JP4248627B2 - Ground fault inspection device - Google Patents

Ground fault inspection device Download PDF

Info

Publication number
JP4248627B2
JP4248627B2 JP21595098A JP21595098A JP4248627B2 JP 4248627 B2 JP4248627 B2 JP 4248627B2 JP 21595098 A JP21595098 A JP 21595098A JP 21595098 A JP21595098 A JP 21595098A JP 4248627 B2 JP4248627 B2 JP 4248627B2
Authority
JP
Japan
Prior art keywords
ground fault
inspected
magnetic field
circuit
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21595098A
Other languages
Japanese (ja)
Other versions
JP2000046886A (en
Inventor
武光 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP21595098A priority Critical patent/JP4248627B2/en
Publication of JP2000046886A publication Critical patent/JP2000046886A/en
Application granted granted Critical
Publication of JP4248627B2 publication Critical patent/JP4248627B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、送電線等の電路の地絡を検査する地絡検査装置に関する。
【0002】
【従来の技術】
地下の配線溝等に配設された送電線や電話線等の電路は地絡事故を生じることがしばしばあり、地絡の発生している場所(地絡位置)を簡便かつ敏速に検知できる検査装置が求められている。地絡位置を簡便かつ敏速に検知するためには、電路を接続部から取りはずすことなく、電路に電流が流れている状態(以後、活線状態という)で検査するのが望ましい。
【0003】
電路の地絡を活線状態で検査する従来の検査装置においては、10Hz程度の低周波信号を、被検査電路の一方の端部と接地線間に印加する。次に変流器を被検査電路に近づけて前記低周波信号を検出する。変流器を被検査電路に沿って移動させると、地絡位置の前後で低周波信号の検出値が大幅に変化する。この検出値の変化に基づいて地絡位置を検知することができる。
【0004】
【発明が解決しようとする課題】
前記の従来の検査装置では、被検査電路の長さが数10m以上になると、電路と大地との間の浮遊容量により低周波信号が減衰して、変流器による検出レベルが低下し、地絡点の検知が困難になる。また前記配線溝には、送電線、データ伝送線など種々雑多な多数の電線が配設されている場合が多く、これらの電線から広い周波数帯域のノイズが発生している。そのため被検査電路にこれらのノイズが誘起し、変流器の検査値に大きな誤差が生じて地絡点の検知が更に困難になる。
【0005】
本発明は、長い電路の一部に生じた地絡の位置を、ノイズ等に影響されることなく活線状態で検査する地絡検査装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の地絡検査装置では、
活線状態の被検査電路に沿って配置した導電線、
前記導電線の一方の端子と接地線との間に接続され、前記被検査電路に誘導電流を誘起するためのパルス信号を前記導電線に印加するパルス発生器、
前記パルス発生器から前記導電線に印加したパルス信号の電磁誘導により、前記被検査電路に誘起した誘導電流により発生した磁場を検出するための磁気センサ、及び
前記磁気センサの検出出力の波形を表示する表示装置、
を備え、
前記被検査電路の地絡点の両側で、前記表示装置に表示される前記磁気センサの検出出力の波形の極性が逆になることを特徴とする。
【0007】
導電線に印加したパルス信号の電磁誘導により、被検査電路には、被検査電路の時定数に応じた波形の誘導電流が生じる。被検査電路と大地との間には浮遊容量があるので、誘導電流のパルス幅は、パルス発生器が供給したパルス信号のパルス幅より広くなり、且つ被検査電路の地絡位置の両側で極性が逆となる。磁気センサを被検査電路に沿って移動させ、誘導電流の極性が変化する場所をさがすことにより地絡位置を検知することができる。
【0008】
【発明の実施の形態】
以下に本発明の好適な実施例を図1及び図2を参照して説明する。
《実施例》
図1は本発明の地絡検査装置の使用状態における構成図である。図において、被検査電路1は、例えば送電線、データ伝送線などであり、端子1Aで所定の機器10に接続されている。被検査電路1には送電電流あるいはデータを伝送するための電流が流れており、この状態を以後活線状態という。被検査電路1には矢印14で示す位置で地絡が生じ、被検査電路1と大地(以下グランドGという)間の絶縁が低下した状態となっていると仮定する。以後矢印14の位置を地絡点14と呼ぶ。被検査電路1とグランドGとの間には点線で示したように浮遊容量がある。
【0009】
導電線2は、銅線を絶縁物で被覆した極く一般的な電線であり、被検査電路1に沿って配置する。被検査電路1と導電線2との間隔は0.5ないし3mにするのが望ましい。導電線2の長さは5ないし50mの範囲で被検査電路1の長さに合わせる。導電線2の一方の端子2Aはパルス発生器3の一方の出力端に接続されている。パルス発生器3の他方の端子はグランドGに接続されている。導電線の長さが5〜15mと比較的短いときは、導電線2の他方の端子2BとグランドGの間に0.1μF程度のコンデンサ11を接続する。誘電線の長さが20〜50mと長いときは、浮遊容量が大きいのでコンデンサ11を接続しなくてもよい。
【0010】
磁界を検出する磁場センサ4A及び4Bには、複数の磁気薄膜素子をブリッジ接続して3次元の磁界を検出可能にした3軸磁気センサが組み込まれている。3軸磁気センサは一般に市販されている標準品(例えば、米国ハネウエル社製のHM−1000型)を用いることができる。磁場センサ4A、4Bの3軸の磁気センサは、3軸の検出出力が合成されて1個の出力信号が得られるように構成されている。磁場センサ4A、4Bはバッテリ等の電源を内蔵しており、それぞれ長さ2ないし5mの光ファイバ8により地絡判定器12に接続されている。地絡判定器12はブラウン管や液晶板等を用いた表示部5を備えている。磁場センサ4A、4Bは直径3〜4cm、長さ20cm程度の棒状であり、被検査電路1の任意の位置に近づけることができるようになされている。
【0011】
次に地絡検査装置を用いて地絡を検知する手順を説明する。パルス発生器3は、例えば、波高値500V、パルス幅20マイクロ秒(μS)の正のパルス信号を3秒間隔で導電線2に印加する。このパルス信号の電磁誘導によって、被検査電路1にパルス電流が誘起し誘導電流が流れる。この誘導電流によって被検査電路1の周囲に磁場が生じ、この磁場を、被検査電路1に近づけた磁場センサ4A、4Bにより検出する。図2に、パルス発生器3が発生するパルス信号の波形と、このパルス信号を、被検査電路1に沿って展張した長さ30mの導電線2に印加した実験例における検出波形を示す。検出波形は磁場センサ4A、4Bによる磁束密度の検出値を示す。磁束密度の検出値は急峻な立上りと、なだらかな立下りを有する山状の波形となり、波高値は100ミリガウス(mG)、時間幅は約100μSであった。
【0012】
図1において、端子1Aと地絡点14との間の被検査電路1に接近させた磁場センサ4Aの検出波形は、図2の波形pに示すように正の波形となる。図1において地絡点14より右側の被検査電路1に接近させた磁場センサ4Bの検出波形は、図2の波形nに示すように負の波形となる。すなわち、地絡点14を境にして磁場センサ4A、4Bにより検出される磁束密度の検出値の極性が互いに逆になる。
【0013】
地絡検出の作業は、例えば、以下のようにして行う。1人の作業者が地絡判別器12と磁場センサ4Aを持ち、もう1人の作業者が磁場センサ4Bを持つ。両作業者は互いに数mの離間距離を保ちつつ、被検査電路1に各自の磁場センサ4A、4Bを近づけて一定方向に移動する。磁場センサ4A、4Bは3軸の磁気センサにより3次元の磁界を検出するので、どのような姿勢で磁場センサ4A、4Bを被検査電路1に近づけても、その磁場を検出することができる。地絡点14が両磁場センサ4Aと4Bとの間にないときは、表示部5に表示される磁場センサ4A、4Bの検出波形の極性は同じである。地絡点14が両磁場センサ4A、4Bの間に入ると、前記のように検出波形の極性が互いに逆になるので、その状態で両磁場センサ4A、4Bの離間距離を徐々に縮めることにより地絡点14を特定することができる。表示部5の表示色を、検出波形の正負に応じて互いに異なる色にすれば視認性をよくすることができる。
検出波形の正負をブラウン管等を用いた表示部5に表示することに代えて、以下に例示するような方法で知らせるようにすれば、操作がより簡単になるとともに、装置のコストを低減することができる。
(1)検出波形の正負を、互いに異なる周波数の音声、あるいは繰り返し周波数の異なる断続音で報知する。
(2)検出波形の正負を、互いに異なる色の表示灯の点灯で表示する。
【0014】
磁場センサ4A、4Bは必ずしも2個用いる必要なく、1個の磁場センサ4Aのみを1人の作業者が持って移動し、地絡点14を検出することもできる。前記の実験例における被検査電路1は、AC200Vの電源用配線であり電流は10Aであった。磁場センサ4A、4BはAC200Vの電流による磁場も検出するので、その検出値にはAC200Vの電流による磁束密度の検出値が重畳される。本実施例では、AC200Vの電流による検出波形の波高値(図示省略)は約30mGであり、印加パルスによる検出波形の波高値の約3分の1であった。従って、AC200Vによる検出電流が重畳されても印加パルスによる磁束密度の値を検出することができる。
【0015】
【発明の効果】
本発明によれば、前記実施例の説明から明らかなように、被検査電路に沿って配置した導電線に高電圧のパルス信号を印加し、被検査電路に誘起した誘導電流による磁界の磁束密度を磁界センサにより検出する。被検査電路の地絡点の両側では、磁束密度の検出値の極性が互いに逆になることから、地絡点を検出できる。被検査電路の磁場を磁場センサにより検出するので非接触で作業ができるとともに、高電圧のパルス信号を用いることにより誘導電流のレベルが大きく、S/N比が高いので活線状態においても、地絡点の検知を正確かつ容易に行うことができる。
【図面の簡単な説明】
【図1】 本発明の実施例の構成を示すブロック図
【図2】 実施例における印加パルス電圧と誘導電流の波形図
【符号の説明】
1 被検査電路
2 導電線
3 パルス発生器
4A、4B 磁場センサ
5 表示部
8 光ファイバ
10 機器
11 コンデンサ
12 地絡判別器
14 地絡点
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ground fault inspection apparatus that inspects a ground fault of an electric circuit such as a power transmission line.
[0002]
[Prior art]
Electric lines such as power transmission lines and telephone lines installed in underground wiring grooves often cause ground faults, and inspection that can easily and quickly detect the location where the ground fault occurs (ground fault position) A device is sought. In order to easily and promptly detect the ground fault position, it is desirable to inspect in a state where current is flowing in the electric circuit (hereinafter referred to as a live line state) without removing the electric circuit from the connection portion.
[0003]
In a conventional inspection apparatus that inspects a ground fault of an electric circuit in a live line state, a low frequency signal of about 10 Hz is applied between one end of the electric circuit to be inspected and a ground line. Next, a current transformer is brought close to the circuit to be inspected to detect the low frequency signal. When the current transformer is moved along the circuit to be inspected, the detected value of the low-frequency signal changes significantly before and after the ground fault position. The ground fault position can be detected based on the change in the detected value.
[0004]
[Problems to be solved by the invention]
In the conventional inspection apparatus, when the length of the electric circuit to be inspected is several tens of meters or more, the low-frequency signal is attenuated due to the stray capacitance between the electric circuit and the ground, and the detection level by the current transformer is lowered. It becomes difficult to detect the entanglement point. In addition, many various electric wires such as power transmission lines and data transmission lines are often disposed in the wiring groove, and noise in a wide frequency band is generated from these electric wires. Therefore, these noises are induced in the circuit to be inspected, and a large error occurs in the inspection value of the current transformer, making it difficult to detect the ground fault point.
[0005]
An object of this invention is to provide the ground fault inspection apparatus which test | inspects the position of the ground fault which generate | occur | produced in a part of long electric circuit in a hot-line state, without being influenced by noise etc.
[0006]
[Means for Solving the Problems]
In the ground fault inspection apparatus of the present invention,
Conductive wires placed along the live electrical circuit to be inspected,
A pulse generator connected between one terminal of the conductive line and a ground line, and applying a pulse signal to the conductive line for inducing an induced current in the circuit under test;
A magnetic sensor for detecting a magnetic field generated by an induced current induced in the circuit under test by electromagnetic induction of a pulse signal applied to the conductive wire from the pulse generator; and
A display device for displaying a waveform of a detection output of the magnetic sensor;
With
The polarity of the waveform of the detection output of the magnetic sensor displayed on the display device is reversed on both sides of the ground fault point of the electric circuit to be inspected.
[0007]
Due to the electromagnetic induction of the pulse signal applied to the conductive wire, an induced current having a waveform corresponding to the time constant of the circuit to be inspected is generated in the circuit to be inspected. Since there is a stray capacitance between the circuit to be inspected and the ground, the pulse width of the induced current is wider than the pulse width of the pulse signal supplied by the pulse generator, and the polarity is on both sides of the ground fault position of the circuit to be inspected. Is the opposite. The ground fault position can be detected by moving the magnetic sensor along the circuit to be inspected and looking for a place where the polarity of the induced current changes.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
A preferred embodiment of the present invention will be described below with reference to FIGS.
"Example"
FIG. 1 is a configuration diagram of the ground fault inspection apparatus according to the present invention in use. In the figure, an inspected electric circuit 1 is, for example, a power transmission line, a data transmission line, or the like, and is connected to a predetermined device 10 at a terminal 1A. A transmission current or a current for transmitting data flows through the circuit 1 to be inspected, and this state is hereinafter referred to as a hot line state. It is assumed that a ground fault occurs at the position indicated by the arrow 14 in the circuit 1 to be inspected, and the insulation between the circuit 1 to be inspected and the ground (hereinafter referred to as the ground G) is lowered. Hereinafter, the position of the arrow 14 is referred to as a ground fault point 14. There is a stray capacitance between the circuit 1 to be inspected and the ground G as indicated by a dotted line.
[0009]
The conductive wire 2 is a very general electric wire in which a copper wire is covered with an insulator, and is disposed along the electric circuit 1 to be inspected. The distance between the circuit 1 to be inspected and the conductive wire 2 is preferably 0.5 to 3 m. The length of the conductive wire 2 is adjusted to the length of the electric circuit 1 to be inspected in the range of 5 to 50 m. One terminal 2 </ b> A of the conductive wire 2 is connected to one output terminal of the pulse generator 3. The other terminal of the pulse generator 3 is connected to the ground G. When the length of the conductive line is as short as 5 to 15 m, a capacitor 11 of about 0.1 μF is connected between the other terminal 2B of the conductive line 2 and the ground G. When the length of the dielectric wire is as long as 20 to 50 m, the stray capacitance is large and the capacitor 11 does not need to be connected.
[0010]
The magnetic field sensors 4A and 4B that detect a magnetic field incorporate a three-axis magnetic sensor capable of detecting a three-dimensional magnetic field by bridge-connecting a plurality of magnetic thin film elements. As the three-axis magnetic sensor, a commercially available standard product (for example, HM-1000 model manufactured by Honeywell, USA) can be used. The three-axis magnetic sensor of the magnetic field sensors 4A and 4B is configured such that one output signal is obtained by synthesizing the three-axis detection outputs. The magnetic field sensors 4A and 4B have a built-in power source such as a battery, and are connected to the ground fault determiner 12 by an optical fiber 8 having a length of 2 to 5 m. The ground fault determination device 12 includes a display unit 5 using a cathode ray tube or a liquid crystal plate. The magnetic field sensors 4A and 4B are rods having a diameter of about 3 to 4 cm and a length of about 20 cm, and can be brought close to an arbitrary position of the electric circuit 1 to be inspected.
[0011]
Next, a procedure for detecting a ground fault using the ground fault inspection apparatus will be described. For example, the pulse generator 3 applies a positive pulse signal having a peak value of 500 V and a pulse width of 20 microseconds (μS) to the conductive wire 2 at intervals of 3 seconds. Due to the electromagnetic induction of this pulse signal, a pulse current is induced in the circuit 1 to be inspected, and an induced current flows. This induced current generates a magnetic field around the circuit to be inspected 1, and this magnetic field is detected by the magnetic field sensors 4 </ b> A and 4 </ b> B that are close to the circuit to be inspected 1. FIG. 2 shows a waveform of a pulse signal generated by the pulse generator 3 and a detection waveform in an experimental example in which this pulse signal is applied to the conductive wire 2 having a length of 30 m extended along the circuit 1 to be inspected. The detected waveform indicates the detected value of the magnetic flux density by the magnetic field sensors 4A and 4B. The detected value of the magnetic flux density was a mountain-like waveform having a steep rise and a gentle fall, the peak value was 100 milligauss (mG), and the time width was about 100 μS.
[0012]
In FIG. 1, the detected waveform of the magnetic field sensor 4A brought close to the electric circuit 1 to be inspected between the terminal 1A and the ground fault point 14 becomes a positive waveform as shown by the waveform p in FIG. In FIG. 1, the detected waveform of the magnetic field sensor 4B brought closer to the electric circuit 1 to be inspected on the right side from the ground fault point 14 becomes a negative waveform as shown by the waveform n in FIG. That is, the polarities of the detected values of the magnetic flux density detected by the magnetic field sensors 4A and 4B are reversed with respect to the ground fault point 14.
[0013]
The ground fault detection operation is performed as follows, for example. One worker has the ground fault discriminator 12 and the magnetic field sensor 4A, and the other worker has the magnetic field sensor 4B. Both workers move their magnetic field sensors 4A and 4B close to the electric circuit 1 to be inspected and move in a certain direction while maintaining a separation distance of several meters from each other. Since the magnetic field sensors 4A and 4B detect a three-dimensional magnetic field by a three-axis magnetic sensor, the magnetic field can be detected regardless of the posture of the magnetic field sensors 4A and 4B close to the electric circuit 1 to be inspected. When the ground fault point 14 is not between the magnetic field sensors 4A and 4B, the polarities of the detection waveforms of the magnetic field sensors 4A and 4B displayed on the display unit 5 are the same. When the ground fault point 14 enters between the two magnetic field sensors 4A and 4B, the polarities of the detected waveforms are opposite to each other as described above. By gradually reducing the distance between the two magnetic field sensors 4A and 4B in this state, The ground fault point 14 can be specified. Visibility can be improved if the display colors of the display unit 5 are different from each other according to the sign of the detected waveform.
If the detection waveform is notified by a method exemplified below instead of displaying the positive / negative of the detected waveform on the display unit 5 using a cathode ray tube or the like, the operation becomes easier and the cost of the apparatus is reduced. Can do.
(1) The positive / negative sign of the detected waveform is reported with sounds having different frequencies or intermittent sounds having different repetition frequencies.
(2) The positive / negative of the detected waveform is displayed by turning on the indicator lights of different colors.
[0014]
It is not always necessary to use two magnetic field sensors 4A and 4B, and only one magnetic field sensor 4A can be moved by one operator and the ground fault point 14 can be detected. The electric circuit 1 to be inspected in the above experimental example was an AC 200V power supply wiring, and the current was 10A. Since the magnetic field sensors 4A and 4B also detect a magnetic field due to an AC 200V current, a detected value of a magnetic flux density due to an AC 200V current is superimposed on the detected value. In this example, the peak value (not shown) of the detection waveform due to the AC 200 V current was about 30 mG, which was about one third of the peak value of the detection waveform due to the applied pulse. Therefore, the value of the magnetic flux density by the applied pulse can be detected even when the detection current by AC200V is superimposed.
[0015]
【The invention's effect】
According to the present invention, as is apparent from the description of the above embodiment, a magnetic flux density of a magnetic field caused by an induced current induced in a circuit to be inspected by applying a high-voltage pulse signal to a conductive line arranged along the circuit to be inspected. Is detected by a magnetic field sensor. Since the polarities of the detected values of the magnetic flux density are opposite to each other on both sides of the ground fault point of the circuit to be inspected, the ground fault point can be detected. Since the magnetic field of the circuit to be inspected is detected by a magnetic field sensor, the work can be performed in a non-contact manner, and by using a high voltage pulse signal, the level of the induced current is large and the S / N ratio is high. The detection of the entanglement point can be performed accurately and easily.
[Brief description of the drawings]
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention. FIG. 2 is a waveform diagram of applied pulse voltage and induced current in the embodiment.
DESCRIPTION OF SYMBOLS 1 Circuit to be inspected 2 Conducting wire 3 Pulse generator 4A, 4B Magnetic field sensor 5 Display part 8 Optical fiber 10 Equipment 11 Capacitor 12 Ground fault discriminator 14 Ground fault point

Claims (2)

活線状態の被検査電路に沿って配置した導電線、
前記導電線の一方の端子と接地線との間に接続され、前記被検査電路に誘導電流を誘起するためのパルス信号を前記導電線に印加するパルス発生器、
前記パルス発生器から前記導電線に印加したパルス信号の電磁誘導により、前記被検査電路に誘起した誘導電流により発生した磁場を検出するための磁気センサ、及び
前記磁気センサの検出出力の波形を表示する表示装置、
を備え
前記被検査電路の地絡点の両側で、前記表示装置に表示される前記磁気センサの検出出力の波形の極性が逆になることを特徴とする地絡検査装置。
Conductive wires placed along the live electrical circuit to be inspected,
A pulse generator connected between one terminal of the conductive line and a ground line, and applying a pulse signal to the conductive line for inducing an induced current in the circuit under test ;
By electromagnetic induction of a pulse signal applied to the conductive wire from the pulse generator, the magnetic sensor for detecting the magnetic field generated Ri by the induction current induced in the inspection path, and the detection output of the waveform of the magnetic sensor Display device,
Equipped with a,
The ground fault inspection apparatus , wherein the polarity of the waveform of the detection output of the magnetic sensor displayed on the display device is reversed on both sides of the ground fault point of the circuit to be inspected.
前記磁気センサは3次元の磁場を検出する3軸磁気センサであることを特徴とする請求項1記載の地絡検査装置。  The ground fault inspection apparatus according to claim 1, wherein the magnetic sensor is a three-axis magnetic sensor that detects a three-dimensional magnetic field.
JP21595098A 1998-07-30 1998-07-30 Ground fault inspection device Expired - Fee Related JP4248627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21595098A JP4248627B2 (en) 1998-07-30 1998-07-30 Ground fault inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21595098A JP4248627B2 (en) 1998-07-30 1998-07-30 Ground fault inspection device

Publications (2)

Publication Number Publication Date
JP2000046886A JP2000046886A (en) 2000-02-18
JP4248627B2 true JP4248627B2 (en) 2009-04-02

Family

ID=16680947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21595098A Expired - Fee Related JP4248627B2 (en) 1998-07-30 1998-07-30 Ground fault inspection device

Country Status (1)

Country Link
JP (1) JP4248627B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105929308A (en) * 2016-07-14 2016-09-07 广西电网有限责任公司柳州供电局 Protecting layer grounding positioning instrument
CN105954652A (en) * 2016-07-14 2016-09-21 广西电网有限责任公司柳州供电局 Sheath grounding fault point locating method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008086908A1 (en) 2007-01-17 2008-07-24 International Business Machines Corporation A method for determining the current return path integrity in an electric device connected or connectable to a further device
JP5168534B2 (en) * 2007-02-06 2013-03-21 東京電力株式会社 Electric charge type accident investigation device
JP5110685B2 (en) * 2007-03-09 2012-12-26 東京電力株式会社 Electric charge type accident investigation device
JP5076970B2 (en) * 2008-02-28 2012-11-21 東京電力株式会社 Electric charge type electric circuit accident investigation device and accident investigation method
JP5936419B2 (en) * 2012-04-11 2016-06-22 東京電力ホールディングス株式会社 Ground fault point search device and ground fault point search method
KR101539398B1 (en) * 2014-07-16 2015-07-27 장상호 Remotely controlled magnetic sensing type line fault indicator
CN113820623B (en) * 2021-09-29 2023-08-22 苏州热工研究院有限公司 Method for judging ground fault of cable shielding layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105929308A (en) * 2016-07-14 2016-09-07 广西电网有限责任公司柳州供电局 Protecting layer grounding positioning instrument
CN105954652A (en) * 2016-07-14 2016-09-21 广西电网有限责任公司柳州供电局 Sheath grounding fault point locating method

Also Published As

Publication number Publication date
JP2000046886A (en) 2000-02-18

Similar Documents

Publication Publication Date Title
US3299351A (en) Apparatus for detecting faults in buried cables including means for applying a composite signal having fundamental and even harmonic frequency components
EP0024183A1 (en) A method of detecting faults in the electrically conductive sheath of an electric cable
US5767684A (en) Method and apparatus for measuring partial discharges in cables
Mor et al. Localization techniques of partial discharges at cable ends in off-line single-sided partial discharge cable measurements
JP4248627B2 (en) Ground fault inspection device
SE441310B (en) DEVICE FOR MEDICAL DETERMINATION OF ERRORS IN A MULTIPLE conductor cable
CN102298104A (en) Method for detecting ground fault of bridge cable
US4276509A (en) Probe for testing conductor of an antenna windshield
US5914608A (en) Method and apparatus for tracing coaxial cables
JPH02171649A (en) Method and apparatus for detecting defect of insulated cable
KR0136791B1 (en) Dc biasing apparatus
US4982163A (en) Method and a device for the determination of the condition of the insulation of an object coated with an electric insulation
JP2002323533A (en) Partial discharge testing method for electric power equipment
EP0437940A1 (en) Defect position locator for cable insulation monitoring
KR100544727B1 (en) Electromagnetic ultrasonic sensor for improving electric noise shield
Park et al. Positioning of partial discharge origin by acoustic signal detection in insulation oil
JP6097598B2 (en) Partial discharge detection device and partial discharge detection method
JPH03150474A (en) Inspecting device for static eliminator
Eager et al. Identification and control of electrical noise in routine-reel corona detection of power cables
JP2654794B2 (en) Partial discharge detection device
US20020153898A1 (en) Apparatus for detecting voltage and current status in electric power system
JP3408803B2 (en) Applied current application detecting device and method
JP2001183412A (en) Insulation degradation diagnosing method for power cable
JP2007139718A (en) Water tree deterioration diagnostic method for power cable
JPH08170975A (en) Partial discharge detector for electric apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050726

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050726

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees