JP2008170200A - Method for measuring residual charge of cv cable - Google Patents

Method for measuring residual charge of cv cable Download PDF

Info

Publication number
JP2008170200A
JP2008170200A JP2007001966A JP2007001966A JP2008170200A JP 2008170200 A JP2008170200 A JP 2008170200A JP 2007001966 A JP2007001966 A JP 2007001966A JP 2007001966 A JP2007001966 A JP 2007001966A JP 2008170200 A JP2008170200 A JP 2008170200A
Authority
JP
Japan
Prior art keywords
residual charge
voltage
waveform
cable
charge signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007001966A
Other languages
Japanese (ja)
Other versions
JP4762921B2 (en
Inventor
Toyoji Tsukamoto
豊司 塚本
Hideaki Sato
英章 佐藤
Koichi Onuki
幸一 大貫
Hiroyuki Kon
博之 今
Noboru Ishii
登 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Viscas Corp
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Viscas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Viscas Corp filed Critical Tokyo Electric Power Co Inc
Priority to JP2007001966A priority Critical patent/JP4762921B2/en
Publication of JP2008170200A publication Critical patent/JP2008170200A/en
Application granted granted Critical
Publication of JP4762921B2 publication Critical patent/JP4762921B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for measuring residual charge of a capable, accurately performing a deterioration diagnosis of a CV cable while shortening a measurement time. <P>SOLUTION: The method comprises: applying direct current high voltage between a conductor and a shield of a cable 3 by using a direct current high voltage generation device 1; then, connecting the cable conductor directly to ground after having connected it to ground through a resistor R; thereafter measuring a residual charge signal by applying alternating voltage one time between the cable conductor and the shield by using a testing transformer 2; separating the obtained residual charge signal into residual charge signals corresponding to optional voltage step components using data of the database that stores residual charge signals obtained by the predetermined optional number of steps; and performing a water tree deterioration diagnosis using the residual charge signals obtained by the waveform separation. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は水トリー劣化したCVケーブルの絶縁劣化を診断するための残留電荷測定方法に関する。   The present invention relates to a residual charge measuring method for diagnosing insulation deterioration of a CV cable having water tree deterioration.

水トリー劣化したCVケーブルの絶縁劣化診断法として、残留電荷測定方法が知られている。残留電荷測定方法は、直流電圧を課電することによりCVケーブルの水トリーに蓄積した電荷を測定し、ケーブル絶縁体の残存性能を非破壊的に診断するものであり、CVケーブルの劣化診断方法として注目されている。
残留電荷測定においては、当該ケーブルに所定の直流電圧を課電し、一旦接地をした後に交流電圧を課電する。水トリーがケーブル絶縁体中に存在している場合には、直流電圧を課電することにより、水トリー部に電荷が蓄積する。
この種の電荷は、接地をしてケーブル導体・遮蔽間を閉回路とした際にも容易に放出されるものではない。しかしながら、その後に交流電圧を課電することにより、これらの電荷は容易に放出される。これら放出された電荷を、ローパスフィルタを用いることにより、直流電流成分として検出する。
A residual charge measurement method is known as a method for diagnosing insulation deterioration of a CV cable with water tree deterioration. The residual charge measuring method measures the charge accumulated in the water tree of the CV cable by imposing a DC voltage, and diagnoses the residual performance of the cable insulator in a non-destructive manner. It is attracting attention as.
In the residual charge measurement, a predetermined DC voltage is applied to the cable, and after being grounded, an AC voltage is applied. When the water tree is present in the cable insulator, charges are accumulated in the water tree portion by applying a DC voltage.
This type of charge is not easily released even when grounding and a closed circuit between the cable conductor and the shield. However, these charges are easily released by applying an alternating voltage thereafter. These emitted charges are detected as a direct current component by using a low-pass filter.

残留電荷法においては、幾つかの評価手法が提案されており、その1つに交流電圧をステップ状に課電する方法が提案されている(例えば特許文献1参照)。特許文献1に記載されるものは、図10に示すように、直流電圧を課電した後に、交流電圧をステップ状に昇圧していき、残留電荷信号が検出された最高の交流課電電圧を劣化の指標として用いて、水トリー劣化程度を診断するものである。
以下では、上記交流電圧をステップ状に課電する手法をステップ課電法と呼び、ステップを設けずに交流電圧を1回課電して残留電荷を測定する手法を1回課電法と呼ぶこととする。
特開2001−349922号公報
In the residual charge method, several evaluation methods have been proposed, and one of them is a method of applying an AC voltage stepwise (see, for example, Patent Document 1). As shown in FIG. 10, as described in Patent Document 1, after applying a DC voltage, the AC voltage is stepped up and the highest AC applied voltage at which the residual charge signal is detected is increased. It is used as an indicator of deterioration to diagnose the degree of water tree deterioration.
In the following, the method of applying the AC voltage stepwise is referred to as a step charging method, and the method of applying the AC voltage once and measuring the residual charge without providing a step is referred to as the once charging method. I will do it.
JP 2001-349922 A

従来においては、上述したように所定の交流電圧を1回課電することにより残留電荷信号を得る方法(1回課電法)や、ステップ状に課電して残留電荷信号を得る方法(ステップ課電法)が知られている。
この内、ステップ状に課電して残留電荷信号を得る方法は、複数回の交流電圧課電が必要となる。当該手法によれば、従来の1回課電する手法において課題であった線路亘長による影響を低減することは可能であるが、測定に費やされる時間がステップの回数分必要である。
また、交流電圧による残留電荷信号の分類は連続量ではない。このため、ステップの回数が少ないと、最終的に得られる判定結果の診断精度は低下する。原理的にはステップ回数を多くすることにより診断精度は向上するが、ステップ回数を多くすることにより、測定時間に費やす時間が長くなるとともに、各交流電圧を課電した際に得られる残留電荷信号は小さくなってしまい、逆に診断精度が低下することになる。
本発明は、上述した事情を考慮してなされたものであって、その目的は、測定時間を短縮しながら、CVケーブルの劣化診断を精度よく行うことができる残留電荷の測定方法を提供することである。
Conventionally, as described above, a method of obtaining a residual charge signal by applying a predetermined alternating voltage once (a single power application method), or a method of applying a stepwise power to obtain a residual charge signal (step) Electricity law) is known.
Of these methods, the method of applying a stepwise power to obtain a residual charge signal requires multiple AC voltage charges. According to this method, it is possible to reduce the influence of the line length, which was a problem in the conventional method of applying power once, but the time required for the measurement is required for the number of steps.
Also, the classification of residual charge signals by alternating voltage is not a continuous quantity. For this reason, if the number of steps is small, the diagnostic accuracy of the determination result finally obtained decreases. In principle, increasing the number of steps improves diagnostic accuracy, but increasing the number of steps increases the time spent on measurement time and the residual charge signal obtained when each AC voltage is applied. Becomes smaller, and conversely, the diagnostic accuracy decreases.
The present invention has been made in consideration of the above-described circumstances, and an object of the present invention is to provide a residual charge measurement method capable of accurately performing deterioration diagnosis of a CV cable while shortening the measurement time. It is.

図1に1回課電法により、ステップ課電法の最高課電電圧までの交流電圧を印加して得られる残留電荷信号と、ステップ課電法により得られる残留電荷信号の各成分波形の総和の波形を示す。
なお、測定毎に測定波形には若干の差が生じるが、ここでは、波形の形状に注目するために、図1においては、波形の縦軸を各波形の最大値で正規化してある。
図1より、1回課電法により得られる波形はステップ課電法により得られる各波形の和の波形とほぼ一致しており、1回課電法に得られる波形は、ステップ課電法により得られる各波形の総和の波形であると言える。逆に、1回課電法により得られる波形は、ステップ課電法により得られる波形に分離することが可能であると言える。
FIG. 1 shows a sum of the residual charge signals obtained by applying an alternating voltage up to the maximum applied voltage in the step applied method and the component waveforms of the remaining charge signals obtained by the step applied method. The waveform is shown.
Although there is a slight difference in the measured waveform for each measurement, in FIG. 1, the vertical axis of the waveform is normalized with the maximum value of each waveform in order to pay attention to the shape of the waveform.
From FIG. 1, the waveform obtained by the one-time charging method is substantially the same as the waveform of the sum of the waveforms obtained by the step-charging method. It can be said that this is the total waveform of the obtained waveforms. Conversely, it can be said that the waveform obtained by the one-time charging method can be separated into the waveform obtained by the step charging method.

本発明ではこれを利用し、残留電荷信号が検出される最高の交流電圧をCVケーブルに1回課電法により課電して残留電荷信号を獲得し、その波形を任意の電圧ステップ成分に対応する残留電荷信号に分離する。これにより、交流電圧を1回課電するだけで、ステップ課電法により得られる残留電荷信号の各波形に対応した残留電荷信号を得ることができる。
上記波形の分離は、任意のステップ回数で交流電圧を変化させることにより得られる残留電荷信号を格納したデータベースを予め用意しておき、このデータベースに格納された各交流印加電圧に対する残留電荷信号に基づき、残留電荷信号が得られる最高の交流電圧を1回課電したことにより得られた残留電荷信号から波形分離する。そして、この波形分離した残留電荷信号を用いて、水トリーの劣化診断を行う。
これにより、任意のステップで交流電圧を印加した場合と同等の残留電荷信号を得ることができ、短い測定時間で精度よくCVケーブルの水トリー劣化の診断を行うことができる。
なお、残留電荷信号としては、電流信号あるいは当該信号の積分値である残留電荷量信号、いずれの場合でも本手法は適用できる。
In the present invention, this is utilized, and the highest AC voltage at which the residual charge signal is detected is applied to the CV cable once by the voltage applying method to obtain the residual charge signal, and the waveform corresponds to an arbitrary voltage step component. The residual charge signal is separated. Thereby, the residual charge signal corresponding to each waveform of the residual charge signal obtained by the step charging method can be obtained by applying the AC voltage only once.
For the separation of the waveform, a database storing a residual charge signal obtained by changing the AC voltage at an arbitrary number of steps is prepared in advance, and based on the residual charge signal for each AC applied voltage stored in the database. Then, the waveform is separated from the residual charge signal obtained by applying the highest AC voltage that provides the residual charge signal once. Then, the deterioration diagnosis of the water tree is performed by using the residual charge signal separated from the waveform.
Thereby, a residual charge signal equivalent to the case where an AC voltage is applied in an arbitrary step can be obtained, and the water tree deterioration of the CV cable can be diagnosed with high accuracy in a short measurement time.
As the residual charge signal, this method can be applied to either a current signal or a residual charge amount signal that is an integral value of the signal.

本発明においては、以下の効果を得ることができる。
(1)測定される残留電荷信号は、ステップ状に交流電圧を課電した際に獲得される信号の総和として得られ、これを波形分離して各交流印加電圧に対応した残留電荷信号を得ているので、ステップ状に交流電圧を課電することにより得られる診断と同等の診断が可能であり、精度よく劣化診断を行うことができる。
(2)交流電圧を1回課電するだけでよいので、ステップ状に交流電圧を課電する場合に比較して測定時間を大幅に短縮化することができる。
(3)予め用意しておくデータベースに格納したデータを、細かい交流電圧ステップとすることにより、診断精度を向上させることができる。
In the present invention, the following effects can be obtained.
(1) The residual charge signal to be measured is obtained as the sum of the signals acquired when the AC voltage is applied stepwise, and the waveform is separated to obtain a residual charge signal corresponding to each AC applied voltage. Therefore, it is possible to make a diagnosis equivalent to the diagnosis obtained by applying the AC voltage stepwise, and to perform the deterioration diagnosis with high accuracy.
(2) Since it is only necessary to apply the AC voltage once, the measurement time can be greatly shortened as compared with the case where the AC voltage is applied stepwise.
(3) The diagnostic accuracy can be improved by making the data stored in the database prepared in advance into fine AC voltage steps.

本発明の実施例の測定装置の概略構成を図2に示す。図2は、水トリーに電荷を蓄積させる手段として、直流電圧を用いた場合を示している。
課電装置としては、水トリーに電荷を蓄積させるための直流高圧発生装置1と、残留電化測定時に交流電圧を課電する試験用変圧器2と、切換えスイッチSWから構成される。 直流高圧発生装置1は、直流電圧もしくは直流電圧の代替となり得る波形の電圧を出力する。切換えスイッチSWの端子(a)は測定対象ケーブル3のケーブル導体に接続され、また、端子(b)は上記直流高圧発生装置1に接続され、端子(c)は上記試験用変圧器2の交流電圧出力端子に接続され、端子(d)は接地され、端子(e)は抵抗Rを介して接地されている。
FIG. 2 shows a schematic configuration of the measuring apparatus according to the embodiment of the present invention. FIG. 2 shows a case where a DC voltage is used as means for accumulating charges in the water tree.
The voltage applying device includes a DC high voltage generator 1 for accumulating charges in a water tree, a test transformer 2 for applying an AC voltage during residual electrification measurement, and a changeover switch SW. The DC high voltage generator 1 outputs a DC voltage or a voltage having a waveform that can be substituted for the DC voltage. The terminal (a) of the changeover switch SW is connected to the cable conductor of the cable 3 to be measured, the terminal (b) is connected to the DC high voltage generator 1, and the terminal (c) is the AC of the test transformer 2. Connected to the voltage output terminal, the terminal (d) is grounded, and the terminal (e) is grounded via the resistor R.

図2において、残留電荷の測定は次のように行われる。
初めに、端子(a)と(b)を接続して直流高圧発生装置1より、測定対象ケーブル3のケーブル導体−遮蔽間に所定の電圧を所定の時間課電する。所定の時間が経過した後に、端子(a)を端子(e)へ接続して導体を対地へ抵抗Rを介して接地した後に、端子(a)を端子(d)に接続して直接接地をする。
その後、端子(a)を端子(c)に接続して試験用変圧器2により、ケーブル導体−遮蔽間に所定の交流電圧を課電して、残留電荷信号を測定する。
測定信号線は試験用変圧器2の低圧側より取り出し、ローパスフィルタ4を介して対地へ接地されている。測定電流信号は、商用周波数をカットするためのローパスフィルタ4を介して、電圧信号として増幅器5へと入力され、増幅器5の出力から残留電荷信号が得られる。
In FIG. 2, the residual charge is measured as follows.
First, the terminals (a) and (b) are connected, and a predetermined voltage is applied between the cable conductor and the shield of the measurement target cable 3 from the DC high voltage generator 1 for a predetermined time. After a predetermined time has elapsed, the terminal (a) is connected to the terminal (e) and the conductor is grounded to the ground via the resistor R, and then the terminal (a) is connected to the terminal (d) and directly grounded. To do.
Thereafter, the terminal (a) is connected to the terminal (c), the test transformer 2 applies a predetermined AC voltage between the cable conductor and the shield, and the residual charge signal is measured.
The measurement signal line is taken out from the low voltage side of the test transformer 2 and grounded to the ground through the low-pass filter 4. The measurement current signal is input to the amplifier 5 as a voltage signal via the low-pass filter 4 for cutting the commercial frequency, and a residual charge signal is obtained from the output of the amplifier 5.

上記手順において、本発明においては、直流電圧を課電した後の交流電圧課電の際にはステップを設けずに、所定の最高交流課電電圧を1回課電する。すなわち、1回課電法により残留電荷信号を得る。
得られた残留電荷信号を、予め用意した任意のステップ回数により得られる残留電荷信号を格納したデータベースのデータを用いて波形分離する。この波形分離は、例えばパーソナルコンピュータのソフトウェア等を用いて自動的に行うことができる。この結果より、各交流課電電圧に対する残留電荷信号成分が獲得される。当該残留電荷信号成分を用いた劣化診断については、例えば前記特許文献1などに記載される手法を用いることができる。
In the above procedure, in the present invention, a predetermined maximum AC applied voltage is applied once without providing a step in applying AC voltage after applying DC voltage. That is, a residual charge signal is obtained by a one-time charging method.
The obtained residual charge signal is waveform-separated using data in a database storing the residual charge signal obtained by an arbitrary number of steps prepared in advance. This waveform separation can be automatically performed using, for example, software of a personal computer. As a result, a residual charge signal component for each AC applied voltage is obtained. For the deterioration diagnosis using the residual charge signal component, for example, the technique described in Patent Document 1 can be used.

次に、上記波形分離方法について説明する。
図3はステップ課電による残留電荷信号の発生の様子を示す概念図である。
同図(a)は交流電圧をV1 、V2 の2ステップで課電した場合を示しており、同図(b)(c)はその際に測定される残留電荷信号を示している。なお、回路時定数などの時間遅れについては無視している。
1 の交流電圧を課電した場合には、図3(b)に示す残留電荷信号が出現する。この際の波形は、交流電圧の課電を開始した直後(t0 )から出現し、V1 に到達した程度の時間領域で最大値を示す波形となる。
続いて、所定時間経過後V2 の交流電圧を課電した際には、既にV1 の交流電圧に対応する残留電荷信号は出現しているので、V2 まで電圧を昇圧する中で、V1 までの範囲には残留電荷信号は出現せずに、図3(c)に示すようにV1 以上の電圧となった時間(t1 )以降から出現し始める。
Next, the waveform separation method will be described.
FIG. 3 is a conceptual diagram showing how a residual charge signal is generated by step charging.
FIG. 4A shows a case where an AC voltage is applied in two steps of V 1 and V 2 , and FIGS. 4B and 4C show residual charge signals measured at that time. Note that time delays such as circuit time constants are ignored.
When an AC voltage of V 1 is applied, a residual charge signal shown in FIG. 3B appears. The waveform at this time appears immediately after the start of the AC voltage application (t 0 ), and shows a maximum value in the time domain where V 1 is reached.
Subsequently, upon voltage application an AC voltage of a predetermined time has elapsed after V 2, since already residual charge signal corresponding to an AC voltage of V 1 are emerging, among which boosts the voltage up to V 2, V The residual charge signal does not appear in the range up to 1, but starts appearing after the time (t 1 ) when the voltage becomes V 1 or higher as shown in FIG.

図3に示すように、直流電圧を課電した後に、ステップを設けずにV2 まで交流電圧を課電した際に出現する残留電荷信号では、V1 以上になってから初めてV1 以上の交流電圧を要する残留電荷信号成分が出現することになる。このため、V1 以下の領域で出現する残留電荷信号における波形の立ち上がり部分は、ステップ状に課電した際にV1 を課電して出現する残留電荷信号の立ち上がりと同じとなる。
例えば、図4(a)に示すように交流電圧を2回に分けて印加した場合を想定し、まず、交流電圧V1 を印加することにより残留電荷信号S1 が得られ、次に交流電圧V2 を印加することにより残留電荷信号S2 が得られたとすると、交流電圧V2 を1回課電した場合に得られる残留電荷信号Sは、図4(b)に示すように上記残留電荷信号S1 ,S2 を合わせた波形となる。
As shown in FIG. 3, in the residual charge signal that appears when a DC voltage is applied and then an AC voltage is applied up to V 2 without providing a step, V 1 or more is not reached until V 1 or more. A residual charge signal component that requires an AC voltage will appear. For this reason, the rising portion of the waveform in the residual charge signal that appears in the region of V 1 or lower is the same as the rising portion of the residual charge signal that appears by applying V 1 when applied in steps.
For example, as shown in FIG. 4A, assuming that an alternating voltage is applied in two steps, first, a residual charge signal S 1 is obtained by applying an alternating voltage V 1 , and then an alternating voltage is applied. If the residual charge signal S 2 is obtained by applying V 2 , the residual charge signal S obtained when the AC voltage V 2 is applied once is as shown in FIG. 4B. The waveform is a combination of the signals S 1 and S 2 .

すなわち、残留電荷信号Sには上記残留電荷信号S1 に相当する波形S1 ' (同図のハッチング部分)が含まれており、波形Sの立ち上がり部分の波形は波形S1 と同様の形状となる。したがって、波形Sからまず波形S1 に相当する波形S1 ' を求め、ついで波形S1 ' を波形Sから差し引けば波形S2 に相当した波形S2 ' を求めることができる。
ここで、波形S1 ' のピーク値は分からないが、上述したように波形S1 と波形S1 ' の立ち上がりは同様な形状であるので、波形Sの立ち上がり部分(例えば70%程度)の形状がほぼ一致するように波形の大きさを調整し波形Sから波形S1 を分離する。
以上のようにすれば、交流電圧V2 を課電することにより得られる波形Sから、交流電圧V1 ,V2 を課電した場合に得られる残留電荷信号である波形S1 ,S2 を得ることができる。また、上記交流電圧V1 ,V2 と波形S1 ,S2 の関係を予めデータベースに格納しておけば、パソコン上で実行されるソフトウェアにより、上記波形分離を自動的に行うことができる。
That is, the residual charge signal S includes a waveform S 1 ′ (hatched portion in the figure) corresponding to the residual charge signal S 1 , and the waveform at the rising portion of the waveform S has the same shape as the waveform S 1. Become. Therefore, it is possible to determine the first 'seek, then waveform S 1' waveform S 1 corresponding to the waveform S 1 waveform S 2 which corresponds to the waveform S 2 is subtracted from the waveform S 'from the waveform S.
Here, although the peak value of the waveform S 1 ′ is not known, the rising edges of the waveform S 1 and the waveform S 1 ′ have the same shape as described above, and therefore the shape of the rising portion (for example, about 70%) of the waveform S. The waveform S 1 is separated from the waveform S by adjusting the size of the waveform so that the two substantially match.
If this arrangement is adopted, the waveform S obtained by voltage application alternating voltage V 2, the waveform S 1, S 2 is the residual charge signal obtained when voltage application to the AC voltage V 1, V 2 Obtainable. Further, if the relationship between the AC voltages V 1 and V 2 and the waveforms S 1 and S 2 is stored in a database in advance, the waveform separation can be automatically performed by software executed on a personal computer.

残留電荷信号波形の各交流電圧成分への分離は上記性質を利用して行われ、その手順は以下の通りである。
(1)事前に、任意のステップにおいて残留電荷信号波形を獲得しておく。便宜上、波形をS1 ,S2 ,S3 ,S4 ,S5 とする.
(2)ステップを設けずに、所定の最高の交流電圧を課電することにより残留電荷信号を獲得する。これをSとする。
(3)次に上記(2)にて獲得した波形において、S1 の立ち上がり部分の時間領域に着目して、S1 の立ち上がり波形とSの立ち上がり波形を比較する。そして、その誤差が最小となる様に波形S1 の大きさを変化させ、波形S中に存在する波形S1 に相似する波形S1 ’を決定する。
Separation of the residual charge signal waveform into each AC voltage component is performed using the above-described properties, and the procedure is as follows.
(1) A residual charge signal waveform is acquired in an arbitrary step in advance. For convenience, the waveforms are S 1 , S 2 , S 3 , S 4 and S 5 .
(2) A residual charge signal is obtained by applying a predetermined maximum AC voltage without providing a step. This is S.
(3) Next, in the waveform acquired in the above (2), by focusing on the time domain of the rising portion of S 1, to compare the rising waveform of the rising waveform and S of S 1. Then, the error to change the size of the waveform S 1 as a minimum, to determine the waveform S 1 'which similar to the waveform S 1 present in the waveform S.

(4)上記(3)の処理を行った後に、SからS1 ’を差し引く。差し引いた値をS’とする。
S’において、決められた大きさ以上ある場合には、当該波形にS2 以上の成分の存在することを意味することになり、それ以下の場合にはS’中にはS2 以上の成分が存在しないことになる。前者の場合には、(5)の操作を行う。
(5)次に、(1)で得た次ステップ信号S2 に相似するS2 ’を決定し、最終的にS’からS2 ’を差し引く。差し引いた波形の取り扱いは(4)に記述したものと同様である。
(6)S3 以上の成分が存在する可能性がある場合には、次のステップの波形成分に対して、順次(3)から(5)の操作を繰り返して波形の分離を行っていく。
(4) Subsequent to the processing of (3) above, S 1 ′ is subtracted from S. Let the subtracted value be S ′.
In S ′, if it is larger than a predetermined size, it means that there are more than S 2 components in the waveform, and if less than that, components in S ′ are more than S 2. Will not exist. In the former case, the operation (5) is performed.
(5) Next, S 2 ′ similar to the next step signal S 2 obtained in (1) is determined, and finally S 2 ′ is subtracted from S ′. The handling of the subtracted waveform is the same as that described in (4).
(6) When there is a possibility that a component of S 3 or more exists, the waveform separation is performed by sequentially repeating the operations (3) to (5) for the waveform component of the next step.

次に本発明の残留電荷測定方法による具体的例について説明する。
22kVCVケ−ブルにおいて、図5に示す様に、直流電圧を課電した後に、2.5kVステップにて、12.5kVまでステップ状に交流電圧を課電することにより得られる残留電荷信号を図6に示す。図6に示す様に、本試料は12.5kVまで残留電荷信号が確認されるものである。
また、図7に示す課電パターンにより、同試料に直流電圧を課電した後、ステップを設けずに、所定の最高課電交流電圧(12.5kV)まで昇圧することにより得られた残雷電荷信号を図8に示す。
Next, a specific example by the residual charge measuring method of the present invention will be described.
In the 22 kVCV cable, as shown in FIG. 5, after applying a DC voltage, a residual charge signal obtained by applying an AC voltage in steps up to 12.5 kV in steps of 2.5 kV is shown. It is shown in FIG. As shown in FIG. 6, in this sample, a residual charge signal is confirmed up to 12.5 kV.
In addition, after applying a DC voltage to the same sample according to the voltage application pattern shown in FIG. 7, a residual lightning obtained by increasing the voltage to a predetermined maximum voltage AC voltage (12.5 kV) without providing a step. The charge signal is shown in FIG.

ベースデータに格納するデータとして例えば図6に示す波形のデータなどを用い、前述したように波形分離処理を行い、図7に示す波形を分離した結果得られた残留電荷量を図9に示す。同図の横軸は交流課電電圧、縦軸は正規化した残留電荷量である。同図では図6に示したステップ状に交流電圧を課電した場合に得られた残留電荷量とともに、波形分離した結果の残留電荷量を示しており、ハッチングで示したものはステップ状に課電した場合、白抜きで示したものは波形分離した結果である。
図9に示すように、図8の示した残留電荷量を上述したように波形分離した場合においても、交流電圧12.5kVまでの残留電荷成分を確認することができ、本発明の波形分離による方法が有効であることが確認された。
For example, the waveform data shown in FIG. 6 is used as the data stored in the base data, and the waveform separation processing is performed as described above, and the residual charge amount obtained as a result of separating the waveforms shown in FIG. 7 is shown in FIG. In the figure, the horizontal axis represents the AC applied voltage, and the vertical axis represents the normalized residual charge amount. In this figure, the residual charge amount obtained when the AC voltage is applied in the step shape shown in FIG. 6 and the residual charge amount as a result of waveform separation are shown, and the hatched portion is assigned in the step shape. When electrified, the outline is the result of waveform separation.
As shown in FIG. 9, even when the residual charge amount shown in FIG. 8 is waveform-separated as described above, the residual charge component up to 12.5 kV can be confirmed. The method was confirmed to be effective.

ステップ課電法による残留電荷信号の総和と1回課電法による残留電荷信号を示す図である。It is a figure which shows the total of the residual charge signal by a step electrical charging method, and the residual charge signal by a 1 time electrical charging method. 本発明の実施例の測定装置の概略構成を示す図である。It is a figure which shows schematic structure of the measuring apparatus of the Example of this invention. ステップ課電法による残留電荷信号の発生の様子を示す概念図である。It is a conceptual diagram which shows the mode of the generation | occurrence | production of the residual charge signal by the step electric power application method. 本発明の波形分離を説明する図である。It is a figure explaining the waveform separation of this invention. ステップ課電法による課電パターンを示す図である。It is a figure which shows the electric power generation pattern by a step electric power application method. ステップ課電法により獲得される残留電荷信号の波形例を示す図である。It is a figure which shows the example of a waveform of the residual charge signal acquired by the step charging method. 1回課電法による課電パターンを示す図である。It is a figure which shows the electricity-charging pattern by a 1 time electricity-charging method. 1回課電法により獲得される残留電荷信号の波形例を示す図である。It is a figure which shows the example of a waveform of the residual charge signal acquired by the 1st electricity application method. ステップ課電法により獲得された残留電荷量と、1回課電法により獲得した残留電荷量を波形分離した結果を対比させ示した図である。It is the figure which contrasted and showed the result of carrying out waveform separation of the residual charge amount acquired by the step charging method, and the residual charge amount acquired by the single charging method. 従来のステップ課電法による課電パターンを示す図である。It is a figure which shows the electric power generation pattern by the conventional step electric power method.

符号の説明Explanation of symbols

1 直流高電圧発生装置
2 試験用変圧器
3 CVケーブル
4 ローパスフィルタ
5 増幅器
SW 切換えスイッチ
1 DC High Voltage Generator 2 Test Transformer 3 CV Cable 4 Low Pass Filter 5 Amplifier SW Switch

Claims (1)

CVケーブルに直流電圧あるいは直流電圧と同様な作用を有する電圧波形を課電した後に、所定の交流電圧を1回課電し、上記直流電圧課電時、あるいは直流電圧と同様な作用を有する電圧波形課電時に上記CVケーブルの水トリーに蓄積した電荷を放出させ残留電荷を測定するCVケーブルの残留電荷測定方法であって、
交流電圧を1回課電することにより得られた残留電荷信号を、予め用意した任意のステップで電圧を変化させて交流電圧を課電した際に獲得される各交流課電電圧に対する残留電荷信号に基づき波形分離し、交流電圧を1回課電することにより得られた残留電荷信号中に存在する、各交流印加電圧に対応する残留電荷信号成分を求める
ことを特徴とするCVケーブルの残留電荷測定方法。
After applying a DC voltage or a voltage waveform having the same action as the DC voltage to the CV cable, a predetermined AC voltage is applied once, and the voltage having the same action as the DC voltage is applied. A method for measuring a residual charge of a CV cable, wherein the residual charge is measured by discharging the charge accumulated in the water tree of the CV cable when applying a waveform.
Residual charge signal obtained by applying the AC voltage once by applying the AC voltage to the residual charge signal obtained by applying the AC voltage once. The residual charge of the CV cable is characterized in that the residual charge signal component corresponding to each AC applied voltage present in the residual charge signal obtained by separating the waveform based on the AC voltage and applying the AC voltage once is obtained. Measuring method.
JP2007001966A 2007-01-10 2007-01-10 CV cable residual charge measurement method. Expired - Fee Related JP4762921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007001966A JP4762921B2 (en) 2007-01-10 2007-01-10 CV cable residual charge measurement method.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007001966A JP4762921B2 (en) 2007-01-10 2007-01-10 CV cable residual charge measurement method.

Publications (2)

Publication Number Publication Date
JP2008170200A true JP2008170200A (en) 2008-07-24
JP4762921B2 JP4762921B2 (en) 2011-08-31

Family

ID=39698447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007001966A Expired - Fee Related JP4762921B2 (en) 2007-01-10 2007-01-10 CV cable residual charge measurement method.

Country Status (1)

Country Link
JP (1) JP4762921B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017026491A (en) * 2015-07-23 2017-02-02 東京電力ホールディングス株式会社 Deterioration diagnosis method of of cable

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000074980A (en) * 1998-09-01 2000-03-14 Fujikura Ltd Method for diagnosing insulation deterioration of power cable
JP2001349924A (en) * 2000-06-12 2001-12-21 Fujikura Ltd Remaining life estimating method of cv cable
JP2002202341A (en) * 2000-12-28 2002-07-19 Fujikura Ltd Method for diagnosing insulation of cv cable
JP2002202340A (en) * 2000-12-28 2002-07-19 Fujikura Ltd Method for evaluating water tree generation type of cv cable
JP2002202342A (en) * 2000-12-28 2002-07-19 Fujikura Ltd Method for diagnosing insulation of cv cable

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000074980A (en) * 1998-09-01 2000-03-14 Fujikura Ltd Method for diagnosing insulation deterioration of power cable
JP2001349924A (en) * 2000-06-12 2001-12-21 Fujikura Ltd Remaining life estimating method of cv cable
JP2002202341A (en) * 2000-12-28 2002-07-19 Fujikura Ltd Method for diagnosing insulation of cv cable
JP2002202340A (en) * 2000-12-28 2002-07-19 Fujikura Ltd Method for evaluating water tree generation type of cv cable
JP2002202342A (en) * 2000-12-28 2002-07-19 Fujikura Ltd Method for diagnosing insulation of cv cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017026491A (en) * 2015-07-23 2017-02-02 東京電力ホールディングス株式会社 Deterioration diagnosis method of of cable

Also Published As

Publication number Publication date
JP4762921B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
EP2827159B1 (en) Partial discharge measurement system and partial discharge measurement method by repeated impulse voltage
US20060267599A1 (en) Measuring capacitance
JP6160284B2 (en) Insulation life estimation method and insulation life estimation apparatus
KR20180047135A (en) Apparatus for processing reflected wave
Wu Design of partial discharge real-time capture system
JP7214809B2 (en) Partial discharge diagnosis device
RU2700368C1 (en) Method for determining technical state of a digital transformer based on parameters of partial discharges in insulation
Romano et al. A new technique for partial discharges measurement under DC periodic stress
US20210356507A1 (en) State analysis of an electrical operating resource
JP2010133817A (en) Insulation inspection device and insulation inspection method
JP4762921B2 (en) CV cable residual charge measurement method.
JP7339881B2 (en) Partial discharge detection device and partial discharge detection method
JP3869283B2 (en) Method for removing inductive noise in power cable deterioration diagnosis and power cable test apparatus
RU2585326C1 (en) Device for determining amplitude-frequency and phase-frequency characteristics of current shunts
CN111398697A (en) Space charge test system and test method under periodic pulse electric field
JP2000097982A (en) Coil testing and evaluating device
CN107414251B (en) Welding equipment, arcing determination processing method and device
Kanegami et al. Partial Discharge Detection with High‐Frequency Band through Resistance–Temperature Sensor of Hydropower Generator Stator Windings
JP5541463B2 (en) CV cable deterioration diagnosis method
JP7482058B2 (en) Partial discharge measurement system and partial discharge measurement method
JP6608234B2 (en) Contact determination device and measurement device
JPH09318696A (en) Method and device for diagnosing insulation deterioration of active line power cable
JP5083679B2 (en) Degradation diagnosis method of CV cable by residual charge measurement method
JP7455665B2 (en) Partial discharge detection device, partial discharge detection method, and partial discharge detection program
JP2000214211A (en) Partial discharge judging method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4762921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees