JP6164022B2 - Interlayer insulation diagnosis method for winding equipment - Google Patents

Interlayer insulation diagnosis method for winding equipment Download PDF

Info

Publication number
JP6164022B2
JP6164022B2 JP2013207793A JP2013207793A JP6164022B2 JP 6164022 B2 JP6164022 B2 JP 6164022B2 JP 2013207793 A JP2013207793 A JP 2013207793A JP 2013207793 A JP2013207793 A JP 2013207793A JP 6164022 B2 JP6164022 B2 JP 6164022B2
Authority
JP
Japan
Prior art keywords
winding
insulation
layers
voltage
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013207793A
Other languages
Japanese (ja)
Other versions
JP2015072183A (en
Inventor
康行 明石
康行 明石
森 仁志
仁志 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2013207793A priority Critical patent/JP6164022B2/en
Publication of JP2015072183A publication Critical patent/JP2015072183A/en
Application granted granted Critical
Publication of JP6164022B2 publication Critical patent/JP6164022B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Relating To Insulation (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Description

本発明は、回転機や変圧器等の巻線機器の巻線層間絶縁性を診断する巻線層間絶縁診断方法に関する。   The present invention relates to a winding interlayer insulation diagnosis method for diagnosing the winding interlayer insulation of winding equipment such as a rotating machine and a transformer.

回転機・変圧器等の巻線機器の故障の主要因としては、例えば、巻線機器の巻線層間の絶縁破壊に起因する焼損事故がある。   As a main factor of failure of winding equipment such as a rotating machine and a transformer, for example, there is a burnout accident caused by dielectric breakdown between winding layers of the winding equipment.

巻線層間は電気的には同電位であり、巻線層間に電圧が印加されない。したがって、基本的には、巻線層間の電気的絶縁破壊が起こることはない。しかし、巻線機器の起動時や巻線機器に設けられる遮断器の動作時に発生するサージにより瞬間的に巻線層間に高電圧が印加されることが良く知られている。このため、巻線層間の絶縁耐力が低下すると、サージにより巻線層間の絶縁破壊が引き起こされ、巻線機器の焼損に至るおそれがある。   The winding layers are electrically at the same potential, and no voltage is applied between the winding layers. Therefore, basically, no electrical breakdown occurs between the winding layers. However, it is well known that a high voltage is instantaneously applied between winding layers due to a surge generated when starting a winding device or operating a circuit breaker provided in the winding device. For this reason, when the dielectric strength between winding layers falls, a dielectric breakdown between winding layers will be caused by a surge, and there exists a possibility of causing the burning of a winding apparatus.

近年では、インバータ設備の普及により巻線層間にかかるストレスが増加しており、巻線層間の絶縁性に対する重要度はさらに高まっている。このような巻線層間にかかるストレスの増加に伴い、巻線層間の絶縁性の診断技術への注目が高まっている。   In recent years, with the spread of inverter equipment, the stress applied between the winding layers has increased, and the importance of the insulation between the winding layers has further increased. With such an increase in stress applied between the winding layers, attention has been paid to a diagnostic technique for insulating properties between the winding layers.

一般的に、回転機器の保全・維持(メンテナンス)分野において、巻線機器に交流電圧を印加した際の電気信号の検出・評価等により巻線層間の絶縁診断が行われている(例えば、特許文献1−8)。特に、巻線層間の絶縁診断においては、電圧印加時に発生する部分放電の評価が最も重要であるとされている。前述のとおり、巻線層間は同電位であるので、電圧が印加されず、従来の絶縁診断方法を適用することができない。このため、巻線層間の絶縁性を診断する方法としては、インパルス電圧を巻線に印加して巻線層間に部分放電を発生させる方法や、巻線機器の駆動中に巻線層間の絶縁劣化に起因する異常電流を検出する方法、さらには、巻線の絶縁層の伝達関数若しくはインピーダンスの周波数特性を検出する方法が、適用されている。   Generally, in the field of maintenance / maintenance (maintenance) of rotating equipment, insulation diagnosis between winding layers is performed by detecting and evaluating an electrical signal when an AC voltage is applied to the winding equipment (for example, patents) Literature 1-8). In particular, in the insulation diagnosis between winding layers, evaluation of partial discharge generated when a voltage is applied is considered to be most important. As described above, since the voltage between the winding layers is the same, no voltage is applied and the conventional insulation diagnosis method cannot be applied. For this reason, as a method of diagnosing the insulation between the winding layers, an impulse voltage is applied to the windings to generate a partial discharge between the winding layers, or the insulation deterioration between the winding layers during driving of the winding equipment. A method of detecting an abnormal current caused by the above, and a method of detecting a frequency function of a transfer function or impedance of an insulating layer of a winding are applied.

特開2013−88251号公報JP2013-88251A 特開2002−62330号公報JP 2002-62330 A 特開2004−45307号公報Japanese Patent Laid-Open No. 2004-45307 特開2005−309616号公報JP 2005-309616 A 特開2007−47184号公報JP 2007-47184 A 特開2009−294129号公報JP 2009-294129 A 特開2012−149971号公報JP 2012-149971 A 特開2006−38688号公報JP 2006-38688 A

しかし、これらの巻線層間の絶縁診断方法には、それぞれ特有の課題がある。例えば、インパルス電圧による絶縁診断方法では、巻線層間に部分放電を発生させる電圧を印加するため、電源電圧値をある程度以上高くすることが必要となる。そのため、巻線機器自体にダメージを与えてしまうおそれや、巻線層間の絶縁耐力が著しく低下している場合には、絶縁診断を行うことで絶縁破壊を引き起こすおそれがある。さらに、放電が発生した場合に、放電発生部位が巻線層間であるのか、対地間であるかを判別することが困難となるおそれがある。また、巻線層間の劣化に起因する異常電流を検出する方法では、異常電流を検出することで巻線層間に異常が発生したことを検出することができるが、巻線機器を保全・維持する場合に適用することが困難となるおそれがある。また、巻線絶縁層の伝達関数若しくはインピーダンスの周波数特性を検出する方法では、診断に用いられる信号と、測定環境に応じて検出されるノイズとの区別が必要となるという課題があり、より精度の高い巻線層間絶縁診断方法が求められている。   However, each of these methods for diagnosing insulation between winding layers has its own problems. For example, in the insulation diagnosis method using an impulse voltage, a voltage that generates a partial discharge is applied between the winding layers, and thus it is necessary to increase the power supply voltage value to some extent. For this reason, there is a risk of damaging the winding device itself, or in the case where the dielectric strength between the winding layers is remarkably lowered, there is a risk of causing dielectric breakdown by performing an insulation diagnosis. Furthermore, when a discharge occurs, it may be difficult to determine whether the discharge generation site is between the winding layers or between the ground. In the method of detecting abnormal current due to deterioration between winding layers, it is possible to detect that an abnormality has occurred between winding layers by detecting abnormal current, but to maintain and maintain the winding equipment. It may be difficult to apply in some cases. In addition, the method of detecting the frequency characteristic of the transfer function or impedance of the winding insulation layer has a problem that it is necessary to distinguish between the signal used for diagnosis and the noise detected according to the measurement environment, and it is more accurate. Therefore, there is a need for a method for diagnosing winding interlayer insulation that is high in length.

つまり、巻線層間の絶縁性を診断するにあたり、従来のように交流電圧印加による信号取得は困難であり、且つ巻線層間に電圧を印加する方法を適用した場合には、巻線機器へのダメージやノイズの影響を考慮する必要が生じる。   In other words, when diagnosing the insulation between winding layers, it is difficult to acquire signals by applying an AC voltage as in the past, and when applying a method of applying a voltage between winding layers, It is necessary to consider the effects of damage and noise.

上記事情に鑑み、本発明は、巻線機器へのダメージやノイズの影響の低減に貢献する巻線機器の巻線層間絶縁診断方法を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a winding interlayer insulation diagnosis method for a winding device that contributes to reducing damage to the winding device and the influence of noise.

上記目的を達成する本発明の巻線機器の巻線層間絶縁診断方法の一態様は、巻線機器の巻線層間の絶縁性を診断する巻線層間絶縁診断方法であって、予め主絶縁の絶縁性を評価する指標である主絶縁の誘電正接の増加量に閾値を設け、診断対象である巻線機器の主絶縁の誘電正接の増加量を求め、求められた誘電正接の増加量と前記閾値とを比較することにより、前記巻線機器の巻線層間の絶縁性を診断することを特徴としている。   One aspect of a winding interlayer insulation diagnosis method for a winding device of the present invention that achieves the above object is a winding interlayer insulation diagnosis method for diagnosing the insulation between winding layers of a winding device, and includes a main insulation in advance. A threshold value is set for the amount of increase in the dielectric tangent of the main insulation, which is an index for evaluating the insulation, and the amount of increase in the dielectric tangent of the main insulation of the winding device to be diagnosed is obtained. The insulation between the winding layers of the winding device is diagnosed by comparing with a threshold value.

また、上記目的を達成する本発明の巻線機器の巻線層間絶縁診断方法の他の態様は、上記巻線機器の巻線層間絶縁診断方法において、前記主絶縁の誘電正接の増加量と前記閾値とを比較して、前記巻線層間の絶縁性が低下していると診断した場合、さらに、該巻線層間の絶縁性が低下していると診断された巻線機器の巻線層間の絶縁性を直接診断することを特徴としている。   In addition, another aspect of the winding interlayer insulation diagnosis method for a winding device of the present invention that achieves the above object is the above-described winding interlayer insulation diagnosis method for a winding device. When the insulation between the winding layers is diagnosed as compared with the threshold, and further, the insulation between the winding layers of the winding equipment diagnosed as the insulation between the winding layers is reduced. It is characterized by direct diagnosis of insulation.

また、上記目的を達成する本発明の巻線機器の巻線層間絶縁診断方法の他の態様は、上記巻線機器の巻線層間絶縁診断方法において、前記巻線にインパルス電圧を印加し、該電圧印加時に前記巻線層間で発生する放電電磁波を検出し、検出された放電電磁波に基づいて、前記巻線層間の絶縁性を直接診断することを特徴としている。   In another aspect of the winding interlayer insulation diagnosis method for a winding device of the present invention that achieves the above object, in the winding interlayer insulation diagnosis method for the winding device, an impulse voltage is applied to the winding. A discharge electromagnetic wave generated between the winding layers when a voltage is applied is detected, and the insulation between the winding layers is directly diagnosed based on the detected discharge electromagnetic wave.

また、上記目的を達成する本発明の巻線機器の巻線層間絶縁診断方法の他の態様は、上記巻線機器の巻線層間絶縁診断方法において、前記巻線の巻線インピーダンスの周波数特性を計測し、計測された巻線インピーダンスの周波数特性に基づいて、前記巻線層間の絶縁性を直接診断することを特徴としている。   Another aspect of the winding interlayer insulation diagnosis method for a winding device according to the present invention that achieves the above object is to provide a frequency characteristic of the winding impedance of the winding in the winding interlayer insulation diagnosis method for the winding device. The measurement is performed, and the insulation between the winding layers is directly diagnosed based on the measured frequency characteristic of the winding impedance.

また、上記目的を達成する本発明の巻線機器の巻線層間絶縁診断方法の他の態様は、上記巻線機器の巻線層間絶縁診断方法において、前記巻線インピーダンスの周波数特性の計測結果を、前記巻線機器の主絶縁を評価する指標に基づいて補正し、該補正された巻線インピーダンスの周波数特性の計測結果に基づいて、前記巻線層間の絶縁性を診断することを特徴としている。   Another aspect of the winding interlayer insulation diagnosis method for a winding device of the present invention that achieves the above object is the method for measuring the frequency characteristics of the winding impedance in the winding interlayer insulation diagnosis method for the winding device. And correcting based on an index for evaluating the main insulation of the winding device, and diagnosing the insulation between the winding layers based on the measurement result of the frequency characteristics of the corrected winding impedance. .

以上の発明によれば、巻線機器の巻線層間絶縁性を診断する巻線層間絶縁診断方法において、巻線機器へのダメージやノイズの影響の低減に貢献することができる。   According to the above invention, in the winding interlayer insulation diagnosis method for diagnosing the winding interlayer insulation of the winding equipment, it is possible to contribute to the reduction of damage to the winding equipment and the influence of noise.

本発明の巻線機器の巻線層間絶縁診断方法の概要を説明する説明図である。It is explanatory drawing explaining the outline | summary of the winding interlayer insulation diagnostic method of the winding equipment of this invention. (a)巻線機器の巻線部分の拡大断面図、(b)巻線機器の巻線部分の模式図である。(A) The expanded sectional view of the coil | winding part of a coil | winding apparatus, (b) The schematic diagram of the coil | winding part of a coil | winding apparatus. 劣化時間に対する主絶縁(対地間)と巻線層間絶縁のΔtanδの変化を示す特性図である。It is a characteristic view which shows the change of (DELTA) tan (delta) of the main insulation (between ground) and winding interlayer insulation with respect to deterioration time. 主絶縁のΔtanδと巻線層間残存破壊電圧との関係を示す特性図である。FIG. 6 is a characteristic diagram showing a relationship between Δtan δ of main insulation and a winding interlayer residual breakdown voltage. 劣化時間に対する巻線層間残存破壊電圧(主絶縁のΔtanδが同じ場合)の関係を示す特性図である。FIG. 7 is a characteristic diagram showing a relationship between winding interlayer residual breakdown voltage (when Δtan δ of the main insulation is the same) with respect to deterioration time. 巻線機器の巻線層間絶縁を直接診断する巻線層間絶縁診断システムの概略図である。It is the schematic of the winding interlayer insulation diagnostic system which diagnoses the winding interlayer insulation of a winding apparatus directly. インパルス電圧を巻線に印加したときの各巻線に分担される電圧をシミュレーションした結果を示す図である。It is a figure which shows the result of having simulated the voltage shared by each coil | winding when an impulse voltage is applied to a coil | winding. 各巻線機器における主絶縁の放電開始電圧と巻線層間の放電開始電圧の計測結果を示す図である。It is a figure which shows the measurement result of the discharge start voltage of the main insulation in each winding apparatus, and the discharge start voltage between winding layers. 印加される電源周波数に対する巻線インピーダンス及び静電容量の変化を示す特性図である。It is a characteristic view which shows the change of the winding impedance with respect to the applied power supply frequency, and an electrostatic capacitance. 巻線インピーダンスのピーク周波数のシフト率と巻線層間残存破壊電圧との関係を示す特性図である。It is a characteristic view showing the relationship between the shift rate of the peak frequency of winding impedance and the winding interlayer residual breakdown voltage.

本発明の実施形態に係る巻線機器の巻線層間絶縁診断方法について、図を参照して詳細に説明する。   A winding interlayer insulation diagnosis method for a winding device according to an embodiment of the present invention will be described in detail with reference to the drawings.

本発明の実施形態に係る巻線機器の巻線層間絶縁診断方法は、巻線機器の主絶縁の絶縁性を評価する診断パラメータに基づいて巻線層間の絶縁性を評価する。巻線機器の絶縁劣化の要因は、主に、熱的要因、電気的要因、機械的要因、環境的要因があり、特に熱的要因が支配的であるといわれている。熱的ストレスレベルは運転条件と経年時間に影響されるものであり、主絶縁、巻線層間絶縁それぞれ経年時間に応じて劣化が進行すると考えられる。そこで、巻線機器の主絶縁の絶縁性を評価する診断パラメータの中で、熱的要因に起因するパラメータを選択し、選択されたパラメータに基づいて巻線層間の絶縁耐力を評価する。熱的要因に起因するパラメータとしては、例えば、主絶縁の誘電正接や静電容量等が挙げられる。   A winding interlayer insulation diagnosis method for a winding device according to an embodiment of the present invention evaluates insulation between winding layers based on a diagnostic parameter for evaluating insulation of main insulation of the winding device. The cause of insulation deterioration of the winding equipment is mainly a thermal factor, an electrical factor, a mechanical factor, and an environmental factor, and it is said that the thermal factor is particularly dominant. The thermal stress level is affected by operating conditions and aging time, and it is considered that deterioration progresses according to the aging time of the main insulation and the winding interlayer insulation. Therefore, among the diagnostic parameters for evaluating the insulation of the main insulation of the winding device, parameters due to thermal factors are selected, and the dielectric strength between the winding layers is evaluated based on the selected parameters. Examples of the parameter resulting from the thermal factor include a dielectric tangent of main insulation and a capacitance.

図1に示すように、本発明の実施形態に係る巻線機器の巻線層間絶縁診断方法は、巻線機器の主絶縁の絶縁性を診断し、主絶縁の絶縁性を診断する診断パラメータの中から熱的要因に起因するパラメータを選択し、このパラメータを用いて巻線層間の絶縁性の診断を行う(STEP1)。この診断方法では、主絶縁の診断パラメータに基づいて巻線層間の絶縁状態を推定するので、巻線層間に対して直接絶縁診断を行わなくても、巻線層間の絶縁性を診断することができる。   As shown in FIG. 1, the winding interlayer insulation diagnosis method for a winding device according to an embodiment of the present invention diagnoses the insulation of the main insulation of the winding device and uses diagnostic parameters for diagnosing the insulation of the main insulation. A parameter caused by a thermal factor is selected from the inside, and the insulation between the winding layers is diagnosed using this parameter (STEP 1). In this diagnostic method, since the insulation state between the winding layers is estimated based on the diagnostic parameter of the main insulation, the insulation between the winding layers can be diagnosed without performing the insulation diagnosis directly on the winding layers. it can.

また、本発明の実施形態に係る巻線機器の巻線層間絶縁診断の他の態様は、STEP1で巻線層間の絶縁性が低下している(巻線層間の絶縁層が劣化している)と判断された巻線機器に対してさらに巻線層間の絶縁性を直接診断する(STEP2)。この診断方法では、STEP2を行うことで、巻線層間の絶縁状態をより詳細に診断することができる。また、STEP1において予め巻線層間の絶縁状態を推定するので、巻線層間の絶縁性を直接診断する回数を低減でき、巻線機器の絶縁診断作業を簡略化することができる。   Further, in another aspect of the winding interlayer insulation diagnosis of the winding device according to the embodiment of the present invention, the insulating property between the winding layers is lowered in STEP 1 (the insulating layer between the winding layers is deteriorated). Further, the insulation between the winding layers is directly diagnosed for the winding device determined to be (STEP 2). In this diagnosis method, the insulation state between the winding layers can be diagnosed in more detail by performing STEP2. In STEP 1, since the insulation state between the winding layers is estimated in advance, the number of times of directly diagnosing the insulation between the winding layers can be reduced, and the insulation diagnosis work of the winding device can be simplified.

以下、具体的な実施形態を挙げて、本発明の巻線機器の巻線層間絶縁診断方法について詳細に説明する。   The winding interlayer insulation diagnosis method for a winding device of the present invention will be described below in detail with specific embodiments.

[第1実施形態]
本発明の第1実施形態に係る巻線機器の巻線層間絶縁診断方法は、巻線機器の主絶縁の絶縁性を診断し、主絶縁の絶縁性を診断する診断パラメータの中から熱的要因に起因するパラメータ(誘電正接)を選択し、このパラメータを用いて巻線層間の絶縁性を診断する。
[First Embodiment]
The winding interlayer insulation diagnosis method for a winding device according to the first embodiment of the present invention diagnoses the insulation of the main insulation of the winding device, and determines the thermal factor from among the diagnostic parameters for diagnosing the insulation of the main insulation. The parameter (dielectric loss tangent) resulting from the above is selected, and the insulation between the winding layers is diagnosed using this parameter.

被診断対象である巻線機器には、例えば、正弦波電圧、正弦波電圧とインパルス電圧との重畳電圧、またはインパルス電圧のいずれかが印加される。   For example, a sine wave voltage, a superimposed voltage of a sine wave voltage and an impulse voltage, or an impulse voltage is applied to the winding device to be diagnosed.

例えば、定格3kV以上の高圧回転機における診断分野では、機器定格電圧の1/√3倍若しくは、定格電圧の1/√3×1.25倍を試験電圧とし、この試験電圧を印加した際の診断パラメータ(例えば、誘電正接や部分放電の有無等)から機器の良否の判断が行われる。つまり、6.6kV回転機の診断の際には、約3.8kV若しくは4.8kVの試験電圧が印加される。   For example, in the diagnostic field of a high-voltage rotating machine with a rating of 3 kV or higher, the test voltage is 1 / √3 times the device rated voltage or 1 / √3 × 1.25 times the rated voltage. The quality of the device is determined from the diagnostic parameters (for example, the presence or absence of dielectric loss tangent or partial discharge). That is, when diagnosing a 6.6 kV rotating machine, a test voltage of about 3.8 kV or 4.8 kV is applied.

次に、熱的要因に起因する劣化度合いを判定する特性値(例えば、誘電正接等)に基づいて、巻線層間の絶縁性の診断を行う。なお、機器の良否の判断を行う診断パラメータと、巻線層間の絶縁性の診断を行う診断パラメータとが、同じ場合には、同じ診断パラメータを計測することで、機器の良否判断と、巻線層間の絶縁性の診断を行うことができる。また、機器の良否判断を行う診断パラメータと、巻線層間の絶縁性の診断を行う診断パラメータとが異なる場合には、各々計測された診断パラメータに基づいて、機器の良否判断と、巻線層間の絶縁性の診断が行われる。   Next, the insulation between the winding layers is diagnosed based on a characteristic value (for example, dielectric loss tangent or the like) that determines the degree of deterioration caused by a thermal factor. If the diagnostic parameters for judging the quality of the equipment and the diagnostic parameters for diagnosing the insulation between the winding layers are the same, measuring the same diagnostic parameters, Diagnosis of insulation between layers can be performed. In addition, when the diagnostic parameter for judging the quality of the equipment is different from the diagnostic parameter for diagnosing the insulation between the winding layers, the judgment of the quality of the equipment and the winding layers are determined based on the measured diagnostic parameters. Diagnosis of insulation is performed.

[主絶縁及び巻線層間の絶縁性の評価]
まず、高温環境下で加速劣化を行ったモデルコイルを用いて、モデルコイルの主絶縁の絶縁特性と、モデルコイルの巻線層間の絶縁特性を測定した。モデルコイル(巻線機器)の主絶縁とは、例えば、図2(a)に示すように、コイルの外周を覆うように設けられた対地主絶縁層4の絶縁特性のことである。また、巻線層間の絶縁特性とは、例えば、鉄心に巻回された巻線(電線1と電線1の被覆層2)の層間絶縁3の絶縁特性のことである。なお、巻線機器内の巻線の電圧分担率は、各巻線で均等にならず、図2(b)に示すような電動機端子に最も近い第1コイル(第1極)が大きな電圧分担率となることが知られている。そこで、電圧分担率や絶縁特性の評価を行う際には、第1コイル(第1極)と第1コイルに隣接する第2コイル(第2極)との間の電圧分担率や絶縁特性の評価を行う。
[Evaluation of insulation between main insulation and winding layers]
First, the insulation characteristics of the main insulation of the model coil and the insulation characteristics between the winding layers of the model coil were measured using a model coil that was accelerated and deteriorated in a high temperature environment. The main insulation of the model coil (winding device) is, for example, the insulation characteristic of the ground-main insulating layer 4 provided so as to cover the outer periphery of the coil as shown in FIG. Moreover, the insulation characteristic between winding layers is the insulation characteristic of the interlayer insulation 3 of the coil | winding (the electric wire 1 and the coating layer 2 of the electric wire 1) wound around the iron core, for example. Note that the voltage sharing ratio of the windings in the winding device is not uniform among the windings, and the first coil (first pole) closest to the motor terminal as shown in FIG. 2B has a large voltage sharing ratio. It is known that Therefore, when evaluating the voltage sharing ratio and the insulation characteristics, the voltage sharing ratio and the insulation characteristics between the first coil (first pole) and the second coil (second pole) adjacent to the first coil. Evaluate.

主絶縁及び巻線層間絶縁の評価は、主絶縁及び巻線層間の誘電正接(tanδ)を算出し、誘電正接の増加量(Δtanδ)に基づいて行った。   The evaluation of the main insulation and the winding interlayer insulation was performed based on the increase of the dielectric loss tangent (Δtan δ) by calculating the dielectric loss tangent (tan δ) between the main insulation and the winding interlayer.

tanδは、例えば、LCRメータで直接、若しくはブリッジ回路を使って測定することができる。また、Δtanδは、予め定められた基準電圧(例えば、1kV若しくは2kV)の電圧を印加した際の誘電正接(tanδ)と、試験電圧(例えば、定格電圧の1/√3等)を印加した場合のtanδとの差により算出される。   Tan δ can be measured, for example, directly with an LCR meter or using a bridge circuit. Δtan δ is obtained when a dielectric tangent (tan δ) when a predetermined reference voltage (for example, 1 kV or 2 kV) is applied and a test voltage (for example, 1 / √3 of the rated voltage) is applied. Is calculated by the difference from tan δ.

図3は、加速劣化時間に対する試料のΔtanδの変化を示す図である。巻線層間の劣化度合いを判定する試料は、同じ劣化条件で劣化させた試料を3つ用意して巻線層間の劣化度合いを判定した。図3に示すように、主絶縁(対地間)の劣化度合いを判定した場合と、巻線層間の劣化度合いを判定した場合のいずれの場合も、Δtanδが劣化時間に対して増加傾向を示した。そして、主絶縁のΔtanδの変化と、巻線層間のΔtanδの変化には、ある程度の相関性があり、主絶縁の劣化度合いを判定する指標であるΔtanδに基づいて、巻線層間絶縁の劣化度合いを推定することができる。   FIG. 3 is a diagram illustrating a change in Δtan δ of the sample with respect to the accelerated deterioration time. As samples for determining the degree of deterioration between winding layers, three samples deteriorated under the same deterioration conditions were prepared, and the degree of deterioration between winding layers was determined. As shown in FIG. 3, Δtan δ showed an increasing tendency with respect to the deterioration time in both cases of determining the degree of deterioration of the main insulation (between ground) and determining the degree of deterioration between the winding layers. . The change in Δtanδ of the main insulation and the change in Δtanδ between the winding layers have a certain degree of correlation, and the deterioration degree of the winding interlayer insulation is based on Δtanδ, which is an index for determining the deterioration degree of the main insulation. Can be estimated.

なお、巻線層間の未劣化品のΔtanδは、5年相当劣化させたサンプルよりも値が大きくなっているが、これは、回転機に含浸される高分子(レジン)がコイル表面に付着することによる電流経路ができたため等の理由が考えられる。この高分子は、運転中の熱により機器全体に浸透するため、劣化に伴い高分子の影響が低減されるものと考えられる。   Note that Δtan δ of the undegraded product between the winding layers is larger than that of the sample deteriorated for five years. This is because the polymer (resin) impregnated in the rotating machine adheres to the coil surface. The reason for this is that a current path is created. Since this polymer penetrates the entire device due to heat during operation, it is considered that the influence of the polymer is reduced with deterioration.

図4は、巻線機器の主絶縁のΔtanδの値と、巻線層間残存破壊電圧との関係を示す図である。主絶縁のΔtanδは、巻線機器の巻線に常規対地電圧(通常の運転状態で主回路の電路と大地との間に加わる電圧)を印加して求めた。なお、残存破壊電圧とは、劣化前の絶縁破壊電圧に対する劣化後の絶縁破壊電圧の割合であり、巻線間絶縁破壊値を示している。   FIG. 4 is a diagram showing the relationship between the value of Δtan δ of the main insulation of the winding device and the inter-winding layer residual breakdown voltage. Δtan δ of the main insulation was obtained by applying a normal ground voltage (voltage applied between the circuit of the main circuit and the ground in a normal operation state) to the winding of the winding device. The residual breakdown voltage is the ratio of the breakdown voltage after deterioration to the breakdown voltage before deterioration, and indicates the inter-winding breakdown value.

図4に示すように、常規対地電圧印加時の主絶縁の誘電正接の増加量(Δtanδ)が1.0以上のときに、巻線層間残存破壊電圧の値が低下している。このことは、主絶縁の非破壊診断パラメータ(Δtanδ)に基づいて巻線層間絶縁を評価することが可能であることを示している。   As shown in FIG. 4, when the increase amount (Δtan δ) of the dielectric tangent of the main insulation when the normal ground voltage is applied is 1.0 or more, the value of the inter-winding layer residual breakdown voltage decreases. This indicates that it is possible to evaluate the winding interlayer insulation based on the non-destructive diagnostic parameter (Δtan δ) of the main insulation.

図5は、Δtanδが同じ値を示す初期劣化の試料と経年劣化した試料で巻線層間残存破壊電圧を測定した結果を示す図である。図5に示すように、初期劣化の試料であっても、経年劣化した試料であっても、Δtanδの値が小さい試料(Δtanδ=0.4)は、Δtanδの値が大きい試料(Δtanδ=2.0)よりも巻線層間絶縁破壊の可能性が低いことがわかる。しかしながら、Δtanδの値が同じ(例えば、Δtanδ=2.0)であっても初期劣化の試料よりも経年劣化の試料の方が巻線層間絶縁破壊の可能性が高くなっている。したがって、Δtanδが小さかったとしても使用期間が長い巻線機器は、巻線層間絶縁破壊のおそれがあるので、例えば、50年以上使用履歴があり経年劣化が顕著な巻線機器に対しては、Δtanδの値が小さくても巻線層間絶縁破壊の可能性を考慮する必要がある。   FIG. 5 is a diagram showing a result of measuring the inter-winding layer residual breakdown voltage in an initial deterioration sample and an aged deterioration sample in which Δtan δ shows the same value. As shown in FIG. 5, a sample having a small value of Δtanδ (Δtanδ = 0.4), a sample having a large value of Δtanδ (Δtanδ = 2), regardless of whether the sample is initially deteriorated or aged. .0) is less likely to cause dielectric breakdown between windings. However, even if the value of Δtan δ is the same (for example, Δtan δ = 2.0), the sample with aged deterioration has a higher possibility of the winding interlayer dielectric breakdown than the sample with the initial deterioration. Therefore, even if Δtan δ is small, a winding device having a long period of use may cause a dielectric breakdown between windings. For example, for a winding device having a history of use for more than 50 years and remarkable deterioration over time, Even if the value of Δtanδ is small, it is necessary to consider the possibility of dielectric breakdown between windings.

次に、上記の診断方法について、ベイズの定理を応用し、主絶縁のΔtanδから巻線層間の絶縁性の低下(劣化度合い)を検出できる確率を求めた。ベイズの定理の基本公式を数1に示す。   Next, for the above diagnostic method, Bayes' theorem was applied, and the probability that a decrease in insulation (deterioration degree) between winding layers could be detected from Δtanδ of the main insulation was obtained. The basic formula of Bayes' theorem is shown in Equation 1.

Figure 0006164022
Figure 0006164022

表1は、実験的に求めた主絶縁、巻線層間絶縁の絶縁性の診断を行った結果をベイズの定理により分析した結果を示している。   Table 1 shows the result of analyzing the results of the diagnosis of the insulation properties of the main insulation and the winding interlayer insulation obtained experimentally by Bayes' theorem.

Figure 0006164022
Figure 0006164022

P(H1|D):Δtanδ≧1という条件のもとで、巻線層間絶縁が劣化している確率
P(H1):巻線層間絶縁の劣化が確認された事前確率:0.25
P(H2):巻線層間絶縁の劣化が確認されなかった事前確率:0.75
P(D|H1):事前確率で巻線層間絶縁の劣化が確認された条件で、Δtanδ≧1且つ巻線層間絶縁が劣化している確率:0.33
P(D|H2):事前確率で巻線層間絶縁の劣化が確認されない条件で、Δtanδ≧1且つ巻線層間絶縁が劣化している確率:0.67
数2式に示すように、数1に示したベイズの定理に、表1に示した値を代入して、主絶縁のΔtanδ≧1の条件の下で、巻線層間絶縁の劣化を検出できる確率を算出した。
P (H1 | D): Probability that the winding interlayer insulation is deteriorated under the condition of Δtanδ ≧ 1 P (H1): Prior probability that deterioration of the winding interlayer insulation is confirmed: 0.25
P (H2): Prior probability that deterioration of winding interlayer insulation was not confirmed: 0.75
P (D | H1): Probability that Δtanδ ≧ 1 and the winding interlayer insulation is deteriorated under the condition that the deterioration of the winding interlayer insulation is confirmed with the prior probability: 0.33
P (D | H2): Probability of Δtanδ ≧ 1 and deterioration of winding interlayer insulation under the condition that deterioration of winding interlayer insulation is not confirmed with prior probability: 0.67
As shown in Equation 2, by substituting the values shown in Table 1 into the Bayes' theorem shown in Equation 1, deterioration of the winding interlayer insulation can be detected under the condition of Δtanδ ≧ 1 of the main insulation. Probability was calculated.

Figure 0006164022
Figure 0006164022

実験では、主絶縁のΔtanδ≧1.0を満たすサンプルは71%であり、そのうち巻線層間絶縁破壊値の低下が確認されたものを検出できる可能性は33%であった。そして、ベイズの定理に基づいて算出される、主絶縁のΔtanδ≧1.0の場合に巻線層間絶縁が劣化している確率は14%程度となる。   In the experiment, 71% of the samples satisfying Δtanδ ≧ 1.0 of the main insulation, and among them, the possibility of detecting a confirmed decrease in the winding interlayer dielectric breakdown value was 33%. The probability that the winding interlayer insulation is deteriorated when Δtanδ ≧ 1.0 of the main insulation calculated based on Bayes' theorem is about 14%.

[実際に稼働させた巻線機器の絶縁診断]
第1実施形態に係る巻線機器の巻線層間絶縁診断方法で、実際に稼働している巻線機器(定格電圧=6kV、経年時間=15年程度)の診断を行った。
[Insulation diagnosis of winding equipment actually operated]
With the winding interlayer insulation diagnosis method for a winding device according to the first embodiment, a diagnosis was made on a winding device that is actually operating (rated voltage = 6 kV, aging time = about 15 years).

対象機器の主絶縁のΔtanδを計測したところ0.8であり、インパルス電圧印加による放電電磁波は未検出であった。主絶縁の絶縁特性計測結果を第1実施形態の巻線層間絶縁診断に適用して、対象機器の巻線層間の診断を行うと、対象巻線機器の主絶縁のΔtanδは1.0よりも小さいため、巻線層間絶縁も健全であると診断されることとなる。   When Δtan δ of the main insulation of the target device was measured, it was 0.8, and the discharge electromagnetic wave due to the impulse voltage application was not detected. When the insulation characteristic measurement result of the main insulation is applied to the winding interlayer insulation diagnosis of the first embodiment and the diagnosis between the winding layers of the target device is performed, the Δtanδ of the main insulation of the target winding device is more than 1.0. Since it is small, the inter-winding insulation is diagnosed as sound.

この診断結果を確認するために、実際に定格電圧の5倍程度のインパルス電圧を巻線層間に印加したところ、巻線層間に絶縁破壊は起こらなかった。このように、巻線機器の主絶縁の絶縁特性診断パラメータに基づいて、巻線機器の巻線層間絶縁の評価を行うことができることが確認された。   In order to confirm this diagnosis result, when an impulse voltage of about 5 times the rated voltage was actually applied between the winding layers, dielectric breakdown did not occur between the winding layers. As described above, it was confirmed that the winding interlayer insulation of the winding device can be evaluated based on the insulation characteristic diagnosis parameter of the main insulation of the winding device.

以上のような本発明の第1実施形態に係る巻線機器の巻線層間絶縁診断方法によれば、主絶縁の診断パラメータに基づいて巻線層間の絶縁特性の評価することで、巻線層間の劣化状態の評価を簡易的に行うことができる。   According to the winding interlayer insulation diagnosis method for a winding device according to the first embodiment of the present invention as described above, by evaluating the insulation characteristics between the winding layers based on the diagnostic parameter of the main insulation, It is possible to easily evaluate the deterioration state of the.

すなわち、本発明の第1実施形態に係る巻線機器の巻線層間絶縁診断方法は、巻線機器の主絶縁、巻線層間絶縁に同様の熱的ストレスがかかることに着目し、主絶縁の絶縁診断を行うパラメータの中で熱的要因に起因する診断パラメータ(例えば、Δtanδ)に基づいて巻線層間の絶縁性を評価する。その結果、例えば、常規対地電圧印加時の主絶縁のΔtanδが予め定められた要注意基準値を超える場合には、巻線層間の絶縁耐力も同様に、危険レベルまで低下していると判断することが可能である。また、主絶縁のΔtanδが健全と判断される場合でも、運転履歴が十分に長い場合には、巻線層間の絶縁耐力が低下していると判断することができる。   That is, the winding interlayer insulation diagnosis method for a winding device according to the first embodiment of the present invention focuses on the fact that the same thermal stress is applied to the main insulation of the winding device and the winding interlayer insulation. The insulation between winding layers is evaluated based on a diagnosis parameter (for example, Δtan δ) due to a thermal factor among parameters for performing insulation diagnosis. As a result, for example, when Δtan δ of the main insulation at the time of normal ground voltage application exceeds a predetermined reference value of caution, it is determined that the dielectric strength between the winding layers is similarly lowered to a dangerous level. It is possible. Even if it is determined that Δtanδ of the main insulation is healthy, it can be determined that the dielectric strength between the winding layers is reduced if the operation history is sufficiently long.

また、主絶縁の絶縁性を診断する診断パラメータに基づいて巻線層間の絶縁特性の評価を行うので、別途巻線層間の絶縁診断を行うことによる、巻線等へのダメージをなくすことができる。   In addition, since the insulation characteristics between the winding layers are evaluated based on the diagnostic parameters for diagnosing the insulation of the main insulation, damage to the windings and the like due to the separate insulation diagnosis between the winding layers can be eliminated. .

また、ベイズの定理等の確率・統計学に基づくデータ分析手法を用いることで、複合的要因を加味した診断を行うことができ、巻線層間の絶縁性評価の精度が向上する。例えば、主絶縁診断データに加え、機器運転履歴、巻線にインパルス電圧を印加した場合の放電電磁波の検出、巻線のインピーダンスの周波数特性データ、機器使用環境の温湿度データや機器の負荷率等をベイズの定理に組み込み分析することにより巻線層間の絶縁診断精度を向上することができる。   In addition, by using a data analysis method based on probability and statistics such as Bayes' theorem, it is possible to make a diagnosis taking into account multiple factors, and the accuracy of insulation evaluation between winding layers is improved. For example, in addition to main insulation diagnosis data, equipment operation history, detection of discharge electromagnetic waves when impulse voltage is applied to the winding, frequency characteristics data of winding impedance, temperature / humidity data of equipment usage environment, equipment load factor, etc. Is incorporated into the Bayes' theorem and analyzed, so that the insulation diagnosis accuracy between the winding layers can be improved.

[第2実施形態]
本発明の第2実施形態に係る巻線機器の巻線層間絶縁診断方法は、第1実施形態に係る巻線機器の巻線層間絶縁診断方法で巻線層間の絶縁性が低下していると判断された巻線機器に対して、さらに巻線層間の絶縁性を直接診断する。
[Second Embodiment]
In the winding interlayer insulation diagnosis method for a winding device according to the second embodiment of the present invention, the insulation between winding layers is reduced in the winding interlayer insulation diagnosis method for a winding device according to the first embodiment. The insulation between the winding layers is directly diagnosed for the determined winding equipment.

第2実施形態に係る巻線機器の巻線層間絶縁診断方法は、図1に示すように主絶縁の診断パラメータに基づいて巻線層間の絶縁特性の診断を行う(STEP1)。そして、この診断で巻線層間の絶縁特性が劣化していると評価された巻線機器に対して、さらに巻線層間の放電開始電圧測定を行って巻線層間の絶縁性を直接診断する(STEP2)。   In the winding interlayer insulation diagnosis method for a winding device according to the second embodiment, the insulation characteristic between winding layers is diagnosed based on the diagnostic parameter of the main insulation as shown in FIG. 1 (STEP 1). Then, for the winding device evaluated as having deteriorated the insulation characteristics between the winding layers by this diagnosis, the discharge start voltage measurement between the winding layers is further performed to directly diagnose the insulation between the winding layers ( (Step 2).

なお、第2実施形態に係る巻線機器の巻線層間絶縁診断方法のSTEP1の診断手順は、第1実施形態に係る巻線機器の巻線層間絶縁診断方法と同じである。よって、以下の説明では、第1実施形態に係る巻線機器の巻線層間絶縁診断方法で説明されていないSTEP2の診断手順について詳細に説明する。   Note that the diagnosis procedure of STEP 1 of the winding interlayer insulation diagnosis method for a winding device according to the second embodiment is the same as that of the winding interlayer insulation diagnosis method for the winding device according to the first embodiment. Therefore, in the following description, the diagnosis procedure of STEP 2 that is not explained in the winding interlayer insulation diagnosis method for the winding device according to the first embodiment will be described in detail.

図6は、本発明の第2実施形態に係る巻線機器の巻線層間絶縁診断方法のSTEP2の診断手順で用いられる巻線層間絶縁診断システム7の概略を示す図である。巻線層間絶縁診断システム7は、巻線機器8の巻線9にインパルス電圧を印加し、巻線9層間で発生する放電電磁波を検出して巻線層間の絶縁特性の診断を行う。   FIG. 6 is a diagram showing an outline of a winding interlayer insulation diagnosis system 7 used in the STEP2 diagnosis procedure of the winding interlayer insulation diagnosis method for winding equipment according to the second embodiment of the present invention. The winding interlayer insulation diagnosis system 7 applies an impulse voltage to the winding 9 of the winding device 8 and detects a discharge electromagnetic wave generated between the windings 9 to diagnose the insulation characteristics between the winding layers.

図6に示すように、巻線層間絶縁診断システム7は、インパルス電圧印加装置10と、放電電磁波検出装置11と、を有する。   As shown in FIG. 6, the winding interlayer insulation diagnosis system 7 includes an impulse voltage application device 10 and a discharge electromagnetic wave detection device 11.

インパルス電圧印加装置10は、巻線機器8の巻線9にインパルス電圧を印加する。巻線9にインパルス電圧を印加した場合、この値が大きすぎると巻線機器8にダメージを与えるだけでなく、対地間からも放電電磁波が発生するため放電発生部位の特定が困難となる。そこで、インパルス電圧印加装置10は、巻線9層間では放電電磁波が発生し、主絶縁(対地間)では放電電磁波が発生しないインパルス電圧を巻線機器8に印加する。例えば、3kV以下のインパルス電圧を巻線機器8の巻線9に印加する。   The impulse voltage application device 10 applies an impulse voltage to the winding 9 of the winding device 8. When an impulse voltage is applied to the winding 9, if this value is too large, the winding device 8 is not only damaged, but also a discharge electromagnetic wave is generated from the ground, making it difficult to specify the discharge generation site. Therefore, the impulse voltage application device 10 applies to the winding device 8 an impulse voltage that generates a discharge electromagnetic wave between the windings 9 and does not generate a discharge electromagnetic wave in the main insulation (between ground). For example, an impulse voltage of 3 kV or less is applied to the winding 9 of the winding device 8.

主絶縁で部分放電が発生しない条件は、例えば、モデルコイルでの実測値を用いて設定される。つまり、モデルコイルにインパルス電圧を印加したときの電磁波をセンサで検出し、電磁波が検出された最低電圧値を調査する。モデルコイルは、実際の機器に用いるコイル単体であるので、モデルコイルで放電が発生しない電圧値が、実際の機器で放電が発生しない電圧とみなすことができる。この方法によれば、定格が異なる巻線機器に対しても主絶縁で部分放電が発生しない条件を定めることができる。   The condition under which the partial discharge does not occur due to the main insulation is set using, for example, an actual measurement value with a model coil. That is, the electromagnetic wave when the impulse voltage is applied to the model coil is detected by the sensor, and the lowest voltage value at which the electromagnetic wave is detected is investigated. Since the model coil is a single coil used in an actual device, a voltage value at which no discharge occurs in the model coil can be regarded as a voltage at which no discharge occurs in the actual device. According to this method, it is possible to determine a condition in which partial discharge does not occur due to main insulation even for winding devices having different ratings.

放電電磁波検出装置11は、巻線9層間で発生した放電電磁波を検出する電磁波センサ12と、電磁波センサ12で受信した信号を増幅するログアンプ13と、ログアンプ13で増幅された信号から放電電磁波に基づく信号を抽出するハイパスフィルタ14と、電磁波センサで検出された信号に基づいて巻線9層間の部分放電を検出する検出装置15と、を有する。巻線9層間で発生した放電電磁波は、電磁波センサ12で受信され、ログアンプ13、ハイパスフィルタ14を介して検出装置15に入力される。   The discharge electromagnetic wave detection device 11 includes an electromagnetic wave sensor 12 for detecting a discharge electromagnetic wave generated between the windings 9, a log amplifier 13 for amplifying a signal received by the electromagnetic wave sensor 12, and a discharge electromagnetic wave from the signal amplified by the log amplifier 13. And a detection device 15 for detecting a partial discharge between the windings 9 based on the signal detected by the electromagnetic wave sensor. Discharge electromagnetic waves generated between the winding 9 layers are received by the electromagnetic wave sensor 12 and input to the detection device 15 via the log amplifier 13 and the high-pass filter 14.

図2(b)を示して説明したように、巻線機器8にインパルス電圧を印加した場合、そのうちの60%〜80%が最も劣化が進行するといわれる第1コイル(第1極)に印加される。図7に示すように、各巻線9に分担される電圧をシミュレーションすると、コイルにインパルス電圧を印加した際に、各巻線9に分担される電圧は、電動機端子に最も近い第1コイル(第1極)に近いほど大きくなっている。   As shown in FIG. 2B, when an impulse voltage is applied to the winding device 8, 60% to 80% of the applied voltage is applied to the first coil (first pole) that is said to be most deteriorated. Is done. As shown in FIG. 7, when the voltage assigned to each winding 9 is simulated, when an impulse voltage is applied to the coil, the voltage assigned to each winding 9 is the first coil closest to the motor terminal (first coil). The closer to the pole, the larger.

[巻線層間の絶縁性の評価]
第2実施形態に係る巻線機器の巻線層間絶縁診断方法では、まず、主絶縁の絶縁性の評価を行い、主絶縁の絶縁性を評価する診断パラメータを用いて、巻線層間の絶縁性を評価する(STEP1)。そして、STEP1において巻線層間の絶縁性が低下していると評価された巻線機器の巻線にインパルス電圧を印加し、巻線層間で発生する放電開始電圧を計測して巻線層間の絶縁性を直接診断する(STEP2)。
[Evaluation of insulation between winding layers]
In the winding interlayer insulation diagnosis method for a winding device according to the second embodiment, first, the insulation of the main insulation is evaluated, and the insulation between the winding layers is evaluated using diagnostic parameters for evaluating the insulation of the main insulation. Is evaluated (STEP 1). Then, an impulse voltage is applied to the windings of the winding equipment evaluated as having deteriorated insulation between the winding layers in STEP 1, and a discharge start voltage generated between the winding layers is measured to insulate the winding layers. Sex is diagnosed directly (STEP2).

図8に、劣化度合いが異なる各巻線機器(モデルコイル)に対してインパルス電圧を印加し、主絶縁及び巻線層間(第1極と第2極との間)で放電開始電圧の値を計測した結果を示す。なお、主絶縁の放電開始電圧の計測の際には、巻線と鉄心との間にインパルス電圧を印加して計測を行った。   In FIG. 8, the impulse voltage is applied to each winding device (model coil) with different deterioration levels, and the value of the discharge start voltage is measured between the main insulation and the winding layer (between the first and second poles). The results are shown. When measuring the discharge start voltage of the main insulation, the impulse voltage was applied between the winding and the iron core.

巻線層間の絶縁診断を行う際に放電開始電圧を計測する場合、印加するインパルス電圧が主絶縁の放電開始電圧より大きいと、対地間でも部分放電がおこり、対地間で発生した部分放電と絶縁層間で発生した部分放電との判別が困難となる。そこで、主絶縁で部分放電が発生しない条件で、巻線層間の放電開始電圧を計測することができれば、巻線機器にダメージを与えることを抑制し、且つ精度の良い巻線層間の絶縁診断を行うことができる。   When measuring the discharge start voltage when performing insulation diagnosis between winding layers, if the applied impulse voltage is larger than the discharge start voltage of the main insulation, partial discharge occurs between the ground and insulation from the partial discharge generated between the ground. Discrimination from partial discharge generated between layers becomes difficult. Therefore, if the discharge start voltage between the winding layers can be measured under the condition that the partial discharge does not occur in the main insulation, it is possible to suppress the damage to the winding device and perform an accurate insulation diagnosis between the winding layers. It can be carried out.

図8に示すように、巻線層間の放電開始電圧は、主絶縁の放電開始電圧よりも低い値となっている。よって、第2実施形態の巻線層間絶縁診断方法では、巻線層間の絶縁診断(STEP2)において、巻線に印加するインパルス電圧を、主絶縁(対地間)で部分放電が発生しない大きさとすることで、主絶縁での部分放電の発生を抑制した条件で巻線層間の放電開始電圧を計測する。そして、巻線層間での放電開始電圧に閾値を設け、計測された放電開始電圧が閾値を下回った場合、巻線層間の絶縁性が低下していると評価する。例えば、図8に示す例では、巻線に印加するインパルス電圧の大きさを3.0kV以下に設定し、放電開始電圧の閾値を1.0kVに設定している。   As shown in FIG. 8, the discharge start voltage between the winding layers is lower than the discharge start voltage of the main insulation. Therefore, in the inter-winding insulation diagnosis method of the second embodiment, the impulse voltage applied to the winding in the insulation diagnosis (STEP 2) between the inter-winding layers is set to a magnitude that does not cause partial discharge in the main insulation (between ground). Thus, the discharge start voltage between the winding layers is measured under the condition that the generation of the partial discharge in the main insulation is suppressed. Then, a threshold value is set for the discharge start voltage between the winding layers, and when the measured discharge start voltage falls below the threshold value, it is evaluated that the insulation between the winding layers is lowered. For example, in the example shown in FIG. 8, the magnitude of the impulse voltage applied to the winding is set to 3.0 kV or less, and the threshold value of the discharge start voltage is set to 1.0 kV.

以上のような本発明の第2実施形態に係る巻線機器の巻線層間絶縁診断方法では、主絶縁の絶縁性を診断する診断パラメータに基づいて巻線層間の絶縁性の評価を行い、当該評価で巻線層間の絶縁性が低下していると判断された巻線機器の巻線層間の絶縁破壊電圧を計測し、巻線層間の絶縁性を直接診断する。   In the winding interlayer insulation diagnosis method for a winding device according to the second embodiment of the present invention as described above, the insulation between the winding layers is evaluated based on the diagnostic parameter for diagnosing the insulation of the main insulation, and The insulation breakdown voltage between the winding layers of the winding equipment that is judged to have deteriorated by the evaluation is measured directly and the insulation between the winding layers is directly diagnosed.

すなわち、本発明の第2実施形態に係る巻線機器の巻線層間絶縁診断方法は、巻線層間の劣化が進行するにしたがって巻線層間の放電開始電圧が低下することに着目し、巻線層間の絶縁破壊電圧に基づいて巻線層間の絶縁性を直接診断するものである。   That is, the winding interlayer insulation diagnosis method for a winding device according to the second embodiment of the present invention focuses on the fact that the discharge start voltage between the winding layers decreases as the deterioration between the winding layers proceeds. The insulation between the winding layers is directly diagnosed based on the dielectric breakdown voltage between the layers.

本発明の第2実施形態に係る巻線層間絶縁診断方法は、予め主絶縁の絶縁性を診断する診断パラメータに基づいて、巻線層間の絶縁状態の推定を行うため、巻線層間の絶縁劣化が進んでいないと推定される巻線機器に対して、巻線機器にダメージを与えるおそれや絶縁破壊を引き起こすおそれのある巻線層間の直接診断(例えば、巻線層間の絶縁破壊電圧の計測等)を行わずに巻線層間の絶縁特性の診断を行うことができる。さらに、巻線層間の直接診断は、巻線層間の劣化が進行していると推定される試料に対して行うため、巻線層間の絶縁診断が簡略化される。   The inter-winding layer insulation diagnosis method according to the second embodiment of the present invention estimates the insulation state between the winding layers based on diagnostic parameters for diagnosing the insulation of the main insulation in advance. Direct diagnosis between winding layers that may cause damage to the winding equipment or cause breakdown of the winding equipment that is estimated to have not progressed (for example, measurement of dielectric breakdown voltage between winding layers, etc.) ), The insulation characteristics between the winding layers can be diagnosed. Further, since the direct diagnosis between the winding layers is performed on the sample estimated to be deteriorated between the winding layers, the insulation diagnosis between the winding layers is simplified.

また、巻線層間の放電開始電圧を計測する際に、対地間で放電が発生せず、且つ巻線層間で放電が発生するような電圧を印加することで、巻線機器にダメージを与えず、且つ精度良く巻線層間の絶縁性を診断することができる。   Also, when measuring the discharge start voltage between winding layers, applying a voltage that does not cause discharge between the ground and between the winding layers does not damage the winding equipment. In addition, the insulation between the winding layers can be diagnosed with high accuracy.

[第3実施形態]
本発明の第3実施形態に係る巻線機器の巻線層間絶縁診断方法は、第1実施形態に係る巻線機器の巻線層間絶縁診断方法で巻線層間の絶縁性が低下していると判断された巻線機器に対して、さらに巻線層間の絶縁性を直接評価する。
[Third Embodiment]
In the winding interlayer insulation diagnosis method for a winding device according to the third embodiment of the present invention, the insulation between winding layers is reduced in the winding interlayer insulation diagnosis method for a winding device according to the first embodiment. The insulation between the winding layers is directly evaluated for the determined winding equipment.

第3実施形態に係る巻線機器の巻線層間絶縁診断方法は、図1に示すように主絶縁の診断パラメータに基づいて巻線層間の絶縁特性の診断を行う(STEP1)。そして、この診断で巻線層間の絶縁特性が劣化していると評価された巻線機器の巻線インピーダンスの周波数特性を算出し、巻線層間の絶縁性を直接評価する(STEP2)。   In the winding interlayer insulation diagnosis method for a winding device according to the third embodiment, the insulation characteristic between winding layers is diagnosed based on the diagnostic parameter of the main insulation as shown in FIG. 1 (STEP 1). Then, the frequency characteristic of the winding impedance of the winding device evaluated that the insulation characteristics between the winding layers are deteriorated by this diagnosis is calculated, and the insulation between the winding layers is directly evaluated (STEP 2).

なお、第3実施形態に係る巻線機器の巻線層間絶縁診断方法のSTEP1の診断手順は、第1実施形態に係る巻線機器の巻線層間絶縁診断方法と同じである。よって、以下の説明では、第1実施形態に係る巻線機器の巻線層間絶縁診断方法で説明されていないSTEP2の診断手順について詳細に説明する。   Note that the diagnosis procedure of STEP 1 of the winding interlayer insulation diagnosis method for a winding device according to the third embodiment is the same as that of the winding interlayer insulation diagnosis method for the winding device according to the first embodiment. Therefore, in the following description, the diagnosis procedure of STEP 2 that is not explained in the winding interlayer insulation diagnosis method for the winding device according to the first embodiment will be described in detail.

本発明の第3実施形態に係る巻線機器の巻線層間絶縁診断方法のSTEP2の診断手順では、診断対象の巻線機器の巻線に異なる周波数の交流電圧を印加して、各周波数の交流電圧の値とこの交流電圧印加時に流れる電流とに基づいて巻線インピーダンスを算出する。そして、巻線インピーダンスの周波数特性(例えば、ピークシフトの割合)に基づいて、巻線層間の絶縁性を直接診断する。   In the diagnosis procedure of STEP2 of the winding interlayer insulation diagnosis method for a winding device according to the third embodiment of the present invention, AC voltages of different frequencies are applied to the windings of the winding device to be diagnosed, and the alternating current of each frequency is applied. The winding impedance is calculated based on the voltage value and the current that flows when this AC voltage is applied. Then, the insulation between the winding layers is directly diagnosed based on the frequency characteristics (for example, peak shift ratio) of the winding impedance.

[巻線層間の絶縁性の評価]
本発明の第3実施形態に係る巻線機器の巻線層間絶縁診断方法では、まず、主絶縁の絶縁性の評価を行い、主絶縁の絶縁性を評価する診断パラメータを用いて、巻線層間の絶縁性を評価する(STEP1)。そして、STEP1で巻線層間の絶縁性が低下していると評価された巻線機器に対して巻線インピーダンスの周波数特性を算出し、巻線層間の絶縁性を直接診断する(STEP2)。
[Evaluation of insulation between winding layers]
In the winding interlayer insulation diagnosis method for a winding device according to the third embodiment of the present invention, first, the insulation of the main insulation is evaluated, and using the diagnostic parameter for evaluating the insulation of the main insulation, The insulating property is evaluated (STEP 1). Then, the frequency characteristic of the winding impedance is calculated for the winding device evaluated in STEP1 as having deteriorated insulation between the winding layers, and the insulation between the winding layers is directly diagnosed (STEP2).

図9に示すように、巻線機器において巻線の劣化が進行すると、巻線インピーダンスの共振周波数が変化することが確認された。そこで、劣化前の共振周波数のピーク値に対する劣化後の共振周波数のピーク値の増加量の割合(ピークシフト)を算出して、このピークシフトの値に基づいて巻線層間の絶縁性を評価した。   As shown in FIG. 9, it was confirmed that the resonance frequency of the winding impedance changes as the deterioration of the winding progresses in the winding device. Therefore, the ratio (peak shift) of the increase amount of the peak value of the resonance frequency after deterioration to the peak value of the resonance frequency before deterioration was calculated, and the insulation between the winding layers was evaluated based on this peak shift value. .

図10に示すように、共振周波数のずれ(ピークシフト)と巻線層間残存破壊電圧とを比較すると、ピークシフトの増加にしたがって巻線層間残存破壊電圧が低下することが確認できる。したがって、共振周波数のずれ(ピークシフト)に予め閾値を設定することで、ピークシフトに基づいて巻線層間の絶縁特性を評価することができる。図10に示す例では、ピークシフトの閾値の値を4.0%としているが、閾値の値は評価対象の巻線機器に応じて適宜設定することができる。   As shown in FIG. 10, when the resonance frequency shift (peak shift) is compared with the winding interlayer residual breakdown voltage, it can be confirmed that the winding interlayer residual breakdown voltage decreases as the peak shift increases. Therefore, by setting a threshold value in advance for the deviation (peak shift) of the resonance frequency, it is possible to evaluate the insulation characteristics between the winding layers based on the peak shift. In the example shown in FIG. 10, the peak shift threshold value is 4.0%, but the threshold value can be set as appropriate according to the winding device to be evaluated.

巻線機器の巻線インピーダンスの計測値は、環境ノイズの影響を受けることが知られている。例えば、巻線インピーダンス測定におけるノイズ源としては、測定環境で駆動する電気設備の影響や雨天時における吸湿の影響(雨天時の吸湿によって、みかけの静電容量が変化する)等が考えられる。   It is known that the measured value of the winding impedance of a winding device is affected by environmental noise. For example, as a noise source in winding impedance measurement, the influence of electrical equipment driven in a measurement environment, the influence of moisture absorption during rainy weather (the apparent capacitance changes due to moisture absorption during rainy weather), and the like.

電気設備のノイズに関しては、接地線を独立させてノイズの影響の低減を図ることができる。また、吸湿の影響に対しては、主絶縁の絶縁性を診断する診断パラメータ(例えば、主絶縁の絶縁抵抗の計測値や誘電正接の計測値等)に基づいて巻線機器が設置されている環境を推定し、推定された環境に応じて巻線インピーダンスの計測値を補正することで、環境ノイズの影響を低減することができる。   Regarding the noise of electrical equipment, the influence of the noise can be reduced by making the ground wire independent. In addition, with respect to the influence of moisture absorption, winding devices are installed based on diagnostic parameters for diagnosing the insulation of the main insulation (for example, measured values of insulation resistance of the main insulation, measured values of dielectric loss tangent, etc.) By estimating the environment and correcting the measured value of the winding impedance according to the estimated environment, the influence of environmental noise can be reduced.

以上のような本発明の第3実施形態に係る巻線機器の巻線層間絶縁診断方法では、主絶縁の絶縁性を診断する診断パラメータに基づいて巻線層間の絶縁特性の評価を行い、当該評価で巻線層間の絶縁性が低下していると判断された巻線機器に対して巻線インピーダンスを計測し、巻線層間の絶縁性を直接診断する。   In the winding interlayer insulation diagnosis method for a winding device according to the third embodiment of the present invention as described above, the insulation characteristics between the winding layers are evaluated based on the diagnostic parameter for diagnosing the insulation of the main insulation, Winding impedance is measured for the winding equipment that is judged to have poor insulation between the winding layers in the evaluation, and the insulation between the winding layers is directly diagnosed.

すなわち、本発明の第3実施形態に係る巻線機器の巻線層間絶縁診断方法は、巻線層間の劣化が進行するにしたがって巻線層間静電容量が減少することに着目し、巻線インピーダンスに基づいて巻線層間の絶縁性を直接診断するものである。巻線インピーダンス測定において巻線に印加される電圧はたかだか数Vであるため、巻線層間の絶縁性を直接診断することによる巻線機器へのダメージを低減することができる。   That is, the winding interlayer insulation diagnosis method for a winding device according to the third embodiment of the present invention pays attention to the fact that the winding interlayer capacitance decreases as the deterioration between the winding layers progresses. Based on the above, the insulation between the winding layers is directly diagnosed. Since the voltage applied to the winding in the winding impedance measurement is at most several volts, damage to the winding equipment due to direct diagnosis of the insulation between the winding layers can be reduced.

また、予め主絶縁の絶縁性を診断する診断パラメータで、巻線層間の劣化状態を推定することで、巻線層間の劣化が進行していると評価された試料に対して巻線層間の絶縁性を直接診断することができ、巻線層間の絶縁診断が簡略化される。   In addition, it is a diagnostic parameter for diagnosing the insulation of the main insulation in advance, and by estimating the deterioration state between the winding layers, the insulation between the winding layers is compared with the sample evaluated that the deterioration between the winding layers is progressing. Therefore, the diagnosis of insulation between winding layers can be simplified.

また、主絶縁の絶縁性を診断する診断パラメータ(例えば、主絶縁の絶縁抵抗や誘電正接の値等)に基づいて、巻線機器の設置環境(吸湿度合い等)を判断し、巻線インピーダンスの計測値を補正することで、巻線層間の絶縁性の診断精度がより向上する。   Also, based on diagnostic parameters for diagnosing the insulation of the main insulation (for example, the insulation resistance of the main insulation and the value of the dielectric loss tangent), the installation environment of the winding equipment (such as the degree of moisture absorption) is judged and By correcting the measured value, the diagnostic accuracy of the insulation between the winding layers is further improved.

以上、本発明の巻線機器の巻線層間絶縁診断方法について、具体的な実施形態を示して説明したが、本発明の巻線機器の巻線層間絶縁診断方法は、上述した実施形態に限らず、本発明の特徴を損なわない範囲で適宜設計変更が可能であり、そのように変更された形態も本発明に技術的範囲に属する。   As mentioned above, although the specific embodiment was shown and demonstrated about the winding interlayer insulation diagnostic method of the winding apparatus of this invention, the winding interlayer insulation diagnostic method of the winding apparatus of this invention is restricted to embodiment mentioned above. However, the design can be changed as appropriate without departing from the characteristics of the present invention, and such a modified form also belongs to the technical scope of the present invention.

例えば、第2実施形態の巻線層間直接診断手順(STEP2)と第3実施形態の巻線層間直接診断手順(STEP2)とを組み合わせて行うことで、巻線層間の絶縁性の診断精度をより向上させることができる。   For example, the inter-winding layer direct diagnosis procedure (STEP 2) of the second embodiment and the inter-winding layer direct diagnosis procedure (STEP 2) of the third embodiment are performed in combination, thereby further improving the diagnostic accuracy of the insulation between the winding layers. Can be improved.

また、実施形態の説明では、巻線層間絶縁の劣化を評価する指標である主絶縁のΔtanδの閾値を1.0と設定し、この閾値により定格電圧3kVや6kV級の巻線機器の巻線層間絶縁の評価を行うことができることを示した。同様に、実施形態2の説明では、インパルス電圧を印加したときに主絶縁で放電が発生しない条件として、インパルス電圧の上限を3.0kVと設定し、定格電圧3kVや6kV級の巻線機器の巻線層間の絶縁評価を行うことができることを示した。このΔtanδの閾値やインパルス電圧の上限は、機器の大きさや構造に応じて適宜最適な値を設定してもよい。   In the description of the embodiment, the threshold value of Δtanδ of the main insulation, which is an index for evaluating the deterioration of the winding interlayer insulation, is set to 1.0, and the winding of the rated voltage 3 kV or 6 kV class winding device is set based on this threshold value. It was shown that the interlayer insulation can be evaluated. Similarly, in the description of Embodiment 2, the upper limit of the impulse voltage is set to 3.0 kV as a condition in which no discharge occurs in the main insulation when the impulse voltage is applied, and the rated voltage of 3 kV or 6 kV class winding equipment It was shown that insulation evaluation between winding layers can be performed. The threshold value of Δtanδ and the upper limit of the impulse voltage may be set to optimal values as appropriate according to the size and structure of the device.

また、巻線機器の使用環境の温湿度データや巻線機器の負荷率等のデータを用いて、巻線層間の計測結果を補正することで、巻線層間の絶縁特性の検出精度が向上し、巻線層間の絶縁性の診断精度がより向上する。   Also, by correcting the measurement results between the winding layers using data such as temperature / humidity data on the usage environment of the winding devices and the load factor of the winding devices, the detection accuracy of the insulation characteristics between the winding layers is improved. In addition, the diagnostic accuracy of insulation between winding layers is further improved.

1…電線
2…被覆(素線絶縁)
3…層間絶縁
4…対地主絶縁
5…半導電層
6…鉄心(スロット)
7…巻線層間絶縁診断システム
8…巻線機器
9…巻線
10…インパルス電圧印加装置
11…放電電磁波検出装置
12…電磁波センサ
13…ログアンプ
14…ハイパスフィルタ
15…検出装置
1 ... Wire 2 ... Coating (wire insulation)
3 ... Interlayer insulation 4 ... Ground-to-earth insulation 5 ... Semiconductive layer 6 ... Iron core (slot)
DESCRIPTION OF SYMBOLS 7 ... Winding interlayer insulation diagnostic system 8 ... Winding equipment 9 ... Winding 10 ... Impulse voltage application apparatus 11 ... Discharge electromagnetic wave detection apparatus 12 ... Electromagnetic wave sensor 13 ... Log amplifier 14 ... High pass filter 15 ... Detection apparatus

Claims (4)

巻線と、巻回された巻線の外周部を覆うように設けられる主絶縁とを備える巻線機器の巻線層間の絶縁性を診断する巻線層間絶縁診断方法であって、
予め定められた基準電圧を前記巻線に印加したときの前記主絶縁の誘電正接と、前記基準電圧と異なる試験電圧を前記巻線に印加したときの前記主絶縁の誘電正接と、の差である主絶縁の誘電正接の増加量に、予め閾値を設け、
診断対象である巻線機器において前記主絶縁の誘電正接の増加量を求め、
求められた誘電正接の増加量と前記閾値とを比較することにより、前記巻線機器の巻線層間の絶縁性を診断し、
前記主絶縁の誘電正接の増加量と前記閾値とを比較して、前記巻線層間の絶縁性が低下していると診断した場合、さらに、該巻線層間の絶縁性が低下していると診断された巻線機器の巻線層間の絶縁性を直接診断する
ことを特徴とする巻線機器の巻線層間絶縁診断方法。
A winding interlayer insulation diagnostic method for diagnosing insulation between winding layers of a winding device comprising a winding and a main insulation provided so as to cover the outer periphery of the wound winding ,
The difference between the dielectric tangent of the main insulation when a predetermined reference voltage is applied to the winding and the dielectric tangent of the main insulation when a test voltage different from the reference voltage is applied to the winding. A threshold is set in advance for the amount of increase in the dielectric tangent of a certain main insulation,
Determine the amount of increase in dielectric loss tangent of the main insulation in the winding device to be diagnosed,
By comparing the obtained increase of the dielectric loss tangent and the threshold value, the insulation between the winding layers of the winding device is diagnosed ,
When the amount of increase in the dielectric tangent of the main insulation is compared with the threshold value and it is diagnosed that the insulation between the winding layers is reduced, the insulation between the winding layers is further reduced. A method of diagnosing a winding interlayer insulation of a winding device, wherein the insulation between the winding layers of the diagnosed winding device is directly diagnosed.
前記巻線にインパルス電圧を印加し、該電圧印加時に前記巻線層間で発生する放電電磁波を検出し、
検出された放電電磁波に基づいて、前記巻線層間の絶縁性を直接診断する
ことを特徴とする請求項に記載の巻線機器の巻線層間絶縁診断方法。
Applying an impulse voltage to the winding, and detecting a discharge electromagnetic wave generated between the winding layers when the voltage is applied;
Based on the detected discharge wave, winding interlayer insulation diagnosis method of winding device according to claim 1, wherein the diagnosing insulation of the winding layers directly.
前記巻線の巻線インピーダンスの周波数特性を計測し、
計測された巻線インピーダンスの周波数特性に基づいて、前記巻線層間の絶縁性を直接診断する
ことを特徴とする請求項に記載の巻線機器の巻線層間絶縁診断方法。
Measure the frequency characteristics of the winding impedance of the winding,
Based on the frequency characteristics of the measured winding impedance, the winding interlayer insulation diagnosis method of winding device according to claim 1, wherein the diagnosing insulation of the winding layers directly.
前記巻線インピーダンスの周波数特性の計測結果を、前記巻線機器の主絶縁を評価する指標に基づいて補正し、
該補正された巻線インピーダンスの周波数特性の計測結果に基づいて、前記巻線層間の絶縁性を診断する
ことを特徴とする請求項に記載の巻線機器の巻線層間絶縁診断方法。
The measurement result of the frequency characteristic of the winding impedance is corrected based on an index for evaluating the main insulation of the winding device,
4. The winding interlayer insulation diagnosis method for a winding device according to claim 3 , wherein the insulation between the winding layers is diagnosed based on the measurement result of the corrected frequency characteristic of the winding impedance.
JP2013207793A 2013-10-03 2013-10-03 Interlayer insulation diagnosis method for winding equipment Active JP6164022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013207793A JP6164022B2 (en) 2013-10-03 2013-10-03 Interlayer insulation diagnosis method for winding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013207793A JP6164022B2 (en) 2013-10-03 2013-10-03 Interlayer insulation diagnosis method for winding equipment

Publications (2)

Publication Number Publication Date
JP2015072183A JP2015072183A (en) 2015-04-16
JP6164022B2 true JP6164022B2 (en) 2017-07-19

Family

ID=53014651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013207793A Active JP6164022B2 (en) 2013-10-03 2013-10-03 Interlayer insulation diagnosis method for winding equipment

Country Status (1)

Country Link
JP (1) JP6164022B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6504940B2 (en) * 2015-06-29 2019-04-24 日鉄住金テックスエンジ株式会社 Insulation diagnosis method for AC high voltage motor
JP7294989B2 (en) * 2019-02-21 2023-06-20 矢崎総業株式会社 signal detector
JP2020171073A (en) * 2019-04-01 2020-10-15 株式会社明電舎 Rotary machine stator insulation structure
CN112394703B (en) * 2019-08-14 2022-06-10 中车时代电动汽车股份有限公司 Vehicle fault management system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0833431B2 (en) * 1987-11-12 1996-03-29 株式会社明電舎 Insulation deterioration diagnosis method for high voltage rotating machines
JPH08122388A (en) * 1994-10-21 1996-05-17 Toshiba Corp Layer short detector
JP5587259B2 (en) * 2011-07-20 2014-09-10 株式会社日立製作所 Insulation diagnosis method for rotating electrical machines

Also Published As

Publication number Publication date
JP2015072183A (en) 2015-04-16

Similar Documents

Publication Publication Date Title
Zoeller et al. Evaluation and current-response-based identification of insulation degradation for high utilized electrical machines in railway application
Zhang et al. Asset-management of transformers based on condition monitoring and standard diagnosis
CN110297167B (en) Transformer aging state evaluation method based on multi-source information fusion
CN104714155A (en) Detection and evaluation device and method for partial discharge of direct current XLPE cables
US20130311113A1 (en) Prognostics and life estimation of electrical machines
JP6164022B2 (en) Interlayer insulation diagnosis method for winding equipment
Babel et al. Condition-based monitoring and prognostic health management of electric machine stator winding insulation
US6870374B2 (en) Process for identifying abnormalities in power transformers
Stone et al. Prediction of stator winding remaining life from diagnostic measurements
KR101958296B1 (en) Apparatus for diagnosing a transformer and method for the same
KR101886192B1 (en) Apparatus for diagnosing a power transformer
CN102540030B (en) Method for diagnosing development speed of partial discharge defect of oil paper insulated equipment
CN102288881B (en) Method for diagnosing severity of discharging shortcoming of oil paper insulation thorn of transformer
US7960977B2 (en) Determining degraded insulating ability in insulation provided between two objects of an inductively operating element
JP2009266988A (en) Diagnostic method of internal failure of oil-filled electric apparatus
Toudji et al. Predictive diagnostic based on HF modeling of electrical machines windings
Raetzke et al. Modern insulation condition assessment for instrument transformers
KR101413788B1 (en) Method and apparratus of malfunction detection of transformer
CN1451970A (en) Method for identifying abnormal condition in power transformer
EP1703293B1 (en) Method and device for estimating remaining service life of coil
JP2013148481A (en) Method for determining deterioration of motor coil
Savin et al. Organic enameled wire aging monitoring based on impedance spectrum analysis
JP2012037483A (en) Method for determining partial discharge generation void class
JP4681391B2 (en) Degradation diagnosis method for low-voltage cables
Rao et al. Assessment of Stator Winding Insulation. Part 1-Review of Deterioration Mechanisms and Condition Monitoring Techniques

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170605

R150 Certificate of patent or registration of utility model

Ref document number: 6164022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150