JP3869283B2 - Method for removing inductive noise in power cable deterioration diagnosis and power cable test apparatus - Google Patents

Method for removing inductive noise in power cable deterioration diagnosis and power cable test apparatus Download PDF

Info

Publication number
JP3869283B2
JP3869283B2 JP2002036444A JP2002036444A JP3869283B2 JP 3869283 B2 JP3869283 B2 JP 3869283B2 JP 2002036444 A JP2002036444 A JP 2002036444A JP 2002036444 A JP2002036444 A JP 2002036444A JP 3869283 B2 JP3869283 B2 JP 3869283B2
Authority
JP
Japan
Prior art keywords
voltage
frequency
power cable
loss current
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002036444A
Other languages
Japanese (ja)
Other versions
JP2003240815A (en
Inventor
幸弘 八木
秀郎 田中
雅彦 中出
大輔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Tokyo Electric Power Co Inc
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., Tokyo Electric Power Co Inc filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2002036444A priority Critical patent/JP3869283B2/en
Publication of JP2003240815A publication Critical patent/JP2003240815A/en
Application granted granted Critical
Publication of JP3869283B2 publication Critical patent/JP3869283B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electric Cable Installation (AREA)
  • Testing Relating To Insulation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電力ケーブルの劣化診断において、測定回路外部から進入する商用周波ノイズ及びその高調波ノイズの影響を除去して、ケーブルの劣化に起因して発生する損失電流中の高調波成分のみを得ることができる誘導ノイズの除去方法、および、上記高調波ノイズの影響を除去して電力ケーブルの劣化診断を高精度に行うことができる電力ケーブルの試験装置に関する。
【0002】
【従来の技術】
電力ケーブルとして現在一般的に用いられている架橋ポリエチレン絶縁ケーブル(以下、ケーブルと称す) には水トリー劣化と呼ばれる劣化形態が存在する。水トリーは電界と水分の作用により発生する絶縁体中の変質部分であり、これが時間とともに電界方向に成長する結果、ケーブルの絶縁性能が次第に低下していく。
したがって、これをそのまま放置すると最終的には運転中の絶縁破壊事故を引き起こし、電力需要者に多大な損害を与える結果となる。
このため、ケーブルの絶縁破壊事故を未然に防止し、設備の計画的な更新指針を得ることを目的として、劣化診断技術が種々検討されている。
【0003】
従来技術の一つとして、ケーブルに交流電圧を印加して、この時に絶縁体を流れる電流中より前記交流電圧と同位相である損失電流を抽出し、この損失電流中に含まれる高調波成分を用いてケーブルの劣化を診断する方法がある。
この方法で劣化信号として用いられる損失電流中の高調波成分は、水トリーの非線形電気伝導特性に起因して発生するもので、その高調波成分の発生状況を評価することでケーブルの水トリー劣化の状態を診断することができる。
具体的には、ケーブル及びそれと並列に接続された無損失標準コンデンサに商用周波数の交流電圧を印加し、標準コンデンサに流れる電流を用いて、ケーブルに流れる電流中から印加電圧に対して90°進み位相の成分(容量性電流)を除去して損失電流を抽出し、その中の第3高調波成分を劣化信号として用いる。
【0004】
【発明が解決しようとする課題】
一般にケーブルの劣化診断はケーブル終端部が設置されている変電所に診断用の機器を搬入して実施される。
変電所では多数のケーブルや変圧器等の電力機器が設置されており、測定対象ケーブル以外は通常みな稼働状態である。このため、変電所では誘導ノイズが大きく、正確な診断を実施することが困難な場合が少なくない。
これは、誘導ノイズが商用周波数及びその高調波成分から構成されているため、従来方法では水トリーから発生する損失電流中の高調波成分と誘導ノイズ中の高調波成分を分離することができないことによっている。
【0005】
また、診断対象線路が長尺でありケーブルの静電容量が大きい場合、そのケーブルに所定の試験電圧を印加するためには大容量の電源が必要となる。診断実施現場となる変電所で用意できる電源には限りがあり、その場合には診断用の電源として発電機を準備することになる。
従来技術ではこの発電機の出力電圧を変圧器により所定の試験電圧に昇圧してケーブルに印加するのであるが、発電機の出力は一般的に安定ではなく、周波数や電圧が変動する上に高調波成分も相当量含まれるため、前述したケーブルの劣化診断方法には適さない。
本発明は上記事情に鑑みなされたものであって、本発明の目的は、電力ケーブルの劣化診断において、商用周波数とは異なる周波数の電圧を発生する機器を用いて、測定回路外部から進入する商用周波ノイズ及びその高調波ノイズの影響を回避し、ケーブルの劣化に起因して発生する損失電流中の高調波成分のみを得ることである。
【0006】
【課題を解決するための手段】
本発明では、測定対象ケーブルに印加する試験電圧の周波数として、商用周波数の整数倍ではなく、かつ、商用周波数の整数分の1でない周波数を選択し、この交流電圧を電力ケーブルに印加し、この時に絶縁体を流れる電流中より前記交流電圧と同位相である損失電流を抽出する。そして、上記印加した交流電圧の周波数を基準として損失電流信号を平均化処理することで、測定回路外部から進入する商用周波ノイズ及びその高調波ノイズの影響を回避し、ケーブルの劣化に起因して発生する損失電流中の高調波成分のみを得ることを可能にする。
また、上記商用周波数とは異なる周波数の電圧を発生する機器の構成として、本発明では図1に示すように、商用周波数とは異なる周波数であって、商用周波数の整数倍ではなく、かつ、商用周波数の整数分の1でない周波数の交流電圧信号を発生可能な信号波形発生器1と、電力増幅器2と、電力増幅器2からの電圧を所定の試験電圧に昇圧し、測定対象となる電力ケーブル5に印加する試験用変圧器3と、電力ケーブル5の静電容量と並列共振回路を構成する補償リアクトル4を用いた構成としている。
このような試験電圧電圧発生機器とすることで、任意の周波数の試験電圧を発生することが可能になる。
さらに、前記機器構成の中の電力増幅器2では商用電源もしくは発電機の電源から受電した交流電力を一旦直流に変換し、入力される信号波形発生器1からの交流信号に応じた交流電圧を生成して出力するため、商用電源や発電機の電源に一般的に見られる周波数変動や電圧変動、また電源中の高調波成分等の影響を受けずに常に一定の試験電圧を電力ケーブル5に印加することができるという効果もある。
【0007】
本発明で開示されるように、水トリー劣化ケーブルに周波数ft =51Hzの試験電圧を印加した場合、その損失電流中には水トリーの非線形電気伝導特性により3×ft =153Hz、5×ft =255Hz、…といった奇数次の高調波成分に劣化信号が発生する。
一方、周囲の電力機器からの誘導ノイズは商用周波数f=50Hzとその高調波2×f=100Hz、3×f=150Hz、…であるため、劣化信号と誘導ノイズの周波数を分離することができる。
しかし、このときの損失電流は多数の周波数成分を含む上、近接した周波数も存在するため、このままでは定量的な評価をするのには不適切である。そこで、本発明では、さらにこの損失電流をデジタルオシロスコープ等の波形観測装置において、試験電圧の基本周波数に同期した平均化処理を行うことで、誘導ノイズを除去する。
前記例の場合、試験電圧の周波数51Hzと同期する周波数成分である51Hz、153Hz、255Hz、…は平均化処理の後も不変であるが、誘導ノイズの周波数成分である50Hz、100Hz、150Hz、…は51Hzとは同期しないため平均化処理により除去することができる。
上記の効果は、試験電圧の周波数fが51Hzの場合においてのみ発揮されるものではなく、劣化信号として用いる周波数3×ft が誘導ノイズの周波数成分である商用周波数とその高調波成分に一致しないものを選択すれば、同様の効果が得られる。
以上のように、本発明によれば変電所等の測定対象ケーブル以外の稼働中電力機器により誘導ノイズの影響がある場合においても、それらの影響を排除して真の劣化信号のみを抽出することができ、正確な劣化診断を実施することが可能となる。
【0008】
【発明の実施の形態】
図1に本発明の実施例の測定回路を示す。
同図に示すように、商用周波数とは異なる周波数であって、商用周波数の整数倍ではなく、かつ、商用周波数の整数分の1でない周波数(例えば48Hz,51Hz等)の交流電圧信号を発生する信号波形発生器1の出力を電力増幅器2に与える。電力増幅器2は、入力される信号波形発生器1からの交流信号に応じた交流電圧を生成して出力する。
なお、電力増幅器2は、商用電源もしくは発電機の電源から受電した交流電力を一旦直流に変換し、この直流により上記交流信号を電力増幅し、信号波形発生器1の出力に応じた交流電圧を生成する。このため、前記したように周波数変動や電圧変動、また電源中の高調波成分等の影響を受けずに常に一定の試験電圧をケーブルに印加することができる。
電力増幅器2の出力は、電力増幅器2からの電圧を所定の試験電圧に昇圧する試験用変圧器3の一次側端子に印加される。試験用変圧器3の一次側端子間には補償リアクトル4が接続されており、この補償リアクトル4のリアクトルと電力ケーブル5の静電容量とで並列共振回路を構成することにより、電力ケーブル5に流れ込む電流を小さくし、電源容量を小さくすることができる。
【0009】
試験用変圧器3の2次側に発生する電圧は、測定対象となる電力ケーブル5と無損失標準コンデンサ6に印加され、両者に流れる電流を用いて損失電流測定ブリッジ7で試験電圧より90°進み位相の容量性電流の平衡をとり、電力ケーブル5の損失電流を抽出する。
損失電流測定ブリッジ7により得られた損失電流はデジタルオシロスコープ8に与えられる。デジタルオシロスコープ8は、電力ケーブル5に印加される試験電圧波形を基準として平均化処理を行った後、その波形を離散数値データとして取り込む。
すなわち、デジタルオシロスコープ8において、上記試験電圧波形に同期させて、1サイクル分の損失電流を取り出し、1サイクル分の電流を数サイクル分加算して、加算した回数で割ることにより損失電流の平均化処理を行い、これを離散数値データとして取り込む。
デジタルオシロスコープ8で平均化処理された離散数値データは波形解析コンピュータ9に入力され、波形解析コンピュータ9は、この信号をフーリエ(FFT)解析することで、上記基本波成分(例えば51Hz)と、その高調波成分(例えば102Hz、153Hz、204Hz、…)毎の振幅と重畳位相(基本波成分に対する位相差) の値を得る。
前記したように損失電流中の高調波成分は、水トリーの非線形電気伝導特性に起因して発生するので、上記のようにして求めた高調波成分毎の振幅と重畳位相を評価することで電力ケーブルの水トリー劣化の状態を診断することができる。
【0010】
本発明の効果を検証するため、以下の測定を行った。
用いた試料は電圧階級22kV、導体サイズ100mm2 、絶縁厚さ6mmである長さ8mのCVケーブルである。このケーブルは、本測定後に実施した破壊試験及び絶縁体の観察調査により、破壊電圧が60kVであり、絶縁体中に発生している水トリーの最大長が3mmであることが確認されている。
(1)従来方法による劣化信号の測定
測定回路は図2に示すものであり、前記図1に示す測定回路と同様であるが、電源として50Hzの商用電源を用いた。
測定手順は、商用周波数(50Hz)の試験電圧6kVを測定対象電力ケーブル5及び無損失標準コンデンサ6に印加し、両者に流れる電流を用いて損失電流測定ブリッジ7で試験電圧より90°進み位相の容量性電流の平衡をとり、測定対象電力ケーブル5の損失電流を抽出した。
得られた損失電流の波形をデジタルオシロスコープ8で離散数値データとして取り込み、これを波形解析コンピュータ9にてFFT解析することで、損失電流を基本波成分(50Hz)とその高調波成分(100,150,200Hz,…)毎の振幅と重畳位相(基本波成分に対する位相差) の値を得た。
【0011】
上記測定では、まず、誘導ノイズのない測定環境においてデータを取得した後、誘導ノイズのある測定環境においてデータを取得した。誘導ノイズは測定回路の付近に設置した実験用ケーブル線路に3000Aの電流を通電することによって実現した。
測定データより得た、劣化信号として着目すべき損失電流中の第3高調波成分の振幅I3及び重畳位相θ3を表1に示す。
【0012】
【表1】

Figure 0003869283
【0013】
表1より、誘導ノイズありの条件では、ノイズなしの条件のものと比べて第3高調波成分(150Hz)の振幅I3が10倍以上の値となり、重畳位相θ3の値も大きく異なるものとなっていることが確認できる。
すなわち、誘導ノイズありの条件では、真の劣化信号(水トリーから発せられる第3高調波成分)と誘導ノイズ中の第3高調波成分の和を測定してしまうため、正確な診断が不可能なことを意味している。
【0014】
(2)本発明による測定
測定回路としては前記図1に示すものを用い、周波数が51Hzの試験電圧6kVを電力ケーブル5及び無損失標準コンデンサ6に印加し、両者に流れる電流を用いて損失電流測定ブリッジ7で試験電圧より90°進み位相の容量性電流の平衡をとり、電力ケーブル5の損失電流を抽出した。
得られた損失電流の波形をデジタルオシロスコープ8で51Hzの試験電圧波形を基準に平均化処理を行った後に、離散数値データとして取り込み、これを波形解析コンピュータ9でFFT解析した。FFT解析では、基本波成分を51Hzとし、その高調波成分(102,153,204Hz,…)ごとの振幅と重畳位相の値を得た。
この場合も従来方法と同様に、まず、誘導ノイズのない測定環境においてデータを取得した後、誘導ノイズのある測定環境においてデータを取得した。
測定により得た、劣化信号として着目すべき損失電流中の第3高調波成分(151Hz)の振幅I3及び重畳位相θ3を表2に示す。
【0015】
【表2】
Figure 0003869283
【0016】
誘導ノイズなしの場合においては、表2に示した通り第3高調波成分の振振幅I3及び重畳位相θ3とも、従来方法の結果とほぼ同じ値となっており、誘導ノイズの影響がなければ従来方法及び本発明とも当然ながら真の劣化信号を測定できていることがわかる。
さらに、本発明による方法では、誘導ノイズありの場合においても、表2に示した通り、得られた第3高調波成分の振振幅I3及び重畳位相θ3の値が、誘導ノイズなしの場合の結果とほぼ一致している。
すなわち、試験電圧の周波数を商用周波数とは異なる周波数にし、それを基準に損失電流波形の平均化処理を行うことで、誘導ノイズの影響を除去し得ることが確認された。
【0017】
以上のように、本実施例においては、商用周波数とは周波数が異なる51Hzの試験電圧を用い、該試験電圧波形と同期をとって平均化処理を行っているので、商用周波数により生ずる誘導ノイズを消去することができ、誘導ノイズに影響されることなく損失電流の第3高調波成分の振幅、位相を得ることができた。
なお、上記実施例では周波数が51Hzの試験電圧のみを電力ケーブルに印加して測定を行う場合について説明したが、例えば、51Hzの周波数の試験電圧と、その2倍の周波数である102Hzの周波数の試験電圧を重畳して電力ケーブルに印加するように構成してもよい。
周波数が51Hzの試験電圧と、周波数が102Hzの試験電圧を電力ケーブルに重畳印加するには、周波数が51Hzと102Hzの2つの電源を用いて行うことも可能であるが、例えば、信号波形発生器1内で51Hzの信号と102Hzの信号を合成して重畳信号を得たり、あるいは51Hzと102Hzの周波数の信号を合成した波形を出力する関数発生器を用いて、51Hzの信号と102Hzの信号を合成した波形を得て、これを電力増幅器2で電力増幅して、電力ケーブルに印加するようにしてもよい。
【0018】
【発明の効果】
以上説明したように、本発明においては、電力ケーブルに印加する試験電圧の周波数として、商用周波数ではない周波数を選択し、この時に絶縁体を流れる電流中より前記交流電圧と同位相である損失電流を抽出し、上記試験電圧波形を基準として損失電流信号を平均化処理しているので、測定回路外部から進入する誘導ノイズ(商用周波ノイズ及びその高調波ノイズ)を除去することができる。
その結果、従来方法では誘導ノイズの影響により正確な診断が行えなかったような測定環境においても、精度の高い劣化診断方法を実現することが可能となった。
【図面の簡単な説明】
【図1】本発明の実施例の測定回路の構成を示す図である。
【図2】従来方法における測定回路の構成を示す図である。
【符号の説明】
1 信号波形発生器
2 電力増幅器
3 試験用変圧器
4 補償リアクトル
5 測定対象電力ケーブル
6 無損失標準コンデンサ
7 損失電流測定ブリッジ
8 デジタルオシロスコープ
9 波形解析コンピュータ[0001]
BACKGROUND OF THE INVENTION
The present invention eliminates the effects of commercial frequency noise entering from outside the measurement circuit and its harmonic noise in the degradation diagnosis of the power cable, and only the harmonic component in the loss current generated due to the degradation of the cable. The present invention relates to a method for removing inductive noise that can be obtained, and a power cable test apparatus that can perform the deterioration diagnosis of a power cable with high accuracy by removing the influence of the harmonic noise.
[0002]
[Prior art]
A cross-linked polyethylene insulation cable (hereinafter referred to as a cable) that is currently generally used as a power cable has a deterioration form called water tree deterioration. A water tree is an altered part in an insulator generated by the action of an electric field and moisture, and this grows in the direction of the electric field with time. As a result, the insulation performance of the cable gradually decreases.
Therefore, if this is left as it is, an insulation breakdown accident will eventually occur during operation, resulting in a great deal of damage to power consumers.
For this reason, various degradation diagnosis techniques have been studied for the purpose of preventing cable breakdown accidents in advance and obtaining a planned renewal guideline for equipment.
[0003]
As one of the prior arts, an AC voltage is applied to the cable, a loss current having the same phase as the AC voltage is extracted from the current flowing through the insulator at this time, and harmonic components contained in the loss current are extracted. There is a method of diagnosing cable deterioration using the method.
The harmonic component in the loss current used as a degradation signal in this method is generated due to the non-linear electrical conduction characteristics of the water tree. By evaluating the generation state of the harmonic component, the water tree degradation of the cable Can be diagnosed.
Specifically, an AC voltage of commercial frequency is applied to the cable and a lossless standard capacitor connected in parallel thereto, and the current flowing through the standard capacitor is used to advance 90 ° from the current flowing through the cable with respect to the applied voltage. The phase component (capacitive current) is removed to extract the loss current, and the third harmonic component therein is used as the degradation signal.
[0004]
[Problems to be solved by the invention]
In general, cable deterioration diagnosis is performed by bringing diagnostic equipment into a substation where a cable terminal is installed.
Many power devices such as cables and transformers are installed at the substation, and all the cables other than the measurement target cables are normally in operation. For this reason, inductive noise is large in substations, and it is often difficult to perform an accurate diagnosis.
This is because the induced noise is composed of the commercial frequency and its harmonic components, so the conventional method cannot separate the harmonic component in the loss current generated from the water tree from the harmonic component in the induced noise. It depends on.
[0005]
Further, when the line to be diagnosed is long and the capacitance of the cable is large, a large-capacity power source is required to apply a predetermined test voltage to the cable. There is a limit to the power sources that can be prepared at the substation where the diagnosis is performed. In that case, a generator is prepared as a power source for diagnosis.
In the prior art, the output voltage of the generator is boosted to a predetermined test voltage by a transformer and applied to the cable. However, the output of the generator is generally not stable, and the frequency and voltage fluctuate and the harmonics vary. Since a considerable amount of wave components are included, it is not suitable for the above-described cable deterioration diagnosis method.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a commercial cable that enters from the outside of a measurement circuit using a device that generates a voltage having a frequency different from the commercial frequency in the deterioration diagnosis of a power cable. It is to avoid the influence of frequency noise and its harmonic noise, and to obtain only the harmonic component in the loss current generated due to the deterioration of the cable.
[0006]
[Means for Solving the Problems]
In the present invention, as the frequency of the test voltage applied to the measurement target cable, a frequency that is not an integral multiple of the commercial frequency and is not an integral fraction of the commercial frequency is selected, and this AC voltage is applied to the power cable. Sometimes, a loss current having the same phase as the AC voltage is extracted from the current flowing through the insulator. And by averaging the loss current signal based on the frequency of the applied AC voltage, the influence of commercial frequency noise and its harmonic noise entering from the outside of the measurement circuit is avoided, resulting in cable deterioration. Only harmonic components in the generated loss current can be obtained.
Further, as a configuration of a device that generates a voltage having a frequency different from the commercial frequency, in the present invention, as shown in FIG. 1, the frequency is different from the commercial frequency and is not an integral multiple of the commercial frequency. A signal waveform generator 1 capable of generating an alternating voltage signal having a frequency that is not an integral fraction of a frequency, a power amplifier 2, and a voltage from the power amplifier 2 are boosted to a predetermined test voltage, and a power cable 5 to be measured And a compensation reactor 4 that constitutes a parallel resonance circuit with the capacitance of the test transformer 3 applied to the power cable 5.
By using such a test voltage voltage generator, a test voltage having an arbitrary frequency can be generated.
Further, in the power amplifier 2 in the device configuration, the AC power received from the commercial power source or the power source of the generator is once converted into DC, and an AC voltage corresponding to the AC signal from the input signal waveform generator 1 is generated. Therefore, a constant test voltage is always applied to the power cable 5 without being affected by frequency fluctuations and voltage fluctuations commonly found in commercial power supplies and generator power supplies, and harmonic components in the power supplies. There is also an effect that can be done.
[0007]
As disclosed in the present invention, when a test voltage having a frequency ft = 51 Hz is applied to a water tree deteriorated cable, 3 × ft = 153 Hz, 5 × ft = Deterioration signals are generated in odd harmonic components such as 255 Hz.
On the other hand, since the induction noise from the surrounding power equipment is the commercial frequency f = 50 Hz and its harmonics 2 × f = 100 Hz, 3 × f = 150 Hz,..., The frequency of the degradation signal and the induction noise can be separated. .
However, the loss current at this time includes a large number of frequency components, and there are also adjacent frequencies, so that it is inappropriate for quantitative evaluation as it is. Therefore, in the present invention, the induced noise is removed by performing an averaging process for the loss current in a waveform observation device such as a digital oscilloscope in synchronization with the basic frequency of the test voltage.
In the case of the above example, 51 Hz, 153 Hz, 255 Hz, etc., which are frequency components synchronized with the test voltage frequency 51 Hz, remain unchanged after the averaging process, but 50 Hz, 100 Hz, 150 Hz,... Is not synchronized with 51 Hz and can be removed by averaging processing.
The above effect is not exhibited only when the frequency f of the test voltage is 51 Hz, and the frequency 3 × ft used as the degradation signal does not match the commercial frequency that is the frequency component of the induction noise and its harmonic component. If is selected, the same effect can be obtained.
As described above, according to the present invention, even when there is an influence of inductive noise due to an operating power device other than a measurement target cable such as a substation, only the true deterioration signal is extracted by eliminating the influence. Therefore, accurate deterioration diagnosis can be performed.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a measurement circuit according to an embodiment of the present invention.
As shown in the figure, an AC voltage signal having a frequency that is different from the commercial frequency, is not an integral multiple of the commercial frequency, and is not a fraction of the commercial frequency (for example, 48 Hz, 51 Hz, etc.) is generated. The output of the signal waveform generator 1 is given to the power amplifier 2. The power amplifier 2 generates and outputs an AC voltage corresponding to the AC signal from the input signal waveform generator 1.
The power amplifier 2 temporarily converts the AC power received from the commercial power source or the power source of the generator into a direct current, amplifies the AC signal with this direct current, and generates an AC voltage according to the output of the signal waveform generator 1. Generate. For this reason, as described above, a constant test voltage can always be applied to the cable without being affected by frequency fluctuations, voltage fluctuations, harmonic components in the power supply, and the like.
The output of the power amplifier 2 is applied to the primary side terminal of the test transformer 3 that boosts the voltage from the power amplifier 2 to a predetermined test voltage. A compensation reactor 4 is connected between the primary terminals of the test transformer 3, and the reactor of the compensation reactor 4 and the electrostatic capacity of the power cable 5 constitute a parallel resonance circuit. The flowing current can be reduced and the power supply capacity can be reduced.
[0009]
The voltage generated on the secondary side of the test transformer 3 is applied to the power cable 5 and the lossless standard capacitor 6 to be measured, and 90 ° from the test voltage by the loss current measurement bridge 7 using the current flowing in both. The loss current of the power cable 5 is extracted by balancing the forward phase capacitive current.
The loss current obtained by the loss current measurement bridge 7 is given to the digital oscilloscope 8. The digital oscilloscope 8 performs an averaging process based on the test voltage waveform applied to the power cable 5, and then captures the waveform as discrete numerical data.
That is, in the digital oscilloscope 8, the loss current for one cycle is taken out in synchronization with the test voltage waveform, the current for one cycle is added for several cycles, and the loss current is averaged by dividing by the number of additions. Processing is performed and this is captured as discrete numerical data.
Discrete numerical data averaged by the digital oscilloscope 8 is input to a waveform analysis computer 9, and the waveform analysis computer 9 performs Fourier (FFT) analysis on this signal, and the fundamental wave component (for example, 51 Hz) and its The amplitude and the superimposed phase (phase difference with respect to the fundamental component) for each harmonic component (for example, 102 Hz, 153 Hz, 204 Hz,...) Are obtained.
As described above, the harmonic component in the loss current is generated due to the non-linear electrical conduction characteristics of the water tree. Therefore, by evaluating the amplitude and the superimposed phase for each harmonic component obtained as described above, It is possible to diagnose the state of cable water tree degradation.
[0010]
In order to verify the effect of the present invention, the following measurements were performed.
The sample used is a CV cable having a voltage class of 22 kV, a conductor size of 100 mm 2 and an insulation thickness of 6 mm and a length of 8 m. This cable has been confirmed to have a breakdown voltage of 60 kV and a maximum length of a water tree generated in the insulator of 3 mm by a destructive test and an insulator observation survey conducted after this measurement.
(1) A measurement circuit for measuring a degradation signal by a conventional method is shown in FIG. 2 and is the same as the measurement circuit shown in FIG. 1, but a commercial power supply of 50 Hz was used as the power supply.
The measurement procedure involves applying a commercial voltage (50 Hz) test voltage of 6 kV to the power cable 5 to be measured and the lossless standard capacitor 6 and using the current flowing in both, the loss current measurement bridge 7 advances the phase by 90 ° from the test voltage. The loss of the measurement target power cable 5 was extracted by balancing the capacitive current.
The obtained loss current waveform is captured as discrete numerical data by the digital oscilloscope 8 and is subjected to FFT analysis by the waveform analysis computer 9 so that the loss current is converted into a fundamental wave component (50 Hz) and its harmonic components (100, 150). , 200 Hz,...) Values of amplitude and superposition phase (phase difference with respect to the fundamental wave component) were obtained.
[0011]
In the above measurement, first, data was acquired in a measurement environment without induced noise, and then data was acquired in a measurement environment with induced noise. Inductive noise was realized by passing a current of 3000 A through an experimental cable line installed in the vicinity of the measurement circuit.
Table 1 shows the amplitude I3 and the superimposed phase θ3 of the third harmonic component in the loss current to be noted as the deterioration signal obtained from the measurement data.
[0012]
[Table 1]
Figure 0003869283
[0013]
From Table 1, under the condition with inductive noise, the amplitude I3 of the third harmonic component (150 Hz) is 10 times or more as compared with the condition without noise, and the value of the superposition phase θ3 is also greatly different. Can be confirmed.
That is, under conditions with induced noise, the true degradation signal (third harmonic component emitted from the water tree) and the sum of the third harmonic component in the induced noise are measured, so accurate diagnosis is impossible. It means that.
[0014]
(2) As the measurement and measurement circuit according to the present invention, the one shown in FIG. 1 is used, a test voltage 6 kV having a frequency of 51 Hz is applied to the power cable 5 and the lossless standard capacitor 6, and the current flowing through both is used as a loss current. The measurement bridge 7 is 90 ° ahead of the test voltage to balance the capacitive current in phase, and the loss current of the power cable 5 is extracted.
The obtained loss current waveform was averaged by the digital oscilloscope 8 based on the test voltage waveform of 51 Hz, and then taken as discrete numerical data, which was subjected to FFT analysis by the waveform analysis computer 9. In the FFT analysis, the fundamental wave component was set to 51 Hz, and the amplitude and superposed phase values for each of the harmonic components (102, 153, 204 Hz,...) Were obtained.
Also in this case, as in the conventional method, first, data was acquired in a measurement environment without induced noise, and then data was acquired in a measurement environment with induced noise.
Table 2 shows the amplitude I3 and the superimposed phase θ3 of the third harmonic component (151 Hz) in the loss current to be noted as the deterioration signal obtained by the measurement.
[0015]
[Table 2]
Figure 0003869283
[0016]
In the case of no induced noise, as shown in Table 2, both the amplitude I3 of the third harmonic component and the superimposed phase θ3 are substantially the same as the results of the conventional method. It can be seen that both the method and the present invention are able to measure a true degradation signal.
Furthermore, in the method according to the present invention, as shown in Table 2, the values of the amplitude I3 and the superposed phase θ3 of the obtained third harmonic component are the results when there is no induced noise even when there is induced noise. Is almost the same.
That is, it was confirmed that the influence of the induction noise can be removed by setting the frequency of the test voltage to a frequency different from the commercial frequency and performing the averaging process of the loss current waveform based on the frequency.
[0017]
As described above, in this embodiment, a 51 Hz test voltage different from the commercial frequency is used, and the averaging process is performed in synchronization with the test voltage waveform. The amplitude and phase of the third harmonic component of the loss current could be obtained without being affected by the induction noise.
In the above embodiment, the case where the measurement is performed by applying only the test voltage having a frequency of 51 Hz to the power cable has been described. For example, the test voltage having a frequency of 51 Hz and the frequency of 102 Hz which is twice the frequency are described. You may comprise so that a test voltage may be superimposed and applied to a power cable.
In order to superimpose and apply a test voltage with a frequency of 51 Hz and a test voltage with a frequency of 102 Hz to a power cable, it is possible to use two power sources with a frequency of 51 Hz and 102 Hz. For example, a signal waveform generator A 51 Hz signal and a 102 Hz signal are synthesized by combining a 51 Hz signal and a 102 Hz signal, or using a function generator that outputs a waveform obtained by synthesizing a 51 Hz and 102 Hz frequency signal. It is also possible to obtain a combined waveform, amplify the power with the power amplifier 2, and apply it to the power cable.
[0018]
【The invention's effect】
As described above, in the present invention, a frequency that is not a commercial frequency is selected as the frequency of the test voltage applied to the power cable, and at this time, a loss current that is in phase with the AC voltage from among the current flowing through the insulator. Since the loss current signal is averaged with reference to the test voltage waveform, induction noise (commercial frequency noise and its harmonic noise) entering from the outside of the measurement circuit can be removed.
As a result, it has become possible to realize a highly accurate deterioration diagnosis method even in a measurement environment where the conventional method cannot perform an accurate diagnosis due to the influence of induced noise.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a measurement circuit according to an embodiment of the present invention.
FIG. 2 is a diagram showing a configuration of a measurement circuit in a conventional method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Signal waveform generator 2 Power amplifier 3 Test transformer 4 Compensation reactor 5 Measuring object power cable 6 Lossless standard capacitor 7 Loss current measurement bridge 8 Digital oscilloscope 9 Waveform analysis computer

Claims (2)

電力ケーブルに交流電圧を印加して、この時に絶縁体を流れる電流中より前記交流電圧と同位相である損失電流を抽出し、この損失電流中に含まれる高調波成分を用いて劣化診断を行う電力ケーブルの劣化診断における誘導ノイズの除去方法であって、
商用周波数とは異なる周波数であって、商用周波数の整数倍ではなく、かつ、商用周波数の整数分の1でない周波数を持つ交流電圧を電力ケーブルに印加し、
その際測定された損失電流信号から前記交流電圧の周波数に同期させて、1サイクル分の損失電流を取り出し、1サイクル分の損失電流を数サイクル加算し、加算した回数で割ることにより、前記交流電圧の周波数に同期した平均化処理を行って、上記損失電流中に含まれる誘導ノイズ分を除去する
ことを特徴とする電力ケーブルの劣化診断における誘導ノイズの除去方法。
When an AC voltage is applied to the power cable, a loss current having the same phase as the AC voltage is extracted from the current flowing through the insulator at this time, and deterioration diagnosis is performed using the harmonic component contained in the loss current. A method for removing inductive noise in power cable deterioration diagnosis,
An AC voltage having a frequency different from the commercial frequency, not an integer multiple of the commercial frequency, and having a frequency that is not an integral number of the commercial frequency is applied to the power cable;
The alternating current voltage is synchronized with the frequency of the alternating voltage from the measured loss current signal, and the loss current for one cycle is taken out, the loss current for one cycle is added for several cycles, and divided by the number of times of addition. A method for removing induced noise in a deterioration diagnosis of a power cable, wherein an averaging process synchronized with a voltage frequency is performed to remove an induced noise component included in the loss current.
電力ケーブルに交流電圧を印加して、この時に絶縁体を流れる電流中より前記交流電圧と同位相である損失電流を抽出し、この損失電流中に含まれる高調波成分を用いて電力ケーブルの劣化診断を行う電力ケーブル試験装置であって、
商用周波数とは異なる周波数であって、商用周波数の整数倍ではなく、かつ、商用周波数の整数分の1でない周波数の交流電圧信号を発生可能な信号波形発生器と、
その信号を基準に電力を増幅する電力増幅器と、
上記電力増幅器からの電圧を所定の試験電圧に昇圧し、試験対象となる電力ケーブルに印加する試験用変圧器と、
電力ケーブルの静電容量と並列共振回路を構成する上記試験用変圧器の端子間に接続された補償リアクトルと、
電力ケーブルの絶縁体を流れる電流中より前記交流電圧と同位相である損失電流を抽出する損失電流測定ブリッジと、
損失電流ブリッジにより測定された損失電流信号から前記交流電圧の周波数に同期させて、1サイクル分の損失電流を取り出し、1サイクル分の損失電流を数サイクル加算し、加算した回数で割ることにより、前記交流電圧の周波数に同期した平均化処理を行う手段と、損失電流中に含まれる高調波成分を抽出する手段とを備えた
ことを特徴とする電力ケーブルの試験装置。
When an AC voltage is applied to the power cable, a loss current having the same phase as the AC voltage is extracted from the current flowing through the insulator at this time, and the degradation of the power cable is performed using the harmonic component contained in the loss current. A power cable testing device for performing diagnosis,
A signal waveform generator capable of generating an AC voltage signal having a frequency different from the commercial frequency, not an integral multiple of the commercial frequency, and a frequency that is not an integral fraction of the commercial frequency;
A power amplifier that amplifies power based on the signal;
Boosting the voltage from the power amplifier to a predetermined test voltage and applying it to a power cable to be tested;
A compensation reactor connected between the terminals of the test transformer and the capacitance of the power cable and the parallel resonant circuit;
A loss current measurement bridge that extracts a loss current that is in phase with the AC voltage from the current flowing through the insulator of the power cable;
By synchronizing the frequency of the AC voltage from the loss current signal measured by the loss current bridge , taking out the loss current for one cycle, adding several cycles of the loss current for one cycle, and dividing by the number of additions, An apparatus for testing a power cable, comprising: means for performing an averaging process synchronized with the frequency of the AC voltage; and means for extracting a harmonic component contained in the loss current.
JP2002036444A 2002-02-14 2002-02-14 Method for removing inductive noise in power cable deterioration diagnosis and power cable test apparatus Expired - Lifetime JP3869283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002036444A JP3869283B2 (en) 2002-02-14 2002-02-14 Method for removing inductive noise in power cable deterioration diagnosis and power cable test apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002036444A JP3869283B2 (en) 2002-02-14 2002-02-14 Method for removing inductive noise in power cable deterioration diagnosis and power cable test apparatus

Publications (2)

Publication Number Publication Date
JP2003240815A JP2003240815A (en) 2003-08-27
JP3869283B2 true JP3869283B2 (en) 2007-01-17

Family

ID=27778329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002036444A Expired - Lifetime JP3869283B2 (en) 2002-02-14 2002-02-14 Method for removing inductive noise in power cable deterioration diagnosis and power cable test apparatus

Country Status (1)

Country Link
JP (1) JP3869283B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103380367A (en) * 2011-04-07 2013-10-30 三菱电机株式会社 Moisture content detection device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101893672B (en) * 2010-07-03 2012-10-31 太原理工大学 Mine high-voltage cable state monitoring and fault diagnosis prewarning device
JP4942838B2 (en) * 2010-08-23 2012-05-30 株式会社リコー Image forming apparatus
CN103954890B (en) * 2014-04-10 2017-02-15 国家电网公司 DC partial discharge detection device and method for converter transformer
DE102017116613B3 (en) * 2017-07-24 2018-08-09 Maschinenfabrik Reinhausen Gmbh Method and test device for measuring partial discharge pulses of a shielded cable
CN107677943A (en) * 2017-10-25 2018-02-09 广西电网有限责任公司电力科学研究院 A kind of High Voltage XLPE Power Cable and its annex fundamental wave superposition multiple-harmonic experimental rig
CN112540272B (en) * 2020-11-23 2024-04-02 重庆大学 GIS equipment mechanical vibration abnormal sound defect simulation system and method
CN115184180B (en) * 2022-09-09 2022-11-15 安格诺尔(江苏)智能电气有限公司 Immersion water thermal cycle test device for 220kV cable intermediate joint

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103380367A (en) * 2011-04-07 2013-10-30 三菱电机株式会社 Moisture content detection device
CN103380367B (en) * 2011-04-07 2016-01-27 三菱电机株式会社 Moisture content detection device

Also Published As

Publication number Publication date
JP2003240815A (en) 2003-08-27

Similar Documents

Publication Publication Date Title
Liu et al. A study of the sweep frequency impedance method and its application in the detection of internal winding short circuit faults in power transformers
Fuhr et al. Identification and localization of PD-sources in power-transformers and power-generators
Hu et al. Transfer function characterization for HFCTs used in partial discharge detection
JP4267713B2 (en) Degradation diagnosis method for power cables
Wu Design of partial discharge real-time capture system
CN113358914B (en) Voltage measurement circuit, voltage measurement method thereof and voltage measurement equipment
JP3869283B2 (en) Method for removing inductive noise in power cable deterioration diagnosis and power cable test apparatus
Heizmann et al. On-site partial discharge measurements on premoulded cross-bonding joints of 170 kV XLPE and EPR cables
Yang et al. Frequency domain spectroscopy measurements of oil-paper insulation for energized transformers
US20210356507A1 (en) State analysis of an electrical operating resource
Shanmugam et al. Influence of the load on the impulse frequency response approach based diagnosis of transformer’s inter-turn short-circuit
Dolce et al. Test instrument for the automatic compliance check of cast resin insulated windings for power transformers
Zhao et al. Test and analysis of harmonic responses of high voltage instrument voltage transformers
Ushakov et al. Diagnostics of High-Voltage Equipment by Defectography Methods
Crotti et al. Calibration of MV voltage instrument transformer in a wide frequency range
KR20140038261A (en) Apparatus for diagnosing a transformer and method for the same
Soltani et al. Compensation of the effects of electrical sensors in measuring partial discharge signals
Raedler et al. Electrical interferences in SFRA measurements
Crotti et al. Frequency calibration of MV voltage transformer under actual waveforms
JP4092645B2 (en) Degradation diagnosis method for power cables
Bucci et al. Online SFRA characterization of a batch of induction motors for predictive maintenance
Radler et al. Electrical interferences in SFRA measurements–How to overcome undesirable effects
JP2002196030A (en) Method for diagnosing deterioration of power cable
JP4100536B2 (en) High frequency noise removal method in power quality diagnosis
Matthee et al. Versatile high-sample frequency power quality measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061012

R151 Written notification of patent or utility model registration

Ref document number: 3869283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term