JP3236770B2 - Partial discharge measurement method for CV cable line - Google Patents

Partial discharge measurement method for CV cable line

Info

Publication number
JP3236770B2
JP3236770B2 JP35211695A JP35211695A JP3236770B2 JP 3236770 B2 JP3236770 B2 JP 3236770B2 JP 35211695 A JP35211695 A JP 35211695A JP 35211695 A JP35211695 A JP 35211695A JP 3236770 B2 JP3236770 B2 JP 3236770B2
Authority
JP
Japan
Prior art keywords
partial discharge
frequency
cable
line
cable line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35211695A
Other languages
Japanese (ja)
Other versions
JPH09178802A (en
Inventor
美伯 角田
健吾 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP35211695A priority Critical patent/JP3236770B2/en
Publication of JPH09178802A publication Critical patent/JPH09178802A/en
Application granted granted Critical
Publication of JP3236770B2 publication Critical patent/JP3236770B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明はCVケーブル線路の
部分放電を間接校正により測定する方法に関し、特に間
接校正方式において定量測定を行う際に重要となる部分
放電検出信号の増幅周波数の選定方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of measuring a partial discharge of a CV cable line by indirect calibration, and more particularly to a method of selecting an amplification frequency of a partial discharge detection signal which is important when performing quantitative measurement in an indirect calibration method. Things.

【0002】[0002]

【発明の背景】CVケーブル線路の絶縁状態を試験する
方法の一つとして、従来から部分放電測定法が採用され
ている。部分放電測定には、ケーブルの導体と遮蔽層と
の間に直接電荷を注入し絶縁体中の微小欠陥に基づく放
電を検出するいわゆる直接校正方式と、前記のように充
電部に直接接触することなく例えばケーブル線路の絶縁
接続部の外周部に箔電極を設置し既知の電荷を静電結合
を利用して注入すると共に部分放電を検出する間接校正
方式とがある。この間接校正方式は、線路の解体が不要
である、活線状態での測定が可能である等の利点があ
る。
BACKGROUND OF THE INVENTION As one method of testing the insulation state of a CV cable line, a partial discharge measurement method has conventionally been adopted. In the partial discharge measurement, a so-called direct calibration method in which a charge is directly injected between the conductor of the cable and the shielding layer to detect a discharge based on minute defects in the insulator, and a direct contact with the charged part as described above. For example, there is an indirect calibration method in which a foil electrode is provided on an outer peripheral portion of an insulated connection portion of a cable line, a known charge is injected using electrostatic coupling, and a partial discharge is detected. This indirect calibration method has advantages in that the line does not need to be dismantled, and measurement can be performed in a live state.

【0003】上記間接校正方式により部分放電を定量測
定するには一定の条件が要求される。図2は部分放電測
定回路を示しており、aは試料の静電容量(試験すべき
ケーブル線路絶縁体の静電容量)、kは結合コンデンサ
の静電容量、Zdは検出インピーダンスを表している。
直接校正の場合は電荷Qを試料に直接注入し、間接校正
の場合は電荷qを検出インピーダンスZdの両端に注入
することになるのであるが、両校正方式の電荷は、Q=
(1+a/k)qの関係式で表わすことができる。ここ
でa=kのときQ=2qとなり、即ちかかる条件を満た
す限りは間接校正の電荷qを直接校正の際の電荷Qの半
分に設定すれば定量測定が可能であることとなる。
[0006] Quantitative measurement of partial discharge by the indirect calibration method requires certain conditions. FIG. 2 shows a partial discharge measurement circuit, wherein a represents the capacitance of the sample (the capacitance of the cable line insulator to be tested), k represents the capacitance of the coupling capacitor, and Zd represents the detection impedance. .
In the case of direct calibration, the charge Q is directly injected into the sample, and in the case of indirect calibration, the charge q is injected into both ends of the detection impedance Zd.
It can be expressed by the relational expression of (1 + a / k) q. Here, when a = k, Q = 2q, that is, as long as such a condition is satisfied, quantitative measurement can be performed by setting the charge q of the indirect calibration to half the charge Q at the time of the direct calibration.

【0004】この条件を直接校正と間接校正との比率
(以下直間比という)=2の条件といい、CVケーブル
線路においてもこの条件、即ち直間比=2の条件が分か
れば、間接校正方式においても部分放電の定量測定を行
うことができる。例えばCVケーブル線路の絶縁接続部
において間接校正による部分放電測定を行う場合、直間
比は絶縁接続部の一方の側のケーブルインピーダンスZ
1と、他方の側のケーブルインピーダンスZ2との分圧
比で定まり、Z1=Z2のとき直間比=2となることか
ら、このZ1=Z2を成立させれば間接校正方式が適用
できる。しかしながら、Z1=Z2の成立には絶縁接続
部両側のケーブル長が等しいことが要件となるが、一般
的にケーブル長は同一ではない。
[0004] This condition is referred to as a condition of the ratio between direct calibration and indirect calibration (hereinafter referred to as the direct ratio) = 2. In the case of a CV cable line, if this condition, that is, the condition of direct ratio = 2, is known, the indirect calibration is performed. In this method, quantitative measurement of partial discharge can be performed. For example, when performing partial discharge measurement by indirect calibration at an insulated connection of a CV cable line, the direct ratio is determined by the cable impedance Z on one side of the insulated connection.
1 and the direct-current ratio = 2 when Z1 = Z2, the indirect calibration method can be applied if Z1 = Z2 is satisfied. However, in order to satisfy Z1 = Z2, it is necessary that the cable lengths on both sides of the insulated connecting portion are equal, but generally the cable lengths are not the same.

【0005】そこで、Z1=Z2を実質的に成立させる
ために、検出した部分放電信号の増幅周波数をケーブル
インピーダンスの収束特性を基にして選択することが試
みられている。即ち、増幅周波数をケーブルインピーダ
ンスがサージインピーダンスZ0に収束する周波数と
し、Z1=Z2=Z0とすることで直間比=2を達成す
るものである。
In order to substantially satisfy Z1 = Z2, attempts have been made to select the amplification frequency of the detected partial discharge signal based on the convergence characteristics of the cable impedance. That is, by setting the amplification frequency to a frequency at which the cable impedance converges to the surge impedance Z0, and by setting Z1 = Z2 = Z0, the direct ratio = 2 is achieved.

【0006】図3は長さ250mと350mの6.6k
VのCVケーブル絶縁接続部を設けて模擬線路を構築
し、検出した部分放電信号を2MHzから20MHzま
での周波数で狭帯域共振増幅し、応答の極大と極小を確
認しつつ変化させ、各周波数ごとに計算で求めた直間比
を示している。図示する通り、13MHz以上の高周波
領域では直間比=2であり、それより低い周波数領域で
は等差級数の極大を有している。13MHz以上の直間
比=2の状態はケーブルインピーダンスの収束動作に対
応しており、この場合は13MHz以上の適宜な周波数
にて検出信号を増幅すれば、定量性を持った間接校正に
よる測定が行い得ることになる。
FIG. 3 shows a 6.6k length of 250m and 350m.
A simulated line is constructed by providing a CV cable insulation connection part of V, and the detected partial discharge signal is amplified in a narrow band resonance at a frequency from 2 MHz to 20 MHz, and is changed while confirming the maximum and minimum of the response. Shows the calculated direct ratio. As shown in the drawing, the direct ratio = 2 in the high frequency region of 13 MHz or higher, and the maximum of the arithmetic series is obtained in the lower frequency region. The state where the direct ratio of 13 MHz or more is 2 corresponds to the convergence operation of the cable impedance. In this case, if the detection signal is amplified at an appropriate frequency of 13 MHz or more, measurement by indirect calibration with quantitative characteristics can be performed. Can do it.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記の
ような高周波領域において増幅周波数を選定した場合、
伝搬減衰が高周波になる程顕著になることから、ケーブ
ル線路の長手方向での測定感度が低下してしまうという
問題があった。例えば実線路において、ある絶縁接続部
において部分放電測定を行う場合、当該絶縁接続部にお
ける部分放電測定は高精度に行えても、そこから数百m
程度離れた直線接続部の部分放電信号は減衰が大きく実
質的な測定ができなくなる。この線路の長手方向での減
衰の問題は、増幅周波数として数MHz程度の周波数を
選択すれば解決できるのであるが、かかる低周波領域は
直間比=2の安定状態ではなく、間接校正の定量性の点
で問題が生じてしまう。
However, when the amplification frequency is selected in the high frequency region as described above,
Since the propagation attenuation becomes more pronounced at higher frequencies, there is a problem that the measurement sensitivity in the longitudinal direction of the cable line is reduced. For example, in a case where a partial discharge measurement is performed at a certain insulated connection part in an actual line, even if the partial discharge measurement at the insulated connection part can be performed with high accuracy, it is several hundred meters
The partial discharge signal at the linear connection part which is separated by a large distance is greatly attenuated, and a substantial measurement cannot be performed. The problem of attenuation in the longitudinal direction of the line can be solved by selecting a frequency of about several MHz as the amplification frequency. However, such a low frequency region is not in a stable state with the direct ratio = 2, and the quantification of indirect calibration is performed. A problem arises in terms of gender.

【0008】従って本発明は上記の問題を解消し、間接
校正方式によるCVケーブル線路の部分放電測定におい
て、定量性を損なうことなく、伝搬減衰の影響を受けず
に線路の長距離間の部分放電測定を行い得る方法を提供
することを目的とする。
Accordingly, the present invention solves the above-mentioned problems, and in the partial discharge measurement of a CV cable line by the indirect calibration method, the partial discharge over a long distance of the line without being affected by propagation attenuation without impairing quantitative performance. It is an object to provide a method capable of performing a measurement.

【0009】[0009]

【課題を解決するための手段】本発明のCVケーブル線
路の部分放電測定方法は、CVケーブル線路の検出端か
ら既知の電荷を静電結合を利用してケーブル線路に注入
し、このときに検出インピーダンスにて検出される信号
を増幅して部分放電を測定する方法において、検出信号
を線路内の反射パルスの重なりに影響されない分解能で
増幅し、この増幅信号をケーブルインピーダンスが非収
束となる低周波領域において周波数スペクトルを解析す
ると共に、前記スペクトルの中から線路のケーブル長に
依存する共振周波数を避けて特定の周波数を選択し、当
該周波数を前記検出信号の増幅周波数として部分放電測
定を行うことを特徴とするものである。
According to the method for measuring partial discharge of a CV cable line according to the present invention, a known charge is injected into a cable line from a detection end of the CV cable line by using electrostatic coupling. In the method of measuring a partial discharge by amplifying a signal detected by impedance, the detection signal is amplified with a resolution that is not affected by the overlap of reflected pulses in the line, and this amplified signal is a low-frequency signal in which the cable impedance does not converge. Analyzing the frequency spectrum in the region, selecting a specific frequency from the spectrum avoiding the resonance frequency depending on the cable length of the line, and performing partial discharge measurement using the frequency as the amplification frequency of the detection signal. It is a feature.

【0010】[0010]

【発明の実施の形態】本発明は、第一に検出信号を線路
内の反射パルスの重なりに影響されない分解能で増幅す
る点に大きな意義がある。本発明者らの研究によれば、
ケーブル線路に測定パルスを注入すると接続部等でパル
スの反射が発生するのであるが、一般的なケーブル線路
の接続部間のケーブルスパンは数百m程度であり、この
距離に対応するケーブル内の反射パルスの重なりによっ
て、直間比は数百kHz程度の周期で大きく変動するこ
とを見出した。しかも、当該変動は直間比=2付近を変
動下限としていることも判明した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention has great significance in that, first, a detection signal is amplified with a resolution which is not affected by the overlap of reflected pulses in a line. According to our research,
When a measurement pulse is injected into a cable line, reflection of the pulse occurs at the connection part, etc., but the cable span between the connection parts of a general cable line is about several hundred meters, and the cable in the cable corresponding to this distance It has been found that the direct ratio greatly fluctuates at a period of about several hundred kHz due to the overlap of the reflected pulses. In addition, it has been found that the variation has a variation lower limit near the direct ratio = 2.

【0011】従来、この種の部分放電測定方法において
は、測定の便宜性もあって検出信号を1MHz程度の分
解能で増幅していたが、かかる分解能では数百kHz程
度の繰り返しは読み取れない。従って、ケーブルインピ
ーダンスが非収束となる低周波領域は伝搬減衰が少ない
という利点があるのに拘らず、直間比が概ね2となる周
波数が明定できないために定量性が担保できず、検出信
号の増幅周波数から除外されていたのである。
Conventionally, in this kind of partial discharge measurement method, the detection signal is amplified with a resolution of about 1 MHz for the convenience of measurement, but repetition of about several hundred kHz cannot be read at such a resolution. Therefore, in spite of the advantage that the propagation attenuation is small in the low frequency region where the cable impedance is not converged, the quantitativeness cannot be secured because the frequency at which the direct ratio is approximately 2 cannot be determined. It was excluded from the amplification frequency.

【0012】そこで本発明では上記の知見に鑑み、検出
信号を線路内の反射パルスの重なりに影響されない分解
能で増幅することとした。該分解能は線路のスパン等を
基にして決定されるが、上述の接続部間のケーブルスパ
ンが数百m程度の線路では、100kHz以下、好まし
くは10〜50kHz程度の分解能で増幅すれば、直間
比の数百kHz程度の周期を十分読み取れるので好まし
い。
In view of the above findings, the present invention amplifies the detection signal with a resolution that is not affected by the overlap of reflected pulses in the line. The resolution is determined based on the span of the line or the like. However, in the case of a line having a cable span between the above-mentioned connecting parts of about several hundred meters, if the signal is amplified with a resolution of 100 kHz or less, preferably about 10 to 50 kHz, the line is directly converted. This is preferable because a period of about several hundred kHz of the interval ratio can be sufficiently read.

【0013】次いで、このようにして増幅された信号
の、ケーブルインピーダンスが非収束となる低周波領域
において周波数スペクトルを解析する。これにより直間
比の変動状態を正確に把握するのである。ケーブルイン
ピーダンスが非収束となる低周波領域とは、図3からも
明らかな通り概ね10数MHz程度以下を指すが、本発
明にあっては伝搬減衰が生じる高周波領域を対象としな
い趣旨より、10MHz以下の低周波領域のスペクトル
解析を行えば実質上は足りる。
Next, the frequency spectrum of the signal thus amplified is analyzed in a low frequency region where the cable impedance does not converge. Thus, the fluctuation state of the direct ratio can be accurately grasped. The low-frequency region where the cable impedance is not converged indicates a frequency of about 10 MHz or less, as is clear from FIG. 3, but the present invention does not cover a high-frequency region where propagation attenuation occurs. Performing the following spectrum analysis in the low frequency region is substantially sufficient.

【0014】そして該スペクトルの中から適宜な周波数
を検出信号の増幅周波数として選択するのであるが、こ
れは直間比=2の条件が概ね成立している周波数を選定
することに他ならない。既述の通り、低周波領域では直
間比は2付近を変動下限として数百kHz程度の周期で
変動する。その極大点は、線路のケーブル長に依存する
共振周波数である。本発明ではこの共振周波数を避け
て、ほぼ直間比=2である周波数を検出信号の増幅周波
数として部分放電測定を行うものである。なお、10M
Hz以下の低周波領域でも直間比=2の状態が成立する
周波数は複数あるが、周波数が高いほど上述の伝搬減衰
の問題が生ずるのでなるべく低い周波数を選定すること
が望ましく、好ましくは0.5〜7MHz、とくには1
〜5MHzの範囲で選定すれば良い。低すぎる周波数領
域では、通常は直間比=2のポイントが存在しないた
め、この領域での増幅周波数の選定は不可である。
Then, an appropriate frequency is selected as an amplification frequency of the detection signal from the spectrum, but this is nothing but selecting a frequency where the condition of the direct ratio = 2 is substantially satisfied. As described above, in the low frequency region, the direct ratio fluctuates at a period of about several hundred kHz with a fluctuation lower limit around 2. The maximum point is the resonance frequency depending on the cable length of the line. In the present invention, the partial discharge measurement is performed by avoiding this resonance frequency and using a frequency at which the direct ratio is approximately 2 as the amplification frequency of the detection signal. In addition, 10M
There are a plurality of frequencies at which the state of direct ratio = 2 is established even in a low frequency region of less than or equal to Hz, but the higher the frequency, the more the above-mentioned problem of propagation attenuation occurs. Therefore, it is desirable to select a frequency as low as possible. 5-7MHz, especially 1
What is necessary is just to select in the range of 5 MHz. In a frequency region that is too low, there is usually no point where the direct ratio = 2, and it is not possible to select an amplification frequency in this region.

【0015】[0015]

【実施例】以下、本発明の一実施例につき詳細に説明す
る。図1は本発明にかかる部分放電測定方法を、CVケ
ーブル11,12の絶縁接続部IJにおいて適用した場
合を示す回路図である。絶縁接続部IJは、ケーブル導
体の接続部上に補強絶縁体を被せ、その上に遮蔽層、防
食層等が設けられ、さらに遮蔽層の絶縁筒3が設けられ
て構成されている。21,22、及び61,62は絶縁
接続部IJの防食層上に貼付される箔電極であり、遮蔽
層絶縁筒3を挟んでそれぞれ一組配置されている。
An embodiment of the present invention will be described below in detail. FIG. 1 is a circuit diagram showing a case where the partial discharge measurement method according to the present invention is applied to the insulated connection portions IJ of the CV cables 11 and 12. The insulated connecting portion IJ is configured such that a reinforcing insulator is put on the connecting portion of the cable conductor, a shielding layer, an anticorrosion layer, and the like are provided thereon, and an insulating cylinder 3 of the shielding layer is further provided. Reference numerals 21 and 22 and 61 and 62 denote foil electrodes attached to the anticorrosion layer of the insulated connecting portion IJ.

【0016】前記箔電極21,22からはリード線2
3,24が引き出され、他端側はそれぞれ検出インピー
ダンスZdに接続されている。またPGはパルス発生器
を示しており、リード線63,64を介して別の箔電極
61,62からCVケーブル11,12に静電結合を利
用して既知の電荷を注入し得るように構成されている。
本実施例では、検出用箔電極21,22と、パルス注入
用箔電極61,62とを別々に絶縁接続部IJに設ける
場合を例示しているが、一組の箔電極に両機能を兼用さ
せることもできる。
The lead wires 2 are connected to the foil electrodes 21 and 22.
The other ends are connected to the detection impedance Zd. PG denotes a pulse generator, which is configured so that a known charge can be injected from other foil electrodes 61 and 62 to the CV cables 11 and 12 through lead wires 63 and 64 by utilizing electrostatic coupling. Have been.
In the present embodiment, the case where the detection foil electrodes 21 and 22 and the pulse injection foil electrodes 61 and 62 are separately provided in the insulating connection portion IJ is illustrated, but a pair of foil electrodes has both functions. It can also be done.

【0017】検出インピーダンスZdには、その両端に
発生する電圧(検出信号)を、100kHzの分解能で
増幅する例えば狭帯域共振増幅器等の増幅器4が接続さ
れており、さらに増幅器4には、1〜10MHzの範囲
で増幅された信号を掃引して周波数スペクトルを解析
し、この周波数範囲の中から計算により直間比=2とな
る適宜な周波数を選び出し、その増幅周波数による検出
信号波形を表示する測定器5が接続されている。
The detection impedance Zd is connected to an amplifier 4 such as a narrow band resonance amplifier for amplifying a voltage (detection signal) generated at both ends thereof with a resolution of 100 kHz. Sweeps the signal amplified in the range of 10 MHz, analyzes the frequency spectrum, selects an appropriate frequency that makes the direct ratio = 2 from this frequency range by calculation, and displays the detected signal waveform based on the amplified frequency. The vessel 5 is connected.

【0018】実際に部分放電測定を行うに際しては、先
ずパルス発生器PGにて既知の電荷を箔電極61,62
から静電結合を利用してCVケーブル線路に注入する。
そして注入したパルスを別の箔電極21,22で検出す
る。ここで、絶縁体が健全である場合は注入パルス波形
にほぼ等しい信号が検出インピーダンスZdにて検出さ
れることになるが、ケーブル線路の絶縁体中に、微小空
隙や異物の混入、或いは外導突起などの欠陥が存在して
いるときは、微小な放電が絶縁体中で発生(部分放電の
発生)し、この信号が前記の注入パルス波形に重畳され
た形で検出インピーダンスZdで検出されることにな
る。
When actually performing the partial discharge measurement, first, a known charge is applied to the foil electrodes 61 and 62 by the pulse generator PG.
From the CV cable line using electrostatic coupling.
The injected pulse is detected by the other foil electrodes 21 and 22. Here, if the insulator is sound, a signal substantially equal to the injection pulse waveform will be detected at the detection impedance Zd. When a defect such as a protrusion exists, a minute discharge occurs in the insulator (partial discharge occurs), and this signal is detected by the detection impedance Zd in a form superimposed on the injection pulse waveform. Will be.

【0019】そして検出された部分放電パルスを含む信
号は、既述の通り増幅器4にて線路内の反射パルスの重
なりに影響されない分解能(100kHz)で増幅さ
れ、測定器5にて1〜10MHzの範囲を掃引し、直間
比=2となる適宜な周波数で増幅した検出信号を表示さ
せるものである。この方法によれば、直間比=2の状態
での測定であるので、ケーブル導体や遮蔽層を露出させ
ることなく、注入した電荷の2倍の校正電荷で直接校正
したときと同等の結果を得ることができる。
The signal containing the detected partial discharge pulse is amplified by the amplifier 4 at a resolution (100 kHz) which is not affected by the overlap of the reflected pulses in the line as described above. The range is swept, and the detection signal amplified at an appropriate frequency at which the direct ratio = 2 is displayed. According to this method, since the measurement is performed in the state of the direct ratio = 2, the same result as when directly calibrating with the calibration charge twice as much as the injected charge without exposing the cable conductor and the shielding layer is obtained. Obtainable.

【0020】また、10MHz以下の低周波領域を使用
するので、ケーブル線路の長手方向の伝搬減衰がほとん
ど生じない。従って、図1に示す絶縁接続部IJから数
百m離れた地点に直線普通接続部や終端部にある場合で
も、これらの地点で発生した部分放電信号をも高感度に
測定することができる。
Since a low frequency region of 10 MHz or less is used, propagation attenuation in the longitudinal direction of the cable line hardly occurs. Therefore, even in the case where there is a straight normal connection portion or a termination portion at a point several hundred meters away from the insulated connection portion IJ shown in FIG. 1, a partial discharge signal generated at these points can be measured with high sensitivity.

【0021】[0021]

【発明の効果】以上説明した通りの本発明のCVケーブ
ル線路の部分放電測定方法によれば、間接校正方式にお
いて、ケーブル線路の長手方向の伝搬減衰の影響を受け
ない低周波領域内で検出信号の増幅周波数を、測定の定
量性を損なわないように正確に選定することが可能とな
る。従って、CVケーブル線路の長距離間の部分放電測
定を高感度に行うことができるという優れた効果を奏す
る。
According to the method for measuring partial discharge of a CV cable line of the present invention as described above, in the indirect calibration method, the detection signal is detected in a low frequency region which is not affected by propagation attenuation in the longitudinal direction of the cable line. Can be accurately selected so as not to impair the quantitativeness of the measurement. Therefore, there is an excellent effect that the partial discharge measurement over a long distance of the CV cable line can be performed with high sensitivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法を実施するための回路構成の一例
を示す回路図である。
FIG. 1 is a circuit diagram showing an example of a circuit configuration for implementing a method of the present invention.

【図2】一般的な部分放電測定回路を示す回路図であ
る。
FIG. 2 is a circuit diagram showing a general partial discharge measurement circuit.

【図3】直間比の測定結果を示すグラフ図である。FIG. 3 is a graph showing a measurement result of a direct ratio.

【符号の説明】[Explanation of symbols]

11,12 CVケーブル 21,22 検出用箔電極 23,24 リード線 4 増幅器 5 測定器 61,62 バルス注入用箔電極 IJ 絶縁接続部 PG パルス発生器 Zd 検出インピーダンス 11,12 CV cable 21,22 Foil electrode for detection 23,24 Lead wire 4 Amplifier 5 Measuring instrument 61,62 Foil electrode for pulse injection IJ Insulated connection PG Pulse generator Zd Detection impedance

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 CVケーブル線路の検出端から既知の電
荷を静電結合を利用してケーブル線路に注入し、このと
きに検出インピーダンスにて検出される信号を増幅して
部分放電を測定する方法において、検出信号を線路内の
反射パルスの重なりに影響されない分解能で増幅し、こ
の増幅信号をケーブルインピーダンスが非収束となる低
周波領域において周波数スペクトルを解析すると共に、
前記スペクトルの中から線路のケーブル長に依存する共
振周波数を避けて特定の周波数を選択し、当該周波数を
前記検出信号の増幅周波数として部分放電測定を行うこ
とを特徴とするCVケーブル線路の部分放電測定方法。
1. A method for measuring a partial discharge by injecting a known charge from a detection end of a CV cable line into a cable line using electrostatic coupling and amplifying a signal detected by a detection impedance at this time. In, while amplifying the detection signal with a resolution that is not affected by the overlap of reflected pulses in the line, and analyzing the frequency spectrum in a low frequency region where the cable impedance is not converged,
Selecting a specific frequency from the spectrum, avoiding a resonance frequency depending on the cable length of the line, and performing partial discharge measurement using the frequency as an amplification frequency of the detection signal, wherein the partial discharge is measured. Measuring method.
【請求項2】 検出信号を100kHz以下の分解能で
増幅して周波数スペクトルを解析することを特徴とする
請求項1記載のCVケーブル線路の部分放電測定方法。
2. The method according to claim 1, wherein the detection signal is amplified with a resolution of 100 kHz or less and a frequency spectrum is analyzed.
【請求項3】 周波数スペクトルを解析する範囲が、1
0MHz以下の低周波領域である請求項1記載のCVケ
ーブル線路の部分放電測定方法。
3. The frequency spectrum analysis range is 1
The method for measuring partial discharge of a CV cable line according to claim 1, wherein the partial discharge is in a low frequency region of 0 MHz or less.
JP35211695A 1995-12-26 1995-12-26 Partial discharge measurement method for CV cable line Expired - Fee Related JP3236770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35211695A JP3236770B2 (en) 1995-12-26 1995-12-26 Partial discharge measurement method for CV cable line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35211695A JP3236770B2 (en) 1995-12-26 1995-12-26 Partial discharge measurement method for CV cable line

Publications (2)

Publication Number Publication Date
JPH09178802A JPH09178802A (en) 1997-07-11
JP3236770B2 true JP3236770B2 (en) 2001-12-10

Family

ID=18421888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35211695A Expired - Fee Related JP3236770B2 (en) 1995-12-26 1995-12-26 Partial discharge measurement method for CV cable line

Country Status (1)

Country Link
JP (1) JP3236770B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100699220B1 (en) * 2005-02-18 2007-03-27 엘에스전선 주식회사 Partial discharge detection system for underground power cable joint
CN105372565A (en) * 2015-11-28 2016-03-02 陈国涛 Coiled cable partial discharge detection device
CN109406903A (en) * 2018-11-30 2019-03-01 国网江苏省电力有限公司无锡供电分公司 A kind of cable connector water inlet defects detection and diagnostic method

Also Published As

Publication number Publication date
JPH09178802A (en) 1997-07-11

Similar Documents

Publication Publication Date Title
KR100812291B1 (en) Insulation degradation diagnosis apparatus
JP3243752B2 (en) Partial discharge detection device for gas insulated equipment and its calibration method
JP3236770B2 (en) Partial discharge measurement method for CV cable line
KR100508711B1 (en) Partial discharge localization system for in power cables
JPH0640121B2 (en) Method for measuring partial discharge of live cable
JP3088879B2 (en) Partial discharge measurement method
JP3333725B2 (en) Partial discharge measurement method
JP3034729B2 (en) Partial discharge measurement method
JPH04331381A (en) Calibrating method of partial discharge measurement
JP3330835B2 (en) Partial discharge measurement method for power cable
JP3151754B2 (en) Partial discharge judgment method
JPH06186277A (en) Method of testing resonance-type partial-discharge detection apparatus
JP3072947B2 (en) Power cable partial discharge measuring device
JPH0718908B2 (en) Insulation test equipment for power cables
JPH04215076A (en) Partial discharge measuring method
JPH06331691A (en) Measuring method for partial discharge in power cable and at connection thereof
JP2988547B2 (en) Partial discharge measurement method
JPH0519008A (en) Partial discharge detector
JP3083954B2 (en) Partial discharge measurement method
JPH06273472A (en) Partial discharge detection sensor
KR20220075994A (en) Cable diagonosis apparatus and method using reflectometry
JPH02161369A (en) Measuring method for partial electric discharge
JP2506490B2 (en) Method of measuring partial discharge of power cable line
JPH06308191A (en) Testing method for resonance type partial discharge detector
JPS61187670A (en) Apparatus for testing insulation of power cable

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees