JP2932724B2 - Insulation degradation diagnosis method - Google Patents

Insulation degradation diagnosis method

Info

Publication number
JP2932724B2
JP2932724B2 JP3037732A JP3773291A JP2932724B2 JP 2932724 B2 JP2932724 B2 JP 2932724B2 JP 3037732 A JP3037732 A JP 3037732A JP 3773291 A JP3773291 A JP 3773291A JP 2932724 B2 JP2932724 B2 JP 2932724B2
Authority
JP
Japan
Prior art keywords
electrode
voltage power
frequency
insulation
corona discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3037732A
Other languages
Japanese (ja)
Other versions
JPH04256876A (en
Inventor
直文 千綿
謙一郎 杣
一夫 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP3037732A priority Critical patent/JP2932724B2/en
Publication of JPH04256876A publication Critical patent/JPH04256876A/en
Application granted granted Critical
Publication of JP2932724B2 publication Critical patent/JP2932724B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、例えば多回路開閉器
のごとき高圧電力用機器の絶縁劣化度合いがどの程度ま
で進行しているかを、非破壊的にかつ精度良い確率をも
って判定することのできる新規な絶縁劣化判定方法に関
するものである。
The present invention can non-destructively and accurately determine the degree of insulation deterioration of a high-voltage power device such as a multi-circuit switch. The present invention relates to a new insulation deterioration determination method.

【0002】[0002]

【従来の技術】開閉器や、変圧器などの高圧電力用機器
に絶縁劣化が生ずると、その劣化部分にコロナ放電が生
ずる。従来このコロナ放電を測定するには、動作状態に
ある高圧電力用機器を一旦停止させ、高圧電力用機器の
筐体を絶縁した後に診断のため高電圧を印加し、絶縁劣
化部分より発生するコロナ放電を接地電極を利用して検
出し、それを電気信号として測定部に出力させて検出す
るのが普通であった。
2. Description of the Related Art When insulation degradation occurs in a high-voltage power device such as a switch or a transformer, corona discharge occurs in the deteriorated portion. Conventionally, to measure this corona discharge, the high-voltage power equipment in the operating state is temporarily stopped, a high voltage is applied for diagnosis after insulating the housing of the high-voltage power equipment, and the corona generated from the insulation degraded part. It has been common practice to detect the discharge by using a ground electrode and to output it as an electric signal to a measuring unit.

【0003】[0003]

【発明が解決しようとする課題】上記従来方法による
と、高圧電力用機器の動作を一旦停止させねばならず、
そのための停電が問題となるし、停電をさせないように
するにはバイパス用の機器が必要となる。また、高圧電
力用機器の動作を停止した後に筐体を絶縁し、診断用に
高電圧を印加するには高電圧用の電源が必要である上、
種々の面倒な作業が付随し、作業性を悪くするという不
都合もある。
According to the above-mentioned conventional method, the operation of the high-voltage power equipment must be temporarily stopped.
A power failure for that purpose is a problem, and a bypass device is required to prevent the power failure. In addition, a high-voltage power supply is required to insulate the housing after stopping the operation of the high-voltage power device and apply a high voltage for diagnosis.
There are also inconveniences, which involve various troublesome operations and deteriorate workability.

【0004】この他、コロナ放電による超音波を検出す
るスーパーフォン方式等があるが、遮音状態になると検
出ができなくなる問題がある。
[0004] In addition, there is a superphone system or the like for detecting ultrasonic waves due to corona discharge. However, there is a problem that detection cannot be performed in a sound-insulating state.

【0005】この発明の目的は、上述した従来技術の問
題点を解消し、高圧電力用機器を運転状態のままでコロ
ナ放電を信頼性高く測定し、その結果より精度の良い絶
縁状態の診断ができる新規な絶縁劣化診断方法を提供し
ようとするものである。
An object of the present invention is to solve the above-mentioned problems of the prior art, and to measure corona discharge with high reliability while a high-voltage power device is in an operating state, and as a result, a more accurate diagnosis of an insulation state can be made. It is an object of the present invention to provide a new method of diagnosing insulation deterioration.

【0006】[0006]

【課題を解決するための手段】この発明は、コロナ発生
箇所が絶縁層で覆われている高圧電力用機器において、
絶縁層外側に電極を設置し、コロナ放電発生部と電極を
容量結合させることにより、運転状態にある高圧電力用
機器のコロナ放電を、上記電極の電位変化として検出
し、その検出された信号を100kHzから1GHzの
範囲において周波数解析を行い、検出信号の大きさ,極
性,出現の頻度により高圧電力用機器の絶縁状態を調べ
るようにしたことを特徴とする絶縁劣化診断方法であ
る。
SUMMARY OF THE INVENTION The present invention relates to a high-voltage power device in which a corona generating portion is covered with an insulating layer.
By installing an electrode outside the insulating layer and capacitively coupling the electrode with the corona discharge generator, the corona discharge of the high-voltage power equipment in the operating state is detected as a change in the potential of the electrode, and the detected signal is output. 100kHz to 1GHz
Perform frequency analysis within the range, and determine the magnitude and
An insulation deterioration diagnosis method characterized by examining the insulation state of high-voltage power equipment based on the nature and frequency of appearance .

【0007】[0007]

【作用】この発明は、高圧電力用機器が絶縁材料で覆わ
れていることを用いて、その外側に電極を設置し、高圧
電力用機器運転中にコロナ放電発生により引き起こされ
る設置した電極の電位変動(以下、電圧パルス信号と呼
ぶ)を測定することにより、コロナ放電の発生状態を推
定し、精度の良い絶縁診断を行えるようにしたものであ
る。
According to the present invention, the high-voltage power equipment is covered with an insulating material, and the electrodes are installed outside the high-voltage power equipment. By measuring the fluctuation (hereinafter, referred to as a voltage pulse signal), the occurrence state of corona discharge is estimated, so that insulation diagnosis with high accuracy can be performed.

【0008】[0008]

【実施例】部分放電による電圧パルス信号の測定方法の
模式図を図1に示し、先ず、この方法の原理について説
明する。ここでは、例として高圧の電極1aが絶縁材料
からなる機器絶縁部2aにより一様に全面が覆われてい
る高圧電力用機器を考える。この高圧電力用機器表面
に、図1に示すような測定用電極4aを設置する。図に
示した測定用電極4aは、安全性を確保するため、絶縁
材料の測定電極絶縁部5aで被覆されている。そして、
この電極4aより高周波においてもインピーダンスの低
い接続線6を用いて測定・分析器7と接続し、また、
定・分析器7よりアースへも高周波においてインピーダ
ンスの低い接続線8を用いて接続する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a schematic diagram of a method of measuring a voltage pulse signal by partial discharge, and first, the principle of the method will be described. Here, as an example, a high-voltage power device in which a high-voltage electrode 1a is uniformly covered by a device insulating portion 2a made of an insulating material is considered. The measuring electrode 4a as shown in FIG. 1 is installed on the surface of the high-voltage power equipment. The measuring electrode 4a shown in the figure is covered with a measuring electrode insulating portion 5a made of an insulating material in order to ensure safety. And
Also connected to the measurement and analysis instrument 7 using a low impedance connection line 6 in the high frequency than the electrode 4a, also measured
The constant / analyzer 7 is also connected to the ground by using a connection line 8 having a low impedance at a high frequency.

【0009】以上のような構成をとると、回路構成は図
2に示すように表わされる。高圧電力用機器のアースE
側のインピーダンスに対して測定・分析器7側のアース
のインピーダンスが非常に小さい場合、図2におけるコ
ロナ放電発生部3bにおいてコロナ放電が発生すると、
その放電によって発生する電荷は高圧電力用機器のアー
スE側と測定・分析器7の両方向に流れることが考えら
れるが、電荷は高圧電力用機器側アースEへ流れないた
め測定用電極4bの電位が変化する。その電位の変化を
測定・分析器7により測定するのがこの発明の絶縁劣化
診断方法に適用される部分放電検出法である。
With the above configuration, the circuit configuration is represented as shown in FIG. Ground E for high voltage power equipment
When the impedance of the earth on the measurement / analyzer 7 side is very small with respect to the impedance on the side, and a corona discharge occurs in the corona discharge generating section 3b in FIG.
It is conceivable that the electric charge generated by the discharge flows in both directions of the earth E side of the high-voltage power equipment and the measurement / analyzer 7 , but since the electric charge does not flow to the earth E of the high-voltage power equipment, the electric potential of the measuring electrode 4b is changed. Changes. The change in the potential is measured by the measurement / analyzer 7 in the partial discharge detection method applied to the insulation deterioration diagnosis method of the present invention.

【0010】ここで、高圧電力用機器のアースE側のイ
ンピーダンスに対して、測定・分析器7側よりアース8
に落ちるインピーダンスが本当に小さくなるかどうかが
問題となる。しかし、コロナ放電による電荷発生の立ち
上がりは極めて速く、極めて高い高周波成分を持ち、さ
らに、高圧電力用機器のアースは、商用周波においては
低いインピーダンスを持っているが、高周波領域におい
ては、高いインピーダンスしか持たないのが普通であ
る。よって、コロナ放電に関しては、高圧電力用機器の
アースE側のインピーダンスに対して、測定・分析器
側よりアース8に落ちるインピーダンスは小さくなり、
電圧信号パルスは測定することが可能となる。従って、
コロナ放電を検出することが可能となる。
[0010] Here, with respect to ground E side of the impedance of the high voltage power equipment, earth from measurement and analyzer 7 side 8
The question is whether or not the impedance that falls on the surface becomes really small. However, the rise of charge generation by corona discharge is extremely fast, has extremely high frequency components, and the ground of high-voltage power equipment has low impedance at commercial frequencies, but only high impedance at high frequencies. It is common not to have. Therefore, with respect to the corona discharge, the impedance of the measurement / analyzer 7 with respect to the impedance on the earth E side of the high-voltage power device is determined.
The impedance that falls to earth 8 from the side becomes smaller,
The voltage signal pulse can be measured. Therefore,
Corona discharge can be detected.

【0011】以下、この発明について、高圧電力用機器
として気中多回路開閉器に適用した場合の実施例を説明
する。
An embodiment in which the present invention is applied to an airborne multi-circuit switch as a high-voltage power device will be described below.

【0012】運転中の気中多回路開閉器筐体内に水分が
入り込み、さらにエポキシ電極内部にまで侵入すると、
長期間の課電により電極内部から微小なコロナ放電が開
始する。時間の経過と共にこのコロナ放電はグロー放
電、シンチレーション、さらにトラッキングへと発展
し、最終的にエポキシ電極部の絶縁破壊にまで至ってし
まう。このようにコロナ放電発生より絶縁破壊に至るま
での過程でコロナ放電が常に発生し、そのため、前述の
電極4bより電圧パルス信号が常に観測され、さらに、
この信号は各過程においてそれぞれ特徴あるものである
ことが本件出願の発明者らの研究結果から分かった。
[0012] When moisture enters into the aerial multi-circuit switch housing during operation and further penetrates into the epoxy electrode,
A minute corona discharge starts from inside the electrode due to long-term power application. With the passage of time, the corona discharge develops into glow discharge, scintillation, and tracking, and eventually leads to dielectric breakdown of the epoxy electrode portion. As described above, a corona discharge is always generated in the process from the occurrence of the corona discharge to the dielectric breakdown. Therefore, a voltage pulse signal is always observed from the above-described electrode 4b.
It has been found from the results of the research by the inventors of the present application that this signal is characteristic in each process.

【0013】とくに、スペクトラムアナライザを使用
し、電圧パルス信号の周波数解析を行った結果、劣化が
開始した直後の微小コロナ放電が発する場合の電圧パル
スの周波数成分は、数+MHz〜数GHzと比較的高周
波側に偏っているのに対し、グロー放電、シンチレーシ
ョン、トラッキングへと劣化が進行するに伴い、周波数
成分は高周波側より低周波へ広がっていくことが分かっ
た。この高周波側電圧パルスの測定例を図3および図4
に示す。即ち、図3は劣化が比較的に進んだ状態の場合
であり、図4は劣化がまだ進んでいない状態の場合のも
のである。そして、例えばトラッキングが開始する状態
では電圧パルスの周波数帯域は100KHz〜数GHz
となり、100KHzにまで周波数成分が広がることが
明白となったのである。
In particular, as a result of frequency analysis of the voltage pulse signal using a spectrum analyzer, the frequency component of the voltage pulse when a minute corona discharge occurs immediately after the start of deterioration is relatively several + MHz to several GHz. It was found that while the frequency components were biased toward the high frequency side, as the deterioration progressed to glow discharge, scintillation, and tracking, the frequency components spread from the high frequency side to lower frequencies. FIGS. 3 and 4 show measurement examples of the high-frequency voltage pulse.
Shown in That is, FIG. 3 shows the case where the deterioration has progressed relatively, and FIG. 4 shows the case where the deterioration has not progressed yet. Then, for example, in the state where tracking is started, the frequency band of the voltage pulse is 100 kHz to several GHz.
It became clear that the frequency component spread to 100 KHz.

【0014】一方、電圧パルス信号の大きさや出現の頻
度に関しては、以上のような絶縁状態の劣化に伴い電圧
パルス信号は大きくなり、そして出現頻度も増加するこ
とが判明した。
On the other hand, with respect to the magnitude and frequency of appearance of the voltage pulse signal, it has been found that the voltage pulse signal increases and the frequency of appearance increases with the deterioration of the insulating state as described above.

【0015】表1は、運転中の多回路開閉器について、
可動電極エポキシ絶縁材料表面に70×180mmの大
きさの金属電極を取り付け、電圧パルスを測定・分析し
た後、当該開閉器を現地より撤去し、従来の部分放電検
出装置を用いて部分放電電荷の測定とエポキシ電極の表
面の詳細について調査した結果を示したものである。
Table 1 shows that the operating multi-circuit switch is
A metal electrode with a size of 70 x 180 mm was attached to the surface of the movable electrode epoxy insulating material, and after measuring and analyzing the voltage pulse, the switch was removed from the site and the partial discharge charge was detected using a conventional partial discharge detection device. It shows the results of the measurement and the investigation of the details of the surface of the epoxy electrode.

【0016】[0016]

【表1】 [Table 1]

【0017】表1から明らかなように、多回路開閉器か
ら電磁波が検出されたエポキシ電極部からは部分放電パ
ルス信号が発生し、エポキシ電極の表面には放電痕が形
成される。この場合、劣化度合いの小さい微小なコロナ
放電痕しかない試料2(No.2)においては、電圧パ
ルス信号の周波数成分に関して、高周波帯域に止まって
いる。しかし、コロナ放電痕のやや大きく認められる試
料5(No.5)においては、周波数帯域の下限は30
MHzと低くなる。さらに、トラッキングにまで進行し
ている試料8(No.8)においては、周波数帯域の下
限は100KHzにまで低くなり、かつ広い範囲にわた
っている。
As is apparent from Table 1, a partial discharge pulse signal is generated from the epoxy electrode portion where the electromagnetic wave is detected from the multi-circuit switch, and a discharge mark is formed on the surface of the epoxy electrode. In this case, in the sample 2 (No. 2) having only a small corona discharge mark with a small degree of deterioration, the frequency component of the voltage pulse signal remains in the high frequency band. However, in Sample 5 (No. 5), in which the corona discharge marks are slightly larger, the lower limit of the frequency band is 30.
MHz. Furthermore, in the sample 8 (No. 8) that has progressed to tracking, the lower limit of the frequency band is as low as 100 KHz and covers a wide range.

【0018】この結果より明らかなように、検出される
電圧パルス信号の周波数成分分布を調べることにより、
エポキシ電極部の絶縁劣化の度合いを高い精度をもって
適格に把握することが可能なことが分かる。
As is clear from the results, by examining the frequency component distribution of the detected voltage pulse signal,
It can be seen that the degree of insulation deterioration of the epoxy electrode part can be accurately grasped with high accuracy.

【0019】また、電圧パルス信号の大きさは、エポキ
シの外観が劣化するにつれて増大する傾向を持ち、電圧
パルス信号の出現頻度は増加する傾向にある。このこと
により、電圧信号の大きさ、出現頻度もエポキシ電極の
劣化度合いと良い相関関係を持っていることがわかる。
よって、これらの量をオシロスコープ(シンクロスコー
プ)、パルスカウンター等を用い、印加する電圧の位相
情報とともに測定することによってもエボキシ電極部の
劣化度合いを高い精度で把握することが可能となる。な
お、出頻度に関しては、印加電圧1サイクルにおける
パルス出頻度を用いている。
Also, the magnitude of the voltage pulse signal tends to increase as the appearance of the epoxy deteriorates, and the frequency of appearance of the voltage pulse signal tends to increase. This shows that the magnitude and appearance frequency of the voltage signal also have a good correlation with the degree of deterioration of the epoxy electrode.
Therefore, it is possible to grasp the degree of deterioration of the epoxy electrode section with high accuracy by measuring these amounts together with the phase information of the applied voltage using an oscilloscope (synchroscope), a pulse counter or the like. Regarding the output current frequency is used the current frequency output pulse at an applied voltage of 1 cycle.

【0020】また、FFTを用い、例えば印加電圧1サ
イクル中に発生した信号に対して、FFTをかけること
により、劣化する過程における各周波数成分の強度を予
め調べておくことで、実際に診断対象を測定した結果を
照らし合わせ、劣化の状態を推定することもできる。
In addition, by using FFT, for example, by applying FFT to a signal generated during one cycle of an applied voltage, the strength of each frequency component in the process of deterioration is checked in advance, so that a diagnosis target is actually obtained. The state of deterioration can also be estimated by comparing the results of the measurements.

【0021】従って、この発明の絶縁劣化診断方法を用
いて電圧パルスを測定することにより、絶縁劣化して部
分放電が発生している高圧電力用機器の劣化度を非破壊
的に、かつ運転中に停電なしに判定することが可能とな
る。よって、通常のメンテナンス作業の一つとしてこの
測定を加え、絶縁劣化の程度を常時監視することによ
り、絶縁破壊によってもたらされる停電といった重大事
故への発展を未然に防止することが可能となる。
Therefore, by measuring the voltage pulse using the insulation deterioration diagnosis method of the present invention, the deterioration degree of the high-voltage power equipment in which the insulation has been deteriorated and the partial discharge has occurred can be non-destructively and operated. Can be determined without a power failure. Therefore, by adding this measurement as one of the normal maintenance operations and constantly monitoring the degree of insulation deterioration, it is possible to prevent the occurrence of a serious accident such as a power failure caused by insulation breakdown.

【0022】なお、以上は具体例として多回路開閉器を
例示して説明したが、この発明の有する技術思想はそれ
以外の電力機器に対してもそのまま適用できることはい
うまでもない。
Although a multi-circuit switch has been described above as a specific example, it is needless to say that the technical idea of the present invention can be applied to other power equipment as it is.

【0023】[0023]

【発明の効果】以上説明したとおり、この発明の絶縁劣
化診断方法によれば、高圧電力用機器内において発生す
るコロナ放電により生じる設置した電極の電圧変化を検
出するのみでどの程度まで劣化が進行しているかという
その劣化の進行程度を精度良く診断判定することを可能
にするものであり、メンテナンスの一様態としてこの発
明を適用することにより、絶縁破壊による停電という重
大事故を未然に防止することを可能とするものであっ
て、その実用上価値は極めて高いものがある。
As described above, according to the insulation deterioration diagnosing method of the present invention, the degree of deterioration progresses only by detecting the voltage change of the installed electrode caused by the corona discharge generated in the high-voltage power equipment. It is possible to accurately diagnose and judge the degree of progress of its deterioration, and to apply this invention as a form of maintenance to prevent a serious accident such as a power failure due to insulation breakdown. And its practical value is extremely high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】コロナ放電発生による電圧パルス信号の測定方
法の模式図である。
FIG. 1 is a schematic diagram of a method of measuring a voltage pulse signal due to corona discharge generation.

【図2】コロナ放電発生による電圧パルス信号の測定方
法の原理図である。
FIG. 2 is a principle diagram of a method of measuring a voltage pulse signal by generation of corona discharge.

【図3】劣化が比較的進んだ場合の高周波側電圧パルス
の測定例を示すグラフである。
FIG. 3 is a graph showing a measurement example of a high-frequency-side voltage pulse when deterioration has progressed relatively.

【図4】劣化がまだ進んでいない場合の高周波側電圧パ
ルスの測定例を示すグラフである。
FIG. 4 is a graph showing a measurement example of a high-frequency voltage pulse when deterioration has not yet progressed.

【符号の説明】[Explanation of symbols]

1a,1b 高圧電極 2a,2b 機器絶縁部 3a,3b コロナ発生部 4a,4b 測定電極 5a,5b 測定電極絶縁部 6,8 接続線 7 測定・分析器 1a, 1b High-voltage electrode 2a, 2b Equipment insulation 3a, 3b Corona generator 4a, 4b Measurement electrode 5a, 5b Measurement electrode insulation 6,8 Connection line 7 Measurement / analyzer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−154171(JP,A) 特開 昭59−85966(JP,A) 特開 平2−161369(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01R 31/12 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-2-154171 (JP, A) JP-A-59-85966 (JP, A) JP-A-2-161369 (JP, A) (58) Field (Int.Cl. 6 , DB name) G01R 31/12

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】コロナ発生箇所が絶縁層で覆われている高
圧電力用機器において、絶縁層外側に電極を設置し、コ
ロナ放電発生部と電極を容量結合させることにより、運
転状態にある高圧電力用機器のコロナ放電を、上記電極
の電位変化として検出し、その検出された信号を100
kHzから1GHzの範囲において周波数解析を行い、
絶縁劣化の進行に伴って検出信号の周波数成分が高周波
側より低周波側へ広がって行くこと、そして、検出信号
の大きさ、出現の頻度が増すこと、を見ることにより高
圧電力用機器の絶縁状態を調べるようにしたことを特徴
とする絶縁劣化診断方法。
In a high-voltage power device in which a corona generating portion is covered with an insulating layer, an electrode is provided outside the insulating layer, and the corona discharge generating portion and the electrode are capacitively coupled to each other so that the high-voltage power in an operating state is obtained. The corona discharge of the equipment is detected as a change in the potential of the electrode, and the detected signal is
Perform frequency analysis in the range of kHz to 1 GHz,
As the insulation deterioration progresses, the frequency component of the detection signal becomes higher.
Insulation degradation diagnosis characterized by examining the insulation state of high-voltage power equipment by checking that it spreads to the lower frequency side from the side and that the magnitude of the detection signal and the frequency of appearance increase. Method.
JP3037732A 1991-02-08 1991-02-08 Insulation degradation diagnosis method Expired - Lifetime JP2932724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3037732A JP2932724B2 (en) 1991-02-08 1991-02-08 Insulation degradation diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3037732A JP2932724B2 (en) 1991-02-08 1991-02-08 Insulation degradation diagnosis method

Publications (2)

Publication Number Publication Date
JPH04256876A JPH04256876A (en) 1992-09-11
JP2932724B2 true JP2932724B2 (en) 1999-08-09

Family

ID=12505665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3037732A Expired - Lifetime JP2932724B2 (en) 1991-02-08 1991-02-08 Insulation degradation diagnosis method

Country Status (1)

Country Link
JP (1) JP2932724B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100693634B1 (en) * 2005-03-17 2007-03-14 엘에스전선 주식회사 Sensor integrated at the cable joints for sensing partial discharge of cable and fabrication method therefor
JP2013134134A (en) * 2011-12-26 2013-07-08 Nissin Electric Co Ltd Partial discharge measurement instrument and partial discharge measurement method
JP6269556B2 (en) * 2015-04-08 2018-01-31 富士電機株式会社 Sensor and partial discharge detection device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5985966A (en) * 1982-11-10 1984-05-18 Hitachi Ltd Partial discharge measuring apparatus
JPH067145B2 (en) * 1988-12-06 1994-01-26 日立電線株式会社 Partial discharge measurement method for power cables
JPH0619413B2 (en) * 1988-12-14 1994-03-16 日立電線株式会社 Partial discharge measurement method

Also Published As

Publication number Publication date
JPH04256876A (en) 1992-09-11

Similar Documents

Publication Publication Date Title
Cleary et al. UHF and current pulse measurements of partial discharge activity in mineral oil
JP4797175B2 (en) Method and apparatus for measuring partial discharge charge
US6297642B1 (en) Partial discharge detection method
JP4261041B2 (en) Insulation abnormality diagnosis device for high voltage equipment and insulation abnormality diagnosis method thereof
JP5228558B2 (en) Partial discharge detection device by electromagnetic wave detection and detection method thereof
JP2009115505A (en) Winding inspection device and inspection method
JP2009222537A (en) Partial discharge detecting method by electromagnetic wave measurement
JPH03209180A (en) Method and device for inspecting insulating system condition
JP2932724B2 (en) Insulation degradation diagnosis method
US20010048305A1 (en) Method for determining sources of interference
JP2956301B2 (en) Diagnosis method for insulation deterioration of power equipment
US20050212524A1 (en) Electric power line on-line diagnostic method
US11573257B2 (en) Systems and methods for acoustically detecting dielectric breakdown and partial discharge events in electrical devices
JP2000002743A (en) Insulation deterioration diagnostic method for high- voltage equipment such as high-voltage overhead cable branch connecting body for power distribution
JP3720291B2 (en) Degradation diagnosis method for solid insulation materials
JP3177313B2 (en) Diagnosis method for insulation deterioration of power equipment
JP2538688B2 (en) Insulation deterioration degree determination method for power equipment
Rux High-voltage dc tests for evaluating stator winding insulation: Uniform step, graded step, and ramped test methods
JP4216920B2 (en) Partial discharge occurrence position detection device for conductive device
Guastavino et al. A study about partial discharge measurements performed applying to insulating systems square voltages with different rise times
JPH07218480A (en) Measurement of insulating characteristics of electric insulating coil
JPH04212076A (en) Method and device for abnormal diagnostic method of electrical equipment
Choi et al. Analysis of acoustic signals generated by partial discharges in insulation oil
JP2002323533A (en) Partial discharge testing method for electric power equipment
JP3151754B2 (en) Partial discharge judgment method