いて撚先端部り線端部をアースし
た。高電圧絶縁線輪の放電状態を非接触で測定した「相
対的放電レベルと絶縁線輪の位置」の関係を図4に示
す。その結果、絶縁線輪の鉄心スロット内に相当する部
分よりスロット外に相当する部分の方が放電レベルの高
いことが判明した。
The above-mentioned insulated wire loop was subjected to continuous high-voltage application and forced insulation deterioration, and then the maximum discharge charge amount of the partial discharge characteristic and the maximum amplitude value of the AE parameter were measured. The correlation is as shown in B of FIG. 2. At point b, the maximum discharge charge amount is about 40,000 pC, and the maximum amplitude value of AE is 61d.
B. In FIG. 2, point b deviated from the straight line showing the correlation before insulation deterioration. Therefore, we investigated from which position of the insulated wire this large discharge occurs.
A method of measuring the discharge state of the high-voltage insulated coil in a non-contact manner is shown in the explanatory view of FIG. For the measurement, a German LD company Remke probe 4 was used, and the relative discharge level of each part of the high-voltage insulated coil was measured by a non-contact detection method using a C-sensor 5. Since the REMKE probe detects and measures the radiated electromagnetic wave generated by the discharge, it is possible to measure the relative discharge level with a capacitive C-sensor in both creeping discharge in the atmosphere and void discharge in the insulator. For that purpose, the simulated iron core 2 of the insulated coil was removed, and instead, a thin metal stranded wire 6 was wound around the iron core slot portion to ground the twisted tip end and the wire end. FIG. 4 shows the relationship between the “relative discharge level and the position of the insulating coil”, which was obtained by measuring the discharge state of the high-voltage insulating coil without contact. As a result, it was found that the discharge level was higher in the portion outside the slot than in the iron core slot of the insulated wire.

【0011】絶縁線輪にガード電極を取り付けることが
出来ない実機の場合でも上記の実施例と同様に、最大放
電電荷量と最大振幅値の相関関係を求めておけば、最大
放電電荷量が発生する位置が絶縁線輪の鉄心スロット内
か否かを判別することが可能である。
Even in the case of an actual machine in which the guard electrode cannot be attached to the insulating coil, if the correlation between the maximum discharge charge amount and the maximum amplitude value is obtained, the maximum discharge charge amount is generated as in the above embodiment. It is possible to determine whether or not the position to be in is in the iron core slot of the insulated wire.

【0012】[0012]

【発明の効果】以上説明したように本発明によれば、実
機に組み込まれている高電圧絶縁線輪の部分放電測定に
際しガード電極がなくても、大きな最大放電電荷量が検
出されてもそれが鉄心スロット外の沿面放電によるもの
か否かを判定できる。
As described above, according to the present invention, even when a large maximum discharge charge amount is detected even when there is no guard electrode in the partial discharge measurement of the high-voltage insulated coil incorporated in the actual machine, It is possible to determine whether or not is due to a creeping discharge outside the iron core slot.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1はAEセンサを固定した模擬鉄心を高電圧
絶縁線輪に取り付けた状態の斜視図である。
FIG. 1 is a perspective view showing a state in which a simulated iron core having an AE sensor fixed thereto is attached to a high-voltage insulated wire loop.

【図2】図2は高電圧絶縁線輪の絶縁劣化前の「最大放
電電荷量と最大振幅値」の関係を示すグラフ図である。
FIG. 2 is a graph showing a relationship between “maximum discharge charge amount and maximum amplitude value” before insulation deterioration of a high-voltage insulated wire.

【図3】図3は高電圧絶縁線輪の放電状態を非接触で測
定する方法の説明図である。
FIG. 3 is an explanatory view of a method for measuring the discharge state of a high-voltage insulated wire in a non-contact manner.

【図4】図4は高電圧絶縁線輪の放電状態を非接触で測
定した「相対的放電レベルと絶縁線輪の位置」の関係を
示すグラフ図である。
FIG. 4 is a graph showing the relationship between “relative discharge level and position of insulating coil”, which is obtained by measuring the discharge state of the high-voltage insulating coil without contact.

【符号の説明】[Explanation of symbols]

1 高電圧絶縁線輪 2 模擬鉄心 3 AEセンサ 4 レムケプローブ 5 C−センサ 6 細い金属の撚り線 1 High voltage insulated wire loop 2 Simulated iron core 3 AE sensor 4 Remke probe 5 C-sensor 6 Thin metal stranded wire

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】高電圧絶縁線輪において、絶縁劣化前に所
定の電圧を印加して高電圧絶縁線輪の最大放電電荷量と
アコースティク・エミッションパラメータの最大振幅値
を同時に測定して得られた両者の相関関係と、稼働後に
上記絶縁劣化前と同じ測定を行い得られた最大放電電荷
量とAEパラメータの最大振幅値の相関関係との差か
ら、最大放電電荷量が発生する位置が絶縁線輪の鉄心ス
ロット内か否かを判別することを特徴とする高電圧絶縁
線輪の最大放電電荷量発生位置判別方法。
1. A high-voltage insulated coil is obtained by applying a predetermined voltage before insulation deterioration and simultaneously measuring the maximum discharge charge amount and the maximum amplitude value of acoustic emission parameters of the high-voltage insulated coil. From the difference between the correlation between the two and the correlation between the maximum discharge charge amount and the maximum amplitude value of the AE parameter obtained after the same measurement as before the insulation deterioration after the operation, the position where the maximum discharge charge amount occurs is isolated. A method for determining the maximum discharge charge amount generation position of a high-voltage insulated wire, which is characterized by determining whether or not it is inside the iron core slot of the wire.
【請求項2】高電圧絶縁線輪において、所定の電圧を印
加して高電圧絶縁線輪の最大放電電荷量とアコースティ
ク・エミッションパラメータの最大振幅値を同時に測定
し両者の相関関係を調べて、その相関関係が直線性もし
くは非直線性かで、最大放電電荷量が発生する位置が絶
縁線輪の鉄心スロット内か否かを判別することを特徴と
する高電圧絶縁線輪の最大放電電荷量発生位置判別方
法。
2. In a high-voltage insulated coil, a predetermined voltage is applied to simultaneously measure the maximum discharge charge amount of the high-voltage insulated coil and the maximum amplitude value of the acoustic emission parameter to examine the correlation between the two. , The correlation is linear or non-linear, and it is determined whether or not the position where the maximum discharge charge amount is generated is in the iron core slot of the insulated wire loop. Quantity generation position determination method.
JP7336213A 1995-11-29 1995-11-29 Method for detecting generating position of maximum discharged amount of charges of high voltage insulation exciting coil Pending JPH09152424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7336213A JPH09152424A (en) 1995-11-29 1995-11-29 Method for detecting generating position of maximum discharged amount of charges of high voltage insulation exciting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7336213A JPH09152424A (en) 1995-11-29 1995-11-29 Method for detecting generating position of maximum discharged amount of charges of high voltage insulation exciting coil

Publications (1)

Publication Number Publication Date
JPH09152424A true JPH09152424A (en) 1997-06-10

Family

ID=18296810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7336213A Pending JPH09152424A (en) 1995-11-29 1995-11-29 Method for detecting generating position of maximum discharged amount of charges of high voltage insulation exciting coil

Country Status (1)

Country Link
JP (1) JPH09152424A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005326379A (en) * 2004-05-17 2005-11-24 Sumitomo Metal Ind Ltd Apparatus and method for detecting quantity of damage by partial discharge
US10209292B2 (en) 2014-12-18 2019-02-19 Mitsubishi Electric Corporation Partial discharge determination method, partial discharge determination apparatus, and partial discharge determination system for power device, and method for manufacturing power device including the partial discharge determination method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005326379A (en) * 2004-05-17 2005-11-24 Sumitomo Metal Ind Ltd Apparatus and method for detecting quantity of damage by partial discharge
JP4594646B2 (en) * 2004-05-17 2010-12-08 住友金属工業株式会社 Damage detection method for partial discharge and damage detection apparatus for partial discharge
US10209292B2 (en) 2014-12-18 2019-02-19 Mitsubishi Electric Corporation Partial discharge determination method, partial discharge determination apparatus, and partial discharge determination system for power device, and method for manufacturing power device including the partial discharge determination method

Similar Documents

Publication Publication Date Title
Hudon et al. Partial discharge signal interpretation for generator diagnostics
US8115496B2 (en) Insulation coated conductor inspection method and inspection apparatus
JP2018151345A (en) Partial discharge detection method and partial discharge detection device
Xu et al. Loss current studies of partial discharge activity
JPH09152424A (en) Method for detecting generating position of maximum discharged amount of charges of high voltage insulation exciting coil
JP2000002743A (en) Insulation deterioration diagnostic method for high- voltage equipment such as high-voltage overhead cable branch connecting body for power distribution
JPH09257862A (en) Device for diagnosis of winding insulation
JP4802302B2 (en) Diagnosis method for water tree deterioration of power cables
JP4057182B2 (en) Partial discharge judgment method
JP4216920B2 (en) Partial discharge occurrence position detection device for conductive device
Laksono et al. Effect of the presence of metal box on partial discharge waveform and pattern detected by high frequency current transformer
JP3280547B2 (en) Insulation diagnosis method
JP2002323533A (en) Partial discharge testing method for electric power equipment
JP3177313B2 (en) Diagnosis method for insulation deterioration of power equipment
JP2932724B2 (en) Insulation degradation diagnosis method
JP3236770B2 (en) Partial discharge measurement method for CV cable line
JP3730453B2 (en) Method of measuring partial discharge of rotating machine windings
JPH07218480A (en) Measurement of insulating characteristics of electric insulating coil
JP3808914B2 (en) Non-destructive insulation test method and equipment for small electrical machines
JPH06222021A (en) Method and apparatus for measuring deterioration of material
JP2001242212A (en) Kind determination method and device of partial discharge of gas insulated electrical machinery and apparatus
Reid A new approach to partial discharge measurements for testing electrical insulation systems
JP2000258512A (en) Method for measuring partial discharge from winding of rotary machine
Cavallini et al. Challenges and Opportunities in RPDIV Testing of Automotive Electrical Machines After Assembly
JPH0217465A (en) Method for advance detection of dielectric breakdown of winding of electric machine