JP2017026491A - Deterioration diagnosis method of of cable - Google Patents

Deterioration diagnosis method of of cable Download PDF

Info

Publication number
JP2017026491A
JP2017026491A JP2015145908A JP2015145908A JP2017026491A JP 2017026491 A JP2017026491 A JP 2017026491A JP 2015145908 A JP2015145908 A JP 2015145908A JP 2015145908 A JP2015145908 A JP 2015145908A JP 2017026491 A JP2017026491 A JP 2017026491A
Authority
JP
Japan
Prior art keywords
cable
voltage
residual charge
deterioration diagnosis
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015145908A
Other languages
Japanese (ja)
Inventor
中出 雅彦
Masahiko Nakade
雅彦 中出
健郎 松井
Takeo Matsui
健郎 松井
二郎 川井
Jiro Kawai
二郎 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Holdings Inc
SWCC Corp
Original Assignee
SWCC Showa Cable Systems Co Ltd
Tokyo Electric Power Co Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SWCC Showa Cable Systems Co Ltd, Tokyo Electric Power Co Holdings Inc filed Critical SWCC Showa Cable Systems Co Ltd
Priority to JP2015145908A priority Critical patent/JP2017026491A/en
Publication of JP2017026491A publication Critical patent/JP2017026491A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Relating To Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the deterioration diagnosis method of an OF cable capable of performing deterioration diagnosis simply and more certainly.SOLUTION: The deterioration diagnosis method of an OF cable includes: a first process in which an AC voltage is applied to an OF cable; a second process in which a DC voltage is applied to the OF cable subjected to the AC voltage and the cable is grounded; and a third process in which after the grounding, an AC voltage is applied to the OF cable to make it discharge residual electric charges, the residual electric charges are measured as the residual electric charges after application of the DC voltage, and deterioration of the OF cable is diagnosed based on the measured residual electric charges after application of the DC voltage.SELECTED DRAWING: Figure 2

Description

本発明は、OFケーブル(油浸紙絶縁ケーブル:Oil filled Cable)の劣化診断方法に関する。   The present invention relates to a deterioration diagnosis method for an OF cable (oil-filled cable).

従来、電力ケーブルとしてのOFケーブル線路では、内部放電等により絶縁油中にアセチレンガス等の可燃性ガスが含まれるようになると、絶縁性能が低下して、絶縁破壊事故の危険性が高まる。このため、OFケーブルをジョイント部で接続して構成されるOFケーブル線路では、ジョイント部分若しくは終端部分からOFケーブル線路内の絶縁油を定期的あるいは必要時に採油して分析し、絶縁油中に含まれる可燃性ガスの量に基づいて、OFケーブル線路の劣化診断が行われている(例えば特許文献1参照)。   Conventionally, in an OF cable line as a power cable, if flammable gas such as acetylene gas is contained in insulating oil due to internal discharge or the like, the insulation performance is lowered and the risk of dielectric breakdown accident is increased. For this reason, in an OF cable line configured by connecting OF cables at the joint, the insulating oil in the OF cable line is collected from the joint part or the terminal part periodically or when necessary, and is included in the insulating oil. The deterioration diagnosis of the OF cable line is performed based on the amount of combustible gas generated (see, for example, Patent Document 1).

また、電力ケーブルとしてのCVケーブル(架橋ポリエチレン絶縁電力ケーブル:Cross-linked polyethylene insulated polyvinyl-chloride sheathed cable)線路では、湿潤下で長期に亘って交流電圧が課電されると、絶縁体中に水トリーが発生し、水トリーが絶縁性能を低下させる要因であることが知られている。この水トリー劣化を診断する絶縁測定技術については、従来から多くの方法が提案されており、水トリー劣化程度や破壊電圧との相関性が高いことから残留電荷測定が知られている(例えば、特許文献2参照)。   In addition, in a CV cable (Cross-linked polyethylene insulated polyvinyl-chloride sheathed cable) line as a power cable, when AC voltage is applied for a long time under wet conditions, It is known that trees are generated, and that water trees are a factor in reducing insulation performance. For insulation measurement technology for diagnosing water tree degradation, many methods have been proposed in the past, and residual charge measurement is known because of its high correlation with the degree of water tree degradation and breakdown voltage (for example, Patent Document 2).

この残留電荷測定は、まず、最初に試料ケーブルに直流課電を行い、その後に接地して直流印加電圧を除去し、更にその後に交流電圧を印加して、この交流電圧の課電時に、試料ケーブルの絶縁体に流れる電流の中から直流電荷成分(残留電荷)のみを検出する。これにより生じた電流信号を劣化信号として積分することで残留電荷量を計算する。   In this residual charge measurement, first, a DC power is applied to the sample cable, then grounded to remove the DC applied voltage, and then an AC voltage is applied. Only the DC charge component (residual charge) is detected from the current flowing through the cable insulation. The residual charge amount is calculated by integrating the generated current signal as a deterioration signal.

特開平5−252632号公報JP-A-5-252632 特開平11−148959号公報Japanese Patent Laid-Open No. 11-148959

ところで、従来のOFケーブル線路の劣化診断では、OFケーブルを接続するジョイント部の採油用コネクタを介して採油した絶縁油を分析して行っている。このため、OFケーブル線路において可燃性ガスが発生していても、可燃性ガスが採油コネクタ付近まで拡散してこない限り、採取した絶縁油から可燃性ガスを検出することができない。すなわち、ジョイント部における採油コネクタ近傍の内部放電は確認できるものの、採油したジョイント部から離れたところで内部放電が発生している場合、採油した絶縁油中に可燃性ガスを検出できずに、正常と誤診される虞がある。   By the way, in the deterioration diagnosis of the conventional OF cable line, the insulation oil collected through the oil collection connector of the joint part connecting the OF cable is analyzed. For this reason, even if the combustible gas is generated in the OF cable line, the combustible gas cannot be detected from the collected insulating oil unless the combustible gas diffuses to the vicinity of the oil collecting connector. That is, although internal discharge in the vicinity of the oil collecting connector at the joint can be confirmed, but internal discharge has occurred away from the joint where the oil has been collected, flammable gas cannot be detected in the collected insulating oil and normal There is a risk of misdiagnosis.

よって、より正確な劣化診断を行うためには、全てのジョイント部から採油する必要があり、手間がかかるという問題がある上に、必ずしも検出できる訳ではない。   Therefore, in order to perform a more accurate deterioration diagnosis, it is necessary to collect oil from all the joint portions, which takes time and is not necessarily detectable.

ここで、OFケーブルとは種類の異なる電力ケーブルとしてのCVケーブルの劣化診断方法として、上述した残留電荷測定も検討されるが、そもそも残留電荷測定は、CVケーブルで発生する水トリーの劣化を診断するために行うものである。したがって、絶縁油で浸される絶縁体を備えた水トリーが発生しない構造のOFケーブルに対して適用しにくく、適用する発想すらなかった。   Here, as the method for diagnosing the deterioration of the CV cable as a power cable different from the OF cable, the above-described residual charge measurement is also considered. In the first place, the residual charge measurement is used to diagnose deterioration of the water tree generated in the CV cable. To do. Therefore, it was difficult to apply to an OF cable having a structure in which a water tree provided with an insulator immersed in insulating oil is not generated, and there was no idea to apply.

本発明はかかる点に鑑みてなされたものであり、簡単に、より確実に劣化診断を行うことができるOFケーブルの劣化診断方法を提供することを目的とする。   This invention is made | formed in view of this point, and it aims at providing the degradation diagnostic method of OF cable which can perform a degradation diagnosis simply and more reliably.

本発明のOFケーブルの劣化診断方法の一つの態様は、OFケーブルに対して交流電圧を課電する第1工程と、交流電圧が課電された前記OFケーブルに対して直流電圧を課電して接地する第2工程と、その接地後に前記OFケーブルに交流電圧を課電して、残留電荷を放出させて前記直流電圧課電後の残留電荷として測定し、測定した前記直流電圧課電後の残留電荷に基づいて前記OFケーブルの劣化を診断する第3工程と、を有するようにした。   One aspect of the deterioration diagnosis method for an OF cable according to the present invention includes a first step of applying an AC voltage to the OF cable, and applying a DC voltage to the OF cable to which the AC voltage is applied. A second step of grounding, and applying an AC voltage to the OF cable after the grounding, releasing the residual charge and measuring the residual charge after the DC voltage application, and measuring the DC voltage after the measurement And a third step of diagnosing the deterioration of the OF cable based on the residual charge.

本発明によれば、簡単に、より確実にOFケーブルの劣化診断を行うことができる。   According to the present invention, the deterioration diagnosis of the OF cable can be performed easily and more reliably.

本発明を実施するための測定回路の一例を示す図The figure which shows an example of the measurement circuit for implementing this invention 本発明の一実施の形態に係るOFケーブルの劣化診断方法の説明に供する図The figure which uses for description of the degradation diagnosis method of OF cable which concerns on one embodiment of this invention OFケーブルに対して直流電圧を課電する前の交流電圧課電において放出される残留電荷、課電時間及び課電電圧の関係を示す図The figure which shows the relationship between the residual electric charge discharged | emitted in the alternating voltage application before applying a direct voltage with respect to OF cable, an applied time, and an applied voltage OFケーブルに対して直流電圧を課電した後の交流電圧課電において放出される残留電荷、課電時間及び課電電圧の関係を示す図The figure which shows the relationship of the residual electric charge discharge | released in the alternating voltage application after applying a direct voltage with respect to OF cable, an applied time, and an applied voltage OFケーブルに対して直流電圧を課電した後の交流電圧課電において放出される残留電荷、課電時間及び課電電圧の関係を示す図The figure which shows the relationship of the residual electric charge discharge | released in the alternating voltage application after applying a direct voltage with respect to OF cable, an applied time, and an applied voltage 図5におけるX1部分を示す図The figure which shows the X1 part in FIG.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本実施の形態で、劣化診断対象となるOFケーブルは、地中において、所定長のOFケーブルを直列接続して中間接続部を設け、両端に機器などが接続される終端接続部を設けたOFケーブル線路を含む。OFケーブルは、中心から順に、油通路、ケーブル導体、油浸紙が巻回されることにより形成するケーブル絶縁層、金属シース、防食層等を有する。   In the present embodiment, the OF cable to be subjected to deterioration diagnosis is an OF cable in which a predetermined length of OF cable is connected in series in the ground to provide an intermediate connection portion, and end connection portions to which devices and the like are connected at both ends. Includes cable tracks. The OF cable has, in order from the center, an oil passage, a cable conductor, a cable insulation layer, a metal sheath, an anticorrosion layer, and the like formed by winding oil-impregnated paper.

図1は、本発明を実施するための測定回路の一例を示す図であり、測定回路としての劣化診断装置の構成を示す図である。図1において、劣化診断装置100は、直流電源11と、接地抵抗12と、交流電源13と、切換スイッチ14と、短絡スイッチ15と、検出用コンデンサ16と、課電制御部17と、直流電圧検出部18と、を有する。なお、この劣化診断装置100の測定対象であるOFケーブル1は、ケーブル導体に巻回した油浸紙をケーブル絶縁層として構成されたOFケーブルと同様の構成の供試ケーブルを用いる。   FIG. 1 is a diagram illustrating an example of a measurement circuit for carrying out the present invention, and is a diagram illustrating a configuration of a deterioration diagnosis apparatus as a measurement circuit. In FIG. 1, a degradation diagnosis apparatus 100 includes a DC power supply 11, a grounding resistor 12, an AC power supply 13, a changeover switch 14, a short-circuit switch 15, a detection capacitor 16, a power application control unit 17, a DC voltage. And a detection unit 18. In addition, the OF cable 1 which is a measurement target of the deterioration diagnosis apparatus 100 uses a test cable having the same configuration as the OF cable configured by using oil-impregnated paper wound around a cable conductor as a cable insulating layer.

直流電源11は、負極側(高電圧側)が切換スイッチ14の接点14aに接続されており、直流電圧Vdcを出力する。この場合、直流電源11の直流電圧Vdcは負極性としたが、正極性であっても何等問題ない。接地抵抗12は、一端部が接地され、他端部が切換スイッチ14の接点14bに接続されている。交流電源13は、低圧部(図示せず)が接地され、高圧部(図示せず)が切換スイッチ14の接点14cに接続され、交流電圧Vacを出力する。   The DC power supply 11 has a negative electrode side (high voltage side) connected to the contact 14a of the changeover switch 14 and outputs a DC voltage Vdc. In this case, the DC voltage Vdc of the DC power supply 11 is negative, but there is no problem even if it is positive. One end of the ground resistor 12 is grounded, and the other end is connected to the contact 14 b of the changeover switch 14. The AC power supply 13 has a low voltage part (not shown) grounded, and a high voltage part (not shown) connected to the contact 14 c of the changeover switch 14 to output an AC voltage Vac.

切換スイッチ14は、3つの接点14a〜14cと、可動切片14dから構成され、可動切片14dの下流側は測定対象ケーブルとしてのOFケーブル1の一端部(ケーブル導体の一端部)1aに接続されている。切換スイッチ14は、OFケーブル1に直流電圧Vdcを課電する際には、可動切片14dを接点14aに接続し、OFケーブル1を接地する際には、可動切片14dを接点14bに接続し、OFケーブル1に交流電圧Vacを課電する際には、可動切片14dを接点14cに接続する。したがって、切換スイッチ14は、可動切片14dを切り換えることにより、OFケーブル1の一端部1aに対して、直流電圧Vdcの課電、接地及び、交流電圧Vacの課電を行うことが可能である。なお、切替スイッチ14における切り替え動作は、課電制御部17により制御されるようにしてもよい。その場合、課電制御部17は、直流電源11を制御して、OFケーブル1への直流電圧の課電を自在に行うことができる。   The changeover switch 14 includes three contact points 14a to 14c and a movable piece 14d. The downstream side of the movable piece 14d is connected to one end portion (one end portion of the cable conductor) 1a of the OF cable 1 as a measurement target cable. Yes. The changeover switch 14 connects the movable segment 14d to the contact 14a when applying the DC voltage Vdc to the OF cable 1, and connects the movable segment 14d to the contact 14b when grounding the OF cable 1. When the AC voltage Vac is applied to the OF cable 1, the movable piece 14d is connected to the contact 14c. Therefore, the changeover switch 14 can charge the DC voltage Vdc, ground, and apply the AC voltage Vac to the one end 1a of the OF cable 1 by switching the movable piece 14d. Note that the switching operation of the changeover switch 14 may be controlled by the power application control unit 17. In that case, the power application control unit 17 can control the DC power supply 11 to freely apply a DC voltage to the OF cable 1.

短絡スイッチ15は、一端部が接地され、他端部がOFケーブル1の遮蔽層(金属シース)1bと検出用コンデンサ16との接続部に接続されている。短絡スイッチ15は、その接点を閉じることにより検出用コンデンサ16を短絡する。   One end of the short-circuit switch 15 is grounded, and the other end is connected to a connection portion between the shielding layer (metal sheath) 1 b of the OF cable 1 and the detection capacitor 16. The short-circuit switch 15 short-circuits the detection capacitor 16 by closing the contact.

検出用コンデンサ16は、一端部がOFケーブル1の遮蔽層(金属シース)1bに接続され、他端部が接地されている。   One end of the detection capacitor 16 is connected to the shielding layer (metal sheath) 1b of the OF cable 1, and the other end is grounded.

課電制御部17は、OFケーブル1に対して交流電源13から交流課電を行う際に、その交流電源13から出力する交流電圧の昇降圧時間とピーク値、及び課電間隔を制御する。直流電圧検出部(直流電圧計)18は、OFケーブル1に対して交流課電を行う際に、検出用コンデンサ16に生ずる直流電圧を検出する。すなわち、交流課電時にOFケーブル1から放出される電荷を検出用コンデンサ16(容量Cd)で検出し、その両端に現れる電圧Vsを直流電圧検出部18が測定する。   When the AC power is applied from the AC power supply 13 to the OF cable 1, the power application control unit 17 controls the step-up / down time and peak value of the AC voltage output from the AC power supply 13 and the power application interval. The DC voltage detector (DC voltmeter) 18 detects a DC voltage generated in the detection capacitor 16 when AC power is applied to the OF cable 1. That is, the charge discharged from the OF cable 1 during AC power application is detected by the detection capacitor 16 (capacitance Cd), and the DC voltage detection unit 18 measures the voltage Vs appearing at both ends thereof.

図2は、本発明に係る一実施の形態のOFケーブルの劣化診断方法の説明に供する図である。図2では、OFケーブルに対して課電する電圧の種類の順番を示す。   FIG. 2 is a diagram for explaining an OF cable deterioration diagnosis method according to an embodiment of the present invention. FIG. 2 shows the order of the types of voltages applied to the OF cables.

本実施の形態では、例えば、図1の劣化診断装置100を用いることによって、測定対象ケーブルであるOFケーブル1の劣化診断を行う。   In the present embodiment, for example, the deterioration diagnosis of the OF cable 1 that is the measurement target cable is performed by using the deterioration diagnosis apparatus 100 of FIG.

OFケーブル1に対して、まず、短時間で交流電圧を課電(第1工程)した後で、直流電圧を課電して、接地する(第2工程)。その接地後に再び交流電圧を課電し、その交流電圧の課電時に測定する残留電荷に基づいてOFケーブルの劣化診断を行う(第3工程)。図2では、交流電圧の課電は、零から所定値まで、短時間で昇圧した後、電圧を保持せずに直ちに零まで降下させるといった短時間の交流電圧の印加であり、その回数や課電時間、複数回行う際の間隔は任意である。図2に示す第1工程における交流電圧の課電、すなわち、直流電圧課電前の交流電圧課電は、所定間隔(例えば2分)で3回繰り返す場合を示している。また、直流電圧課電時間、接地時間は、任意の時間(例えば、直流課電時間7分、接地時間10分)である。なお、交流電圧の大きさ(実効値)と直流電圧の大きさは、略同じ(例えば6kVrms)である。   First, an AC voltage is applied to the OF cable 1 in a short time (first step), and then a DC voltage is applied and grounded (second step). An AC voltage is applied again after the grounding, and the deterioration diagnosis of the OF cable is performed based on the residual charge measured when the AC voltage is applied (third step). In FIG. 2, the AC voltage is applied by applying a short-time AC voltage that is boosted from zero to a predetermined value in a short time and then immediately dropped to zero without holding the voltage. The power transmission time and the interval for performing a plurality of times are arbitrary. FIG. 2 shows a case where AC voltage application in the first step, that is, AC voltage application before DC voltage application is repeated three times at a predetermined interval (for example, 2 minutes). Further, the DC voltage application time and the grounding time are arbitrary times (for example, DC application time 7 minutes, grounding time 10 minutes). Note that the magnitude of the AC voltage (effective value) and the magnitude of the DC voltage are substantially the same (for example, 6 kVrms).

このような残留電荷を用いた劣化診断を行うにあたり、2つの測定手順が挙げられる。   In performing the deterioration diagnosis using such residual charges, there are two measurement procedures.

以下では、劣化診断装置100を用いて、2つの測定手順について説明する。   Below, two measurement procedures are demonstrated using the degradation diagnostic apparatus 100. FIG.

<測定手順1>
図1の劣化診断装置100におけるOFケーブル1の測定手順1について説明する。
<Measurement procedure 1>
A measurement procedure 1 of the OF cable 1 in the deterioration diagnosis apparatus 100 of FIG. 1 will be described.

まず、短絡スイッチ15を開放状態とし、切換スイッチ14の可動切片14dを接点14cに接続し(図1に示す状態)、交流電源13の交流電圧VacをOFケーブル1の一端部1aに課電する。この時に、OFケーブル1の絶縁体(図示省略)から放電される電荷を、検出用コンデンサ16の端子間直流電圧Vsとして直流電圧検出部18で検出することにより、OFケーブル1(具体的にはOFケーブルの絶縁体)内に拘束された残留電荷量Qを測定する(測定工程)。ここでは、短時間で交流電圧課電(例えば、Vac=6kVrms)を所定間隔(例えば、2分)で所定回数(3回)繰り返す。こうして測定した残留電荷の一例を図3に示す。図3は、OFケーブル1に対して直流電圧を課電する前の交流電圧課電において放出される残留電荷(nC)、課電時間(分)及び課電電圧(kV)の関係を示す。残留電荷(nC)は、直流電圧検出部18で検出した残留電荷であり、グラフG1は、交流電圧課電時の課電電圧(kV)を示し、グラフG2は、直流電圧検出部18で検出される残留電荷量を示す。ここでは、3回目の課電直後の残留電荷量をQとする。 First, the short-circuit switch 15 is opened, the movable piece 14d of the changeover switch 14 is connected to the contact 14c (the state shown in FIG. 1), and the AC voltage Vac of the AC power supply 13 is applied to one end 1a of the OF cable 1. . At this time, the electric charge discharged from the insulator (not shown) of the OF cable 1 is detected by the DC voltage detection unit 18 as the DC voltage Vs between the terminals of the detection capacitor 16, so that the OF cable 1 (specifically, The residual charge amount Q 1 confined in the insulator of the OF cable is measured (measurement process). Here, AC voltage application (for example, Vac = 6 kVrms) is repeated a predetermined number of times (for example, 2 minutes) in a short time. An example of the residual charge thus measured is shown in FIG. FIG. 3 shows the relationship between the residual charge (nC), the applied time (minutes), and the applied voltage (kV) released in the AC voltage application before applying the DC voltage to the OF cable 1. The residual charge (nC) is the residual charge detected by the DC voltage detection unit 18, the graph G 1 indicates the applied voltage (kV) when the AC voltage is applied, and the graph G 2 is detected by the DC voltage detection unit 18. The amount of residual charge to be generated is shown. Here, the residual charge amount immediately after voltage application of third and Q 1.

次いで、短絡スイッチ15を短絡状態とし、切換スイッチ14の可動切片14dを接点14cから接点14aに切り替えて、直流電源11の直流電圧VdcをOFケーブル1の一端部1aに課電する。この直流電圧Vdcの課電時間は、例えば7分とする。   Next, the short-circuit switch 15 is brought into a short-circuit state, the movable piece 14 d of the changeover switch 14 is switched from the contact point 14 c to the contact point 14 a, and the DC voltage Vdc of the DC power supply 11 is applied to the one end 1 a of the OF cable 1. For example, the DC voltage Vdc is applied for 7 minutes.

次いで、短絡スイッチ15の短絡状態を維持しつつ、切換スイッチ14の可動切片14dを接点14aから接点14bに切り換えて、OFケーブル1の一端部1aを所定時間(例えば10分間)接地する。   Next, while maintaining the short-circuit state of the short-circuit switch 15, the movable piece 14d of the changeover switch 14 is switched from the contact 14a to the contact 14b, and the one end 1a of the OF cable 1 is grounded for a predetermined time (for example, 10 minutes).

次いで、短絡スイッチ15を開放状態とし、切換スイッチ14の可動切片14dを接点14bから接点14cに切り換えて、再び、交流電源13の交流電圧VacをOFケーブル1の一端部1aに課電する。この時に、OFケーブル1の絶縁体から放電される電荷を、検出用コンデンサ16の端子間直流電圧Vsとして直流電圧検出部18で検出する。これにより、OFケーブル1(具体的にはOFケーブルの絶縁体)内に拘束された残留電荷量Qを測定する。ここでは、短時間での交流電圧課電(例えば、Vac=6kVrms)を所定間隔(例えば、2分)で所定回数(3回)繰り返す。こうして測定した残留電荷の一例を図4に示す。図4は、OFケーブル1に対して直流電圧を課電した後の交流電圧課電において放出される残留電荷(nC)、課電時間(分)及び課電電圧(kV)の関係を示す。なお、残留電荷(nC)は、直流電圧検出部18で検出した残留電荷であり、グラフG3は、交流課電時の電圧(kV)を示し、グラフG4は、直流電圧検出部18で検出される残留電荷量を示す。ここでは、3回目の課電直後の残留電荷量をQとする。 Next, the shorting switch 15 is opened, the movable piece 14d of the changeover switch 14 is switched from the contact point 14b to the contact point 14c, and the AC voltage Vac of the AC power source 13 is again applied to the one end 1a of the OF cable 1. At this time, the electric charge discharged from the insulator of the OF cable 1 is detected by the DC voltage detection unit 18 as the DC voltage Vs between the terminals of the detection capacitor 16. Accordingly, OF (specifically OF cable insulation) Cable 1 to measure the residual charge amount Q 2 to which is constrained within. Here, alternating voltage application (for example, Vac = 6 kVrms) in a short time is repeated a predetermined number of times (3 times) at a predetermined interval (for example, 2 minutes). An example of the residual charge measured in this way is shown in FIG. FIG. 4 shows the relationship between the residual charge (nC), the applied time (minutes), and the applied voltage (kV) released in the AC voltage application after applying a DC voltage to the OF cable 1. The residual charge (nC) is the residual charge detected by the DC voltage detection unit 18, the graph G3 indicates the voltage (kV) at the time of AC charging, and the graph G4 is detected by the DC voltage detection unit 18. The residual charge amount is shown. Here, the residual charge amount immediately after voltage application of third and Q 2.

測定手順1では、直流電圧課電の前後の交流電圧課電時におけるOFケーブル1から放出される残留電荷を測定し、測定した残留電荷量Q、Qの差により劣化診断を行う。
ここでは、測定対象となるOFケーブル1として、銅を100ppm含有した劣化OFシートを有する供試ケーブルを想定した試料を、個体差も考慮して複数作成した。作成した複数の試料のうち、OFケーブルの実使用状態を模擬した課電(例えば、Vac=6kVrms)を行わない未劣化試料1と、実使用電界での連続課電を想定して劣化診断前に課電(例えば、75日)した試料2、3とした。これらの試料1〜3に測定手順1で劣化診断した結果を表1で示す。

Figure 2017026491
In the measurement procedure 1, the residual charge released from the OF cable 1 at the time of AC voltage application before and after DC voltage application is measured, and deterioration diagnosis is performed based on the difference between the measured residual charge amounts Q 1 and Q 2 .
Here, a plurality of samples assuming a test cable having a deteriorated OF sheet containing 100 ppm of copper as the OF cable 1 to be measured was created in consideration of individual differences. Among the prepared samples, an undegraded sample 1 that does not perform power application (for example, Vac = 6 kVrms) that simulates the actual use state of the OF cable, and before deterioration diagnosis assuming continuous power application in the actual use electric field. Samples 2 and 3 were charged (for example, 75 days). Table 1 shows the results of diagnosing deterioration of these samples 1 to 3 by measurement procedure 1.
Figure 2017026491

これら試料1〜3を比較して判るように、未劣化の試料1に対して、使用中のOFケーブルを想定した試料2、3では、残留電荷量Q、Qの差(Q−Q)が大きく(2倍以上)なっている。これにより、OFケーブル中に形成される劣化部が通常電界での連続課電によってより大きくなることに起因して、直流電圧課電の前と後での交流課電時において測定される残留電荷の差は大きくなると考えられる。
この結果、残留電荷量Q、Qの差(Q−Q)を算出し、この差が大きい程、OFケーブルにおける劣化、具体的には絶縁層の劣化が大きいとみなす劣化診断をおこなうことができる。これにより、採油して劣化診断を行う方法と比較して、より簡単に、より確実にOFケーブル全体の劣化診断を行うことができる。
As can be seen by comparing these samples 1 to 3, the difference between the residual charge amounts Q 1 and Q 2 (Q 1 − Q 2 ) is large (twice or more). As a result, the residual charge that is measured before and after the DC voltage application and at the time of the AC application due to the deterioration portion formed in the OF cable becoming larger due to the continuous application of the normal electric field. The difference is considered to increase.
As a result, a difference diagnosis (Q 1 -Q 2 ) between the residual charge amounts Q 1 and Q 2 is calculated, and the deterioration diagnosis that considers that the deterioration of the OF cable, specifically, the deterioration of the insulating layer, is larger as the difference is larger. Can be done. Thereby, the deterioration diagnosis of the entire OF cable can be performed more easily and more reliably than the method of performing the deterioration diagnosis by collecting oil.

<測定手順2>
測定手順2は、直流電圧課電後のOFケーブル1に対して、接地後の交流電圧課電時においてOFケーブル1の絶縁体から放出される残留電荷の挙動、つまり、直流電圧検出部18により測定される残留電荷の挙動に基づいてOFケーブル1の劣化診断を行う。
<Measurement procedure 2>
The measurement procedure 2 is performed by the behavior of the residual charge released from the insulator of the OF cable 1 when the AC voltage is applied after grounding, that is, by the DC voltage detector 18. The deterioration diagnosis of the OF cable 1 is performed based on the behavior of the residual charge to be measured.

具体的には、図1の劣化診断装置100におけるOFケーブル1の測定手順1において、最初に交流電圧を課電する際に、その交流電圧課電時に直流電圧検出部18を用いて残留電荷を測定せずに、直流電圧課電後の交流電圧課電時にのみ残留電荷を検出する。ここでは、直流電圧課電後の交流電圧課電時で検出する残留電荷の挙動が明確に現れるように、測定対象となるOFケーブルとして、図3、図4で用いたOFケーブルよりも課電時間の長い供試ケーブルを用いて、測定手順2により測定した残留電荷を示す。   Specifically, in the measurement procedure 1 of the OF cable 1 in the degradation diagnosis apparatus 100 of FIG. 1, when the AC voltage is applied for the first time, the residual charge is calculated using the DC voltage detection unit 18 when the AC voltage is applied. Without measurement, the residual charge is detected only when the AC voltage is applied after the DC voltage is applied. Here, in order to clearly show the behavior of the residual charge detected when the AC voltage is applied after the DC voltage is applied, the OF cable to be measured is more charged than the OF cable used in FIGS. The residual charge measured by the measurement procedure 2 using a test cable having a long time is shown.

測定手順2は、測定手順1と同様に、まず、短絡スイッチ15を開放状態とし、切換スイッチ14の可動切片14dを接点14cに接続し(図1に示す状態)、交流電源13の交流電圧VacをOFケーブル1の一端部1aに課電する。ここでは、短時間で交流電圧課電(例えば、Vac=6kVrms)を所定間隔(例えば、2分)で所定回数(3回)繰り返す。次いで、短絡スイッチ15を短絡状態とし、切換スイッチ14の可動切片14dを接点14cから接点14aに切り替えて、直流電源11の直流電圧VdcをOFケーブル1の一端部1aに課電する。この直流電圧Vdcの課電時間は、例えば7分とする。   In measurement procedure 2, as in measurement procedure 1, first, short-circuit switch 15 is opened, movable piece 14d of changeover switch 14 is connected to contact 14c (the state shown in FIG. 1), and AC voltage Vac of AC power supply 13 is connected. Is applied to one end 1 a of the OF cable 1. Here, AC voltage application (for example, Vac = 6 kVrms) is repeated a predetermined number of times (for example, 2 minutes) in a short time. Next, the short-circuit switch 15 is brought into a short-circuit state, the movable piece 14 d of the changeover switch 14 is switched from the contact point 14 c to the contact point 14 a, and the DC voltage Vdc of the DC power supply 11 is applied to the one end 1 a of the OF cable 1. For example, the DC voltage Vdc is applied for 7 minutes.

次いで、短絡スイッチ15の短絡状態を維持した後、切換スイッチ14の可動切片14dを接点14aから接点14bに切り換えて、OFケーブル1の一端部1aを所定時間(例えば、10分間)接地して、課電した直流印加電圧を取り除く。   Next, after maintaining the short circuit state of the short circuit switch 15, the movable piece 14d of the changeover switch 14 is switched from the contact point 14a to the contact point 14b, and the one end 1a of the OF cable 1 is grounded for a predetermined time (for example, 10 minutes), Remove the applied DC voltage.

次いで、短絡スイッチ15を開放状態とし、切換スイッチ14の可動切片14dを接点14bから接点14cに切り換えて、再び、交流電源13の交流電圧VacをOFケーブル1の一端部1aに課電する。この時に、OFケーブル1の絶縁体から放電される電荷を、検出用コンデンサ16の端子間直流電圧Vsとして直流電圧検出部18で検出する。これにより、OFケーブル1の絶縁体内に拘束された残留電荷を測定する。ここでは、短時間での交流電圧課電(例えば、Vac=6kVrms)を所定間隔(例えば、2分)で所定回数(3回)繰り返す。こうして測定した残留電荷の一例を図5に示す。   Next, the shorting switch 15 is opened, the movable piece 14d of the changeover switch 14 is switched from the contact point 14b to the contact point 14c, and the AC voltage Vac of the AC power source 13 is again applied to the one end 1a of the OF cable 1. At this time, the electric charge discharged from the insulator of the OF cable 1 is detected by the DC voltage detection unit 18 as the DC voltage Vs between the terminals of the detection capacitor 16. Thereby, the residual electric charge restrained in the insulator of the OF cable 1 is measured. Here, alternating voltage application (for example, Vac = 6 kVrms) in a short time is repeated a predetermined number of times (3 times) at a predetermined interval (for example, 2 minutes). An example of the residual charge measured in this way is shown in FIG.

図5は、OFケーブル1に対して直流電圧を課電した後の交流電圧課電において放出される残留電荷(nC)、課電時間(分)及び課電電圧(kV)の関係を示す。   FIG. 5 shows the relationship between the residual charge (nC), the applied time (minutes), and the applied voltage (kV) released in the AC voltage application after applying a DC voltage to the OF cable 1.

具体的には、図5は、図4に示すOFケーブルよりも課電時間の長いOFケーブル1に対して直流電圧を課電した後で交流課電において放出される残留電荷(nC)、課電時間(分)及び課電電圧(kV)の関係を示す。ここでは、図5に示すOFケーブル1は、図4で示すOFケーブルよりも約3.3倍長い時間課電(実使用状態で247日課電)されたものとする。
また、図5に示す残留電荷(nC)は、直流電圧検出部18で検出した残留電荷であり、グラフG5は、交流課電時の電圧(kV)を示し、グラフG6は、直流電圧検出部18で検出される残留電荷検出量(残留電荷量)を示す。図6は、図5におけるX1部分を示す図である。
Specifically, FIG. 5 shows a residual charge (nC) discharged in the AC charging after the DC voltage is applied to the OF cable 1 having a longer charging time than the OF cable shown in FIG. The relationship between electric time (minutes) and applied voltage (kV) is shown. Here, it is assumed that the OF cable 1 shown in FIG. 5 is applied for a time that is about 3.3 times longer than the OF cable shown in FIG. 4 (247 days in actual use).
Further, the residual charge (nC) shown in FIG. 5 is the residual charge detected by the DC voltage detector 18, the graph G5 shows the voltage (kV) at the time of AC charging, and the graph G6 shows the DC voltage detector. 18 shows a residual charge detection amount (residual charge amount) detected. FIG. 6 is a diagram illustrating a portion X1 in FIG.

測定手順2では、OFケーブル1に対して直流電圧を課電した後の交流電圧課電時において放出される残留電荷(nC)の挙動(残留電荷の変化ΔQ)を測定する。   In the measurement procedure 2, the behavior (residual charge change ΔQ) of the residual charge (nC) released at the time of AC voltage application after applying a DC voltage to the OF cable 1 is measured.

このときの残留電荷(nC)の挙動は、通常、下り勾配となる経時的変化を伴うのに対して、放出される残留電荷(検出される直流成分)は、抑制された値となり、検出される残留電荷は減少する(図5のX1部分を参照)。この挙動は、測定手順1の説明で用いた図4にもX部分で示すように変化量は小さいが同様に現れる。また、図5のX1部分で示すように、数回(図5では3回)の交流課電時においてそれぞれ測定される残留電荷(nC)は、同じ挙動を示している。これは、図4のX部分でも同様に、数回(図4では3回)の交流課電時においてそれぞれ測定される残留電荷(nC)は同じ挙動を示す。   The behavior of the residual charge (nC) at this time is usually accompanied by a change with time that becomes a downward slope, whereas the residual charge (DC component to be detected) is suppressed and detected. The residual charge remaining decreases (see the X1 portion in FIG. 5). This behavior also appears in FIG. 4 used in the description of the measurement procedure 1 although the change amount is small as shown by the X portion. Further, as shown by the X1 portion in FIG. 5, the residual charges (nC) measured at the time of AC power application several times (three times in FIG. 5) show the same behavior. Similarly, in the X portion of FIG. 4, the residual charges (nC) measured at the time of AC power application several times (three times in FIG. 4) show the same behavior.

加えて、図4のX部分と図5のX1部分とを比較すると、測定対象となるOFケーブル1が使用電界で連続課電した時間の長い方(図5)が、直流電圧を課電した後で交流課電時において放出される残留電荷(nC)の挙動(残留電荷の変化ΔQ)は、大きくなる(図5のX1部分参照)。すなわち、OFケーブル1に対して交流電圧課電、直流電圧課電、接地を順に行った後の交流電圧課電時の残留電荷の変化は、測定対象となるOFケーブル1の測定前の交流の課電期間が長いほど、顕著に現れる。   In addition, when comparing the X portion of FIG. 4 and the X1 portion of FIG. 5, the longer time (FIG. 5) in which the OF cable 1 to be measured is continuously charged with the used electric field applied the DC voltage. The behavior (residual charge change ΔQ) of the residual charge (nC) released later during AC charging becomes large (see the X1 portion in FIG. 5). That is, the change in the residual charge at the time of AC voltage application after the AC voltage application, the DC voltage application, and the grounding are sequentially applied to the OF cable 1 is the AC current before the measurement of the OF cable 1 to be measured. The longer the charging period, the more prominent.

測定手順2では、OFケーブル1に交流電圧を課電し、次いで直流電圧を課電して接地した後で、再び交流電圧を課電しつつ、OFケーブルの絶縁体(図示省略)から放出されて、直流電圧検出部18で検出される直流成分を測定し、その挙動を診断する。すなわち、図6のグラフG6で示すように、残留電荷の変化ΔQが上昇した後で減少する変化であり、その変化が大きければ、OFケーブル1中に放電箇所があり、劣化部分が存在すると判定することができる。よって、上述した測定手順2によれば、採油して劣化診断を行う方法と比較して、より簡単に、より確実にOFケーブル全体の劣化診断を行うことができる。   In the measurement procedure 2, an AC voltage is applied to the OF cable 1, and then a DC voltage is applied and grounded. Then, the AC voltage is applied again and discharged from the OF cable insulator (not shown). Then, the DC component detected by the DC voltage detector 18 is measured and its behavior is diagnosed. That is, as shown by a graph G6 in FIG. 6, it is a change that decreases after the residual charge change ΔQ rises. If the change is large, it is determined that there is a discharge portion in the OF cable 1 and there is a deteriorated portion. can do. Therefore, according to the measurement procedure 2 described above, the deterioration diagnosis of the entire OF cable can be performed more easily and more reliably than the method of performing the deterioration diagnosis by collecting oil.

このように本実施の形態では、測定手順1を用いて、直流課電の有無による電荷の蓄積量で評価することにより、OFケーブルにおける内部放電による劣化部分の有無、劣化部分の大きさを診断することができる。   As described above, in the present embodiment, the measurement procedure 1 is used to evaluate the amount of accumulated charge due to the presence / absence of direct current charging, thereby diagnosing the presence / absence of a degraded portion due to internal discharge in the OF cable and the size of the degraded portion. can do.

更に、測定手順2を用いて、直流課電後の交流課電時における残留電荷の挙動(残留電荷の変化ΔQ)からOFケーブルにおける内部放電による劣化部分の有無、劣化部分の大きさを診断することができる。   Further, using measurement procedure 2, the presence or absence of a deteriorated portion due to internal discharge in the OF cable and the size of the deteriorated portion are diagnosed from the behavior of the residual charge (change in residual charge ΔQ) during AC charging after DC charging. be able to.

更には、これら測定手順1、測定手順2を併用することによって、より劣化の挙動を把握しやすくなり、OFケーブル線路にたいしてジョイント部など付属部品近傍のみならず、OFケーブル線路全体の劣化を評価しやすくできる。   Furthermore, by using these measurement procedure 1 and measurement procedure 2 together, it becomes easier to grasp the behavior of deterioration, and for the OF cable line, not only the vicinity of the attached parts such as the joint, but also the deterioration of the entire OF cable line is evaluated. Easy to do.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
以上、本発明の実施の形態について説明した。なお、以上の説明は本発明の好適な実施の形態の例証であり、本発明の範囲はこれに限定されない。つまり、上記装置の構成や各部分の形状についての説明は一例であり、本発明の範囲においてこれらの例に対する様々な変更や追加が可能であることは明らかである。
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
The embodiment of the present invention has been described above. The above description is an illustration of a preferred embodiment of the present invention, and the scope of the present invention is not limited to this. That is, the description of the configuration of the apparatus and the shape of each part is an example, and it is obvious that various modifications and additions to these examples are possible within the scope of the present invention.

本発明に係るOFケーブルの劣化診断方法は、より簡単に、より確実にOFケーブルの劣化診断を行うことができる効果を有し、地中に布設されたOFケーブル線路に対しても簡単に且つ正確に劣化診断を行うことができる。   The OF cable deterioration diagnosis method according to the present invention has an effect of more easily and more reliably performing OF cable deterioration diagnosis, and can be easily applied to an OF cable line laid in the ground. Deterioration diagnosis can be performed accurately.

1 OFケーブル
1a 一端部
1b 遮蔽層
11 直流電源
12 接地抵抗
13 交流電源
14 切換スイッチ
14a、14b、14c 接点
14d 可動切片
15 短絡スイッチ
16 検出用コンデンサ
17 課電制御部
18 直流電圧検出部
100 劣化診断装置
DESCRIPTION OF SYMBOLS 1 OF cable 1a One end part 1b Shielding layer 11 DC power supply 12 Ground resistance 13 AC power supply 14 Change-over switch 14a, 14b, 14c Contact 14d Movable piece 15 Short-circuit switch 16 Detection capacitor 17 Electric power supply control part 18 DC voltage detection part 100 Deterioration diagnosis apparatus

Claims (4)

OFケーブルに対して交流電圧を課電する第1工程と、
交流電圧が課電された前記OFケーブルに対して直流電圧を課電して接地する第2工程と、
その接地後に前記OFケーブルに交流電圧を課電して、残留電荷を放出させて前記直流電圧課電後の残留電荷として測定し、測定した前記直流電圧課電後の残留電荷に基づいて前記OFケーブルの劣化を診断する第3工程と、
を有する、
OFケーブルの劣化診断方法。
A first step of applying an alternating voltage to the OF cable;
A second step of applying a DC voltage to the OF cable to which an AC voltage is applied, and grounding the OF cable;
After the grounding, an AC voltage is applied to the OF cable to release a residual charge, which is measured as a residual charge after the DC voltage is applied. Based on the measured residual charge after the DC voltage is applied, the OF A third step of diagnosing cable degradation;
Having
OF cable deterioration diagnosis method.
前記第1工程は、前記OFケーブルの絶縁体内に蓄積された残留電荷を放出させて前記直流電圧課電前の残留電荷として測定する測定工程を有し、
前記第3工程では、前記第1工程で測定した前記直流電圧課電前の残留電荷と、前記第3工程で測定する前記直流課電後の残留電荷との差分に基づいて、前記絶縁体の劣化を診断する、
請求項1記載のOFケーブルの劣化診断方法。
The first step includes a measurement step of measuring the residual charge before the DC voltage is applied by discharging the residual charge accumulated in the insulator of the OF cable.
In the third step, based on the difference between the residual charge before the DC voltage application measured in the first step and the residual charge after the DC application measured in the third step, the insulator To diagnose deterioration,
The OF cable deterioration diagnosis method according to claim 1.
前記第3工程では、交流電圧課電時において測定する前記直流電圧課電後の残留電荷の変化量により、前記OFケーブルの絶縁体の劣化を診断する、
請求項1記載のOFケーブルの劣化診断方法。
In the third step, the deterioration of the insulation of the OF cable is diagnosed by the amount of change in the residual charge after the DC voltage application measured at the time of AC voltage application.
The OF cable deterioration diagnosis method according to claim 1.
前記第1工程は、前記OFケーブルの絶縁体内に蓄積された残留電荷を放出させて前記直流電圧課電前の残留電荷として測定する測定工程を有し、
前記第3工程では、前記第1工程で測定した前記直流電圧課電前の残留電荷と、前記第3工程で測定する前記直流課電後の残留電荷との差分と、前記第3工程の交流電圧課電時において測定する前記直流電圧課電後の残留電荷の変化量とにより、前記絶縁体の劣化を診断する、
請求項1記載のOFケーブルの劣化診断方法。
The first step includes a measurement step of measuring the residual charge before the DC voltage is applied by discharging the residual charge accumulated in the insulator of the OF cable.
In the third step, the difference between the residual charge before the DC voltage application measured in the first step and the residual charge after the DC application measured in the third step, and the AC in the third step Diagnosing the deterioration of the insulator based on the amount of change in residual charge after the DC voltage application measured at the time of voltage application,
The OF cable deterioration diagnosis method according to claim 1.
JP2015145908A 2015-07-23 2015-07-23 Deterioration diagnosis method of of cable Pending JP2017026491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015145908A JP2017026491A (en) 2015-07-23 2015-07-23 Deterioration diagnosis method of of cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015145908A JP2017026491A (en) 2015-07-23 2015-07-23 Deterioration diagnosis method of of cable

Publications (1)

Publication Number Publication Date
JP2017026491A true JP2017026491A (en) 2017-02-02

Family

ID=57949673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015145908A Pending JP2017026491A (en) 2015-07-23 2015-07-23 Deterioration diagnosis method of of cable

Country Status (1)

Country Link
JP (1) JP2017026491A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019138864A (en) * 2018-02-15 2019-08-22 東京電力ホールディングス株式会社 Method for diagnosing deterioration of an of cable

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5571008A (en) * 1978-11-22 1980-05-28 Sumitomo Electric Ind Ltd Method for detecting abnormal discharge in electric equipment filled with insulating oil
JPS61292073A (en) * 1985-05-31 1986-12-22 Mitsubishi Cable Ind Ltd Method for diagnosing insulation deterioration of electric power cable line
JPH04264273A (en) * 1991-02-19 1992-09-21 Tokyo Electric Power Co Inc:The Method for diagnosing deterioration of power cable
JPH1048284A (en) * 1996-08-06 1998-02-20 Tokyo Electric Power Co Inc:The Method for diagnosing insulation deterioration of cable
JPH11148959A (en) * 1997-11-17 1999-06-02 Tokyo Electric Power Co Inc:The Insulation deterioration diagnostic method of cable
JP2001349922A (en) * 2000-06-12 2001-12-21 Fujikura Ltd Degradation diagnosing method of cv cable
JP2001349924A (en) * 2000-06-12 2001-12-21 Fujikura Ltd Remaining life estimating method of cv cable
JP2002340970A (en) * 2001-03-13 2002-11-27 Mitsubishi Cable Ind Ltd Insulation deterioration diagnostic method for power cable
JP2008170200A (en) * 2007-01-10 2008-07-24 Tokyo Electric Power Co Inc:The Method for measuring residual charge of cv cable
CN103558533A (en) * 2013-11-20 2014-02-05 国家电网公司 Insulation aging diagnostic system and method based on 10kV XLPE cable

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5571008A (en) * 1978-11-22 1980-05-28 Sumitomo Electric Ind Ltd Method for detecting abnormal discharge in electric equipment filled with insulating oil
JPS61292073A (en) * 1985-05-31 1986-12-22 Mitsubishi Cable Ind Ltd Method for diagnosing insulation deterioration of electric power cable line
JPH04264273A (en) * 1991-02-19 1992-09-21 Tokyo Electric Power Co Inc:The Method for diagnosing deterioration of power cable
JPH1048284A (en) * 1996-08-06 1998-02-20 Tokyo Electric Power Co Inc:The Method for diagnosing insulation deterioration of cable
JPH11148959A (en) * 1997-11-17 1999-06-02 Tokyo Electric Power Co Inc:The Insulation deterioration diagnostic method of cable
JP2001349922A (en) * 2000-06-12 2001-12-21 Fujikura Ltd Degradation diagnosing method of cv cable
JP2001349924A (en) * 2000-06-12 2001-12-21 Fujikura Ltd Remaining life estimating method of cv cable
JP2002340970A (en) * 2001-03-13 2002-11-27 Mitsubishi Cable Ind Ltd Insulation deterioration diagnostic method for power cable
JP2008170200A (en) * 2007-01-10 2008-07-24 Tokyo Electric Power Co Inc:The Method for measuring residual charge of cv cable
CN103558533A (en) * 2013-11-20 2014-02-05 国家电网公司 Insulation aging diagnostic system and method based on 10kV XLPE cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019138864A (en) * 2018-02-15 2019-08-22 東京電力ホールディングス株式会社 Method for diagnosing deterioration of an of cable

Similar Documents

Publication Publication Date Title
JP5349036B2 (en) Insulation diagnostic system
JPH0726985B2 (en) Insulation deterioration diagnosis method for power cables
Eager et al. High voltage VLF testing of power cables
Zainuddin Study of surface discharge behaviour at the oil-pressboard interface
JP2011242206A (en) Insulation deterioration diagnosis method and insulation deterioration diagnosis device of power cable
EP2778694B1 (en) Apparatus and method for insulation testing of an electrical supply network
EP0437214B1 (en) Method for diagnosing an insulation deterioration of an electric apparatus
JP2017026491A (en) Deterioration diagnosis method of of cable
JP2007271542A (en) Insulation deterioration diagnosis method and insulation deterioration diagnosis device of power cable
EP2315010A1 (en) Diagnostic method for oil-filled electric equipment, diagnostic device for implementing diagnostic method, and oil-filled electric equipment with built-in diagnostic device
US20170248638A1 (en) Test measurement system and method for using same in low voltage systems
CN104062556A (en) Inspection Device And Inspection Method Of Insulating Property, And Manufacturing Method Of Insulated Wire
JP2004531998A (en) Contact controller
JP4690932B2 (en) Insulation degradation diagnosis method for power cables
JP2876322B2 (en) Diagnosis method for insulation deterioration of CV cable
Grzybowski et al. Electrical breakdown characteristics of the XLPE cables under AC, DC and pulsating voltages
JP4347551B2 (en) Insulation degradation diagnosis method for power cables
JP2011047766A (en) Method and device for diagnosing insulation deterioration of power cable
JP4681391B2 (en) Degradation diagnosis method for low-voltage cables
JP3308197B2 (en) Cable deterioration diagnosis method
JP3629424B2 (en) CV cable insulation diagnosis method
JP2612366B2 (en) Diagnosis method for insulation deterioration of power cable
JP2612367B2 (en) Diagnosis method for insulation deterioration of power cable
JP2019138864A (en) Method for diagnosing deterioration of an of cable
JP2007046908A (en) Insulation deterioration diagnostic method and insulation deterioration diagnostic system of power cable

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20151222

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180613

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191001