JP2002323533A - Partial discharge testing method for electric power equipment - Google Patents

Partial discharge testing method for electric power equipment

Info

Publication number
JP2002323533A
JP2002323533A JP2001131922A JP2001131922A JP2002323533A JP 2002323533 A JP2002323533 A JP 2002323533A JP 2001131922 A JP2001131922 A JP 2001131922A JP 2001131922 A JP2001131922 A JP 2001131922A JP 2002323533 A JP2002323533 A JP 2002323533A
Authority
JP
Japan
Prior art keywords
voltage
partial discharge
power equipment
signal
electric power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001131922A
Other languages
Japanese (ja)
Inventor
Koji Urano
幸治 浦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2001131922A priority Critical patent/JP2002323533A/en
Publication of JP2002323533A publication Critical patent/JP2002323533A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate discrimination between a noise and a partial discharge signal and identification of a cause in a partial discharge test for a direct current electric power equipment. SOLUTION: When a direct current voltage is applied to an electric power equipment 10 to be tested, a partial discharge signal generated from the electric power equipment is detected by having an alternating voltage overlapped. Overlapping of the alternating voltage is applied by inserting an alternating power source 50 in series between a low-voltage side terminal 22 of a direct current power source 20 to generate the direct current voltage and an earth point, or between a low-voltage side conductor of the electric power equipment to be tested and the earth point. A detection signal when only the direct current voltage is applied to the electric power equipment to be tasted is compared with the detection signal when the alternating voltage is made to overlap to discriminate the partial discharge signal from the noise signal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電力機器の試験、診
断などを目的とした部分放電試験方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a partial discharge test method for testing and diagnosing power equipment.

【0002】[0002]

【従来の技術】電力ケーブルをはじめとする電力機器の
電気的な健全性を評価する手法として,部分放電(以下
PD(Partial Discharge)という)
の測定が広く用いられている。例えば、電力ケーブルで
は、高電圧部である導体と接地電位側であるシースとの
間の絶縁体の僅かな絶縁不良によりPDが発生し、導体
からシースへ数pC(ピコクーロン)から数百pCとい
う極微弱な電荷のパルス電流が流れる場合がある。絶縁
破壊に至る前に当該PDを検出することで不良個所の発
見が可能であるため、電力ケーブルの出荷時あるいは線
路布設後の試験としてPD測定が行われている。これら
の測定のための部分放電測定装置は,シースの接地線に
流れる微弱電流を検出する方法や、電力ケーブルを接続
するシース絶縁接続箱(IJ)に箔電極等の信号検出部
を取り付けることにより電流パルスを検出する方法、あ
るいは空間に放射される電磁波をアンテナ等で検出する
もの、放電による極微弱な機械的振動を信号として音響
センサにて検出するものなど多くの方法、測定器が実用
化されている。
2. Description of the Related Art Partial discharge (hereinafter, referred to as PD (Partial Discharge)) is a technique for evaluating the electrical soundness of power devices such as power cables.
Is widely used. For example, in a power cable, PD occurs due to slight insulation failure of an insulator between a conductor that is a high-voltage part and a sheath that is on the ground potential side. In some cases, a pulse current of an extremely weak charge flows. Since a defective portion can be found by detecting the PD before dielectric breakdown, PD measurement is performed at the time of shipping the power cable or as a test after laying the track. The partial discharge measuring device for these measurements is based on a method of detecting a weak current flowing through the ground wire of the sheath, or by attaching a signal detection unit such as a foil electrode to the sheath insulated connection box (IJ) that connects the power cable. Many methods and measuring instruments have been put into practical use, such as a method of detecting current pulses, a method of detecting electromagnetic waves radiated into space with an antenna, and a method of detecting weak mechanical vibrations due to electric discharge as a signal with an acoustic sensor. Have been.

【0003】PD信号は、導体表面の突起や絶縁物中の
異物、空隙、ボイド等が原因で発生するものであり、絶
縁物の種類や原因となる異物、ボイド等の別により、性
質が異なることが知られている。PD信号の性質は主と
して課電している交流電圧の位相と関係している。すな
わち、交流電圧の振動波形に対応して、そのピーク位置
付近に集中して発生するものや、第1象限と第3象限に
集中するもの、あるいはゼロクロス付近で発生するもの
などがある。これらの性質により、発生の頻度と発生位
相のパターンなどからPD発生原因の特定が可能であ
り、また課電位相とは無関係に発生するノイズ信号との
判別が可能である。
A PD signal is generated due to a projection on a conductor surface, a foreign substance, a void, a void, or the like in an insulator, and its characteristics vary depending on the type of the insulator, the foreign substance, the void, and the like. It is known. The nature of the PD signal is primarily related to the phase of the alternating voltage being imposed. That is, there are waveforms that are generated near the peak position corresponding to the vibration waveform of the AC voltage, waveforms that are concentrated in the first and third quadrants, and waveforms that are generated near the zero cross. Due to these properties, it is possible to specify the cause of the PD occurrence based on the frequency of occurrence and the pattern of the occurrence phase, and to discriminate the noise signal that occurs independently of the potential application phase.

【0004】[0004]

【発明が解決しようとする課題】部分放電試験は、直流
で使用する電力機器の試験にも用いられ、直流電圧を課
電した状態でのPD測定が行われている。しかし、直流
電圧課電におけるPD発生頻度は交流電圧課電に比べて
非常に少なく、上述のような位相特性が無いためにノイ
ズとの判別や発生原因の特定が極めて困難であるという
問題があった。
[0006] The partial discharge test is also used for a test of a power device using a direct current, and a PD measurement is performed in a state where a direct current voltage is applied. However, the frequency of PD generation in DC voltage application is much lower than that in AC voltage application, and there is no phase characteristic as described above. Was.

【0005】[0005]

【課題を解決するための手段】本発明はかかる事情に鑑
み、直流電力ケーブル等の直流電力機器の部分放電試験
を以下の手段により容易かつより確実にするものであ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and makes it easier and more reliable to perform a partial discharge test of a DC power device such as a DC power cable by the following means.

【0006】被試験電力機器に直流電圧を課電した状態
で当該電力機器から発生する信号を検出することによる
部分放電試験方法において、課電する直流電圧には交流
電圧が重畳されるようにした。直流電圧課電のみの場合
に比べて部分放電パルス信号の発生頻度が増加し、検出
が容易になる。
In a partial discharge test method by detecting a signal generated from a power device under test while a DC voltage is applied to the power device, an AC voltage is superimposed on the DC voltage to be applied. . The occurrence frequency of the partial discharge pulse signal is increased as compared with the case where only the DC voltage is applied, and the detection becomes easier.

【0007】ここで、重畳される交流電圧は、課電され
る直流電圧の20%以下の電圧であり、より好ましくは
10%以下、さらに好ましくは5%以下でよい。よっ
て、小型の交流電源を用いる事ができ、試験が容易であ
る。
Here, the superimposed AC voltage is a voltage of 20% or less of the applied DC voltage, more preferably 10% or less, and further preferably 5% or less. Therefore, a small AC power supply can be used, and the test is easy.

【0008】交流電圧の重畳は、直流電圧を発生させる
直流電源の低圧側端子と接地点との間に交流電源を直列
に挿入することにより行うことで可能である。
The superposition of the AC voltage can be performed by inserting an AC power supply in series between the low voltage side terminal of the DC power supply for generating the DC voltage and the ground point.

【0009】また、被試験電力機器の低圧側導体と接地
点との間に交流電源を直列に挿入することによっても可
能である。
It is also possible to insert an AC power supply in series between the low voltage side conductor of the power device under test and the ground point.

【0010】かかる構成での試験ににおいて、被試験電
力機器に直流電圧のみを課電した場合の検出信号と、交
流電圧を重畳した場合の検出信号を比較することによっ
て、部分放電信号とノイズ信号の判別を容易に行うこと
ができる。
In a test with such a configuration, a partial discharge signal and a noise signal are compared by comparing a detection signal obtained when only a DC voltage is applied to the power device under test with a detection signal obtained when an AC voltage is superimposed. Can be easily determined.

【0011】[0011]

【発明の実施の形態】図1は本発明を実施するために使
用される試験装置の構成を模式的に示す。図1に従い被
試験電力機器の部分放電試験方法を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 schematically shows a configuration of a test apparatus used to carry out the present invention. A method for testing a partial discharge of the power device under test will be described with reference to FIG.

【0012】図中10は被試験機器としての電力機器の
断面構造を模式的に表しており、高電圧の課電される高
圧側導体11と低圧側導体13およびそれらを絶縁する
絶縁体12から構成される。被試験電力機器には電力ケ
ーブルやその付属品、端末装置、さらには開閉器、変圧
器等の電力機器があるが、いずれの機器でも基本構成は
このように表すことができる。低圧側導体は通常は接地
線14により接地されており、電力ケーブルの場合では
一般に金属シースや遮蔽層と呼ばれる部分である。
In FIG. 1, reference numeral 10 schematically shows a cross-sectional structure of a power device as a device under test, which includes a high-voltage conductor 11 and a low-voltage conductor 13 to which a high voltage is applied and an insulator 12 for insulating them. Be composed. The power devices under test include power cables and their accessories, terminal devices, and power devices such as switches and transformers. The basic configuration of any device can be represented in this way. The low-voltage side conductor is usually grounded by the grounding wire 14, and is a portion generally called a metal sheath or a shielding layer in the case of a power cable.

【0013】部分放電試験は直流電源20により発生さ
せた直流電圧を試験電圧としてリード線21を介して高
圧側導体11に課電することにより行う。PDが発生し
た場合の信号検出方法は多くの手法やセンサが実用化さ
れており、本発明において限定されるものではないが、
ここでは極めて一般的な方法として、高圧側からコンデ
ンサ30によるカップリングで高周波信号であるPD信
号を抽出し、直列に挿入された検出用インピーダンス4
0に生じる電圧Vを測定する方法を示した。
The partial discharge test is performed by applying a DC voltage generated by the DC power supply 20 as a test voltage to the high-voltage side conductor 11 through the lead wire 21. As a signal detection method when a PD occurs, many methods and sensors have been put to practical use, and are not limited in the present invention.
Here, as a very general method, a PD signal, which is a high-frequency signal, is extracted from the high-voltage side by coupling with a capacitor 30, and a detection impedance 4 is inserted in series.
A method for measuring the voltage V generated at 0 has been described.

【0014】ここで本発明を実施する一つの構成は、交
流電源50を直流電源20の低圧側に挿入していること
である。交流電源50は、一例として外部から交流電力
の供給をうけてトランスによって課電する構成であり、
直流電源の低圧側端子22と接地点の間に直列に挿入し
ている。図2は交流電源の挿入により、被試験電力機器
に課電される電圧を説明するものである。図2(a)は
直流電源の出力電圧、図2(b)は交流電源の出力電
圧、図2(c)は被試験電力機器に課電される電圧であ
って(a)と(b)を加えた電圧となっている。
Here, one configuration embodying the present invention is that the AC power supply 50 is inserted on the low voltage side of the DC power supply 20. The AC power supply 50 is configured to receive a supply of AC power from the outside and impress power by a transformer, for example.
It is inserted in series between the low voltage side terminal 22 of the DC power supply and the ground point. FIG. 2 illustrates a voltage applied to the power device under test by inserting an AC power supply. 2A shows the output voltage of the DC power supply, FIG. 2B shows the output voltage of the AC power supply, and FIG. 2C shows the voltage applied to the power device under test. Is added.

【0015】かかる構成としたことにより被試験電力機
器にPD発生の原因がある場合には、直流電圧のみの課
電の場合に比べて、PD発生の頻度が多くなり、また原
因によっては重畳した交流電圧の位相と関連した発生特
性を示すことになる。よって、直流電圧のみの場合に比
べてPD発生の検出が容易になる。
[0015] With this configuration, when the power device under test has a cause of PD generation, the frequency of PD generation is higher than in the case of applying only DC voltage, and depending on the cause, the PD is superimposed. It will show generation characteristics related to the phase of the AC voltage. Therefore, it is easier to detect the occurrence of PD than in the case of only the DC voltage.

【0016】試験電圧である直流電圧は、被試験電力機
器の耐電圧値に応じて数kVから数百kV以上の範囲を
とる。重畳する交流電圧は大きいほどPD発生に対する
効果は大きいため、使用する設備や被試験電力機器の耐
電圧性能に許容される範囲で大きい方が好ましい。しか
し、あまりに大きい電圧をかけると、直流での試験の目
的を逸脱することになり、また課電設備からは極力小型
の設備にすることが求められる。これらの観点から交流
電圧は、課電する直流電圧の20%以下、好ましくは1
0%以下であるところの数百Vから数kV以下の低圧で
あることが望ましく、この程度の電圧によってもPD発
生に変化を示す効果がある。例えば直流電力ケーブルに
おいて40kVの直流電圧試験時に2kVの交流を重畳
させることによってPD発生の頻度の増加が認められ、
さらには200V程度の交流重畳でも効果がある。
The DC voltage, which is a test voltage, ranges from several kV to several hundred kV or more depending on the withstand voltage value of the power device under test. The higher the superimposed AC voltage, the greater the effect on PD generation. Therefore, it is preferable that the AC voltage be as large as possible within the range permitted for the withstand voltage performance of the equipment to be used and the power device under test. However, if a too large voltage is applied, the purpose of the DC test is deviated, and the power supply equipment is required to be as small as possible. From these viewpoints, the AC voltage is 20% or less, preferably 1%, of the DC voltage to be charged.
It is desirable to have a low pressure of several hundred V to several kV or less, which is 0% or less, and even such a voltage has an effect of changing the PD generation. For example, by superimposing an AC of 2 kV during a DC voltage test of 40 kV in a DC power cable, an increase in the frequency of occurrence of PD is recognized,
Further, the effect is obtained even with the AC superposition of about 200 V.

【0017】さらに、上記構成において、交流電源を入
り切りすることにより、直流課電のみの場合の検出信号
と交流電圧を重畳させた場合の検出信号を比較すること
によって、ノイズ信号かPD信号かの判別が容易にな
る。すなわち、被測定対象以外の機器等で発生するノイ
ズや、放送波、無線等の電波ノイズ等は、課電の違いに
よって影響されないが、PD信号は課電電圧に応じて変
化するために、交流電圧を重畳させた場合に検出信号の
発生頻度、大きさ、交流位相との関係などを観測するこ
とによってPD信号か否かが判るのである。
Further, in the above configuration, by turning on and off the AC power supply, the detection signal in the case of only the DC voltage application and the detection signal in the case of superimposing the AC voltage are compared to determine whether the signal is a noise signal or a PD signal. Discrimination becomes easy. That is, noise generated by devices other than the device under test, radio waves such as broadcast waves and radio waves are not affected by the difference in power application, but the PD signal changes in accordance with the application voltage. When the voltage is superimposed, it is possible to determine whether or not the signal is a PD signal by observing the occurrence frequency and magnitude of the detection signal and the relationship with the AC phase.

【0018】図3は本発明を実施するための別な構成を
示すものであり、図1に示す構成とは交流電圧課電装置
50を被試験電力機器の低圧側に挿入したことのみが異
なっている。図3では被試験電力機器の低圧側導体13
と接地点との間に交流電源50を挿入し、被試験電力機
器の高圧側には直流電源によって直流電圧を課電する。
FIG. 3 shows another configuration for carrying out the present invention, which is different from the configuration shown in FIG. 1 only in that an AC voltage applying device 50 is inserted on the low voltage side of the power device under test. ing. In FIG. 3, the low voltage side conductor 13 of the power device under test is shown.
An AC power supply 50 is inserted between the power supply and the ground point, and a DC voltage is applied to the high voltage side of the power device under test by the DC power supply.

【0019】この構成によっても、被測定機器の絶縁体
には図2と同様に交流電圧を直流電圧に重畳した電圧が
加わることになり、図1の場合と同様の効果が得られ
る。
According to this configuration, a voltage obtained by superimposing an AC voltage on a DC voltage is applied to the insulator of the device under test as in FIG. 2, and the same effect as in FIG. 1 can be obtained.

【0020】図1の構成とするか図3の構成とするか
は、試験対象の規模や配置、試験設備の構成等によって
任意に選択可能である。例えば被試験電力機器が空間的
に広がっており、多点接地されているような場合は図1
の構成が取りやすいし、直流電源の規模が大きく、その
接地側に交流電源を挿入しにくい場合などは、図3の構
成の方が容易である。
The configuration shown in FIG. 1 or the configuration shown in FIG. 3 can be arbitrarily selected depending on the scale and arrangement of the test object, the configuration of the test equipment, and the like. For example, if the power device under test is spatially spread and multi-point grounded,
The configuration shown in FIG. 3 is easier when the DC power supply is large and it is difficult to insert the AC power supply into the ground side.

【0021】[0021]

【発明の効果】以上、説明したように本発明の部分放電
試験方法によれば、直流電力機器の直流課電による部分
放電試験において容易、かつより確実な測定が可能とな
り、機器の信頼性向上に役立つ。
As described above, according to the partial discharge test method of the present invention, it is possible to easily and more reliably measure the partial discharge test of a DC power device by applying a DC voltage, thereby improving the reliability of the device. Help.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の部分放電試験方法を実施する試験装
置の構成を示す図である。
FIG. 1 is a diagram showing a configuration of a test apparatus that performs a partial discharge test method of the present invention.

【図2】 被試験電力機器に課電される電圧を説明する
図である。
FIG. 2 is a diagram illustrating a voltage applied to a power device under test.

【図3】 本発明の部分放電試験方法を実施する試験装
置の構成を示す図である。
FIG. 3 is a diagram showing a configuration of a test apparatus for performing the partial discharge test method of the present invention.

【符号の説明】[Explanation of symbols]

10 被試験電力機器 11 高圧側導体 12 絶縁体 13 低圧側導体 14 接地線 20 直流電源 21 リード線 22 低圧側端子 30 コンデンサ 40 検出用インピーダンス 50 交流電源 DESCRIPTION OF SYMBOLS 10 Power device under test 11 High voltage side conductor 12 Insulator 13 Low voltage side conductor 14 Ground wire 20 DC power supply 21 Lead wire 22 Low voltage side terminal 30 Capacitor 40 Detection impedance 50 AC power supply

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】被試験電力機器に直流電圧を課電した状態
で当該電力機器から発生する信号を検出することによる
部分放電試験方法において、課電する直流電圧には交流
電圧が重畳されていることを特徴とする電力機器の部分
放電試験方法。
In a partial discharge test method in which a DC voltage is applied to a power device under test and a signal generated from the power device is detected, an AC voltage is superimposed on the DC voltage to be applied. A partial discharge test method for electric power equipment, characterized in that:
【請求項2】重畳される交流電圧は、課電される直流電
圧の20%以下の電圧であることを特徴とする、請求項
1に記載の電力機器の部分放電試験方法。
2. The method according to claim 1, wherein the superimposed AC voltage is a voltage equal to or less than 20% of an applied DC voltage.
【請求項3】交流電圧の重畳は、直流電圧を発生させる
直流電源の低圧側端子と接地点との間に交流電源を直列
に挿入することにより行うことを特徴とする、請求項1
または2に記載の電力機器の部分放電試験方法。
3. The superimposition of an AC voltage is performed by inserting an AC power supply in series between a low voltage side terminal of a DC power supply for generating a DC voltage and a ground point.
Or the partial discharge test method for power equipment according to 2.
【請求項4】交流電圧の重畳は、被試験電力機器の低圧
側導体と接地点との間に交流電源を直列に挿入すること
により行うことを特徴とする、請求項1または2に記載
の電力機器の部分放電試験方法。
4. The method according to claim 1, wherein the AC voltage is superimposed by inserting an AC power supply in series between the low voltage side conductor of the power device under test and the ground. Partial discharge test method for power equipment.
【請求項5】被試験電力機器に直流電圧のみを課電した
場合の検出信号と、交流電圧を重畳した場合の検出信号
を比較することにより部分放電信号とノイズ信号の判別
を行うことを特徴とする電力機器の部分放電試験方法。
5. A partial discharge signal and a noise signal are distinguished by comparing a detection signal when only a DC voltage is applied to a power device under test with a detection signal when an AC voltage is superimposed. Partial discharge test method for power equipment.
JP2001131922A 2001-04-27 2001-04-27 Partial discharge testing method for electric power equipment Pending JP2002323533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001131922A JP2002323533A (en) 2001-04-27 2001-04-27 Partial discharge testing method for electric power equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001131922A JP2002323533A (en) 2001-04-27 2001-04-27 Partial discharge testing method for electric power equipment

Publications (1)

Publication Number Publication Date
JP2002323533A true JP2002323533A (en) 2002-11-08

Family

ID=18980023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001131922A Pending JP2002323533A (en) 2001-04-27 2001-04-27 Partial discharge testing method for electric power equipment

Country Status (1)

Country Link
JP (1) JP2002323533A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012088080A (en) * 2010-10-15 2012-05-10 Nippon Soken Inc Partial discharge measurement apparatus and partial discharge measurement method
CN104237582A (en) * 2014-09-26 2014-12-24 国家电网公司 Oscillatory wave generation system and method and partial discharge detection system and method
CN104714158A (en) * 2015-03-11 2015-06-17 国家电网公司 Alternating-current ultrahigh voltage main transformer and regulation transformer combined partial discharge testing system and method
WO2016055515A1 (en) * 2014-10-07 2016-04-14 Thomas Betz Method for identifying parameters of a partial discharge process
CN106646152A (en) * 2016-11-18 2017-05-10 云南电网有限责任公司电力科学研究院 High voltage cable partial discharge detection method and device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012088080A (en) * 2010-10-15 2012-05-10 Nippon Soken Inc Partial discharge measurement apparatus and partial discharge measurement method
CN104237582A (en) * 2014-09-26 2014-12-24 国家电网公司 Oscillatory wave generation system and method and partial discharge detection system and method
WO2016055515A1 (en) * 2014-10-07 2016-04-14 Thomas Betz Method for identifying parameters of a partial discharge process
CN104714158A (en) * 2015-03-11 2015-06-17 国家电网公司 Alternating-current ultrahigh voltage main transformer and regulation transformer combined partial discharge testing system and method
CN104714158B (en) * 2015-03-11 2017-12-15 国家电网公司 AC extra high voltage main transformer modulation combines partial discharge test system and method
CN106646152A (en) * 2016-11-18 2017-05-10 云南电网有限责任公司电力科学研究院 High voltage cable partial discharge detection method and device

Similar Documents

Publication Publication Date Title
Hu et al. Transfer function characterization for HFCTs used in partial discharge detection
JP2009115505A (en) Winding inspection device and inspection method
Romano et al. A new technique for partial discharges measurement under DC periodic stress
Chen et al. Partial discharge detection by RF coil in 161 kV power transformer
Mutakamihigashi et al. Relationship between AE waveform frequency and the charges caused by partial discharge in mineral oil
RU2744464C1 (en) Method for determining hazardous areas in the insulation of three-core three-phase cable power lines
JP2002323533A (en) Partial discharge testing method for electric power equipment
JP4248627B2 (en) Ground fault inspection device
JP2008215864A (en) Partial discharge detection device and partial discharge detection method of rotary electric machine
Xu et al. Study of partial discharge activity by excess current
JP2002082143A (en) Measurement of partial discharge of electrical equipment
JP3080896B2 (en) Shielding effect testing device and inspection device
JP4802302B2 (en) Diagnosis method for water tree deterioration of power cables
Pradeep et al. Estimation of Broadband Transfer Function of HFCT Using Time Domain Measurements
JP7396222B2 (en) Partial discharge measuring device
Salih et al. Correlation Between Partial Discharge Parameters Measured by UHF, IEC and HFCT Methods
Polyakov Research of Partial Discharge Registration Effectiveness Using HFCT Sensor
Shafiq et al. Identifcation and Location of Partial Discharge Defects in Medium Voltage AC Cables
Kyere et al. A Comparative Study of Partial Discharge Measurement using Electrical and Inductive Coupling Sensors
JP3231557B2 (en) Partial discharge measurement adapter and partial discharge measurement method
Villa et al. Towards the on-line diagnostics of cable joints
JP2001242212A (en) Kind determination method and device of partial discharge of gas insulated electrical machinery and apparatus
Tang et al. A novel technique for on-line location of partial discharges on medium voltage cables
JPH04174372A (en) Deterioration detecting method of power cable
JP2960782B2 (en) Partial discharge measurement method