JP4100536B2 - High frequency noise removal method in power quality diagnosis - Google Patents

High frequency noise removal method in power quality diagnosis Download PDF

Info

Publication number
JP4100536B2
JP4100536B2 JP2000400570A JP2000400570A JP4100536B2 JP 4100536 B2 JP4100536 B2 JP 4100536B2 JP 2000400570 A JP2000400570 A JP 2000400570A JP 2000400570 A JP2000400570 A JP 2000400570A JP 4100536 B2 JP4100536 B2 JP 4100536B2
Authority
JP
Japan
Prior art keywords
phase
frequency
noise
voltage
phase voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000400570A
Other languages
Japanese (ja)
Other versions
JP2002202329A (en
Inventor
雅弘 冥賀
知行 彦坂
信哉 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Fuji Electric Co Ltd
Original Assignee
Tokyo Electric Power Co Inc
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Fuji Electric Holdings Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP2000400570A priority Critical patent/JP4100536B2/en
Publication of JP2002202329A publication Critical patent/JP2002202329A/en
Application granted granted Critical
Publication of JP4100536B2 publication Critical patent/JP4100536B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、三相配電系統において、電力品質を診断し、維持、管理するために使用される電力品質診断装置の測定電圧に重畳された高周波ノイズを除去するための高周波ノイズ除去方法に関するものである。
【0002】
【従来の技術】
従来、電力品質診断装置を用いて系統の線間電圧を測定する場合には、高圧または特別高圧需要家配電盤内のVCT(計器用変圧変流器)の二次側に試験用開閉器を接続し、その実負荷プラグ部において電圧を測定するのが標準的な測定方法である(例えば、特開平6−331656号公報参照)。
このような測定方法を用いる理由としては、高所作業が不要であり、測定作業に要する時間や人員の削減が可能であると共に、活線測定を行う場合に測定点が低圧である(110V)こと等が挙げられる。
【0003】
図6は、上述した標準的な測定方法を実施するためのVCT、試験用開閉器、電力品質診断装置等の接続例であり、10は三相(便宜的にa相、b相、c相とする)配電系統に接続されたVCT、20はVCT10の二次側に接続された試験用開閉器、30はパソコン等の電力品質診断装置、40は電力量計である。なお、試験用開閉器20の出力側には分圧器等からなるインターフェース回路が設けられているが、このインターフェース回路は便宜上、電力品質診断装置30に内蔵されているものとして図示を省略する。
【0004】
【発明が解決しようとする課題】
上述した従来の標準測定方法では、三相のうちab相の線間電圧測定値Vabとbc相の線間電圧測定値Vbcとを用いてca相の線間電圧Vcaを計算しているが、VCTのb相の二次側接地線50に接続された機器(図示せず)からの高周波電流に起因する接地線ノイズが、線間電圧測定値Vab,Vbcに重畳されることがある。その結果、ca相の線間電圧Vcaと総合歪率(全ての周波数成分の二乗積算値の平方と基本波実効値との比)が他相のデータよりも大きめになる場合がある。
このため、線間電圧の測定精度が悪く、電力品質の診断に支障をきたしていた。
そこで本発明は、電力変換装置の転流ノッチ振動等によって系統に定常的に存在する高周波ノイズ以外の、接地線ノイズのみを除去することにより、線間電圧の測定精度を向上させるようにした高周波ノイズ除去方法を提供することを解決課題とするものである。
【0005】
【課題を解決するための手段】
上記課題を解決するため、請求項1記載の発明は、三相配電系統の電力品質を診断するために三相配電系統から検出した線間電圧の高周波ノイズを除去する方法において、第1,第2の相の線間電圧の測定結果と、第1,第3の相の線間電圧の測定結果とを用いて、第1の相を基準としたクラーク座標系におけるα相電圧を求める第1ステップと、第1,第2の相の線間電圧と、第1,第3の相の線間電圧と、α相電圧とのそれぞれについてFFT演算等により周波数スペクトルを求める第2ステップと、α相電圧の周波数スペクトルにおける基本波成分を基準として各周波数成分を規格化する第3ステップと、α相電圧の周波数スペクトルを対象として、振幅が所定のしきい値を超える周波数成分のみを信号成分とし、それ以外の周波数成分をノイズ成分とみなす第4ステップと、第4ステップでノイズ成分と見なされた周波数成分を、第1,第2の相の線間電圧の周波数成分及び第1,第3の相の線間電圧の周波数成分からそれぞれ除去し、これらのノイズ成分が除去された後の周波数成分に対して逆FFT演算を行うことにより、第1,第2の相の線間電圧及び第1,第3の相の線間電圧を得る第5ステップと、
を有するものである。
【0006】
請求項2記載の発明は、三相配電系統の電力品質を診断するために三相配電系統から検出した線間電圧の高周波ノイズを除去する方法において、
第1,第2の相の線間電圧の測定結果と、第1,第3の相の線間電圧の測定結果とを用いて、第1の相を基準としたクラーク座標系におけるα相電圧及びβ電圧を求める第1ステップと、
第1,第2の相の線間電圧と、第1,第3の相の線間電圧と、α相電圧とのそれぞれについて周波数スペクトルを求める第2ステップと、
α相電圧の周波数スペクトルにおける基本波成分を基準として各周波数成分を規格化する第3ステップと、
α相電圧の周波数スペクトルを対象として、振幅が所定のしきい値を超える周波数成分のみを信号成分とし、それ以外の周波数成分をノイズ成分とみなす第4ステップと、
第4ステップでノイズ成分と見なされた周波数成分を、β相電圧の周波数成分から除去し、このノイズ成分が除去された後の周波数成分に対して逆αβ変換を行うことにより、第1,第2の相の線間電圧及び第1,第3の相の線間電圧を得る第5ステップと、
を有するものである。
【0007】
【発明の実施の形態】
以下、図に沿って本発明の実施形態を説明する。
まず、図2は、接地線ノイズが非常に多く発生している場合の、66kV系特別高圧需要家におけるVCTの二次側試験用開閉器を介して測定した各相線間電圧の波形図(1周期分)及び周波数スペクトルを示している。ここで、ca相電圧(以下、「○×相電圧」とは○相、×相の線間電圧を意味する。)Vcaは、ab相電圧Vab、bc相電圧Vbcの測定値から、Vca=−(Vab+Vbc)というベクトル演算により求めたものであり、各周波数スペクトルは、高速フーリエ変換(FFT)により得られた基本波成分の振幅を100%として各周波数成分の振幅を規格化したものである。
【0008】
また、図3は、図2の測定データをαβ変換することにより計算した、クラーク座標系におけるb相基準のα相電圧、β相電圧の波形図及び周波数スペクトルを示している。
ここで、クラーク座標法(α−β−0座標法)では、良く知られているように三相の電圧、電流を数式1、数式2のように変換する。
【0009】
【数1】

Figure 0004100536
【0010】
【数2】
Figure 0004100536
【0011】
数式1,数式2における0成分は対象座標法における零相成分と同一である。数式1,数式2をそれぞれ変換すると、数式3,数式4が得られる。
【0012】
【数3】
Figure 0004100536
【0013】
【数4】
Figure 0004100536
【0014】
また、電圧、電流がそれぞれ平衡であるとき、数式5,数式6が成立する。
【0015】
【数5】
Figure 0004100536
【0016】
【数6】
Figure 0004100536
【0017】
なお、上記クラーク座標法については、例えば「新版 電気工学ハンドブック」(社団法人電気学会発行)p.924〜p.925等に記載されている。
このクラーク座標法を用いて、図2の測定データに基づきb相を基準としたα相電圧及びβ相電圧を求めると、図3のようになる。
図2,図3から以下の現象が発生することが判る。
【0018】
(1)図2から、ab相電圧、bc相電圧には同極性、同一振幅の高周波ノイズが重畳するため、これらを用いて計算したca相電圧に現れる高周波ノイズは他の線間電圧の約2倍の振幅を有する。
(2)図2のca相電圧に現れていた高周波ノイズは、図3によればb相基準のα相電圧には現れず、β相電圧のみに現れる。
【0019】
一方、接地線ノイズが無視できるほど少なく、転流ノッチ振動が系統に発生している場合の、6.6kV系高圧需要家におけるVCTの二次側試験用開閉器を介して測定した各相線間電圧の波形図及び周波数スペクトルを図4に示し、クラーク座標法によるb相基準のα相電圧、β相電圧の波形図及び周波数スペクトルを図5に示す。
これらの図4,図5から、系統に定常的に存在する高周波ノイズは、b相基準のα相電圧、β相電圧の双方に同じように現れることが判る。
従って、b相基準のα相電圧の周波数スペクトルに存在せずβ相電圧の周波数スペクトルに存在する高周波成分は接地線ノイズによるものとみなすことができ、このβ相電圧の周波数スペクトルに存在する高周波成分を分離して各線間電圧から除去すれば、接地線ノイズの影響を除いた正確な線間電圧を求めることができる。
【0020】
以下、本実施形態において接地線ノイズを除去する手順を図1を参照しつつ説明する。
図1において、始めに、図6に示したVCT10二次側の試験用開閉器20の実負荷プラグ部においてab相電圧、bc相電圧を測定し(更にこれらのab相電圧、bc相電圧を用いてca相電圧を計算し)、その測定結果から、クラーク座標法によりb相を基準としたα相電圧、β相電圧を計算する(第1ステップS1)。なお、後述するが、請求項1の発明の実施形態では、ノイズ除去処理に当たってβ相電圧を直接使用することはない。
次に、ab相電圧、bc相電圧、α相電圧のそれぞれについてFFT演算を行い、周波数スペクトルを求める(第2ステップS2)。
【0021】
更に、α相電圧の周波数成分のうち、基本波成分の振幅を100%として、各周波数成分の振幅を規格化する(第3ステップS3)。ここで、規格化された各周波数成分のうち、その振幅が予め設定したしきい値(例えば0.1%)を超えるもののみを信号成分とし、それ以外の周波数成分をノイズ成分とみなす(第4ステップS4)。
【0022】
請求項1に記載した発明では、上記ステップS1〜S4に続けて、次の第5ステップS51を実行する。
すなわち、ab相電圧、bc相電圧の周波数成分のうち、第4ステップS4においてノイズ成分とみなされた周波数成分を除去し、逆FFT変換を行うことにより、ノイズ成分を除去したab相電圧、bc相電圧を得る(第5ステップS51)。
【0023】
また、請求項2に記載した発明では、上記ステップS1〜S4に続けて、次の第5ステップS52を実行する。
つまり、b相基準のβ相電圧の周波数成分のうち、第4ステップS4においてノイズ成分とみなされた周波数成分を除去し、その後、α−β−0座標系からa,b,c座標系へ逆αβ変換を行うことにより、ノイズ成分を除去したab相電圧、bc相電圧を得る(第5ステップS52)。
【0024】
ここで、図7は、図4の測定データ(接地線ノイズが無視できるほど少なく、転流ノッチ振動が系統に発生している場合の各線間電圧波形及び周波数スペクトル)に対して、請求項1の発明により上記ステップS1〜S4,S51のノイズ処理を実行した場合の各線間電圧波形及び周波数スペクトルを示している。
すなわち、図5(b)のα相電圧の周波数成分のうちでしきい値を超えるもの以外の周波数成分をノイズ成分とみなし(前記第4ステップS4)、これらのノイズ成分を図4(b),(d)のab相電圧、bc相電圧の周波数成分から除去すると共に、逆FFT演算を行なって(前記第5ステップS51)得たノイズ処理後のab相電圧波形及び周波数スペクトルが図7(a),(b)であり、bc相電圧波形及び周波数スペクトルが図7(c),(d)である。また、これらに基づいて計算されたca相電圧波形及び周波数スペクトルが図7(e),(f)である。
図4と図7とを比較すると、対応する各線間電圧波形はほぼ同一に見えるが、周波数スペクトルに着目した場合、一部の周波数成分の高周波ノイズが除去されていることが判る。
【0025】
図8は、接地線ノイズが非常に多く発生している図2の測定データに対して、請求項2の発明により上記ステップS1〜S4,S52のノイズ除去処理を実行した場合の各線間電圧波形及び周波数スペクトルを示している。
すなわち、図3(b)のα相電圧の周波数成分のうちでしきい値を超えるもの以外の周波数成分をノイズ成分とみなし(前記第4ステップS4)、これらのノイズ成分を図3(d)のβ相電圧の周波数成分から除去すると共に、逆αβ演算を行なって(前記第5ステップS52)得たノイズ処理後のab相電圧波形及び周波数スペクトルが図8(a),(b)であり、bc相電圧波形及び周波数スペクトルが図8(c),(d)である。また、これらに基づいて計算されたca相電圧波形及び周波数スペクトルが図8(e),(f)である。
図2と図8とを比較すると、図2の測定データに含まれていた約1.3kHz以上の高周波成分が図8では除去されており、接地線ノイズを含む広範囲の高周波ノイズが除去されていることがわかる。
【0026】
更に、図9は、6.6kV系のある高圧需要家におけるVCTの二次側試験用開閉器を介して測定した各相線間電圧の波形図及び周波数スペクトルであり、接地線ノイズが発生した場合のものである。図10はこれらの電圧をクラーク座標系に変換したものであって、図10(a)はα相電圧の波形図、(b)はその周波数スペクトル、(c)はβ相電圧の波形図、(d)はその周波数スペクトルを示す。また、(e)は(d)の周波数スペクトルのうち各周波数成分の振幅がしきい値を超えるもの以外のノイズ成分を除去した後のβ相電圧の波形図、(f)はその周波数スペクトルである。
【0027】
これらのデータに対し、図11は請求項1の発明の実施形態によるステップS1〜S4,S51のノイズ除去処理を実行した場合の各線間電圧波形及び周波数スペクトルを示している。つまり、図9(b),(d)の周波数成分からノイズ成分を除去した後で逆FFT変換を行って得たノイズ処理後のab相電圧波形及び周波数スペクトルが図11(a),(b)であり、bc相電圧波形及び周波数スペクトルが図11(c),(d)である。また、これらのab相電圧及びbc相電圧から求めたca相電圧波形及び周波数スペクトルが図11(e),(f)である。
【0028】
更に、図12は請求項2の発明の実施形態によるステップS1〜S4,S52のノイズ除去処理を実行した場合の各線間電圧波形及び周波数スペクトルを示している。つまり、図10(d)の周波数成分からノイズ成分を除去した後で逆αβ変換を行って得たノイズ処理後のab相電圧波形及び周波数スペクトルが図12(a),(b)であり、bc相電圧波形及び周波数スペクトルが図12(c),(d)である。また、これらのab相電圧及びbc相電圧から求めたca相電圧波形及び周波数スペクトルが図12(e),(f)である。
【0029】
これらの図11と図12を比較して明らかなように、請求項1または2の何れの方法を用いても、図9に現れた約0.7kHz以上の接地線ノイズを含む高周波ノイズが除去されており、本発明のノイズ除去方法が有効であることが確認されている。
【0030】
【発明の効果】
以上のように本発明によれば、高圧または特別高圧需要家において行われる電力品質の診断に当たり、VCTの二次側接地線に起因する接地線ノイズの影響を除去して、系統の線間電圧を正確に測定することが可能になる。これにより、電力品質の診断精度を向上させることができる。
【図面の簡単な説明】
【図1】本発明の実施形態によるノイズ除去処理を示すフローチャートである。
【図2】接地線ノイズが非常に多く発生している場合の、各線間電圧の1周期分の波形図及び周波数スペクトルを示す図である。
【図3】図2の測定データに基づいて計算したb相基準のα相電圧、β相電圧の波形図及び周波数スペクトルを示す図である。
【図4】接地線ノイズが無視できるほど小さい場合の、各線間電圧の1周期分の波形図及び周波数スペクトルを示す図である。
【図5】図4の測定データに基づいて計算したb相基準のα相電圧、β相電圧の波形図及び周波数スペクトルを示す図である。
【図6】電力品質診断における線間電圧の標準的な測定システムの構成図である。
【図7】図4の測定データに対して請求項1の発明によるノイズ除去処理を行ったときの、各線間電圧波形及び周波数スペクトルを示す図である。
【図8】図2の測定データに対して請求項2の発明によりノイズ除去処理を実行した場合の各線間電圧波形及び周波数スペクトルを示す図である。
【図9】接地線ノイズが非常に多く発生している場合の、各線間電圧の1周期分の波形図及び周波数スペクトルを示す図である。
【図10】図9の測定データに基づいて計算したb相基準のα相電圧、β相電圧、ノイズ除去後のβ相電圧の波形図及び周波数スペクトルを示す図である。
【図11】図9,図10のデータに対して、請求項1の発明によるノイズ除去処理を行ったときの、各線間電圧波形及び周波数スペクトルを示す図である。
【図12】図9,図10のデータに対して、請求項2の発明によるノイズ除去処理を行ったときの、各線間電圧波形及び周波数スペクトルを示す図である。
【符号の説明】
10 VCT
20 試験用開閉器
30 電力品質診断装置
40 電力量計
50 接地線[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-frequency noise removal method for removing high-frequency noise superimposed on a measurement voltage of a power quality diagnostic device used for diagnosing, maintaining, and managing power quality in a three-phase power distribution system. is there.
[0002]
[Prior art]
Conventionally, when measuring the line voltage of a system using a power quality diagnostic device, a test switch is connected to the secondary side of the VCT (instrument transformer) in the high voltage or special high voltage consumer switchboard. The standard measurement method is to measure the voltage at the actual load plug portion (see, for example, Japanese Patent Laid-Open No. 6-331656).
The reason for using such a measurement method is that no work at high places is required, the time and personnel required for the measurement work can be reduced, and the measurement point is at a low pressure when performing live line measurement (110 V). And so on.
[0003]
FIG. 6 is a connection example of a VCT, a test switch, a power quality diagnostic device, etc. for carrying out the standard measurement method described above, and 10 is a three-phase (a phase, b phase, c phase for convenience). VCT connected to the distribution system, 20 is a test switch connected to the secondary side of the VCT 10, 30 is a power quality diagnostic device such as a personal computer, and 40 is a watt hour meter. Note that an interface circuit composed of a voltage divider or the like is provided on the output side of the test switch 20, but this interface circuit is not shown because it is built in the power quality diagnostic device 30 for convenience.
[0004]
[Problems to be solved by the invention]
In the conventional standard measurement method described above, the line voltage V ca of the ca phase is calculated using the line voltage measurement value V ab of the ab phase out of the three phases and the line voltage measurement value V bc of the bc phase. However, ground line noise caused by high-frequency current from a device (not shown) connected to the b-phase secondary ground line 50 of the VCT is superimposed on the line voltage measurement values V ab and V bc. Sometimes. As a result, the line voltage V ca of the ca phase and the overall distortion (ratio of the square sum of squares of all frequency components and the fundamental effective value) may be larger than the data of the other phases.
For this reason, the measurement accuracy of the line voltage is poor, and the power quality diagnosis has been hindered.
Therefore, the present invention improves the measurement accuracy of the line voltage by removing only the ground line noise other than the high frequency noise that is constantly present in the system due to the commutation notch vibration of the power converter. It is an object of the present invention to provide a noise removal method.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 is a method for removing high-frequency noise of a line voltage detected from a three-phase power distribution system in order to diagnose the power quality of the three-phase power distribution system. The first phase for obtaining the α-phase voltage in the Clarke coordinate system based on the first phase, using the measurement result of the line voltage of the second phase and the measurement result of the line voltage of the first and third phases. A second step of obtaining a frequency spectrum by FFT calculation or the like for each of the step, the line voltage of the first and second phases, the line voltage of the first and third phases, and the α phase voltage; The third step of normalizing each frequency component with reference to the fundamental wave component in the frequency spectrum of the phase voltage, and only the frequency component whose amplitude exceeds a predetermined threshold for the frequency spectrum of the α-phase voltage as a signal component , Other frequency components The fourth step regarded as the noise component and the frequency component regarded as the noise component in the fourth step are the frequency component of the line voltage of the first and second phases and the line voltage of the first and third phases. By removing each of the frequency components and performing an inverse FFT operation on the frequency components after removal of these noise components, the line voltages of the first and second phases and the first and third phases A fifth step of obtaining a line voltage;
It is what has.
[0006]
The invention according to claim 2 is a method for removing high-frequency noise of a line voltage detected from a three-phase distribution system in order to diagnose the power quality of the three-phase distribution system.
The α phase voltage in the Clarke coordinate system based on the first phase using the measurement results of the line voltages of the first and second phases and the measurement results of the line voltages of the first and third phases. And a first step for obtaining a β- phase voltage;
A second step of determining a frequency spectrum for each of the first and second phase line voltages, the first and third phase line voltages, and the α-phase voltage;
a third step of normalizing each frequency component with reference to the fundamental component in the frequency spectrum of the α-phase voltage;
For the frequency spectrum of the α-phase voltage, a fourth step in which only frequency components whose amplitude exceeds a predetermined threshold is regarded as a signal component, and other frequency components are regarded as noise components,
By removing the frequency component regarded as the noise component in the fourth step from the frequency component of the β-phase voltage and performing inverse αβ transformation on the frequency component after the noise component is removed, A fifth step of obtaining a line voltage of the two phases and a line voltage of the first and third phases;
It is what has.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, FIG. 2 is a waveform diagram of each line-to-line voltage measured through a secondary test switch of a VCT in a 66 kV system special high voltage consumer when ground line noise is very large ( 1 period) and the frequency spectrum. Here, the ca phase voltage (hereinafter, “Ox phase voltage” means the line voltage of the O phase and the X phase) V ca is obtained from the measured values of the ab phase voltage V ab and the bc phase voltage V bc. , V ca = − (V ab + V bc ), and each frequency spectrum has an amplitude of the fundamental component obtained by fast Fourier transform (FFT) as 100%. Is standardized.
[0008]
FIG. 3 shows a waveform diagram and a frequency spectrum of the b-phase reference α-phase voltage and β-phase voltage in the Clark coordinate system, which are calculated by subjecting the measurement data of FIG. 2 to αβ conversion.
Here, in the Clarke coordinate method (α-β-0 coordinate method), three-phase voltages and currents are converted into Equations 1 and 2 as is well known.
[0009]
[Expression 1]
Figure 0004100536
[0010]
[Expression 2]
Figure 0004100536
[0011]
The zero component in Equations 1 and 2 is the same as the zero phase component in the target coordinate method. When Formula 1 and Formula 2 are converted, Formula 3 and Formula 4 are obtained.
[0012]
[Equation 3]
Figure 0004100536
[0013]
[Expression 4]
Figure 0004100536
[0014]
Further, when the voltage and the current are balanced, Expressions 5 and 6 are established.
[0015]
[Equation 5]
Figure 0004100536
[0016]
[Formula 6]
Figure 0004100536
[0017]
The Clarke coordinate method is described in, for example, “New Edition Electrical Engineering Handbook” (published by the Institute of Electrical Engineers of Japan) p.924-p.925.
Using this Clarke coordinate method, the α-phase voltage and β-phase voltage based on the b-phase are obtained based on the measurement data of FIG.
2 and 3, it can be seen that the following phenomenon occurs.
[0018]
(1) From FIG. 2, high frequency noise of the same polarity and the same amplitude is superimposed on the ab phase voltage and the bc phase voltage, so the high frequency noise appearing in the ca phase voltage calculated using these is approximately the same as other line voltages. It has twice the amplitude.
(2) According to FIG. 3, the high-frequency noise that appeared in the ca-phase voltage in FIG. 2 does not appear in the b-phase reference α-phase voltage but appears only in the β-phase voltage.
[0019]
On the other hand, each phase line measured through a VCT secondary-side test switch in a 6.6 kV high-voltage consumer when ground line noise is negligibly small and commutation notch vibration is generated in the system. A waveform diagram and a frequency spectrum of the inter-voltage are shown in FIG. 4, and a waveform diagram and a frequency spectrum of the b-phase reference α-phase voltage and β-phase voltage by the Clarke coordinate method are shown in FIG.
4 and 5, it can be seen that the high-frequency noise that is constantly present in the system appears in the same way in both the α-phase voltage and β-phase voltage of the b-phase reference.
Therefore, a high frequency component that does not exist in the frequency spectrum of the α phase voltage based on the b phase but exists in the frequency spectrum of the β phase voltage can be regarded as being caused by ground line noise. If the components are separated and removed from each line voltage, an accurate line voltage excluding the influence of ground line noise can be obtained.
[0020]
Hereinafter, a procedure for removing ground line noise in the present embodiment will be described with reference to FIG.
In FIG. 1, first, the ab phase voltage and the bc phase voltage are measured at the actual load plug portion of the test switch 20 on the secondary side of the VCT 10 shown in FIG. 6 (these ab phase voltage and bc phase voltage are further measured). The ca phase voltage is used to calculate the α phase voltage and the β phase voltage based on the b phase by the Clarke coordinate method (first step S1). As will be described later, in the embodiment of the first aspect of the invention, the β-phase voltage is not directly used in the noise removal processing.
Next, an FFT calculation is performed for each of the ab phase voltage, the bc phase voltage, and the α phase voltage to obtain a frequency spectrum (second step S2).
[0021]
Furthermore, out of the frequency components of the α-phase voltage, the amplitude of the fundamental component is set to 100%, and the amplitude of each frequency component is normalized (third step S3). Here, among the standardized frequency components, only those whose amplitude exceeds a preset threshold value (for example, 0.1%) are regarded as signal components, and other frequency components are regarded as noise components (first). 4 step S4).
[0022]
In the invention described in claim 1, following the above steps S1 to S4, the following fifth step S51 is executed.
That is, out of the frequency components of the ab-phase voltage and the bc-phase voltage, the frequency component regarded as the noise component in the fourth step S4 is removed and the inverse FFT transform is performed, so that the ab-phase voltage, bc from which the noise component has been removed. A phase voltage is obtained (fifth step S51).
[0023]
In the second aspect of the invention, the following fifth step S52 is executed following the steps S1 to S4.
That is, the frequency component regarded as the noise component in the fourth step S4 is removed from the frequency component of the b-phase reference β-phase voltage, and then the α-β-0 coordinate system is changed to the a, b, c coordinate system. By performing inverse αβ conversion, an ab-phase voltage and a bc-phase voltage from which noise components have been removed are obtained (fifth step S52).
[0024]
Here, FIG. 7 shows the measurement data of FIG. 4 (each line voltage waveform and frequency spectrum when the ground line noise is negligibly small and commutation notch vibration is generated in the system). The line voltage waveform and frequency spectrum when the noise processing of steps S1 to S4 and S51 is executed according to the invention of FIG.
That is, frequency components other than those exceeding the threshold among the frequency components of the α-phase voltage in FIG. 5B are regarded as noise components (the fourth step S4), and these noise components are represented in FIG. 4B. , (D) are removed from the frequency components of the ab phase voltage and bc phase voltage, and the inverse FFT operation is performed (fifth step S51), and the ab phase voltage waveform and frequency spectrum after noise processing obtained are shown in FIG. FIG. 7C and FIG. 7D show the bc phase voltage waveform and the frequency spectrum. Moreover, the ca phase voltage waveform and frequency spectrum calculated based on these are FIG.7 (e) and (f).
Comparing FIG. 4 and FIG. 7, the corresponding line voltage waveforms appear to be almost the same, but it can be seen that high-frequency noise of some frequency components is removed when attention is paid to the frequency spectrum.
[0025]
FIG. 8 shows each line voltage waveform when the noise removal processing of steps S1 to S4 and S52 is executed according to the invention of claim 2 for the measurement data of FIG. And a frequency spectrum.
That is, frequency components other than those exceeding the threshold among the frequency components of the α-phase voltage in FIG. 3B are regarded as noise components (the fourth step S4), and these noise components are represented in FIG. 8A and 8B show the ab phase voltage waveform and the frequency spectrum after the noise processing obtained by performing the inverse αβ calculation (the fifth step S52). , Bc phase voltage waveform and frequency spectrum are shown in FIGS. Moreover, the ca phase voltage waveform and frequency spectrum calculated based on these are FIGS. 8 (e) and 8 (f).
Comparing FIG. 2 and FIG. 8, the high frequency component of about 1.3 kHz or more included in the measurement data of FIG. 2 is removed in FIG. 8, and a wide range of high frequency noise including ground line noise is removed. I understand that.
[0026]
Further, FIG. 9 is a waveform diagram and frequency spectrum of each line-to-line voltage measured through a VCT secondary-side test switch in a 6.6 kV system high-voltage consumer, and ground line noise was generated. Is the case. FIG. 10 shows these voltages converted into the Clarke coordinate system, FIG. 10 (a) is a waveform diagram of the α-phase voltage, (b) is its frequency spectrum, (c) is a waveform diagram of the β-phase voltage, (D) shows the frequency spectrum. (E) is a waveform diagram of the β-phase voltage after removing noise components other than those in which the amplitude of each frequency component exceeds the threshold value in the frequency spectrum of (d), and (f) is the frequency spectrum. is there.
[0027]
For these data, FIG. 11 shows each line voltage waveform and frequency spectrum when the noise removal processing of steps S1 to S4 and S51 according to the embodiment of the invention of claim 1 is executed. That is, the ab phase voltage waveform and frequency spectrum after noise processing obtained by performing inverse FFT conversion after removing noise components from the frequency components of FIGS. 9B and 9D are shown in FIGS. ), And the bc phase voltage waveform and the frequency spectrum are shown in FIGS. Further, the ca phase voltage waveform and the frequency spectrum obtained from these ab phase voltage and bc phase voltage are shown in FIGS.
[0028]
Further, FIG. 12 shows each line voltage waveform and frequency spectrum when the noise removal processing of steps S1 to S4 and S52 according to the embodiment of the invention of claim 2 is executed. That is, the ab phase voltage waveform and frequency spectrum after noise processing obtained by performing inverse αβ conversion after removing the noise component from the frequency component of FIG. 10D are FIGS. 12A and 12B. The bc phase voltage waveform and frequency spectrum are shown in FIGS. Moreover, the ca phase voltage waveform and frequency spectrum which were calculated | required from these ab phase voltage and bc phase voltage are FIG.12 (e), (f).
[0029]
As is clear from comparison between FIG. 11 and FIG. 12, high-frequency noise including ground line noise of about 0.7 kHz or more appearing in FIG. 9 is removed by using either method of claim 1 or 2. It has been confirmed that the noise removal method of the present invention is effective.
[0030]
【The invention's effect】
As described above, according to the present invention, in the power quality diagnosis performed in a high voltage or extra high voltage consumer, the influence of the ground line noise caused by the secondary ground line of the VCT is removed, and the line voltage of the system is reduced. Can be measured accurately. Thereby, the diagnostic accuracy of electric power quality can be improved.
[Brief description of the drawings]
FIG. 1 is a flowchart illustrating noise removal processing according to an embodiment of the present invention.
FIG. 2 is a diagram showing a waveform diagram and a frequency spectrum for one cycle of each line voltage when a large amount of ground line noise is generated.
3 is a diagram illustrating a b-phase reference α-phase voltage, a β-phase voltage waveform diagram, and a frequency spectrum calculated based on the measurement data of FIG. 2; FIG.
FIG. 4 is a waveform diagram and a frequency spectrum for one cycle of each line voltage when ground line noise is negligibly small.
FIG. 5 is a diagram illustrating a b-phase reference α-phase voltage, a β-phase voltage waveform diagram, and a frequency spectrum calculated based on the measurement data of FIG. 4;
FIG. 6 is a configuration diagram of a standard measurement system for line voltage in power quality diagnosis.
7 is a diagram showing each line voltage waveform and frequency spectrum when the noise removal processing according to the first aspect of the present invention is performed on the measurement data of FIG. 4; FIG.
8 is a diagram showing each line voltage waveform and frequency spectrum when noise removal processing is performed on the measurement data of FIG. 2 according to the invention of claim 2; FIG.
FIG. 9 is a diagram showing a waveform diagram and a frequency spectrum for one cycle of each line voltage when a large amount of ground line noise is generated.
10 is a diagram showing a b-phase reference α-phase voltage, β-phase voltage, and β-phase voltage after noise removal, and a frequency spectrum calculated based on the measurement data of FIG. 9; FIG.
11 is a diagram showing each line voltage waveform and frequency spectrum when the noise removal processing according to the invention of claim 1 is performed on the data of FIGS. 9 and 10. FIG.
12 is a diagram showing each line voltage waveform and frequency spectrum when noise removal processing according to the invention of claim 2 is performed on the data of FIGS. 9 and 10. FIG.
[Explanation of symbols]
10 VCT
20 Test Switch 30 Power Quality Diagnosis Device 40 Energy Meter 50 Grounding Wire

Claims (2)

三相配電系統の電力品質を診断するために三相配電系統から検出した線間電圧の高周波ノイズを除去する方法において、
第1,第2の相の線間電圧の測定結果と、第1,第3の相の線間電圧の測定結果とを用いて、第1の相を基準としたクラーク座標系におけるα相電圧を求める第1ステップと、
第1,第2の相の線間電圧と、第1,第3の相の線間電圧と、α相電圧とのそれぞれについて周波数スペクトルを求める第2ステップと、
α相電圧の周波数スペクトルにおける基本波成分を基準として各周波数成分を規格化する第3ステップと、
α相電圧の周波数スペクトルを対象として、振幅が所定のしきい値を超える周波数成分のみを信号成分とし、それ以外の周波数成分をノイズ成分とみなす第4ステップと、
第4ステップでノイズ成分と見なされた周波数成分を、第1,第2の相の線間電圧の周波数成分及び第1,第3の相の線間電圧の周波数成分からそれぞれ除去し、これらのノイズ成分が除去された後の周波数成分に基づいて、第1,第2の相の線間電圧及び第1,第3の相の線間電圧を得る第5ステップと、
を有することを特徴とする、電力品質診断における高周波ノイズ除去方法。
In the method of removing high-frequency noise of the line voltage detected from the three-phase distribution system to diagnose the power quality of the three-phase distribution system,
The α phase voltage in the Clarke coordinate system based on the first phase using the measurement results of the line voltages of the first and second phases and the measurement results of the line voltages of the first and third phases. A first step for determining
A second step of determining a frequency spectrum for each of the first and second phase line voltages, the first and third phase line voltages, and the α-phase voltage;
a third step of normalizing each frequency component with reference to the fundamental component in the frequency spectrum of the α-phase voltage;
For the frequency spectrum of the α-phase voltage, a fourth step in which only frequency components whose amplitude exceeds a predetermined threshold is regarded as a signal component, and other frequency components are regarded as noise components,
The frequency components regarded as noise components in the fourth step are removed from the frequency components of the line voltages of the first and second phases and the frequency components of the line voltages of the first and third phases, respectively. A fifth step of obtaining line voltages of the first and second phases and line voltages of the first and third phases based on the frequency component after the noise component is removed;
A high-frequency noise removal method in power quality diagnosis, characterized by comprising:
三相配電系統の電力品質を診断するために三相配電系統から検出した線間電圧の高周波ノイズを除去する方法において、
第1,第2の相の線間電圧の測定結果と、第1,第3の相の線間電圧の測定結果とを用いて、第1の相を基準としたクラーク座標系におけるα相電圧及びβ電圧を求める第1ステップと、
第1,第2の相の線間電圧と、第1,第3の相の線間電圧と、α相電圧とのそれぞれについて周波数スペクトルを求める第2ステップと、
α相電圧の周波数スペクトルにおける基本波成分を基準として各周波数成分を規格化する第3ステップと、
α相電圧の周波数スペクトルを対象として、振幅が所定のしきい値を超える周波数成分のみを信号成分とし、それ以外の周波数成分をノイズ成分とみなす第4ステップと、
第4ステップでノイズ成分と見なされた周波数成分を、β相電圧の周波数成分から除去し、このノイズ成分が除去された後の周波数成分に基づいて、第1,第2の相の線間電圧及び第1,第3の相の線間電圧を得る第5ステップと、
を有することを特徴とする、電力品質診断における高周波ノイズ除去方法。
In the method of removing high-frequency noise of the line voltage detected from the three-phase distribution system to diagnose the power quality of the three-phase distribution system,
The α phase voltage in the Clarke coordinate system based on the first phase using the measurement results of the line voltages of the first and second phases and the measurement results of the line voltages of the first and third phases. And a first step for obtaining a β- phase voltage;
A second step of determining a frequency spectrum for each of the first and second phase line voltages, the first and third phase line voltages, and the α-phase voltage;
a third step of normalizing each frequency component with reference to the fundamental component in the frequency spectrum of the α-phase voltage;
For the frequency spectrum of the α-phase voltage, a fourth step in which only frequency components whose amplitude exceeds a predetermined threshold is regarded as a signal component, and other frequency components are regarded as noise components,
The frequency component regarded as the noise component in the fourth step is removed from the frequency component of the β-phase voltage, and the line voltage of the first and second phases is based on the frequency component after the noise component is removed. And a fifth step of obtaining line voltages of the first and third phases;
A high-frequency noise removal method in power quality diagnosis, characterized by comprising:
JP2000400570A 2000-12-28 2000-12-28 High frequency noise removal method in power quality diagnosis Expired - Fee Related JP4100536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000400570A JP4100536B2 (en) 2000-12-28 2000-12-28 High frequency noise removal method in power quality diagnosis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000400570A JP4100536B2 (en) 2000-12-28 2000-12-28 High frequency noise removal method in power quality diagnosis

Publications (2)

Publication Number Publication Date
JP2002202329A JP2002202329A (en) 2002-07-19
JP4100536B2 true JP4100536B2 (en) 2008-06-11

Family

ID=18865137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000400570A Expired - Fee Related JP4100536B2 (en) 2000-12-28 2000-12-28 High frequency noise removal method in power quality diagnosis

Country Status (1)

Country Link
JP (1) JP4100536B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100668959B1 (en) 2004-10-30 2007-01-12 한국전력공사 The remote terminal unit for distribution automation that can be monitored electrical quality on realtime in distribution network
CN103558441A (en) * 2013-10-25 2014-02-05 兰州交通大学 Noise removing method for contact net insulator leaked currents
CN108226637A (en) * 2017-01-04 2018-06-29 中国矿业大学(北京) A kind of any order component detection method with frequency variation adaptability
CN108020736A (en) * 2017-11-15 2018-05-11 哈尔滨理工大学 A kind of power quality detection method

Also Published As

Publication number Publication date
JP2002202329A (en) 2002-07-19

Similar Documents

Publication Publication Date Title
Qian et al. Interharmonics analysis based on interpolating windowed FFT algorithm
Jaya et al. Accelerating dielectric response measurements on power transformers—Part I: A frequency-domain approach
EP2113994A2 (en) Systems and methods for reducing distortion in a power source using an active harmonics filter
Baldwin et al. Directional ground-fault indicator for high-resistance grounded systems
Sumner et al. Real time parameter estimation for power quality control and intelligent protection of grid-connected power electronic converters
Cataliotti et al. Current transformers effects on the measurement of harmonic active power in LV and MV networks
US6199023B1 (en) System for removing spurious signatures in motor current signature analysis
Kulkarni et al. Time-domain algorithm for locating evolving faults
JP3234339B2 (en) Power measuring apparatus and method
Borkowski A new method for noninvasive measurement of grid harmonic impedance with data selection
JP4100536B2 (en) High frequency noise removal method in power quality diagnosis
CN108919026B (en) Live detection method for leakage current of lightning arrester
CN114002475A (en) Lightning arrester resistive current on-line monitoring method
JP2002311061A (en) Processor for electric power
CN111175670B (en) Ground fault inversion implementation method of distribution automation test system
Chen et al. Locating sub-cycle faults in distribution network applying half-cycle DFT method
Tentzerakis et al. Measurement of wind farm harmonic emissions
Correa-Tapasco et al. Robustness of a generalized impedance based fault locator considering distorted measurements
JP3869283B2 (en) Method for removing inductive noise in power cable deterioration diagnosis and power cable test apparatus
Cataliotti et al. A time-domain strategy for the measurement of IEEE Standard 1459-2000 power quantities in nonsinusoidal three-phase and single-phase systems
Xie et al. Harmonic impedance measurement of 25 kV single phase AC supply systems
KR101207665B1 (en) Method for measuring ripple voltage, and circuit for the same, and device equipped therewith
Nicolae et al. Estimating Inductances of Coils with Ferromagnetic Cores with a Data Acquisition System in a Noisy Environment
Ouaddi et al. Determination of the high frequency parameters of the power transformer used in the railway substation
Alfieri et al. Waveform distortion assessment in power systems with a new three-step sliding-window method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees