JPH03111775A - Water-tree-current detecting apparatus for cv cable - Google Patents

Water-tree-current detecting apparatus for cv cable

Info

Publication number
JPH03111775A
JPH03111775A JP25128489A JP25128489A JPH03111775A JP H03111775 A JPH03111775 A JP H03111775A JP 25128489 A JP25128489 A JP 25128489A JP 25128489 A JP25128489 A JP 25128489A JP H03111775 A JPH03111775 A JP H03111775A
Authority
JP
Japan
Prior art keywords
cable
current
capacitor
water tree
grounding wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25128489A
Other languages
Japanese (ja)
Other versions
JPH0619415B2 (en
Inventor
Atsushi Iga
淳 伊賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Research Institute Inc
Original Assignee
Shikoku Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Research Institute Inc filed Critical Shikoku Research Institute Inc
Priority to JP25128489A priority Critical patent/JPH0619415B2/en
Publication of JPH03111775A publication Critical patent/JPH03111775A/en
Publication of JPH0619415B2 publication Critical patent/JPH0619415B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to constitute a detecting apparatus wherein preparation work for diagnosis is simple by providing a step-up transformer in the detecting apparatus, connecting a stabilized AC power source to the primary coil of the transformer, and grounding one end of the secondary coil through a capacitor. CONSTITUTION:A current detecting apparatus 1 is connected between a grounding line 2c which is led out of a shielding copper tape 2b of a cable to be measured 2 and a conductor 2a of the cable 2. A stabilized AC power source 3 and a step-up transformer 4 are provided in the apparatus 1. The power source 3 is connected to a primary coil 4a of the step-up transformer 4. One end of a secondary coil 4b is connected to the conductor 2a. The other end is grounded C through a capacitor 5. A circuit 10 for connecting a part between the capacitor 5 and the step-up transformer 4 to the grounding line 2a at a point B is provided. An AC limiting means (resistor) 11 and a water-tree-current detecting part (detector) 6 are provided in the circuit 10. In this constitution, the water tree current can be measured accurately since AC and stray currents do not flow through the detector 6. Diagnosis preparing work to be performed for the grounding line of GPT which is an electric apparatus can be omitted.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、Cvケーブルの絶縁劣化を診断するために
、水トリー電流を検出するCVケーブルの水トリー電流
検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a water tree current detection device for a CV cable that detects water tree current in order to diagnose insulation deterioration of the CV cable.

(従来の技術) Cvケーブルの絶縁劣化を診断するために、絶縁劣化と
相関関係にある水トリー電流の大きさを測定することが
ある。
(Prior Art) In order to diagnose insulation deterioration of a Cv cable, the magnitude of water tree current, which is correlated with insulation deterioration, may be measured.

ところで、かかる水トリー電流は、従来、活線状態にお
いて測定されているため、水トリー電流の測定回路には
水トリー電流とともに交流電流や迷走電流が流れるので
、精度良く測定することが困難である。
By the way, since such water tree current is conventionally measured in a live line state, alternating current and stray current flow together with the water tree current in the water tree current measurement circuit, making it difficult to measure accurately. .

かかる背景に対し、本願発明者は先にGPTの接地線に
コンデンサを介装して、これらの交流電流や迷走電流の
影響を回避して水トリー電流を精度良く測定する方法を
提案している(特開昭63−281073号公報参照)
Against this background, the inventor of the present application has previously proposed a method for measuring water tree current with high accuracy by interposing a capacitor in the GPT grounding wire to avoid the effects of these alternating currents and stray currents. (Refer to Japanese Patent Application Laid-Open No. 63-281073)
.

(発明が解決しようとする課題) ところで、この方法によれば、交流電流や迷走電流の影
響を回避して水トリー電流を精度良く測定することがで
き、Cvケーブルの絶縁劣化診断を正確に行なうことが
できるが、電気設備として設置されたGPTの接地線に
コンデンサを介装して接地することが必要である。
(Problem to be Solved by the Invention) By the way, according to this method, water tree current can be measured with high accuracy while avoiding the influence of alternating current and stray current, and insulation deterioration diagnosis of Cv cable can be accurately performed. However, it is necessary to connect a capacitor to the grounding wire of the GPT installed as electrical equipment.

そのため、この方法でCVケーブルの絶縁劣化診断を行
なう場合、設備としてのGPTの管理者に許諾を求める
ことが必要であり、診断の準備作業が面倒となる。
Therefore, when diagnosing the insulation deterioration of the CV cable using this method, it is necessary to request permission from the administrator of the GPT as the facility, making preparation work for the diagnosis troublesome.

また、診断の準備として行なうべき作業を、被測定ケー
ブルの両側端部および前記GPTの接地線の合計3箇所
で行なう必要があるので、診断の準備作業が面倒である
Further, the preparation work for the diagnosis is troublesome because it is necessary to perform the work to prepare for the diagnosis at three locations in total: both ends of the cable to be measured and the grounding wire of the GPT.

この発明は、このような事情に基づいてなされたもので
、水トリー電流の測定精度が良好でありながら、診断の
準備作業が簡便なCvケーブルの水トリー電流検出装置
を提供することを目的とするものである。
The present invention was made based on the above circumstances, and an object of the present invention is to provide a Cv cable water tree current detection device that has good water tree current measurement accuracy and is easy to prepare for diagnosis. It is something to do.

(課題を解決するための手段) この目的に対し、この発明は、停電状態とした被測定ケ
ーブルの遮へい銅テープから引き出された接地線と、該
被測定ケーブルの導体との間に接続される電流検出装置
であって、該電流検出装置に、安定化された交流電源と
昇圧器とを設けて、昇圧器の一次側コイルには前記交流
電源を接続し、二次側コイルの一端を前記被測定ケーブ
ルの導体に接続するとともに他端はコンデンサを介して
接地させ、さらに、前記コンデンサと前記昇圧器との間
を前記遮へい鋼テープから延びる接地線に接続する回路
を設け、この回路には交流電流制限手段と水トリー電流
検出部とを設けたものである。
(Means for Solving the Problems) For this purpose, the present invention provides a method for connecting a ground wire drawn out from a shielding copper tape of a cable under test in a power outage state and a conductor of the cable under test. The current detection device is provided with a stabilized AC power source and a booster, the AC power source is connected to the primary coil of the booster, and one end of the secondary coil is connected to the booster. A circuit is provided which is connected to the conductor of the cable to be measured and whose other end is grounded via a capacitor, and which connects the capacitor and the booster to a grounding wire extending from the shielding steel tape. It is provided with an alternating current limiting means and a water tree current detecting section.

(作用) この発明によれば、測定装置を構成する昇圧器の接地線
にコンデンサを介装しており、電気設備であるGPTの
接地線になすべき診断準備作業を省略することができる
ので、GPTの管理者に許諾を求めることが不要であり
、診断の準備作業が簡便となる。
(Function) According to the present invention, a capacitor is interposed in the grounding wire of the booster that constitutes the measuring device, and the diagnostic preparation work that should be done on the grounding wire of the GPT, which is electrical equipment, can be omitted. It is not necessary to ask permission from the GPT administrator, and the preparation work for diagnosis becomes easier.

また、測定装置を被測定ケーブルから離間した位置にあ
るGPTの接地線に接続せずに済み、その分作業工数が
減るので、診断準備が簡便となる。
Furthermore, it is not necessary to connect the measuring device to the grounding wire of the GPT located at a position separated from the cable to be measured, and the number of work steps is reduced accordingly, making diagnosis preparation easier.

さらに、測定装置が安定化された交流電痺を有するので
、みだりに電圧変動等を生じるおそれが少なく、従来に
比べて水トリー電流を安定して正確に測定することも可
能となる。
Furthermore, since the measuring device has a stabilized alternating current electromagnetic field, there is less risk of voltage fluctuations occurring unnecessarily, and it is also possible to measure the water tree current more stably and accurately than in the past.

(実施例) 以下、図面に示す実施例によりこの発明を説明する。(Example) The present invention will be explained below with reference to embodiments shown in the drawings.

1は水トリー電流検出装置(以下、単に検出装置という
)を示し、2はCVケーブル(架橋ポリエチレン絶縁ビ
ニールシースケーブル)からなる被測定ケーブルで、配
電線等から切断して停電状態としたものである。
1 indicates a water tree current detection device (hereinafter simply referred to as the detection device), and 2 indicates a cable to be measured consisting of a CV cable (cross-linked polyethylene insulated vinyl sheathed cable), which was disconnected from the power distribution line etc. to create a power outage state. be.

なお、この発明は、いわゆるトリプレックス型のCvケ
ーブル(CVT)等にも同様に用いることができる。
Note that the present invention can be similarly applied to a so-called triplex type CV cable (CVT).

検出装置1には、接点A、  B、  Cが設けられて
おり、接点Aは被測定ケーブル2の導体2aに、接点B
は被測定ケーブル2の遮へい銅テープ2bから引き出さ
れた接地線2cにそれぞれ接続され、また接点Cは接地
されている。
The detection device 1 is provided with contacts A, B, and C, and the contact A is connected to the conductor 2a of the cable under test 2, and the contact B is connected to the conductor 2a of the cable under test 2.
are respectively connected to the ground wires 2c drawn out from the shielding copper tape 2b of the cable to be measured 2, and the contact C is grounded.

検出装置lは、安定化された交流電源3と、昇圧器4と
、コンデンサ5と、検出器6とを主要部品として有する
The detection device 1 includes a stabilized AC power supply 3, a booster 4, a capacitor 5, and a detector 6 as main components.

交流電源3は、変動の少ない電源からの電流を安定化装
置を介して昇圧器4に供給するものである。
The AC power supply 3 supplies current from a power supply with little fluctuation to the booster 4 via a stabilizing device.

昇圧器4は、前記交流電源3から供給される電流の電圧
を、例えば、対地電圧で3810Vにするものであるが
、これに限らず3000■あるいは5000Vにするこ
ととしてもよく、水トリー電流の検出や絶縁劣化の診断
を容易とするうえでは、この電圧を高くすることが有利
である。
The booster 4 makes the voltage of the current supplied from the AC power supply 3, for example, 3810V to ground voltage, but it is not limited to this and may be made to 3000V or 5000V, and the voltage of the water tree current is In order to facilitate detection and diagnosis of insulation deterioration, it is advantageous to increase this voltage.

昇圧器4の一次側コイル4aには、交流電源3が接続さ
れており、二次側コイル4bの一端には接点Aが形成さ
れ、二次側コイル4bの他端は並列の回路8a、8bを
介して接地線9に接続され接点Cに至る。
The AC power supply 3 is connected to the primary coil 4a of the booster 4, a contact A is formed at one end of the secondary coil 4b, and the other end of the secondary coil 4b is connected to parallel circuits 8a and 8b. It is connected to the grounding wire 9 through the contact point C.

そして、二次側コイル4bは、通常、保護装置としての
短絡ヒユーズ7を介して回路8aによりコンデンサ5に
接続され、回路8bは開放されている。
The secondary coil 4b is normally connected to the capacitor 5 by a circuit 8a via a short-circuit fuse 7 as a protection device, and the circuit 8b is open.

短絡ヒユーズ7は、一定以上の電流が流れた場合に、コ
ンデンサ5の設置されている回路8aを開放するととも
に、並列に設置されバイパスとして機能する回路8bを
閉じ、電流を接点Cからアースして検出装置1を損傷か
ら保護するものである。
When a current exceeding a certain level flows, the short circuit fuse 7 opens the circuit 8a in which the capacitor 5 is installed, closes the circuit 8b installed in parallel and functions as a bypass, and grounds the current from the contact C. This protects the detection device 1 from damage.

なお、前記昇圧器4を可変トランスで構成すれば、絶縁
の劣化が始まっていると外観等から予想される被測定ケ
ーブル2に対し、適宜電圧を低く調整することによって
、水トリー電流の測定に伴なって絶縁破壊を発生させる
ことを軽減することが可能である。
If the booster 4 is configured with a variable transformer, the water tree current can be measured by adjusting the voltage to a low level as appropriate for the cable 2 to be measured whose insulation is expected to have begun to deteriorate from its appearance etc. Accordingly, it is possible to reduce the occurrence of dielectric breakdown.

コンデンサ5は、交流的には低インピーダンス(例えば
、50オーム)で、かつ直流的には高抵抗(例えば、1
0〜200メガオーム)のものである。
The capacitor 5 has a low impedance (for example, 50 ohms) for AC and a high resistance for DC (for example, 1
0 to 200 megohms).

フィルムコンデンサには、直流的には高抵抗で、交流が
乗っていても直流抵抗分の変化が小さいもの、例えば1
00mA程度の交流を重畳した状態で直流電圧40ポル
トを印加しても1000メガオ一ム以上の直流抵抗を示
すものがあり、これを用いるのが好ましい。
Film capacitors have high resistance in terms of direct current, and the change in direct current resistance is small even when alternating current is applied, such as 1.
There are some that exhibit a DC resistance of 1000 megaohms or more even when a DC voltage of 40 volts is applied with a superimposed alternating current of about 00 mA, and it is preferable to use these.

前記短絡ヒユーズ7とコンデンサ5との間から測定回路
10が分岐され、この測定回路10には、検出器6と抵
抗器11とが直列に接続されており、この測定回路10
の他端は遮へい鋼テープ2bから引き出された接地線2
c上の接点Bに接続されている。
A measuring circuit 10 is branched from between the short-circuit fuse 7 and the capacitor 5, and a detector 6 and a resistor 11 are connected in series to this measuring circuit 10.
The other end is a grounding wire 2 drawn out from the shielding steel tape 2b.
It is connected to contact B on c.

検出器6は、例えばnAオーダーの微小な電流を高精度
に測定することのできる電流計であって、直流成分電流
のみを直流フィルタにより抽出測定するものである。
The detector 6 is an ammeter that can measure a minute current of nA order with high precision, for example, and extracts and measures only the DC component current using a DC filter.

そして、この検出器6には記録計等の表示器12が接続
され、検出した電流値は記録計等の表示器12に表示さ
れるようになっている。
A display 12 such as a recorder is connected to this detector 6, and the detected current value is displayed on the display 12 such as a recorder.

抵抗器11は、例えば10キロオームないし1メガオ一
ム程度の高抵抗のもので、これを設置することによって
交流電流がほとんど前記コンデンサ5側を経てアースさ
れ、検出器6への影響はない。
The resistor 11 has a high resistance of, for example, 10 kilohms to 1 megaohm, and by installing this resistor 11, most of the alternating current is grounded through the capacitor 5 side, so that the detector 6 is not affected.

なお、検出器6はこの発明でいう水トリー電流検出部に
該当し、抵抗器11は交流電流制限手段に該当するもの
である。
Note that the detector 6 corresponds to a water tree current detecting section in the present invention, and the resistor 11 corresponds to an alternating current limiting means.

この実施例においては、このように検出器6の前段に直
列に交流充電電流を制限する抵抗器11を設置したが、
交流電流制限手段としては第2図に示すように構成する
こともできる。
In this embodiment, a resistor 11 is installed in series upstream of the detector 6 to limit the AC charging current.
The alternating current limiting means may also be constructed as shown in FIG.

すなわち、第2図に示す交流電流制限手段は、検出器6
に通常設置されているバイパス用コンデンサ6aと直列
に開閉スイッチ6bを設け、この開閉スイッチ6bを開
放することによってバイパス用コンデンサ6aの作用を
排除するものであり、第2図中、6cは検出器6の内部
抵抗を示す。
That is, the alternating current limiting means shown in FIG.
An opening/closing switch 6b is provided in series with the bypass capacitor 6a which is normally installed in the detector, and by opening the opening/closing switch 6b, the action of the bypass capacitor 6a is eliminated. In FIG. 2, 6c is the detector. 6 shows the internal resistance.

次に、第1図に示す検出装置1の作動を説明する。Next, the operation of the detection device 1 shown in FIG. 1 will be explained.

交流電源3から昇圧器4の一次コイル4aに電流が供給
されることに伴なって、二次コイル4bには、安定した
高圧の交流が発生し、接点Aを経て被測定ケーブル2の
導体2aに流れる。
As current is supplied from the AC power supply 3 to the primary coil 4a of the booster 4, a stable high-voltage AC is generated in the secondary coil 4b, which flows through the contact A to the conductor 2a of the cable under test 2. flows to

このように、被測定ケーブル2の導体2aに高圧の交流
が流れることによって、活線から切断されて停電状態に
なっていた被測定ケーブル2は、前記昇圧器4で設定さ
れ、安定した通電状態となり、配電線等として使用して
いる場合と同様に交流電流や迷走電流および水トリー電
流が発生する。
In this way, the cable to be measured 2, which had been disconnected from the live line and was in a power outage state due to the high-voltage alternating current flowing through the conductor 2a of the cable to be measured 2, is now set to a stable energized state by the booster 4. As a result, alternating current, stray current, and water tree current are generated, similar to when the line is used as a power distribution line.

まず、交流電流の流れを説明すると、交流電流は接地線
2cと二次側コイル4bとの間で流れるものである。
First, to explain the flow of alternating current, alternating current flows between the grounding wire 2c and the secondary coil 4b.

接地線2cおよび二次側コイル4bはそれぞれが接地さ
れ、これらの間を接続する測定回路10には抵抗器11
が配置されているので、交流電流はコンデンサ5を経て
アースされ前記測定回路10には流れにくい。
The grounding wire 2c and the secondary coil 4b are each grounded, and a resistor 11 is connected to the measuring circuit 10 connecting between them.
is arranged, the alternating current is grounded through the capacitor 5 and is difficult to flow into the measuring circuit 10.

迷走電流の直流成分電流のうち最も問題となるのは、遮
へい鋼テープ2bから引き出された接地線2Cの接地に
よる電池作用で生じる起電力と、検出装置1からの接地
線9の接地による電池作用で生じる起電力である。
Of the DC component currents of the stray current, the most problematic ones are the electromotive force generated by the battery action due to the grounding of the grounding wire 2C drawn out from the shielding steel tape 2b, and the battery action caused by the grounding of the grounding wire 9 from the detection device 1. This is the electromotive force generated by

しかし、接地線9の接地による起電力は、回路8aのコ
ンデンサ5が大きい抵抗値を示すものであり、回路8b
は短絡ヒユーズ7で開放されているので実質的にはほと
んど流れない。
However, the electromotive force due to the grounding of the grounding wire 9 is such that the capacitor 5 of the circuit 8a exhibits a large resistance value, and the electromotive force generated by the grounding of the grounding line 9
is opened by the short-circuit fuse 7, so virtually no current flows.

他方、遮へい銅テープ2bから引き出された接地線2c
の接地による起電力は、接地線2Cかも遮へい鋼テープ
2bを経てシース2dの表面を流れ、ケーブルと大地と
の接触点を通じた回路により流れる。
On the other hand, a grounding wire 2c drawn out from the shielding copper tape 2b
The electromotive force caused by the grounding flows through the surface of the sheath 2d through the grounding wire 2C and the shielding steel tape 2b, and flows through a circuit through the contact point between the cable and the earth.

これに伴ない、接点Bから測定回路10を経てコンデン
サ5側あるいは二次側コイル4bへの回路も形成されて
いるが、これらの回路の抵抗は前記回路と較べて極めて
大きいので実質的にはほとんど流れない。
Along with this, a circuit is also formed from contact B through the measurement circuit 10 to the capacitor 5 side or the secondary coil 4b, but the resistance of these circuits is extremely large compared to the above circuit, so in reality Almost no flow.

すなわち、迷走電流は、接地線2cと遮へい銅テープ2
bおよびシース2dの表面上のみを流れるので、検出器
6による水トリー電流の測定にはほとんど影響を与えな
い。
In other words, stray current flows between the grounding wire 2c and the shielding copper tape 2.
Since it flows only on the surface of the water tree b and the sheath 2d, it hardly affects the measurement of the water tree current by the detector 6.

なお、これらの迷走電流をより以上に低減させるには、
第3図に示すように、接地線9と接地線2cとの間を線
路13で接続するとともに、接地線2cへの線路13の
接続点より接地側に開閉スイッチ14を設けて、これを
開放状態とすればよい。
In addition, in order to further reduce these stray currents,
As shown in FIG. 3, a line 13 connects the grounding line 9 and the grounding line 2c, and an open/close switch 14 is provided on the ground side from the connection point of the line 13 to the grounding line 2c, and is opened/closed. It may be a state.

これによって、接地線9の接地による起電力と接地線2
cの接地による起電力との差に起因する迷走電流の発生
を根本的に防止することが可能である。
As a result, the electromotive force due to the grounding of the grounding wire 9 and the grounding wire 2
It is possible to fundamentally prevent the generation of stray current due to the difference between the electromotive force caused by grounding of c and the electromotive force caused by grounding.

一方、水トリー電流は、遮へい銅テープ2bと導体2a
との間の絶縁層2eに流れるものであるので、接地線2
cと二次側コイル4bとの間で流れるが、直流的に高抵
抗のコンデンサ5が設置されているので、接点Cを経て
アースされず、水トリー電流はすべて測定回路10を経
て流れることになる。
On the other hand, the water tree current flows between the shielding copper tape 2b and the conductor 2a.
Since the current flows through the insulating layer 2e between the grounding wire 2
The water tree current flows between C and the secondary coil 4b, but since a capacitor 5 with high DC resistance is installed, the water tree current is not grounded through contact C, and all water tree current flows through the measurement circuit 10. Become.

したがって、被測定ケーブル2で発生した水トリー電流
は、すべて検出器6によって測定することができ、この
検出器6には前記のように交流電流や迷走電流が流れな
いので、水トリー電流を正確に測定することができる。
Therefore, all of the water tree current generated in the cable 2 to be measured can be measured by the detector 6, and since no alternating current or stray current flows through the detector 6 as described above, the water tree current can be accurately measured. can be measured.

この実施例によれば次のような利点がある。This embodiment has the following advantages.

この水トリー電流電流を測定するに際して、従来のよう
に電気設備であるGPTの接地線を用いず、検出装置l
に交流電源3と昇圧器4とを設け、この昇圧器4の二次
側コイル4bにコンデンサ5を介装して接地するもので
あるので、Cvケーブルの絶縁劣化の診断に際して電気
設備の管理者の許諾を得すとも行なうことができる。
When measuring this water tree current, the detection device l
An AC power source 3 and a voltage booster 4 are installed in the AC power source 3, and a capacitor 5 is interposed in the secondary coil 4b of the voltage booster 4, and the capacitor 5 is connected to the ground. This may be done with the permission of.

また、安定した電源を用いるので、活線状態での測定よ
りノイズ等が少なく、測定精度が良好となる。
Furthermore, since a stable power source is used, there is less noise, etc. than when measuring in a live line state, and the measurement accuracy is improved.

さらに、検出装置1の接点Cをアースすればよいので、
一般に別の位置であるGPTの接地線での測定準備作業
を省略することができ、作業箇所数が少なくなり準備作
業を軽減することができる。
Furthermore, since it is only necessary to ground the contact C of the detection device 1,
In general, the measurement preparation work at the GPT grounding wire, which is a separate location, can be omitted, and the number of work points is reduced, making it possible to reduce the preparation work.

そのうえ、コンデンサ5等を用いて迷走電流を完全にカ
ットできるので、測定精度を良好に維持することができ
、現在多用されている直流漏れ電流法とは原理が異なる
ので、これと本願とを併用することによって格段に信頼
性の向上した絶縁劣化診断が可能となる。
In addition, stray current can be completely cut using capacitor 5, etc., so measurement accuracy can be maintained well.Since the principle is different from the currently widely used DC leakage current method, this method can be used in combination with the present application. This makes it possible to diagnose insulation deterioration with significantly improved reliability.

(発明の効果) この発明は、以上説明したように構成したから、測定装
置を構成する昇圧器の接地線にコンデンサを介装してお
り、電気設備であるGPTの接地線になすべき診断準備
作業を省略することができるので、GPTの管理者に許
諾を求めることが不要であり、診断の準備作業が簡便と
なる。
(Effects of the Invention) Since the present invention is configured as described above, a capacitor is interposed in the grounding wire of the booster that constitutes the measuring device, and the grounding wire of the GPT, which is an electrical equipment, is prepared for diagnosis. Since the work can be omitted, it is not necessary to ask for permission from the GPT administrator, and the preparation work for diagnosis is simplified.

また、測定装置を被測定ケーブルから離間した位置にあ
るGPTの接地線に接続せずに済み、その分作業工数が
減るので、診断準備が簡便となる。
Furthermore, it is not necessary to connect the measuring device to the grounding wire of the GPT located at a position separated from the cable to be measured, and the number of work steps is reduced accordingly, making diagnosis preparation easier.

さらに、測定装置が安定化された交流電源を有するので
、みだりに電圧変動等を生じるおそれが少なく、従来に
比べて水トリー電流を安定して正確に測定することも可
能となる。
Furthermore, since the measuring device has a stabilized AC power source, there is less risk of voltage fluctuations occurring unnecessarily, and it is also possible to measure the water tree current more stably and accurately than in the past.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例の全体構成図、第2図は交流電流制限手
段の変形例の説明図、第3図は迷走電流をさらに防止し
た変形例の説明図である。 電流検出装置、 被測定ケーブル、 a; 導体、 b;遮へい銅テープ、 C;接地線・ 交流電源、 昇圧器、 a;−次側コイル、 b;二次側コイル、 コンデンサ、 水トリー電流検出部 0;測定回路、 1;交流電流制限手段 (検出器)、 (抵抗器)。 第 図
FIG. 1 is an overall configuration diagram of the embodiment, FIG. 2 is an explanatory diagram of a modified example of the alternating current limiting means, and FIG. 3 is an explanatory diagram of a modified example that further prevents stray current. Current detection device, cable to be measured, a; conductor, b; shielding copper tape, C; grounding wire/AC power supply, booster, a; - secondary coil, b; secondary coil, capacitor, water tree current detection section 0: Measuring circuit, 1: AC current limiting means (detector), (resistor). Diagram

Claims (2)

【特許請求の範囲】[Claims] (1)停電状態とした被測定ケーブルの遮へい銅テープ
から引き出された接地線と、該被測定ケーブルの導体と
の間に接続される電流検出装置であって、 該電流検出装置に、安定化された交流電源と昇圧器とを
設けて、昇圧器の一次側コイルには前記交流電源を接続
し、二次側コイルの一端を前記被測定ケーブルの導体に
接続するとともに他端はコンデンサを介して接地させ、
さらに、前記コンデンサと前記昇圧器との間を前記遮へ
い銅テープから延びる接地線に接続する回路を設け、こ
の回路には交流電流制限手段と水トリー電流検出部とを
設けたことを特徴とするCVケーブルの水トリー電流検
出装置。
(1) A current detection device connected between the grounding wire drawn out from the shielding copper tape of the cable under test in a power outage state and the conductor of the cable under test, wherein the current detection device includes a stabilizing device. An AC power source and a booster are provided, the AC power source is connected to the primary coil of the booster, one end of the secondary coil is connected to the conductor of the cable under test, and the other end is connected via a capacitor. and ground it.
Furthermore, a circuit is provided for connecting the capacitor and the booster to a grounding wire extending from the shielding copper tape, and this circuit is provided with an alternating current limiting means and a water tree current detecting section. CV cable water tree current detection device.
(2)請求項1記載の水トリー電流検出装置において、 前記遮へい銅テープから引き出された接地線と前記昇圧
器の二次側コイルにコンデンサを介して接続された接地
線との間を線路で接続し、さらに、遮へい銅テープから
引き出された接地線の前記線路との接続点より接地側を
開放したことを特徴とするCVケーブルの水トリー電流
検出装置。
(2) In the water tree current detection device according to claim 1, a line is provided between the grounding wire drawn out from the shielding copper tape and the grounding wire connected to the secondary coil of the booster via a capacitor. A water tree current detection device for a CV cable, characterized in that the grounding side of a grounding wire drawn out from a shielding copper tape is opened from the connection point with the line.
JP25128489A 1989-09-26 1989-09-26 Water tree current detector for CV cable Expired - Fee Related JPH0619415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25128489A JPH0619415B2 (en) 1989-09-26 1989-09-26 Water tree current detector for CV cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25128489A JPH0619415B2 (en) 1989-09-26 1989-09-26 Water tree current detector for CV cable

Publications (2)

Publication Number Publication Date
JPH03111775A true JPH03111775A (en) 1991-05-13
JPH0619415B2 JPH0619415B2 (en) 1994-03-16

Family

ID=17220515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25128489A Expired - Fee Related JPH0619415B2 (en) 1989-09-26 1989-09-26 Water tree current detector for CV cable

Country Status (1)

Country Link
JP (1) JPH0619415B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100315752A1 (en) * 2009-06-15 2010-12-16 Stanley Rabu Thermal protection circuits and structures for electronic devices and cables
US8498087B2 (en) 2009-11-03 2013-07-30 Apple Inc. Thermal protection circuits for electronic device cables
CN111751746A (en) * 2020-06-30 2020-10-09 上海瓶安新能源科技有限公司 Battery pack insulation real-time monitoring circuit with self-checking function and method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100315752A1 (en) * 2009-06-15 2010-12-16 Stanley Rabu Thermal protection circuits and structures for electronic devices and cables
US8339760B2 (en) * 2009-06-15 2012-12-25 Apple Inc. Thermal protection circuits and structures for electronic devices and cables
US8498087B2 (en) 2009-11-03 2013-07-30 Apple Inc. Thermal protection circuits for electronic device cables
CN111751746A (en) * 2020-06-30 2020-10-09 上海瓶安新能源科技有限公司 Battery pack insulation real-time monitoring circuit with self-checking function and method thereof
CN111751746B (en) * 2020-06-30 2023-06-02 江苏瓶安新能源科技有限公司 Battery pack insulation real-time monitoring circuit with self-checking function and method thereof

Also Published As

Publication number Publication date
JPH0619415B2 (en) 1994-03-16

Similar Documents

Publication Publication Date Title
EP2588871B1 (en) Apparatus and method for measuring the dissipation factor of an insulator
JPS61243375A (en) Deterioration diagnosis for insulator of power cable
JP2020528141A (en) Methods and test equipment for measuring partial discharge impulses in shielded cables
JPH03206976A (en) Diagnosis of insulation
JPH03111775A (en) Water-tree-current detecting apparatus for cv cable
JP2876322B2 (en) Diagnosis method for insulation deterioration of CV cable
EP2588872B1 (en) Apparatus and method for measuring the dissipation factor of an insulator
JP3010367B2 (en) Insulation resistance measurement method of cable sheath under hot wire
Tatizawa et al. Analysis and location of partial discharges in power transformers by means of electrical methods
JP3308197B2 (en) Cable deterioration diagnosis method
JPS629277A (en) Diagnostic method for cable insulation under hotline
JPS63281073A (en) Detecting method for water tree current of cv cable
JP2001083203A (en) Method and apparatus for checking disconnection of hot- line deterioration diagnosing device
JPH0627766B2 (en) CV cable insulation deterioration diagnosis device
JP2750888B2 (en) Power cable insulation resistance measurement method
JP2001183412A (en) Insulation degradation diagnosing method for power cable
JP2612367B2 (en) Diagnosis method for insulation deterioration of power cable
JP3010371B2 (en) Diagnosis method for cable insulation deterioration
JP2802651B2 (en) Hot wire insulation resistance measurement method
JP2002214273A (en) Breaking inspection circuit for high voltage cable shielding copper tape
JPH03102268A (en) Diagnostic method of deterioration of insulation of power cable
JPS5856116B2 (en) Method for locating defective points of corrosion protection layer insulation under live wires
JP2000009788A (en) Deterioration diagnosis method of cables
JP2568346Y2 (en) Cable loss tangent measurement device
JPH05133995A (en) Method for diagnosing insulation deterioration of power cable

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees