JPH08122388A - Layer short detector - Google Patents

Layer short detector

Info

Publication number
JPH08122388A
JPH08122388A JP6256466A JP25646694A JPH08122388A JP H08122388 A JPH08122388 A JP H08122388A JP 6256466 A JP6256466 A JP 6256466A JP 25646694 A JP25646694 A JP 25646694A JP H08122388 A JPH08122388 A JP H08122388A
Authority
JP
Japan
Prior art keywords
coil
partial discharge
interlayer
short
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6256466A
Other languages
Japanese (ja)
Inventor
Kenji Takahashi
賢司 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6256466A priority Critical patent/JPH08122388A/en
Publication of JPH08122388A publication Critical patent/JPH08122388A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

PURPOSE: To detect the stage of partial discharge sustaining for a long term between the layers before making a transition to layer short by employing a variable voltage source as a test power supply and providing an electrode for scanning along the coil of an electric apparatus thereby detecting a high frequency potential oscillation caused by partial discharge of the electrode. CONSTITUTION: A test voltage equal to the interlayer withstand voltage is generated from a power supply 1 and applied directly to a coil 2 being inspected. If the interlayer insulation of the coil 2 is deteriorated, a partial discharge 3 takes place at a deteriorated part upon application of the withstand voltage. If an interlayer discharge 3 takes place, high frequency potential oscillation appears on a movable electrode 4 due to discharge 3 and the oscillation is introduced through a detection lead 11 to a partial discharge monitor 6. Consequently, the partial discharge part can be specified by scanning the electrode along the coil 2 using an insulation rod 10 and locating a position where the potential of the electrode is highest through the monitor 6. Since the voltage is applied only across the coil and not applied to the ground insulation 9, the interlayer insulation can be tested separately from the insulation 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、誘導機、誘導電圧調整
器、同期機、変圧器、計器用変成器等の電気機器の製作
工場、又はこれら機器が現場に据え付けられた後の層間
短絡を診断する層間短絡検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a manufacturing plant for electric equipment such as induction machines, induction voltage regulators, synchronous machines, transformers, and transformers for measuring instruments, or an inter-layer short circuit after these equipments are installed on site. The present invention relates to an interlayer short-circuit detection device for diagnosing.

【0002】[0002]

【従来の技術】まず、電気機器の層間絶縁と対地絶縁の
区別を図4を参照して説明する。図4(a)に示すよう
に、電気機器のコイル導体15の外周には層間絶縁8が
施され、コイルを必要回数巻いた後、対地絶縁9が施さ
れている。このような巻線構成では対地絶縁9の破壊
(地絡事故16)の前に必ず層間絶縁8の破壊(層間短
絡12)が存在する。
2. Description of the Related Art First, the distinction between interlayer insulation and ground insulation of electric equipment will be described with reference to FIG. As shown in FIG. 4A, the interlayer insulation 8 is applied to the outer periphery of the coil conductor 15 of the electric device, and the ground insulation 9 is applied after the coil is wound a required number of times. In such a winding structure, the interlayer insulation 8 is always destroyed (interlayer short circuit 12) before the ground insulation 9 is destroyed (ground fault 16).

【0003】層間短絡12は図4(b)に示すように、
これら電気機器のコイル導体15の層間絶縁の弱い部分
より部分放電3が始まるが、従来の層間短絡検出装置で
はこの初期の段階の部分放電は層間にかかる電圧が小さ
いため検出できなかった。この部分放電から図4(c)
に示すように、層間短絡事故17に進展すればコイルの
ターン間が層間短絡するので、コイルのインピーダンス
が小さくなるから検出は容易になり、この状態の層間短
絡検出装置は各種提案されている。
The inter-layer short circuit 12 is, as shown in FIG.
The partial discharge 3 starts from the portion of the coil conductor 15 of these electric devices where the interlayer insulation is weak, but the conventional interlayer short-circuit detection device cannot detect the partial discharge at the initial stage because the voltage applied between the layers is small. From this partial discharge, Fig. 4 (c)
As shown in (1), if the inter-layer short-circuit accident 17 progresses, inter-layer short-circuiting occurs between the turns of the coil, and the impedance of the coil decreases, which facilitates detection, and various inter-layer short-circuit detection devices in this state have been proposed.

【0004】しかし、層間短絡に進展すると、短絡箇所
のインピーダンスが小さいため、大きな短絡電流が流れ
急速に対地絶縁9を熱劣化させ、その結果、短時間のう
ちに図4(d)に示すように、地絡事故16等の重大事
故に進展する。
However, when the inter-layer short-circuit progresses, the impedance of the short-circuited portion is small, so that a large short-circuit current flows and the ground insulation 9 is rapidly deteriorated by heat. As a result, as shown in FIG. Then, a serious accident such as a ground fault accident 16 progresses.

【0005】従って、従来種々提案されている層間短絡
検出装置では、実用に供する事が困難であり、現実にも
製品として見当らない。また、層間短絡の保護リレーと
して特殊なものを除き、現在の産業分野では使用されて
いない。現在、広く使用されているのは層間短絡から地
絡又は相間短絡に至った状態で始めて動作する各種地絡
検出リレー、差動リレー、過電流リレー等である。
Therefore, various conventionally proposed interlayer short-circuit detecting devices are difficult to put into practical use, and are not actually found as products. Moreover, it is not used in the current industrial field except for a special one as a protection relay for interlayer short circuit. At present, widely used are various ground fault detection relays, differential relays, overcurrent relays, and the like, which operate for the first time in a state in which an interlayer short circuit leads to a ground fault or an interphase short circuit.

【0006】誘導機、誘導電圧調整器、同期機、変圧
器、計器用変成器等の電気機器は、発電所を始めとして
各種産業プラントに広く使われており、社会的にもそれ
らの停止は重大な影響をもたらすため地絡、短絡に至る
前に定期点検等を利用して層間短絡の初期状態を検出
し、層間短絡の初期状態が検出されたコイルは次回定検
時に更新すると言うような予防保全措置が必要である。
Electrical equipment such as induction machines, induction voltage regulators, synchronous machines, transformers, and transformers for measuring instruments are widely used in various industrial plants including power plants, and they cannot be stopped socially. Since it has a serious effect, the initial state of the interlayer short-circuit is detected by using regular inspection before reaching the ground fault or short-circuit, and the coil in which the initial state of the interlayer short-circuit is detected is updated at the next regular inspection. Preventive maintenance measures are required.

【0007】次に、従来の代表的な層間短絡検出装置の
原理を図5により説明する。まず、S相とT相の被検査
コイル2に対して外部のサージ電圧発生装置18により
サージ電圧19を印加する。S相とT相の被検査コイル
2が層間短絡を起こしていなければ両コイルの長さ(サ
ージ伝搬距離)とインピーダンスは基本的に等しいか
ら、これら被検査コイル2に流れる電流は等しく、鉄心
20の中のこれら電流による起磁力は打ち消し合い、鉄
心20に巻いた検出巻線21にはコイル間の電磁結合ア
ンバランス分による小電流しか流れない。
Next, the principle of a typical conventional interlayer short-circuit detecting device will be described with reference to FIG. First, a surge voltage 19 is applied to the S-phase and T-phase tested coils 2 by an external surge voltage generator 18. If the S-phase and T-phase inspected coils 2 do not cause an interlayer short circuit, the lengths of both coils (surge propagation distance) and the impedance are basically equal, so the currents flowing through these inspected coils 2 are equal and the iron core 20 The magnetomotive forces due to these currents in the coil cancel each other out, and only a small current flows due to the electromagnetic coupling imbalance between the coils in the detection winding 21 wound around the iron core 20.

【0008】しかし、層間短絡がS相またはT相の被検
査コイルのいずれかに発生すれば、図4(c)の層間短
絡事故17よりも明らかなように、コイルのターン数が
減るのでサージ伝搬距離に差異ができる。即ち反射を含
むサージ伝搬状況に差ができ、それが電流の差として検
出される。これからも分かるように、従来の検出装置は
層間短絡の初期状態では無く、完全に層間短絡に移行し
た状態を検出するようになっており、このような状態に
なってからでは短時間のうちに図4(c)の対地絶縁9
が劣化してしまうので、時間的余裕をもって対処する事
ができない。また層間絶縁の劣化状態が健全レベルにあ
るか又は要注意レベルにあるか又は不合格レベルにある
のか診断する事もできない。
However, if an inter-layer short-circuit occurs in either the S-phase or T-phase coil to be inspected, the number of coil turns decreases, as is clear from the inter-layer short-circuit accident 17 in FIG. There is a difference in propagation distance. That is, there is a difference in the surge propagation state including reflection, which is detected as a difference in current. As can be seen from this, the conventional detection device detects not the initial state of the inter-layer short circuit but the state in which the inter-layer short circuit is completely completed. Ground insulation 9 in FIG. 4 (c)
Cannot be dealt with with enough time because it deteriorates. In addition, it is not possible to diagnose whether the deterioration state of the interlayer insulation is at a sound level, at a caution level, or at a fail level.

【0009】[0009]

【発明が解決しようとする課題】通常、層間短絡は最初
層間絶縁8の劣化により図4(b)のように部分放電3
から始まる。この部分放電3は層間に運転中かかる電圧
が小さいため長期間続くので、この間の定期点検でこの
初期状態を捕まえれば次回計画停止又は定期点検まで時
間的余裕があり当該コイルの更新を行える。ここで、運
転中の層間電圧が低い事例として、6.6KV−280
KW−8Pの誘導電動機の層間電圧を示すと約8Vにす
ぎない。
Normally, the interlayer short circuit is caused by the deterioration of the interlayer insulation 8 at the beginning of the partial discharge 3 as shown in FIG. 4 (b).
start from. This partial discharge 3 lasts for a long period of time because the voltage applied between the layers during operation is small, so if this initial state is caught during the periodic inspection during this period, there will be time until the next scheduled stop or periodic inspection, and the coil can be updated. Here, as an example in which the interlayer voltage during operation is low, 6.6 KV-280
The interlayer voltage of the KW-8P induction motor is only about 8V.

【0010】本発明は上記問題を解消するためになされ
たもので、その目的は層間短絡に移行する前の層間で長
期間続く部分放電の段階を検出する層間短絡検出装置を
提供することにある。
The present invention has been made to solve the above problems, and an object thereof is to provide an interlayer short-circuit detecting device for detecting a stage of partial discharge that lasts for a long period between layers before shifting to interlayer short-circuit. .

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1は、誘導機、誘導電圧調整器、同
期機、変圧器、計器用変成器等の電気機器の層間短絡検
出装置において、試験電源として可変電圧電源を用い、
前記電気機器のコイルに沿って走査する電極を設け、前
記電極の部分放電による高周波電位振動を検出すること
により前記電気機器コイルの部分放電部位を特定したこ
とを特徴とする。
In order to achieve the above object, the first aspect of the present invention provides an interlayer short-circuit of an electric machine such as an induction machine, an induction voltage regulator, a synchronous machine, a transformer, a transformer for a meter. In the detection device, using a variable voltage power supply as a test power supply,
An electrode for scanning is provided along a coil of the electric device, and a partial discharge part of the coil of the electric device is specified by detecting high-frequency potential oscillation due to partial discharge of the electrode.

【0012】本発明の請求項2は、請求項1記載の層間
短絡検出装置において、試験電源として可変周波数電源
を用いたことを特徴とする。本発明の請求項3は、請求
項1記載の層間短絡検出装置において、試験電源として
可変電圧・可変周波数電源を用いたことを特徴とする。
According to a second aspect of the present invention, in the interlayer short-circuit detecting device according to the first aspect, a variable frequency power source is used as a test power source. According to a third aspect of the present invention, in the interlayer short-circuit detecting device according to the first aspect, a variable voltage / variable frequency power source is used as a test power source.

【0013】本発明の請求項4は、請求項1乃至請求項
3記載の層間短絡検出装置において、前記電気機器の検
査コイル上を走査する可動電極が最大の電位を示す箇所
を、前記電気機器コイルの部分放電個所であると判定す
ることを特徴とする。
According to a fourth aspect of the present invention, in the inter-layer short-circuit detecting device according to the first to third aspects, the location where the movable electrode that scans the inspection coil of the electrical equipment shows a maximum potential is the electrical equipment. It is characterized in that it is judged to be a partial discharge portion of the coil.

【0014】本発明の請求項5は、請求項1記載乃至請
求項3記載の層間短絡検出装置において、前記電気機器
の検査コイル上を走査する可動電極として、部分放電部
位より発せられる音響を一つ又は複数の可動のマイクロ
フォン又は超音波センサー又はAE(ACOUSTIC EMISSIO
N )センサーを用いて検出することにより前記電気機器
コイルの部分放電部位を特定したことを特徴とする。
According to a fifth aspect of the present invention, in the interlayer short-circuit detecting device according to the first aspect to the third aspect, as the movable electrode for scanning the inspection coil of the electric device, the sound emitted from the partial discharge portion is detected. One or more movable microphones or ultrasonic sensors or AE (ACOUSTIC EMISSIO)
N) The partial discharge part of the electric device coil is specified by detecting with a sensor.

【0015】本発明の請求項6は、請求項1乃至請求項
3記載の層間短絡検出装置において、前記電気機器の検
査コイル上を走査する可動電極として、部分放電部位温
度が他の健全部より高くなることを一つ又は複数の可動
赤外線センサーを用いて検出することにより前記電気機
器コイルの部分放電部位を特定したことを特徴とする。
According to a sixth aspect of the present invention, in the interlayer short-circuit detecting device according to the first to third aspects, as a movable electrode for scanning the inspection coil of the electric device, the partial discharge site temperature is higher than that of other sound parts. It is characterized in that the partial discharge portion of the electric device coil is specified by detecting the increase in height using one or a plurality of movable infrared sensors.

【0016】本発明の請求項7は、請求項1乃至請求項
3記載の層間短絡検出装置において、前記電気機器の検
査コイル上を走査する可動電極として、部分放電部位よ
り放射される電磁波を一つ又は複数の指向性のあるアン
テナでコイル上を走査することによって部分放電部位を
特定したことを特徴とする。
According to a seventh aspect of the present invention, in the interlayer short-circuit detecting device according to the first to third aspects, the electromagnetic wave emitted from the partial discharge portion is used as a movable electrode for scanning the inspection coil of the electric device. The partial discharge part is specified by scanning the coil with one or a plurality of directional antennas.

【0017】本発明の請求項8は、請求項1乃至請求項
3記載の層間短絡検出装置において、前記電気機器の被
検査コイル上を走査する可動電極として、被検査コイル
中の部分放電のパルスが乗った電流を計測する手段を設
けたことを特徴とする。
According to an eighth aspect of the present invention, in the interlayer short-circuit detecting device according to the first to third aspects, a pulse of partial discharge in the coil to be inspected is used as a movable electrode for scanning the coil to be inspected of the electric device. It is characterized in that it is provided with a means for measuring the current that the vehicle rides on.

【0018】本発明の請求項9は、請求項1乃至請求項
3記載の層間短絡検出装置装置において、可動のマイク
ロフォン、超音波センサー、AEセンサー、可動赤外線
センサー、指向性のあるアンテナセンサーの任意の組み
合わせ又は全てを組み合わせたことを特徴とする。
According to a ninth aspect of the present invention, in the interlayer short-circuit detecting device according to the first to third aspects, any one of a movable microphone, an ultrasonic sensor, an AE sensor, a movable infrared sensor, and a directional antenna sensor can be used. Or a combination of all.

【0019】[0019]

【作用】まず、本発明の原理について説明する。被検査
コイル層間にかかる電圧を高め、部分放電を検出し易く
する。(運転時層間にかかる電圧は小さいが、層間絶縁
の許容耐圧値は運転時の層間電圧よりはるかに高いの
で、電圧を高くして部分放電を検出しやすくすることが
可能である。)また、検査対象機仕様により層間電圧が
変わるので、それらに対応するため試験電源は可変電圧
の電源とする。
First, the principle of the present invention will be described. The voltage applied between the coil layers to be inspected is increased to facilitate detection of partial discharge. (Although the voltage applied between layers during operation is small, the permissible withstand voltage value of interlayer insulation is much higher than the interlayer voltage during operation, so it is possible to increase the voltage to make it easier to detect partial discharge.) Since the inter-layer voltage changes depending on the specifications of the machine to be inspected, the test power supply shall be a variable voltage power supply in order to accommodate them.

【0020】被検査機器が回転機の場合、固定子コイル
エンド部(コイルの左右の端部)の部分放電箇所を特定
するとき、回転子は挿入したまま可変電圧の電源によっ
て高電圧を固定子コイルに掛けても励磁インピーダンス
が大きいため被検査コイル2に流れる電流が定格電流を
越えることは無いが、コイル直線部の部分放電を検出す
る時は回転子を抜く必要がある。この場合、電源から見
たインピーダンスは漏れリアクタンスと巻線抵抗のみと
なり、小さくなってしまい、可変電圧の電源によって試
験電圧を印加すると流れる電流が定格電流を越えてしま
う。かかる場合、可変周波数又は可変電圧・可変周波数
の電源を使用し、周波数を上げる事によりコイルインピ
ーダンスを上げ、目的の試験電圧が層間にかかるように
する。
When the equipment to be inspected is a rotating machine, when a partial discharge location of the stator coil end portion (left and right ends of the coil) is specified, a high voltage is applied to the stator by a variable voltage power source while the rotor is inserted. Since the exciting impedance is large even when applied to the coil, the current flowing through the coil to be inspected 2 does not exceed the rated current, but it is necessary to remove the rotor when detecting partial discharge in the linear portion of the coil. In this case, the impedance seen from the power supply becomes only leakage reactance and winding resistance and becomes small, and when a test voltage is applied by a variable voltage power supply, the flowing current exceeds the rated current. In such a case, a variable frequency or variable voltage / variable frequency power source is used, and the coil impedance is increased by increasing the frequency so that the target test voltage is applied between layers.

【0021】電源周波数を高くすればコイルのインピー
ダンスはωLに比例し高くなるので、高電圧をかけられ
る。また電源を可変電圧・可変周波数の電源とすること
で、より柔軟に印加する層間電圧を低電圧から高電圧ま
で変えられ、層間絶縁の状態が健全レベルにあるか又は
要注意レベルにあるか又は不合格レベルにあるのか診断
することができ、層間絶縁の劣化状態の診断もできる。
層間短絡に移行する前の部分放電を検出するため被検査
コイル2の表面に沿って走査する可動電源4を設ける。
When the power supply frequency is increased, the impedance of the coil increases in proportion to ωL, so that a high voltage can be applied. In addition, by using a variable voltage / variable frequency power supply, the applied interlayer voltage can be changed more flexibly from low voltage to high voltage, and the state of interlayer insulation is at a sound level or at a caution level. It can be diagnosed whether it is at the reject level or not, and the deterioration state of the interlayer insulation can also be diagnosed.
A movable power supply 4 that scans along the surface of the coil 2 to be inspected is provided to detect partial discharge before the transition to the interlayer short circuit.

【0022】さて、層間で部分放電が発生すると、その
周囲の空間の電界は図6に示すように、高周波23が重
畳して振動する。この電界の強さは距離の自乗に反比例
して減衰するので、この電界の中に可動電極4を持って
くると、可動電極4にはこの電界変動に応じて電荷が誘
導される。即ち可動電極の電位は部分放電の電界振動に
応じて変化することになる。部分放電による高周波電界
振動は、部分放電箇所より離れるに従って距離の自乗に
反比例して減衰するから、可動電極4でコイル上を走査
し、可動電極の電位が最大の電位を示す箇所が部分放電
の箇所と判定できる。
When a partial discharge is generated between the layers, the electric field in the space around the layers is oscillated by superposition of a high frequency wave 23 as shown in FIG. Since the strength of this electric field attenuates in inverse proportion to the square of the distance, when the movable electrode 4 is brought into this electric field, electric charges are induced in the movable electrode 4 according to this electric field fluctuation. That is, the potential of the movable electrode changes according to the electric field oscillation of the partial discharge. Since the high frequency electric field vibration due to the partial discharge is attenuated in inverse proportion to the square of the distance as the distance from the partial discharge portion is increased, the coil is scanned by the movable electrode 4 and the portion where the potential of the movable electrode shows the maximum potential is the partial discharge. It can be determined as the location.

【0023】コイルに部分放電が発生すると、その部分
よりボイド中の気体の絶縁破壊による微小音響が発生す
る。従って、可動電極4の替わりにこの音を検出する為
にマイクロフォン又はAEセンサー又は超音波センサー
を用いてコイル上を走査し、これらセンサー出力信号を
監視することにより、部分放電箇所を特定できる。又こ
れらセンサーを複数個用いて各々のセンサーに到達する
音響の時間遅れを検出することにより部分放電部位をよ
り正確に特定することができる。
When a partial discharge is generated in the coil, a minute sound is generated from that portion due to the dielectric breakdown of the gas in the void. Therefore, in place of the movable electrode 4, a microphone, an AE sensor, or an ultrasonic sensor is used to scan the coil to detect this sound, and by monitoring the sensor output signals, the partial discharge location can be specified. Further, by using a plurality of these sensors and detecting the time delay of the sound reaching each sensor, the partial discharge portion can be specified more accurately.

【0024】コイルに部分放電が発生すれば、そこには
電力損失を伴う。このことは部分放電箇所において熱の
発生を意味するので、部分放電を起こしている箇所の温
度は他のコイル部分より温度が高くなる。従って、可動
電極4の替わりに赤外線センサーでコイル上を走査すれ
ば部分放電部位を特定できる。
If partial discharge occurs in the coil, there is power loss. This means that heat is generated at the partial discharge location, so that the temperature at the location where the partial discharge occurs is higher than that at the other coil portions. Therefore, the partial discharge portion can be specified by scanning the coil with an infrared sensor instead of the movable electrode 4.

【0025】コイルに部分放電が発生すれば、送電線の
部分放電でラジオに部分放電によるノイズが入るように
部分放電箇所より電磁波が放射される。よって、可動電
極4の替わりに指向性のあるアンテナでコイル上を走査
すれば部分放電部位を特定できる。
When a partial discharge is generated in the coil, electromagnetic waves are radiated from the partial discharge portion so that noise due to the partial discharge enters the radio due to the partial discharge of the power transmission line. Therefore, by scanning the coil with an antenna having directivity instead of the movable electrode 4, the partial discharge portion can be specified.

【0026】コイルに部分放電が発生すると、コイル中
にはパルス状の高周波電流が重畳される。従って被検査
コイルを流れる電流をコイルのいずれかの側(電圧印加
点側又はその反対側)で監視すれば、非検査コイルのい
ずれかの箇所で部分放電が発生していることが判明す
る。上記の各種検出方法の任意の組み合わせ又はすべて
の組み合わせにより部分放電部位の検出精度を向上させ
ることができる。
When partial discharge occurs in the coil, pulsed high frequency current is superposed in the coil. Therefore, if the current flowing through the coil to be inspected is monitored on either side of the coil (on the side where the voltage is applied or on the opposite side), it is found that partial discharge has occurred at any point of the non-inspected coil. The detection accuracy of the partial discharge portion can be improved by any combination or all combinations of the above various detection methods.

【0027】[0027]

【実施例】以下、本発明の実施例を図について説明す
る。図1は本発明の第1実施例の構成図で、同図(a)
は構成図、同図(b)と同図(c)は可動電圧電源を被
検査コイル上に載置した側面図と正面図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. FIG. 1 is a block diagram of the first embodiment of the present invention, in which FIG.
Is a configuration diagram, and FIGS. 8B and 8C are a side view and a front view in which a movable voltage power source is placed on a coil to be inspected.

【0028】図1に示すように、本実施例の試験装置本
体7は、可動電圧電源1と部分放電監視装置6より構成
されている。可動電圧又は可変周波数又は可変電圧・可
変周波数の電源1より試験電圧を作り出し、被検査コイ
ル2に直接印加する。部分放電3があると、部分放電3
による高周波電位振動5は被検査コイル2上を走査する
可動電極4により検出され、部分放電監視装置6に導か
れる。
As shown in FIG. 1, the test apparatus main body 7 of this embodiment comprises a movable voltage power source 1 and a partial discharge monitoring apparatus 6. A test voltage is generated from a movable voltage or a variable frequency or a variable voltage / variable frequency power source 1 and directly applied to the coil 2 to be inspected. If there is partial discharge 3, partial discharge 3
The high-frequency potential vibration 5 due to is detected by the movable electrode 4 that scans over the coil 2 to be inspected, and is guided to the partial discharge monitoring device 6.

【0029】図1(b)と(c)に示すように、被検査
コイル2の外周にはコイル層間絶縁8があり、更にその
外周に対地絶縁9が設けられている。この対地絶縁9上
を走査する可動電極4を配置する。可動電極4は絶縁棒
10により被検査コイル2に沿って走査しながらコイル
内部の部分放電を検出する。
As shown in FIGS. 1 (b) and 1 (c), a coil interlayer insulation 8 is provided on the outer circumference of the coil 2 to be inspected, and a ground insulation 9 is further provided on the outer circumference thereof. The movable electrode 4 for scanning over the ground insulation 9 is arranged. The movable electrode 4 detects a partial discharge inside the coil while scanning along the coil 2 to be inspected by the insulating rod 10.

【0030】次に、本実施例の作用について説明する。
電源装置1により層間耐圧値の試験電圧を発生させて、
この発生した電圧を直接被検査コイル2に印加する。被
検査コイル2の層間絶縁8が劣化していれば、耐圧値を
かける事により部分放電3が劣化箇所に発生する。部分
放電が層間で発生すれば可動電極4に部分放電による高
周波電位振動が現れ、検出リード11を通して部分放電
監視装置6に導かれる。このため、部分放電箇所は可動
電極4を絶縁棒10により被検査コイル2に沿って走査
しつつ、部分放電監視装置6で電極の電位が最大になる
位置を探す事により部分放電部位を特定できる。また印
加電圧はコイル間にかかるのみで対地絶縁9にはかから
ないため対地絶縁9とは分離して層間の絶縁状態を試験
できる。
Next, the operation of this embodiment will be described.
By generating a test voltage of an interlayer withstand voltage value by the power supply device 1,
The generated voltage is directly applied to the coil to be inspected 2. If the interlayer insulation 8 of the coil to be inspected 2 is deteriorated, the partial discharge 3 is generated at the deteriorated portion by multiplying the withstand voltage value. If partial discharge occurs between the layers, high-frequency potential vibration due to partial discharge appears on the movable electrode 4, and is guided to the partial discharge monitoring device 6 through the detection lead 11. Therefore, the partial discharge portion can be specified by scanning the movable electrode 4 along the coil 2 to be inspected by the insulating rod 10 and searching for a position where the potential of the electrode is maximized by the partial discharge monitoring device 6. . Further, since the applied voltage is applied only between the coils and is not applied to the ground insulation 9, the insulation state between layers can be tested separately from the ground insulation 9.

【0031】このように本実施例によれば、層間短絡に
至る前の初期段階の部分放電を検出できるので、時間的
余裕をもって劣化コイルの更新が計画可能となる。な
お、図1の可動電極4の代わりに音を検出するセンサ
ー、温度を検出する赤外線センサー、電磁波を検出する
アンテナのいずれかを用いてもよく、さらにはこれらセ
ンサーの任意の組み合わせ又はこれら全ての組み合わせ
たものを用いても上記実施例と同様な効果が得られる。
As described above, according to this embodiment, since the partial discharge at the initial stage before the interlayer short circuit is detected, it is possible to plan the replacement of the deteriorated coil with a time margin. Any of a sensor that detects sound, an infrared sensor that detects temperature, and an antenna that detects electromagnetic waves may be used in place of the movable electrode 4 of FIG. 1, and any combination of these sensors or all of them may be used. The same effect as in the above embodiment can be obtained by using the combination.

【0032】図2は本発明の第2実施例の構成図であ
る。同図において、本実施例では、電源装置1として試
験電圧を発生する可変電圧又は可変周波数又は可変電圧
・可変周波数の電源1と、この電源1と電圧印加点の間
に無誘導抵抗13を設ける。この無誘導抵抗13の両端
の電圧は電流監視装置14に接続される。被検査コイル
2のR相とS相は直列につながれている。4は被検査コ
イル上を走査する可動の電極、マイクロフォン、超音波
センサー、AE(ACOUSTIC EMISSION )センサー、赤外
線センサー、アンテナの任意の組み合わせ又は全てを組
み合わせたセンサーである。これらセンサーのリード1
1は部分放電監視装置6に接続される。12は層間短絡
箇所、7は試験装置本体である。
FIG. 2 is a block diagram of the second embodiment of the present invention. In the figure, in this embodiment, a variable voltage or variable frequency or variable voltage / variable frequency power source 1 for generating a test voltage and a non-inductive resistor 13 are provided between the power source 1 and the voltage application point. . The voltage across the non-inductive resistor 13 is connected to the current monitoring device 14. The R phase and S phase of the coil to be inspected 2 are connected in series. Reference numeral 4 denotes a movable electrode that scans the coil to be inspected, a microphone, an ultrasonic sensor, an AE (ACOUSTIC EMISSION) sensor, an infrared sensor, an arbitrary combination of antennas, or a sensor combining all of them. Lead 1 of these sensors
1 is connected to the partial discharge monitoring device 6. Reference numeral 12 is an interlayer short-circuit location, and 7 is a test apparatus main body.

【0033】本実施例では、上記第1実施例による部分
放電検出機能の他に層間短絡に移行した状態をも検出で
きる層間短絡検出機能を備えている。前者の部分放電検
出機能は第1の実施例で説明済みであるので、後者の層
間短絡検出機能作用について説明する。
In addition to the partial discharge detection function of the first embodiment, this embodiment has an interlayer short circuit detection function capable of detecting the state of transition to an interlayer short circuit. Since the former partial discharge detection function has been described in the first embodiment, the latter interlayer short-circuit detection function operation will be described.

【0034】試験電源1より印加される電圧を被検査コ
イルのインピーダンスで除した電流が無誘導抵抗13を
通じて流れる。無誘導抵抗13の両端には電流に比例し
た電圧が現れ、電流監視装置14にて監視できる。
A current obtained by dividing the voltage applied from the test power supply 1 by the impedance of the coil under test flows through the non-inductive resistor 13. A voltage proportional to the current appears at both ends of the non-inductive resistor 13, and can be monitored by the current monitoring device 14.

【0035】図2はR相とS相コイルの試験をしている
状態を示すが、接続を代えて同じようにS相とT相コイ
ル、最後にT相とR相コイルについて電圧を印加し、そ
れぞれの時の電流監視装置14の電流の大きさから相間
短絡がどの相で発生しているか判断できる。例えば、R
相に相間短絡が発生していれば、R相のインピーダンス
は小さくなる。これをZ1 とし健全コイルのインピーダ
ンスをZ2 とすれば R相−S相試験時のインピーダンス=Z1 +Z2 (イン
ピーダンス小) S相−T相試験時のインピーダンス=2Z2 (インピー
ダンス大) T相−R相試験時のインピーダンス=Z1 +Z2 (イン
ピーダンス小) の関係となる。R相−S相試験時とT相−R相試験時の
電流監視装置の指示が等しく、S相−T相試験時の電流
監視装置の指示がR相−S相、T相−R相試験時の電流
指示より小さければ、R相に相間短絡が有ると判断でき
る。又は試験成績表のインピーダンス値と比較すること
によっても判断ができる。どの部位で層間短絡が発生し
ているかは被検査コイル上を走査する可動の電極、マイ
クロフォン、超音波センサー、AE(ACOUSTIC EMISSIO
N )センサー、赤外線センサー、アンテナの任意の組み
合わせ又は全てを組み合わせて検出する。
FIG. 2 shows the state in which the R-phase and S-phase coils are being tested, but the connection is changed and the voltages are similarly applied to the S-phase and T-phase coils and finally to the T-phase and R-phase coils. It is possible to judge in which phase the interphase short circuit occurs from the magnitude of the current of the current monitoring device 14 at each time. For example, R
If an interphase short circuit occurs in the phases, the impedance of the R phase becomes small. If this is Z1 and the impedance of the sound coil is Z2, impedance at R phase-S phase test = Z1 + Z2 (small impedance) Impedance at S phase-T phase test = 2Z2 (large impedance) T phase-R phase test Impedance at time = Z1 + Z2 (small impedance). The instructions of the current monitoring device during the R phase-S phase test and the T phase-R phase test are the same, and the instructions of the current monitoring device during the S phase-T phase test are the R phase-S phase and T phase-R phase tests. If it is smaller than the current instruction at that time, it can be determined that there is an interphase short circuit in the R phase. Alternatively, the judgment can be made by comparing with the impedance value in the test report. The location where the inter-layer short circuit occurs is determined by the movable electrode that scans over the coil to be inspected, microphone, ultrasonic sensor, AE (ACOUSTIC EMISSIO).
N) Detect any combination of sensors, infrared sensors, antennas or all combinations.

【0036】図3は本発明の第3実施例であり、第2実
施例と異なる点は被検査コイルが三角結線となっている
ことと、無誘導抵抗13が二つの試験コイルに各々一つ
づつ取り付けられ、それらが電流監視装置14に導かれ
ている点である。
FIG. 3 shows a third embodiment of the present invention, which is different from the second embodiment in that the coil to be inspected has a triangular connection and the non-inductive resistance 13 is provided for each of the two test coils. They are attached one by one and are led to the current monitoring device 14.

【0037】本実施例では、被検査コイルであるR相と
T相コイルと対地間に無誘導抵抗を入れておき、その両
端の電圧を電流監視装置14に入れ、電流の大小の比較
ができるようにしておく。
In this embodiment, a non-inductive resistance is placed between the R-phase and T-phase coils, which are the coils to be inspected, and the ground, and the voltage across the non-inductive resistance is input to the current monitoring device 14 so that the magnitude of the current can be compared. Keep it.

【0038】このように接続することにより、各相巻線
のインピーダンスの大小関係が電流監視装置で判定でき
る。図はR相、T相の場合であるが、接続を代えてT相
とS相を計れば層間短絡がどの相で発生しているか知る
ことができる。
By making the connection in this way, the magnitude relation of the impedance of each phase winding can be determined by the current monitoring device. The figure shows the case of R phase and T phase, but by changing the connection and measuring T phase and S phase, it is possible to know in which phase the interlayer short circuit occurs.

【0039】層間短絡発生箇所は被検査コイル上を走査
する可動の電極、マイクロフォン、超音波センサー、A
E(ACOUSTIC EMISSION )センサー、赤外線センサー、
アンテナの任意の組み合わせ又は全てを組み合わせて検
出することができる。
The location where the interlayer short circuit occurs is a movable electrode for scanning the coil to be inspected, a microphone, an ultrasonic sensor, A
E (ACOUSTIC EMISSION) sensor, infrared sensor,
Any combination or combination of antennas can be detected.

【0040】[0040]

【発明の効果】以上説明したように、本発明によれば、
層間短絡に至る前の初期段階の部分放電を検出できるの
で、時間的余裕をもって劣化コイルの更新が計画可能に
なる、という優れた効果を奏する。
As described above, according to the present invention,
Since it is possible to detect the partial discharge in the initial stage before the interlayer short circuit occurs, it is possible to plan the update of the deteriorated coil with a sufficient time, which is an excellent effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】同図(a)は本発明の一実施例の構成図、同図
(b)と同図(c)は可動電圧電源を被検査コイル上に
載置した側面図と正面図。
1A is a configuration diagram of an embodiment of the present invention, and FIGS. 1B and 1C are a side view and a front view in which a movable voltage power source is placed on a coil to be inspected.

【図2】本発明の第2実施例の構成図。FIG. 2 is a configuration diagram of a second embodiment of the present invention.

【図3】本発明の第3実施例の構成図。FIG. 3 is a configuration diagram of a third embodiment of the present invention.

【図4】電機機器コイルの対地絶縁及び層間絶縁と地絡
事故及び層間短絡を説明するための図。
FIG. 4 is a diagram for explaining ground insulation and interlayer insulation of an electric device coil, ground fault, and interlayer short circuit.

【図5】従来の層間短絡を検出する回路図。FIG. 5 is a circuit diagram for detecting a conventional interlayer short circuit.

【図6】部分放電による高周波振動を説明するための波
形図。
FIG. 6 is a waveform diagram for explaining high frequency vibration due to partial discharge.

【符号の説明】[Explanation of symbols]

1…電源、2…被検査コイル、3…部分放電、4…可動
電極、5…高周波電位振動、6…部分放電監視装置、7
…試験装置本体、8…コイル層間絶縁、9…対地絶縁、
10…絶縁棒、11…センサーリード、12…層間短
絡、13…無誘導抵抗、14…電流監視装置、15…コ
イル導体、16…地絡事故、17…層間短絡事故、18
…サージ電圧発生装置、19…サージ電圧、20…鉄
心、21…検出巻線。
DESCRIPTION OF SYMBOLS 1 ... Power source, 2 ... Inspected coil, 3 ... Partial discharge, 4 ... Movable electrode, 5 ... High frequency potential vibration, 6 ... Partial discharge monitoring device, 7
… Test equipment body, 8… Coil layer insulation, 9… Ground insulation,
10 ... Insulating rod, 11 ... Sensor lead, 12 ... Interlayer short circuit, 13 ... Non-inductive resistance, 14 ... Current monitoring device, 15 ... Coil conductor, 16 ... Ground fault accident, 17 ... Interlayer short circuit accident, 18
… Surge voltage generator, 19… surge voltage, 20… iron core, 21… detection winding.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 誘導機、誘導電圧調整器、同期機、変圧
器、計器用変成器等の電気機器の層間短絡検出装置にお
いて、試験電源として可変電圧電源を用い、前記電気機
器のコイルに沿って走査する電極を設け、前記電極の部
分放電による高周波電位振動を検出することにより前記
電気機器コイルの部分放電部位を特定したことを特徴と
する層間短絡検出装置。
1. In an inter-layer short-circuit detection device for electric equipment such as induction machines, induction voltage regulators, synchronous machines, transformers, transformers for measuring instruments, etc., a variable voltage power supply is used as a test power supply, and along a coil of the electric equipment. An inter-layer short-circuit detection device is characterized in that an electrode for scanning is provided, and a high-frequency potential oscillation due to a partial discharge of the electrode is detected to identify a partial discharge portion of the electric device coil.
【請求項2】 請求項1記載の層間短絡検出装置におい
て、試験電源として可変周波数電源を用いたことを特徴
とする層間短絡検出装置。
2. The interlayer short-circuit detection device according to claim 1, wherein a variable frequency power supply is used as a test power supply.
【請求項3】 請求項1記載の層間短絡検出装置におい
て、試験電源として可変電圧・可変周波数電源を用いた
ことを特徴とする層間短絡検出装置。
3. The interlayer short-circuit detection device according to claim 1, wherein a variable voltage / variable frequency power supply is used as a test power supply.
【請求項4】 請求項1乃至請求項3記載の層間短絡検
出装置において、前記電気機器の検査コイル上を走査す
る可動電極が最大の電位を示す箇所を、前記電気機器コ
イルの部分放電個所であると判定することを特徴とする
層間短絡検出装置。
4. The interlayer short-circuit detecting device according to claim 1, wherein the movable electrode scanning the inspection coil of the electric device shows a maximum potential at a partial discharge point of the electric device coil. An inter-layer short circuit detection device characterized by determining that there is.
【請求項5】 請求項1乃至請求項3記載の層間短絡検
出装置において、前記電気機器の検査コイル上を走査す
る可動電極として、部分放電部位より発せられる音響を
一つ又は複数の可動のマイクロフォン又は超音波センサ
ー又はAEセンサーを用いて検出することにより前記電
気機器コイルの部分放電部位を特定したことを特徴とす
る層間短絡検出装置。
5. The interlayer short-circuit detecting device according to claim 1, wherein one or a plurality of movable microphones that emit sound emitted from a partial discharge portion are used as movable electrodes that scan the inspection coil of the electric device. Alternatively, an interlayer short-circuit detection device is characterized in that a partial discharge part of the electric device coil is specified by detecting using an ultrasonic sensor or an AE sensor.
【請求項6】 請求項1乃至請求項3記載の層間短絡検
出装置において、前記電気機器の検査コイル上を走査す
る可動電極として、部分放電部位温度が他の健全部より
高くなることを一つ又は複数の可動赤外線センサーを用
いて検出することにより前記電気機器コイルの部分放電
部位を特定したことを特徴とする層間短絡検出装置。
6. The interlayer short-circuit detecting device according to claim 1, wherein the movable electrode for scanning the inspection coil of the electric device has a partial discharge site temperature higher than that of other healthy parts. Alternatively, an interlayer short-circuit detection device is characterized in that a partial discharge part of the electric device coil is specified by detecting using a plurality of movable infrared sensors.
【請求項7】 請求項1乃至請求項3記載の層間短絡検
出装置において、前記電気機器の検査コイル上を走査す
る可動電極として、部分放電部位より放射される電磁波
を一つ又は複数の指向性のあるアンテナで前記検査コイ
ル上を走査することにより前記電気機器コイルの部分放
電部位を特定したことを特徴とする層間短絡検出装置。
7. The inter-layer short-circuit detection device according to claim 1, wherein one or a plurality of directivities of electromagnetic waves radiated from the partial discharge portion are used as movable electrodes for scanning the inspection coil of the electric device. An interlayer short-circuit detection device, characterized in that a partial discharge part of the electric device coil is specified by scanning the inspection coil with a certain antenna.
【請求項8】 請求項1乃至請求項3記載の層間短絡検
出装置において、前記電気機器の被検査コイル上を走査
する可動電極として、被検査コイル中の部分放電のパル
スが乗った電流を計測する手段を設けたことを特徴とす
る層間短絡検出装置。
8. The interlayer short-circuit detecting device according to claim 1, wherein the movable electrode for scanning the coil to be inspected of the electric device measures a current on which a partial discharge pulse in the coil to be inspected rides. An inter-layer short-circuit detection device, characterized in that:
【請求項9】 請求項1乃至請求項3記載の層間短絡検
出装置装置において、可動のマイクロフォン、超音波セ
ンサー、AEセンサー、可動赤外線センサー、指向性の
あるアンテナの任意の組み合わせ又は全てを組み合わせ
たことを特徴とする層間短絡検出装置。
9. The interlayer short-circuit detecting device according to claim 1, wherein a movable microphone, an ultrasonic sensor, an AE sensor, a movable infrared sensor, and a directional antenna are combined arbitrarily or in combination. An inter-layer short-circuit detection device characterized by the above.
JP6256466A 1994-10-21 1994-10-21 Layer short detector Pending JPH08122388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6256466A JPH08122388A (en) 1994-10-21 1994-10-21 Layer short detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6256466A JPH08122388A (en) 1994-10-21 1994-10-21 Layer short detector

Publications (1)

Publication Number Publication Date
JPH08122388A true JPH08122388A (en) 1996-05-17

Family

ID=17293035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6256466A Pending JPH08122388A (en) 1994-10-21 1994-10-21 Layer short detector

Country Status (1)

Country Link
JP (1) JPH08122388A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006098170A (en) * 2004-09-29 2006-04-13 Soken Denki Kk Partial discharge measuring system
JP2010032457A (en) * 2008-07-31 2010-02-12 Hioki Ee Corp Insulation inspecting apparatus and technique
EP2287625A1 (en) 2009-08-13 2011-02-23 Alstom Technology Ltd Device and method for detecting defects within the insulation of an insulated conductor
US8816694B2 (en) 2004-07-28 2014-08-26 Hitachi Industrial Equipment Systems Co., Ltd. Apparatus and method for detecting partial discharge at turn-to-turn insulation in motor
JP2015072183A (en) * 2013-10-03 2015-04-16 株式会社明電舎 Insulation diagnosis method between winding layers of winding device
DE102021124670B3 (en) 2021-09-23 2023-01-26 Audi Aktiengesellschaft Testing device for locating a partial discharge in or on an electrical component and method for locating the partial discharge

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8816694B2 (en) 2004-07-28 2014-08-26 Hitachi Industrial Equipment Systems Co., Ltd. Apparatus and method for detecting partial discharge at turn-to-turn insulation in motor
JP2006098170A (en) * 2004-09-29 2006-04-13 Soken Denki Kk Partial discharge measuring system
JP2010032457A (en) * 2008-07-31 2010-02-12 Hioki Ee Corp Insulation inspecting apparatus and technique
EP2287625A1 (en) 2009-08-13 2011-02-23 Alstom Technology Ltd Device and method for detecting defects within the insulation of an insulated conductor
JP2015072183A (en) * 2013-10-03 2015-04-16 株式会社明電舎 Insulation diagnosis method between winding layers of winding device
DE102021124670B3 (en) 2021-09-23 2023-01-26 Audi Aktiengesellschaft Testing device for locating a partial discharge in or on an electrical component and method for locating the partial discharge
US11965925B2 (en) 2021-09-23 2024-04-23 Audi Ag Test device for localizing a partial discharge in or at an electrical component as well as method for localizing the partial discharge

Similar Documents

Publication Publication Date Title
CA2660382C (en) Ground fault detection
US4156846A (en) Detection of arcing faults in generator windings
KR0172603B1 (en) Apparatus for monitoring degradation of insulation of electrical installation
Bagheri et al. Frequency response analysis and short-circuit impedance measurement in detection of winding deformation within power transformers
KR920000566B1 (en) Method of and apparatus for assessing insucation conditions
US4897607A (en) Method and device for detecting and localizing faults in electrical installations
US20050035768A1 (en) Method and electromagnetic sensor for measuring partial discharges in windings of electrical devices
Tozzi et al. Monitoring off-line and on-line PD under impulsive voltage on induction motors-part 1: standard procedure
KR101840980B1 (en) Diagnosis device for isolation deterioration of electric apparatus and diagnosis method thereof
Yang et al. Experimental evaluation of using the surge PD test as a predictive maintenance tool for monitoring turn insulation quality in random wound AC motor stator windings
Cabanas et al. Insulation fault diagnosis in high voltage power transformers by means of leakage flux analysis
Nandi et al. Novel frequency domain based technique to detect incipient stator inter-turn faults in induction machines
US3775676A (en) Methods for locating partial discharges in electrical apparatus
JPH08122388A (en) Layer short detector
Dakin et al. An electromagnetic probe for detecting and locating discharges in large rotating-machine stators
Verginadis et al. Diagnosis of stator faults in synchronous generators: Short review and practical case
Kheirmand et al. Advances in online monitoring and localization of partial discharges in large rotating machines
EP1418437A1 (en) Method and electromagnetic sensor for measuring partial discharges in windings of electrical devices
JPH03128471A (en) Monitoring device for insulation deterioration of electric equipment
Sano et al. Experimental investigation on FRA diagnosis of transformer faults
JP2831355B2 (en) Insulation state detection method
JPH0365666A (en) Abnormality detector for static guidance apparatus
Zhao et al. Investigation of condition monitoring of transformer winding based on detection simulated transient overvoltage response
Cavallini et al. Challenges and Opportunities in RPDIV Testing of Automotive Electrical Machines After Assembly
Korenciak et al. Measurement of Difference Parameters of Transformer Winding in Frequency Domain