JP2876322B2 - Diagnosis method for insulation deterioration of CV cable - Google Patents

Diagnosis method for insulation deterioration of CV cable

Info

Publication number
JP2876322B2
JP2876322B2 JP31300689A JP31300689A JP2876322B2 JP 2876322 B2 JP2876322 B2 JP 2876322B2 JP 31300689 A JP31300689 A JP 31300689A JP 31300689 A JP31300689 A JP 31300689A JP 2876322 B2 JP2876322 B2 JP 2876322B2
Authority
JP
Japan
Prior art keywords
cable
current
ground line
deterioration
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31300689A
Other languages
Japanese (ja)
Other versions
JPH03172777A (en
Inventor
邦彦 真田
美伯 角田
真人 都
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP31300689A priority Critical patent/JP2876322B2/en
Publication of JPH03172777A publication Critical patent/JPH03172777A/en
Application granted granted Critical
Publication of JP2876322B2 publication Critical patent/JP2876322B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、活線下においてCVケーブルの水トリー等に
よる絶縁劣化の程度を診断する絶縁劣化診断方法および
装置に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for diagnosing insulation deterioration by diagnosing the degree of insulation deterioration of a CV cable due to a water tree or the like under a live line.

[従来の技術] 一般的に、電力ケーブルは布設後の経年変化により電
気絶縁体の絶縁性能が低下する。特に、CVケーブルでは
架橋ポリエチレン絶縁体に樹状の亀裂が生じ、この亀裂
に水分が侵入する所謂水トリーの発生が絶縁劣化の主な
原因であることが知られている。このような絶縁性能の
低下は、放置すると進展して早晩大きな絶縁破壊事故に
つながる惧れがある。従って、ケーブルの絶縁抵抗の変
化を把握し、劣化を早期に発見することが極めて重要で
ある。このため、従来から種々の絶縁測定方法が知られ
ているが、特に近年では測定時に送電を停止することな
く活線状態で診断する方法が幾つか提案されており、常
時の状態監視も可能である等の有利な点が多いため注目
されている。
[Prior Art] Generally, the insulation performance of an electric insulator is deteriorated due to aging after a power cable is laid. In particular, it is known that, in a CV cable, dendritic cracks are formed in the crosslinked polyethylene insulator, and the occurrence of so-called water trees in which moisture penetrates into the cracks is a main cause of insulation deterioration. Such a decrease in insulation performance may progress if left unattended, leading to a large-scale electrical breakdown accident. Therefore, it is extremely important to grasp the change in the insulation resistance of the cable and to detect the deterioration at an early stage. For this reason, various insulation measurement methods have been conventionally known.In particular, in recent years, several methods for diagnosing in a live state without stopping power transmission at the time of measurement have been proposed. It is attracting attention because of its many advantages.

このような常時監視を行なう方法としては、従来では
例えば特公昭60−8465号公報等に記載されているように
送電交流電流に直流電流を重畳させ、この結果として検
出されるケーブル漏洩電流の直流成分からケーブルの絶
縁抵抗を求めて評価する所謂直流重畳法や、或は特開昭
60−185171号公報等に記載されているように送電電圧波
形と電流波形とを測定し、誘電正接を求めて評価する所
謂tanδ法が一般に用いられている。また、特にcvケー
ブルの場合では特開昭59−202075号公報において水トリ
ーに電流整流作用があるとして、交流送電中のケーブル
漏洩電流の直流分を測定し、その方向と絶対値とから水
トリーの分布と長さ及び体積を推定する方法が開示され
ている。
As a method of performing such constant monitoring, conventionally, for example, as described in Japanese Patent Publication No. 60-8465, a DC current is superimposed on a transmission AC current, and a DC leakage current detected as a result is detected. The so-called DC superposition method in which the insulation resistance of the cable is determined from the components and evaluated, or
As described in JP-A-60-185171, a so-called tan δ method is generally used in which a transmission voltage waveform and a current waveform are measured and a dielectric loss tangent is obtained and evaluated. In particular, in the case of a cv cable, assuming that the water tree has a current rectifying function in JP-A-59-202075, the DC component of the cable leakage current during AC power transmission was measured, and the water tree was measured from its direction and absolute value. A method for estimating the distribution and length and volume of is disclosed.

[発明が解決しようとする課題] しかしながら、上述した公知の従来方法は何れも絶縁
劣化を早期に且つ正確に発見したいという要求を必ずし
も充分に満足し得る方法ではない。即ち、第1に述べた
直流重畳法は一般的に劣化の程度に対する検出感度が悪
いとされ、相当に程度の激しい劣化でなければ検出され
ないという問題がある。また測定時に数10V程度の直流
重畳電圧を必要とし、このため直流電源を別個に準備し
なければならない。
[Problems to be Solved by the Invention] However, none of the above-mentioned known conventional methods can always sufficiently satisfy the demand for early and accurate detection of insulation deterioration. That is, the direct current superposition method described above is generally considered to have poor detection sensitivity with respect to the degree of deterioration, and has a problem that it is not detected unless the deterioration is considerably severe. Also, a DC superimposed voltage of about several tens of volts is required at the time of measurement, and therefore a DC power supply must be separately prepared.

一方、tanδ法ではケーブル全体にわたる劣化は検出
されるものの、水トリーのような局部的な劣化に対する
検出感度は悪いという欠点が知られている。
On the other hand, although the deterioration over the entire cable is detected by the tan δ method, it is known that the detection sensitivity for local deterioration such as water tree is poor.

更に、水トリーの整流作用を利用する特開昭59−2020
75号公報の場合では、同公報に記述されているようにケ
ーブル絶縁体に導体側から発生する所謂内導水トリーと
シース側から発生する外導水トリーとでは、発生する直
流電流が互いに逆極性であることから、両種の水トリー
が同時に発生した場合には検出される直流電流は互いに
打ち消し合って充分な測定ができなくなる惧れがある。
Further, Japanese Patent Application Laid-Open No. 59-2020 utilizing the rectification function of water trees
In the case of No. 75, as described in the same publication, in the so-called inner water conduction tree generated from the conductor side in the cable insulator and the outer water conduction tree generated from the sheath side, the generated direct currents have opposite polarities. For this reason, when both types of water trees are generated at the same time, the detected direct currents may cancel each other out, making it impossible to perform a sufficient measurement.

[発明の背景] 本発明者らが水トリー現象について研究した結果、次
のような新事実を発見した。すなわち、測定対象とする
CVケーブルに交流電圧を印加すると、ケーブルの遮蔽層
にはケーブル導体との静電結合により印加交流電圧に応
じた電荷が誘起され、この時間変化のため大地との間に
印加交流電圧の周波数と同程度の周期で変動する電流
(接地線電流)が流れるわけであるが、前記接地線電流
の波形を観測した場合、 CVケーブルの絶縁体中に水トリーが存在すると、接
地線電流波形に歪が生じる 上記波形の歪は、印加交流電圧のピーク値付近で最
も大きくなる。
[Background of the Invention] As a result of research on the water tree phenomenon, the present inventors have discovered the following new facts. That is, to be measured
When an AC voltage is applied to a CV cable, an electric charge corresponding to the applied AC voltage is induced in the shield layer of the cable by electrostatic coupling with the cable conductor, and due to this time change, the frequency of the applied AC voltage is changed between the ground and the ground. The current (grounding line current) that fluctuates at the same cycle flows. However, when the waveform of the grounding line current is observed, if water trees exist in the insulator of the CV cable, the waveform of the grounding line current will be distorted. Occurs. The distortion of the waveform is greatest near the peak value of the applied AC voltage.

歪んだ接地線電流は、印加交流電圧の高調波成分を
多く含んでいる。
The distorted ground line current contains many harmonic components of the applied AC voltage.

水トリー劣化の激しいケーブルほど、接地線電流中
に含まれる高調波成分量が大きくなる。
The more severe the water tree deterioration, the larger the amount of harmonic components contained in the ground line current.

水トリーが存在するケーブル絶縁体においては、電気
的観点で見れば、ケーブル導体と遮蔽層との間に、絶縁
体の健全部が有する静電容量Faと水トリー部が有する静
電容量Fbとが接続された等価回路が多数並列的に存在す
ると考えることができる。このようなケーブルに交流電
圧を印加した場合、印加交流電圧のピーク値付近では水
トリー部静電容量Fbの電圧分担が強制的に低下するた
め、健全部静電容量Faの電圧分担が増大し、その結果高
調波を含む歪電流成分が絶縁体中を流れる。健全部静電
容量Faの電圧分担は水トリー部の体積が大きいほど増大
するため、而して上記のような現象が発生すると推測さ
れる。
In a cable insulator where a water tree exists, from an electrical viewpoint, between the cable conductor and the shielding layer, the capacitance Fa of the sound portion of the insulator and the capacitance Fb of the water tree portion of the insulator Can be considered to exist in parallel in a large number of equivalent circuits to which. When an AC voltage is applied to such a cable, the voltage share of the water tree portion capacitance Fb is forcibly reduced near the peak value of the applied AC voltage, and the voltage share of the sound portion capacitance Fa increases. As a result, a distortion current component including harmonics flows through the insulator. Since the voltage sharing of the sound portion capacitance Fa increases as the volume of the water tree portion increases, it is presumed that the above phenomenon occurs.

本発明の目的は、従来方法の欠点を解消し、上述の新
事実を基に、劣化時に正確に絶縁不良を発見できる新規
なCVケーブルの絶縁劣化診断方法を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to solve the drawbacks of the conventional method and to provide a new insulation deterioration diagnosis method for CV cables that can accurately detect insulation failure at the time of deterioration based on the new fact described above.

[課題を解決するための手段] 本発明のCVケーブルの絶縁劣化診断方法は、交流電源
電圧が印加されたCVケーブルの遮蔽層と基準電位との間
を接続する接地線より接地線電流を検出し、該接地線電
流より前記交流電源の周波数に等しい周波数の電流の第
3高調波成分を検出することにより、CVケーブル絶縁体
の劣化の程度を検知することを特徴とするものである。
[Means for Solving the Problems] The method for diagnosing insulation deterioration of a CV cable according to the present invention detects a ground line current from a ground line connecting between a shielding layer of a CV cable to which an AC power supply voltage is applied and a reference potential. The degree of deterioration of the CV cable insulator is detected by detecting a third harmonic component of a current having a frequency equal to the frequency of the AC power supply from the ground wire current.

[作用] 本発明においては、接地線電流から交流電源周波数の
第3高調波成分を検出することにより、上記新知見に基
づくCVケーブルの絶縁劣化診断を行なうものである。す
なわち、検出される高調波成分量が多い程、そのCVケー
ブルの絶縁体は水トリー劣化が進行していると判断する
ことができる。
[Operation] In the present invention, the third harmonic component of the AC power supply frequency is detected from the ground line current to diagnose the insulation deterioration of the CV cable based on the above-mentioned new knowledge. In other words, it can be determined that the water tree deterioration of the insulator of the CV cable is progressing as the detected harmonic component amount is larger.

[実施例] 以下図面に基づいて本発明の一実施例を詳細に説明す
る。
Embodiment An embodiment of the present invention will be described below in detail with reference to the drawings.

第1図は本発明の絶縁劣化診断方法を具体化するため
の構成図の一例である。図において、Ckは測定対象とな
るCVケーブルの導体−遮蔽層間の静電容量であり、X側
をケーブルの導体側、Y側を遮蔽層側としている。Eは
交流電源であり、一端を接地し、他端をケーブルの導体
X側に接続する。なお、ケーブルが活線状態の場合にお
いて本発明を実施する場合は、印加されている線路電圧
をそのまま利用すれば良く、交流電源Eは不要となる。
FIG. 1 is an example of a configuration diagram for embodying the insulation deterioration diagnosis method of the present invention. In the figure, Ck is the capacitance between the conductor and the shielding layer of the CV cable to be measured, with the X side being the conductor side of the cable and the Y side being the shielding layer side. E is an AC power supply having one end grounded and the other end connected to the conductor X side of the cable. When the present invention is carried out when the cable is in a live state, the applied line voltage may be used as it is, and the AC power supply E is not required.

ここで、交流電源Eにて供試CVケーブルに電圧を印加
すると、ケーブルが有する数電容量Ckに充電電流が流
れ、遮蔽層Y側から大地に接地線電流ieが流れることに
なる。接地線電流ieは、前述の通り主として印加交流電
圧の周波数と同程度の周期で変動する電流であり、交流
電源Eの周波数が50Hzの場合、接地線電流ieも50Hzの電
流成分が基本波となる。
Here, when a voltage is applied to the test CV cable by the AC power supply E, a charging current flows through several capacitances Ck of the cable, and a ground wire current ie flows from the shielding layer Y side to the ground. As described above, the ground line current ie is a current that fluctuates mainly in the same cycle as the frequency of the applied AC voltage. When the frequency of the AC power supply E is 50 Hz, the ground line current ie also has a 50 Hz current component as the fundamental wave. Become.

第2図に示すように、上記接地線電流ieの波形を観測
した場合、水トリーが存在しないケーブルでは若干の雑
音電流成分の重畳は認められるものの、ほぼ正弦波に近
い接地線電流ie(図中点線で表示)が検出されるが、水
トリーが存在しているケーブルでは、図中実線で表示す
るように印加交流電圧(図中一点鎖線で表示)のピーク
値付近でとくに大きく波形が歪んだ接地線電流ieが観測
される。
As shown in FIG. 2, when the waveform of the above-mentioned ground line current ie is observed, in the cable having no water tree, although a slight superposition of a noise current component is recognized, the ground line current ie is almost a sine wave. (Indicated by the middle dotted line) is detected, but in the case of a cable with a water tree, the waveform is particularly distorted near the peak value of the applied AC voltage (indicated by the dashed line in the diagram) as indicated by the solid line in the diagram. The ground wire current ie is observed.

該接地線電流ieより第3高調波成分を検出して劣化診
断を行なうわけであるが、本実施例では先ず接地線より
接地線電流検出器20により接地線電流ieを検出し、バン
ドエリミネーションフィルター(以下BEFという)21に
て、接地線電流ieより前記基本波成分(印加交流電圧と
同周波数の電流成分)を取り除き、次いでこの電流中か
ら雑音電流成分等の不要な電流成分を取り除いて基本波
の第3高調波成分のみを検出するために、バンドパスフ
ィルター(以下BPFという)22を通過させる場合を例示
している。第3図はBPF22の出力電流波形を示してお
り、該電流は接地線電流ieより、その基本波電流成分と
雑音電流成分が除去された基本波の第3高調波成分のみ
となる。BEF21及びBPF22としては各種公知のフィルター
回路を採用することができ、適当なフィルター回路を適
宜選択して使用すれば良い。
The deterioration diagnosis is performed by detecting the third harmonic component from the ground line current ie. In this embodiment, first, the ground line current ie is detected by the ground line current detector 20 from the ground line, and the band elimination is performed. The filter (hereinafter referred to as BEF) 21 removes the fundamental wave component (a current component having the same frequency as the applied AC voltage) from the ground line current ie, and then removes unnecessary current components such as a noise current component from the current. In this example, a case where the signal is passed through a band-pass filter (hereinafter referred to as BPF) 22 to detect only the third harmonic component of the fundamental wave is illustrated. FIG. 3 shows an output current waveform of the BPF 22. The current is only the third harmonic component of the fundamental wave from which the fundamental current component and the noise current component are removed from the ground line current ie. Various known filter circuits can be employed as the BEF21 and the BPF22, and an appropriate filter circuit may be appropriately selected and used.

最後にBEF21,BPF22のフィルタリングにより検出され
た高調波成分に、高調波成分量表示装置23において例え
ば整流する等の加工を施し、高調波成分の絶対量の大き
さを表示する。前述の通り、水トリー劣化の激しいケー
ブル程高調波成分量は増加するので、高調波成分量表示
装置23にて高調波成分量を測定することにより、水トリ
ー劣化診断を行なうことができる。
Finally, the harmonic components detected by the filtering of the BEF 21 and the BPF 22 are subjected to processing such as rectification in the harmonic component amount display device 23 to display the magnitude of the absolute amount of the harmonic components. As described above, since the amount of harmonic components increases as the water tree deteriorates more severely, water tree deterioration diagnosis can be performed by measuring the amount of harmonic components with the harmonic component amount display device 23.

第4図は本発明の劣化診断方法を、活線状態にある3
相3線式線路に適用した場合を示す図である。測定対象
となるCVケーブル1の一端の遮蔽層11から引き出されて
いる接地線3には変流器CTがカップリングされており、
接地線3中を流れる接地線電流ieを検出するようになさ
れている、変流器CTが検出した接地線電流ieは絶縁診断
装置2へ送出され、該装置2内において前述のように先
ずBEF21により基本波成分が除去され、BPF22により雑音
電流成分等が除去され、そして表示装置23において残る
高調波成分が絶対量として表示される。実際に測定を行
なう場合は、CVケーブル1の他端の遮蔽層12からも接地
線30を引き出し、その中間部にスイッチSを設け、測定
時にスイッチSを閉として片端接地の状態で行なう。
FIG. 4 shows the method of diagnosing deterioration according to the present invention in the state of a live line.
It is a figure showing the case where it is applied to a phase three-wire system line. A current transformer CT is coupled to the grounding wire 3 extending from the shield layer 11 at one end of the CV cable 1 to be measured.
The ground line current ie detected by the current transformer CT, which is configured to detect the ground line current ie flowing in the ground line 3, is sent to the insulation diagnostic device 2, and firstly in the device 2, the BEF 21 , The noise component and the like are removed by the BPF 22, and the remaining harmonic component is displayed as an absolute amount on the display device 23. When the measurement is actually performed, the ground wire 30 is also drawn from the shielding layer 12 at the other end of the CV cable 1, a switch S is provided at an intermediate portion thereof, and the switch S is closed at the time of measurement to perform the measurement with one end grounded.

接地線電流ieを検出する他の方法として、図中点線で
示すように接地線3′に抵抗Rを挿入し、この抵抗Rの
両端にあらわれる電圧を利用して絶縁診断装置2′を動
作させることもできる。しかしながら抵抗Rによる検出
の場合、CVケーブル1と大地との間に電位差が発生する
ことになり、その結果ケーブル−大地間静電容量Csが測
定に悪影響を及ぼすこととなるので、ケーブル−大地間
にほとんど静電容量が生じることがない、変流器CTによ
る接地線電流ieの検出が望ましい。さらに変流器CTによ
る検出では、接地線3に何等加工を施す必要が無いので
既設線路への適用が容易であり、また局部電池の影響を
受けない等、抵抗Rによる検出の場合に比べこれらの点
でも優れている。
As another method of detecting the ground line current ie, a resistor R is inserted into the ground line 3 'as shown by a dotted line in the figure, and the insulation diagnostic device 2' is operated using a voltage appearing at both ends of the resistor R. You can also. However, in the case of detection by the resistor R, a potential difference occurs between the CV cable 1 and the ground, and as a result, the capacitance Cs between the cable and the ground adversely affects the measurement. It is desirable to detect the ground line current ie by the current transformer CT, which causes almost no capacitance to occur. Further, in the detection by the current transformer CT, there is no need to apply any processing to the ground wire 3, so that it is easy to apply to an existing line, and the detection is not affected by a local battery. Is also excellent.

本発明においては、検出される高調波として第3高調
波が選ばれる。この第3高調波のみを検出するには、BP
F22の回路条件を適宜設定すれば良い。
In the present invention, the third harmonic is selected as the detected harmonic. To detect only this third harmonic, use BP
What is necessary is just to set the circuit condition of F22 suitably.

本発明において第3高調波を用いる理由は次の通りで
ある。一般に66kV程度以上の特別高圧線路における変圧
器結線としては、Y−Y結線が各種の方式での中性点接
地が可能及び位相変位がないという点で有利であるが、
実際の特別高圧線路においてはΔ結線が変圧器の三次巻
線として使用される。これは、Y−Y結線の場合は第3
高調波励磁電流が流れ得ないため、誘起起電力は正弦波
ではなく第3高調波を含むひずみ波形となるので、Δ結
線変圧器を使用し第3高調波の還流通路を設け正弦波誘
起起電力を生成するものである。従って、特別高圧線路
においては第3高調波は積極的に除外されており、線路
自体が具備する第3高調波は極めて少ない。
The reason for using the third harmonic in the present invention is as follows. Generally, as a transformer connection in a special high-voltage line of about 66 kV or more, the YY connection is advantageous in that neutral grounding is possible in various types and there is no phase displacement,
In an actual extra high voltage line, the Δ connection is used as a tertiary winding of a transformer. This is the third in the case of YY connection.
Since the harmonic exciting current cannot flow, the induced electromotive force is not a sine wave but a distorted waveform including the third harmonic. Therefore, a return path for the third harmonic is provided by using a Δ connection transformer, and the sine wave induced electromotive force is generated. It generates power. Therefore, in the extra high voltage line, the third harmonic is positively excluded, and the line itself has very few third harmonics.

このことから、本発明を実施するに際しては、接地線
電流ieの基本波の第3高調波のみを検出するようにすれ
ば、線路自体が有する高調波の影響を受けることがない
ので、より正確に線路の特性の評価、すなわち水トリー
劣化診断を行なうことができる。さらに、この場合BPF2
2においてフィルタリングする帯域幅を狭くすることが
できるので、雑音成分の混入をより少なくすることが可
能となる。
Therefore, when the present invention is implemented, if only the third harmonic of the fundamental wave of the ground line current ie is detected, the harmonics of the line itself are not affected. The evaluation of the line characteristics, that is, the water tree deterioration diagnosis can be performed. Furthermore, in this case BPF2
Since the bandwidth for filtering in 2 can be narrowed, it is possible to further reduce the mixing of noise components.

上記の絶縁診断装置2は、診断すべき全てのケーブル
に個々に設けて据置型として常時監視に用いても良い
し、或は運搬が容易な図示しない筐体に組み入れた可搬
型とし、複数のケーブルに共通して用いても良い。
The above-mentioned insulation diagnostic device 2 may be individually provided for all cables to be diagnosed and used constantly for monitoring as a stationary type, or may be a portable type incorporated in a housing (not shown) which is easy to carry, and a plurality of types. It may be commonly used for cables.

また、本実施例においては単芯三線電力ケーブルへの
適用の場合を例示しているが、三芯一括電力ケーブル或
は単芯電力ケーブル線路にも同様にして適用可能であ
る。
Further, in the present embodiment, the case of application to a single-core three-wire power cable is illustrated, but the present invention is similarly applicable to a three-core batch power cable or a single-core power cable line.

[効果] 以上説明した通りの本発明のCVケーブルの絶縁劣化診
断方法によれば、接地線電流の第3高調波成分の検出に
より水トリー劣化診断を行なうという新規な方法であ
り、従来各種ある活線絶縁診断法に比べ、別個に直流電
源を用意する必要もなく簡素に診断を行なうことができ
る。また、絶縁体中に水トリーによる変質部位があれば
その劣化を検出することができるので、従来では貫通水
トリーの如き劣化の激しいものしか検出できなかったの
に対し、微小な水トリー欠陥でも検出することができ
る。従って本発明法によれば、簡素に且つ劣化が余り進
行していない水トリー検出が可能であり、経済的に大事
故を未然に防ぐことができる。
[Effects] According to the method for diagnosing insulation deterioration of a CV cable according to the present invention as described above, there is a novel method for performing water tree deterioration diagnosis by detecting the third harmonic component of the ground line current. Compared to the hot wire insulation diagnosis method, diagnosis can be performed simply without the need to prepare a separate DC power supply. In addition, if there is a deteriorated part due to water tree in the insulator, its deterioration can be detected.Thus, in the past, only those with severe deterioration such as through water tree could be detected. Can be detected. Therefore, according to the method of the present invention, it is possible to simply detect a water tree in which deterioration has not progressed much, and economically prevent a major accident from occurring.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明のCVケーブルの劣化診断方法を実施する
ための一例を示すブロック図、第2図は接地線電流の波
形を示すグラフ図、第3図はバンドパスフィルタの出力
の時間変化を示すグラフ図、第4図は本発明法を3相3
線式線路に適用した場合を例示する回路図をそれぞれ示
している。 1……CVケーブル、11,12……遮蔽層、2……絶縁診断
装置、20……接地線電流検出器、21……バンドエルミネ
ーションフィルター、22……バンドパスフィルター、23
……表示装置、3,30……接地線、CT……変流器、ie……
接地線電流、E……交流電源
FIG. 1 is a block diagram showing an example of a method for diagnosing deterioration of a CV cable according to the present invention, FIG. 2 is a graph showing a waveform of a ground line current, and FIG. FIG. 4 shows the method of the present invention in three phases and three phases.
The circuit diagrams illustrating the case where the present invention is applied to a line type line are shown. DESCRIPTION OF SYMBOLS 1 ... CV cable, 11,12 ... Shielding layer, 2 ... Insulation diagnostic device, 20 ... Ground wire current detector, 21 ... Band emission filter, 22 ... Band pass filter, 23
…… Display device, 3,30 …… Ground line, CT …… Current transformer, ie…
Ground wire current, E: AC power supply

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01R 31/12 Continuation of front page (58) Field surveyed (Int.Cl. 6 , DB name) G01R 31/12

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】交流電源電圧が印加されたCVケーブルの遮
蔽層と基準電位との間を接続する接地線より接地線電流
を検出し、該接地線電流より前記交流電源の周波数に等
しい周波数の電流の第3高調波成分を検出することによ
り、CVケーブル絶縁体の劣化の程度を検知することを特
徴とするCVケーブルの絶縁劣化方法。
1. A ground line current is detected from a ground line connecting between a shielding layer of a CV cable to which an AC power supply voltage is applied and a reference potential, and a frequency of a frequency equal to the frequency of the AC power supply is detected from the ground line current. A CV cable insulation deterioration method characterized by detecting a degree of deterioration of a CV cable insulator by detecting a third harmonic component of a current.
【請求項2】接地線からの接地線電流の検出を変流器に
て行なうことを特徴とする特許請求の範囲第(1)項記
載のCVケーブルの絶縁劣化方法。
2. The method of claim 1, wherein the detection of the ground line current from the ground line is performed by a current transformer.
JP31300689A 1989-12-01 1989-12-01 Diagnosis method for insulation deterioration of CV cable Expired - Fee Related JP2876322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31300689A JP2876322B2 (en) 1989-12-01 1989-12-01 Diagnosis method for insulation deterioration of CV cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31300689A JP2876322B2 (en) 1989-12-01 1989-12-01 Diagnosis method for insulation deterioration of CV cable

Publications (2)

Publication Number Publication Date
JPH03172777A JPH03172777A (en) 1991-07-26
JP2876322B2 true JP2876322B2 (en) 1999-03-31

Family

ID=18036099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31300689A Expired - Fee Related JP2876322B2 (en) 1989-12-01 1989-12-01 Diagnosis method for insulation deterioration of CV cable

Country Status (1)

Country Link
JP (1) JP2876322B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2742636B2 (en) * 1991-09-24 1998-04-22 三菱電線工業株式会社 Diagnosis method for insulation deterioration of power cable
JP4267713B2 (en) * 1998-04-14 2009-05-27 古河電気工業株式会社 Degradation diagnosis method for power cables
JP3693149B2 (en) 1999-01-11 2005-09-07 住友電装株式会社 connector
JP4740757B2 (en) * 2006-02-03 2011-08-03 財団法人電力中央研究所 Degradation diagnosis method and degradation diagnosis device for high-voltage power cable
CN113933755A (en) * 2021-11-24 2022-01-14 国网北京市电力公司 Cable defect determining method, device, equipment, storage medium and processor

Also Published As

Publication number Publication date
JPH03172777A (en) 1991-07-26

Similar Documents

Publication Publication Date Title
JPS61243375A (en) Deterioration diagnosis for insulator of power cable
JP2876322B2 (en) Diagnosis method for insulation deterioration of CV cable
JPH03206976A (en) Diagnosis of insulation
JP3317391B2 (en) Method and apparatus for diagnosing insulation deterioration of a live power cable
JPH0627766B2 (en) CV cable insulation deterioration diagnosis device
JPH07294588A (en) Method for locating insulation failure section of live cable
JP3010367B2 (en) Insulation resistance measurement method of cable sheath under hot wire
JPH10160778A (en) Method and device for diagnosing insulation deferioration of live, power cable
KR100202831B1 (en) Insulation degradation detection method for hot-line and device therefor
JP2742636B2 (en) Diagnosis method for insulation deterioration of power cable
JP2002196030A (en) Method for diagnosing deterioration of power cable
JPH063390A (en) Diagnostic method for deterioration of cable
JP3010371B2 (en) Diagnosis method for cable insulation deterioration
JP2000009788A (en) Deterioration diagnosis method of cables
JP3629424B2 (en) CV cable insulation diagnosis method
JP2001183412A (en) Insulation degradation diagnosing method for power cable
JPH03111775A (en) Water-tree-current detecting apparatus for cv cable
JPH0378588B2 (en)
JP2832737B2 (en) Method and apparatus for diagnosing insulation deterioration of CV cable
JPH03102268A (en) Diagnostic method of deterioration of insulation of power cable
JP2002214273A (en) Breaking inspection circuit for high voltage cable shielding copper tape
JP2612367B2 (en) Diagnosis method for insulation deterioration of power cable
JP2612648B2 (en) Deterioration judgment method for insulation of three-phase power cable
Tsujimoto et al. Approach for wide use of diagnostic method for XLPE cables using harmonics in AC loss current
JPS63281073A (en) Detecting method for water tree current of cv cable

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080122

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090122

LAPS Cancellation because of no payment of annual fees