JP4681391B2 - Degradation diagnosis method for low-voltage cables - Google Patents

Degradation diagnosis method for low-voltage cables Download PDF

Info

Publication number
JP4681391B2
JP4681391B2 JP2005231583A JP2005231583A JP4681391B2 JP 4681391 B2 JP4681391 B2 JP 4681391B2 JP 2005231583 A JP2005231583 A JP 2005231583A JP 2005231583 A JP2005231583 A JP 2005231583A JP 4681391 B2 JP4681391 B2 JP 4681391B2
Authority
JP
Japan
Prior art keywords
low
insulation resistance
voltage
voltage cable
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005231583A
Other languages
Japanese (ja)
Other versions
JP2007047013A (en
Inventor
利彦 後藤
明彦 江濱
隆二 仲須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005231583A priority Critical patent/JP4681391B2/en
Publication of JP2007047013A publication Critical patent/JP2007047013A/en
Application granted granted Critical
Publication of JP4681391B2 publication Critical patent/JP4681391B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Relating To Insulation (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Description

本発明は、工場内の各種設備に電力を供給するために用いられている600V以下用の低圧ケーブルの劣化を診断する方法に関するものである。   The present invention relates to a method for diagnosing deterioration of a low voltage cable for 600 V or less used for supplying power to various facilities in a factory.

上記のような低圧ケーブルとしては、導体の周囲をゴム絶縁被覆及びビニル絶縁被覆により覆った構造のものが使用されているが、長期間使用する間に絶縁被覆が劣化して亀裂が発生し、絶縁破壊を起こして地絡事故等の原因となることがある。そのため、定期的にその劣化状態を診断して劣化時には低圧ケーブルを取り替える等事故の発生を未然に防止する対策が必要である。   As a low-voltage cable as described above, the one having a structure in which the conductor is covered with a rubber insulation coating and a vinyl insulation coating is used, but the insulation coating deteriorates during use for a long period of time, and cracks occur. Insulation breakdown may cause a ground fault. For this reason, it is necessary to take measures to prevent the occurrence of accidents such as periodically diagnosing the deterioration state and replacing the low-voltage cable at the time of deterioration.

低圧ケーブルの診断方法としては、絶縁抵抗を測定し、電気設備技術基準に準拠して測定した絶縁抵抗の絶対値により劣化を判定する方法が一般的に実施されている。ところが低圧ケーブルは絶縁被覆に亀裂が発生していても基準値以上の高い絶縁抵抗値を示すことが多く、劣化を正確に検出することができないという問題があった。また、運転中に回路の充電電流に含まれる直流成分によりオンラインで診断する方法も実施されているが、この方法でも絶縁抵抗が高い状態での亀裂の発生を検出することはできなかった。   As a diagnosis method for a low-voltage cable, a method is generally implemented in which the insulation resistance is measured and the deterioration is determined based on the absolute value of the insulation resistance measured in accordance with the electrical equipment technical standards. However, the low-voltage cable often has a high insulation resistance value that is higher than the reference value even if the insulation coating is cracked, and there is a problem that deterioration cannot be accurately detected. In addition, a method of performing online diagnosis using a direct current component included in a circuit charging current during operation has also been implemented, but even this method cannot detect the occurrence of cracks in a state where the insulation resistance is high.

さらに特許文献1には、電線・低圧ケーブル表面の絶縁体またはシースの表面電気抵抗を測定し、その表面電気抵抗の変化から当該電線・低圧ケーブルの劣化の度合いを診断する方法が提案されている。しかしこの方法では低圧ケーブルの長さ方向に適当な間隔をおいて電極を設ける必要があり、長い低圧ケーブルを全長に亘り診断することは困難であった。   Further, Patent Document 1 proposes a method of measuring the surface electrical resistance of the insulator or sheath on the surface of the electric wire / low voltage cable and diagnosing the degree of deterioration of the electric wire / low voltage cable from the change in the surface electric resistance. . However, in this method, it is necessary to provide electrodes at an appropriate interval in the length direction of the low-voltage cable, and it is difficult to diagnose a long low-voltage cable over the entire length.

なお、高圧ケーブルの劣化状態を診断する方法としては、診断対象の高圧ケーブルに直流高電圧を印加して行なう漏れ電流試験が知られている。しかしこの方法はケーブル離線が必要であるうえ20分程度の長時間を要するため、管理レベルの高い高圧ケーブルでは必要な試験であるものの、管理レベルの低い低圧ケーブルの診断に適用することは実用的ではない。
特開平8−233896号公報
As a method for diagnosing the deterioration state of the high voltage cable, a leakage current test is known which is performed by applying a DC high voltage to the high voltage cable to be diagnosed. However, this method requires cable disconnection and takes a long time of about 20 minutes. Therefore, although this test is necessary for high-voltage cables with a high management level, it is practical to apply it to the diagnosis of low-voltage cables with a low management level. is not.
JP-A-8-233896

本発明は上記した従来の問題点を解決し、低圧ケーブルの亀裂発生等の劣化状態を、短時間内に簡便かつ正確に判断することができる低圧ケーブルの劣化診断方法を提供するためになされたものである。   The present invention has been made in order to solve the above-described conventional problems and to provide a low-voltage cable deterioration diagnosis method that can easily and accurately determine a deterioration state such as crack occurrence of a low-voltage cable within a short time. Is.

上記の課題を解決するためになされた本発明の低圧ケーブルの劣化診断方法は、低圧ケーブルに直流電圧を印加して印加開始直後における絶縁抵抗の変化を計測し、絶縁被覆が劣化している場合に生ずる複数の脈動の一つの脈動ごとに放電脈動率=(絶縁抵抗の極大値−絶縁抵抗の極小値)/絶縁抵抗の極大値の式により定義される定義される放電脈動率を算出し、それらのうち最大の放電脈動率が1%を超えたときに劣化と判断することを特徴とするものである。なお、印加する直流電圧を500V以上とすることが好ましく、絶縁抵抗の変化を、電圧印加開始後20〜60秒の間で計測することが好ましい。 The degradation diagnosis method for a low-voltage cable according to the present invention made to solve the above-described problem is when a change in insulation resistance is measured immediately after application of a DC voltage to a low-voltage cable and the insulation coating is degraded. Discharge pulsation rate defined by the equation of discharge pulsation rate = (maximum value of insulation resistance−minimum value of insulation resistance) / maximum value of insulation resistance for each pulsation of a plurality of pulsations occurring in Among them, it is judged that the deterioration is caused when the maximum discharge pulsation rate exceeds 1%. Note that the DC voltage to be applied is preferably 500 V or more, and the change in insulation resistance is preferably measured within 20 to 60 seconds after the voltage application is started.

本発明の低圧ケーブルの劣化診断方法によれば、従来のような絶縁抵抗の絶対値ではなく、劣化した低圧ケーブルに発生する固有の放電脈動率により劣化を検出するので、絶縁抵抗が高い状態での亀裂の発生による劣化も確実に検出することができる利点がある。また、劣化診断に当たっては、従来の絶縁抵抗測定と同様に診断対象となる低圧ケーブルに診断装置を接続して電圧を印加するだけでよく、短時間で簡便に診断できるという利点がある。   According to the degradation diagnosis method for a low-voltage cable of the present invention, the degradation is detected not by the absolute value of the insulation resistance as in the prior art but by the inherent discharge pulsation rate generated in the degraded low-voltage cable. There is an advantage that deterioration due to the occurrence of cracks can be reliably detected. In the deterioration diagnosis, as in the conventional insulation resistance measurement, it is only necessary to connect a diagnostic device to a low voltage cable to be diagnosed and apply a voltage, and there is an advantage that diagnosis can be performed easily in a short time.

次に、本発明を実施するための最良の形態について、図を参照しながら具体的に説明する。
図1は本発明の低圧ケーブルの劣化診断方法を実施する際の診断対象である低圧ケーブル1と診断装置2の接続を示しており、低圧ケーブル1の導線3が診断装置2に接続されている。診断装置2は基本的には低圧ケーブル1の導線3の対地間絶縁抵抗を測定して低圧ケーブルの劣化を診断するものであり、診断装置2の一極は大地に接続される。
Next, the best mode for carrying out the present invention will be specifically described with reference to the drawings.
FIG. 1 shows a connection between a low-voltage cable 1 and a diagnostic device 2 that are diagnostic targets when the low-voltage cable degradation diagnostic method of the present invention is carried out, and a conducting wire 3 of the low-voltage cable 1 is connected to the diagnostic device 2. . The diagnosis device 2 basically measures the insulation resistance between the conductors 3 of the low-voltage cable 1 and diagnoses the deterioration of the low-voltage cable, and one pole of the diagnosis device 2 is connected to the ground.

診断装置2は一定の電圧を発生して導線3と大地の間に電圧を印加する直流電源装置4と、導線3に流れる電流を検出する電流検出器5と、低圧ケーブル1の絶縁破壊時に診断装置2を保護する過電流保護装置6と、直流電源装置4の出力電圧値と電流検出器5により検出される導線3に流れる電流とから絶縁抵抗の値を算出する演算装置7と、該演算装置7により算出された絶縁抵抗の値を時系列的に記憶する記憶装置8と、記憶装置8に記憶されたデータを解析する解析装置9と、判定装置10とから構成されている。   The diagnostic device 2 generates a constant voltage and applies a voltage between the conductor 3 and the ground, a current detector 5 that detects a current flowing through the conductor 3, and a diagnosis when the low voltage cable 1 is broken down. An overcurrent protection device 6 that protects the device 2; an arithmetic device 7 that calculates an insulation resistance value from the output voltage value of the DC power supply device 4 and the current flowing through the conductor 3 detected by the current detector 5; It comprises a storage device 8 for storing the insulation resistance value calculated by the device 7 in time series, an analysis device 9 for analyzing data stored in the storage device 8, and a determination device 10.

解析装置9は、放電脈動率を算出する機能を有するものである。本発明では放電脈動率として、
放電脈動率=(絶縁抵抗の極大値−絶縁抵抗の極小値)/絶縁抵抗の極大値の式により定義された値を用いる。また、判定装置10は解析装置により求められた放電脈動率を基準値と比較し、放電脈動率が基準値を超えたときに劣化と判定する判定信号を出力する機能を有するものとなっており、出力される判定信号により警報表示等をすることができる。なお、図中11は低圧ケーブルの絶縁被覆である。
The analysis device 9 has a function of calculating the discharge pulsation rate. In the present invention, as the discharge pulsation rate,
The value defined by the equation of discharge pulsation rate = (maximum value of insulation resistance−minimum value of insulation resistance) / maximum value of insulation resistance is used. The determination device 10 has a function of comparing the discharge pulsation rate obtained by the analysis device with a reference value and outputting a determination signal for determining deterioration when the discharge pulsation rate exceeds the reference value. An alarm display or the like can be performed by the output determination signal. In the figure, reference numeral 11 denotes an insulation coating for the low-voltage cable.

前記のように低圧ケーブル1と診断装置2を配置し、直流電源装置4を作動させて導線3に直流電圧を印加すると、導線3と大地の間の静電容量を充電する充電電流と絶縁被覆11の吸収電流が流れ、それに絶縁被覆11の漏れ電流が流れる。この電流は電流検出器5により検出され、演算装置7により充電電流等も含めて絶縁抵抗として算出されることとなり、算出された絶縁抵抗はその値が時系列的に記憶装置8に記憶される。   When the low-voltage cable 1 and the diagnostic device 2 are arranged as described above, and the DC power supply device 4 is operated to apply a DC voltage to the conductor 3, the charging current and the insulation coating for charging the capacitance between the conductor 3 and the ground 11 absorption current flows, and the leakage current of the insulating coating 11 flows. This current is detected by the current detector 5 and is calculated as an insulation resistance including a charging current by the arithmetic device 7. The calculated insulation resistance is stored in the storage device 8 in time series. .

図2は電圧印加開始直後における絶縁抵抗の変化を示すグラフである。健全な低圧ケーブル1の導線3に直流電圧を印加して絶縁抵抗測定をするとき、これに流れる電流は電圧印加開始後に時間とともに減少し、やがて一定の値になる。この電流は絶縁被覆11を含む静電容量を充電するために電圧を印加した直後に流れる変位電流と、絶縁被覆11が吸収する緩慢に減少しながら流れる分極電流と、時間の経過に関係なくほぼ一定の漏れ電流とが加え合わされたものであり、この電流から絶縁抵抗を求めると絶縁抵抗はAに示すように徐々に増加して漏れ電流により定まる一定の値に漸近するような変化をすることが知られている。   FIG. 2 is a graph showing changes in insulation resistance immediately after the start of voltage application. When the insulation resistance measurement is performed by applying a DC voltage to the conducting wire 3 of the sound low-voltage cable 1, the current flowing therethrough decreases with time after the voltage application starts and eventually becomes a constant value. This current is almost equal to the displacement current that flows immediately after the voltage is applied to charge the capacitance including the insulating coating 11, the polarization current that flows slowly while absorbing the insulating coating 11, regardless of the passage of time. When the insulation resistance is obtained from this current, the insulation resistance gradually increases as shown in A and changes so as to approach a constant value determined by the leakage current. It has been known.

これに対し絶縁被覆11が劣化している場合には、絶縁抵抗はBに示すように絶縁抵抗が時間の経過に伴って増加から減少に転じ、その後再び増加するというように脈動するように変化する。これは絶縁被覆11の亀裂内部における微小放電などの影響と想定される。この放電脈動現象による絶縁抵抗の値の脈動は複数現れることがあり、図2は2個の脈動が現れた状態を示している。解析装置9は一つの脈動ごとに前記した放電脈動率を算出し、複数算出した場合にはそのうち最大のものを判定装置10に与える。判定装置10は解析装置から与えられた放電脈動率を基準値と比較し、放電脈動率が基準値である1%を超えれば判定信号を出力する。これにより、低圧ケーブル1が劣化していることを知ることができる。   On the other hand, when the insulation coating 11 is deteriorated, the insulation resistance changes so as to pulsate such that the insulation resistance changes from increasing to decreasing as time passes and then increases again as shown by B. To do. This is assumed to be an influence of a micro discharge or the like inside the crack of the insulating coating 11. A plurality of pulsations of the insulation resistance value due to this discharge pulsation phenomenon may appear, and FIG. 2 shows a state where two pulsations appear. The analysis device 9 calculates the above-described discharge pulsation rate for each pulsation. The determination device 10 compares the discharge pulsation rate given from the analysis device with a reference value, and outputs a determination signal if the discharge pulsation rate exceeds 1% which is the reference value. Thereby, it can be known that the low-voltage cable 1 is deteriorated.

本発明においては、低圧ケーブル1に印加する直流電圧は500V以上とするのが好ましい。500V未満では放電脈動が発生しない可能性があるためである。また絶縁抵抗の変化の解析は電圧印加後の分極電流が収束する20秒後から60秒後までの間で行なうのが好ましい。この時間帯において放電脈動を最も明確に検出できるからである。このようにごく短時間で診断を完了することができるのが、本発明の大きな利点である。   In the present invention, the DC voltage applied to the low voltage cable 1 is preferably 500 V or higher. This is because discharge pulsation may not occur if the voltage is less than 500V. The analysis of the change in insulation resistance is preferably performed from 20 seconds to 60 seconds after the polarization current after voltage application converges. This is because the discharge pulsation can be detected most clearly in this time zone. The great advantage of the present invention is that the diagnosis can be completed in such a short time.

劣化状態が様々に異なる天井クレーン用低圧ケーブルを対象として、本発明方法による劣化診断と絶縁破壊電圧の測定とを行なった。その結果は表1に示す通りであり、前述の放電脈動率が1%を超えたときに劣化と判断する本発明の方法が、目視により確認された低圧ケーブルの実際の劣化状態と正確に対応することが確認された。また絶縁抵抗の絶対値は、亀裂の程度と必ずしも一致しないことも分かる。   Deterioration diagnosis and dielectric breakdown voltage measurement were performed by the method of the present invention for low voltage cables for overhead cranes with various deterioration states. The results are as shown in Table 1, and the method of the present invention for judging deterioration when the discharge pulsation rate exceeds 1% accurately corresponds to the actual deterioration state of the low-voltage cable visually confirmed. Confirmed to do. It can also be seen that the absolute value of the insulation resistance does not necessarily match the degree of cracking.

Figure 0004681391
Figure 0004681391

低圧ケーブルと診断装置の配置を示す図である。It is a figure which shows arrangement | positioning of a low voltage | pressure cable and a diagnostic apparatus. 時間に対する絶縁抵抗値の変化の例を示すグラフである。It is a graph which shows the example of the change of the insulation resistance value with respect to time.

符号の説明Explanation of symbols

1 低圧ケーブル
2 診断装置
3 導線
4 直流電源装置
5 電流検出器
6 過電流保護装置
7 演算装置
8 記憶装置
9 解析装置
10 判定装置
11 絶縁被覆
DESCRIPTION OF SYMBOLS 1 Low voltage cable 2 Diagnostic apparatus 3 Conductor 4 DC power supply apparatus 5 Current detector 6 Overcurrent protection apparatus 7 Arithmetic apparatus 8 Storage apparatus 9 Analyzing apparatus 10 Judgment apparatus 11 Insulation coating

Claims (3)

低圧ケーブルに直流電圧を印加して印加開始直後における絶縁抵抗の変化を計測し、絶縁被覆が劣化している場合に生ずる複数の脈動の一つの脈動ごとに下記の式により定義される放電脈動率を算出し、それらのうち最大の放電脈動率が1%を超えたときに劣化と判断することを特徴とする低圧ケーブルの劣化診断方法。
放電脈動率=(絶縁抵抗の極大値−絶縁抵抗の極小値)/絶縁抵抗の極大値
Discharge pulsation rate defined by the following equation for each pulsation of multiple pulsations that occur when the insulation resistance is deteriorated by applying a DC voltage to the low-voltage cable and measuring the change in insulation resistance. A degradation diagnosis method for a low-voltage cable, characterized in that the degradation is determined when the maximum discharge pulsation rate exceeds 1%.
Discharge pulsation rate = (maximum value of insulation resistance-minimum value of insulation resistance) / maximum value of insulation resistance
印加する直流電圧を500V以上とすることを特徴とする請求項1記載の低圧ケーブルの劣化診断方法。   2. The method for diagnosing deterioration of a low-voltage cable according to claim 1, wherein the DC voltage to be applied is 500 V or more. 絶縁抵抗の変化を、電圧印加開始後20〜60秒の間で計測することを特徴とする請求項1記載の低圧ケーブルの劣化診断方法。   The method for diagnosing deterioration of a low-voltage cable according to claim 1, wherein the change in insulation resistance is measured within 20 to 60 seconds after the start of voltage application.
JP2005231583A 2005-08-10 2005-08-10 Degradation diagnosis method for low-voltage cables Expired - Fee Related JP4681391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005231583A JP4681391B2 (en) 2005-08-10 2005-08-10 Degradation diagnosis method for low-voltage cables

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005231583A JP4681391B2 (en) 2005-08-10 2005-08-10 Degradation diagnosis method for low-voltage cables

Publications (2)

Publication Number Publication Date
JP2007047013A JP2007047013A (en) 2007-02-22
JP4681391B2 true JP4681391B2 (en) 2011-05-11

Family

ID=37849950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005231583A Expired - Fee Related JP4681391B2 (en) 2005-08-10 2005-08-10 Degradation diagnosis method for low-voltage cables

Country Status (1)

Country Link
JP (1) JP4681391B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5347929B2 (en) * 2009-12-04 2013-11-20 新日鐵住金株式会社 DC motor winding insulation recovery method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001021608A (en) * 1999-07-05 2001-01-26 Tokyo Electric Power Co Inc:The Method for diagnosing insulation deterioration of power cable
JP2005017086A (en) * 2003-06-25 2005-01-20 Murata Mfg Co Ltd Quality deciding method of capacitor and property selector of capacitor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5746168A (en) * 1980-09-04 1982-03-16 Nec Home Electronics Ltd Method for ispecting characteristics of electronic part
JPS6161069A (en) * 1984-08-31 1986-03-28 Toyota Motor Corp Automatic diagnosing device for insulation performance of power cable

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001021608A (en) * 1999-07-05 2001-01-26 Tokyo Electric Power Co Inc:The Method for diagnosing insulation deterioration of power cable
JP2005017086A (en) * 2003-06-25 2005-01-20 Murata Mfg Co Ltd Quality deciding method of capacitor and property selector of capacitor

Also Published As

Publication number Publication date
JP2007047013A (en) 2007-02-22

Similar Documents

Publication Publication Date Title
JP5349036B2 (en) Insulation diagnostic system
CN110618365B (en) Low-voltage cable state evaluation method based on dielectric response characteristics
JP6296689B2 (en) Uninterruptible insulation deterioration diagnosis method for power cables
JPS61243375A (en) Deterioration diagnosis for insulator of power cable
JP5443094B2 (en) Electric vehicle quick charger charging cable insulation test equipment
JP2016042046A (en) Dielectric loss tangent measurement device and method thereof, and power cable diagnosis device and method thereof
KR100823724B1 (en) Apparatus and method for detecting stator winding groundwall insulation condition of inverter-fed AC motor
JP2011242206A (en) Insulation deterioration diagnosis method and insulation deterioration diagnosis device of power cable
JP5719970B2 (en) Scintillation estimation method
JP6164022B2 (en) Interlayer insulation diagnosis method for winding equipment
JP4681391B2 (en) Degradation diagnosis method for low-voltage cables
KR101984432B1 (en) Diagnosis device for monitoring degradation of cable and diagnosis method thereof
JP2007271542A (en) Insulation deterioration diagnosis method and insulation deterioration diagnosis device of power cable
JP4347551B2 (en) Insulation degradation diagnosis method for power cables
JP4690932B2 (en) Insulation degradation diagnosis method for power cables
JP2876322B2 (en) Diagnosis method for insulation deterioration of CV cable
CN112180191A (en) Wire and cable aging state assessment method
JP2006001394A (en) Feeder cable monitoring device
JPS6228655A (en) Diagnosing method for insulation deterioration
JP5083679B2 (en) Degradation diagnosis method of CV cable by residual charge measurement method
JP2011047766A (en) Method and device for diagnosing insulation deterioration of power cable
JP2017026491A (en) Deterioration diagnosis method of of cable
JP5309706B2 (en) Diagnostic method of power cable at the time of power cable repair
JP3629424B2 (en) CV cable insulation diagnosis method
JP5120085B2 (en) Diagnostic method of power cable at the time of power cable repair

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110204

R151 Written notification of patent or utility model registration

Ref document number: 4681391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees