JP5587259B2 - Insulation diagnosis method for rotating electrical machines - Google Patents

Insulation diagnosis method for rotating electrical machines Download PDF

Info

Publication number
JP5587259B2
JP5587259B2 JP2011158544A JP2011158544A JP5587259B2 JP 5587259 B2 JP5587259 B2 JP 5587259B2 JP 2011158544 A JP2011158544 A JP 2011158544A JP 2011158544 A JP2011158544 A JP 2011158544A JP 5587259 B2 JP5587259 B2 JP 5587259B2
Authority
JP
Japan
Prior art keywords
partial discharge
discharge charge
voltage
charge amount
insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011158544A
Other languages
Japanese (ja)
Other versions
JP2013024669A5 (en
JP2013024669A (en
Inventor
清輝 田中
啓明 小島
豊 東村
啓司 鈴木
満 小野田
英章 浅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011158544A priority Critical patent/JP5587259B2/en
Publication of JP2013024669A publication Critical patent/JP2013024669A/en
Publication of JP2013024669A5 publication Critical patent/JP2013024669A5/ja
Application granted granted Critical
Publication of JP5587259B2 publication Critical patent/JP5587259B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Description

本発明は、例えば誘導電動機や発電機などのマイカ層をレジンで固着した固定子コイルの絶縁診断技術に関する。   The present invention relates to an insulation diagnosis technique for a stator coil in which a mica layer such as an induction motor or a generator is fixed with a resin.

従来の回転電機の固定子コイルの絶縁システムに使われているマイカ片は比較的大きな薄板状であるため、最大部分放電電荷量(常規電圧での印加電圧1サイクルに1回程度の発生頻度で発生する部分放電電荷量の値)や誘電正接に代表される特性の絶対値の経年変化を監視することで絶縁余寿命を推定することが知られている。例えば、特許文献1に運転中の電気機械の絶縁監視の方法が示されその評価指標として最大放電電荷量、総合電荷量、平均放電電流、放電発生位相−電荷量−発生頻度特性を用いることにより絶縁物内の異常を精度よく評価できることが記載されている。また、非特許文献1ではΔ2(2kVの誘電正接と定格電圧の誘電正接の差)が評価指標の1つとして示され、相対的なボイド放電の量を表すと記載されている。   The mica piece used in the conventional stator coil insulation system of a rotating electrical machine is a relatively large thin plate, so the maximum partial discharge charge (with a frequency of about once per cycle of applied voltage at normal voltage) It is known to estimate the remaining insulation life by monitoring the secular change of the absolute value of the characteristic represented by the value of the partial discharge charge generated) and the dielectric loss tangent. For example, Patent Document 1 discloses a method for monitoring insulation of an electric machine in operation. By using a maximum discharge charge amount, a total charge amount, an average discharge current, and a discharge generation phase-charge amount-generation frequency characteristic as an evaluation index. It is described that abnormality in an insulator can be evaluated with high accuracy. In Non-Patent Document 1, Δ2 (difference between the dielectric tangent of 2 kV and the dielectric loss tangent of the rated voltage) is shown as one of the evaluation indexes, and is described as representing the amount of relative void discharge.

特開2000−206213号公報JP 2000-206213 A

電気学会技術報告第752号IEEJ Technical Report No. 752

上記従来技術では、絶縁システムの多様化に伴い、特にマイカ層をレジンで固着させた絶縁システムにおいては、マイカ片が細かいので、欠陥が進展する際に、その進展方向をこれらのマイカ片が阻害するため、進展方向が電界方向と必ずしも一致しない。このため最大部分放電電荷量と欠陥の進展の程度に相関が現れにくく、欠陥の状態を精度よく評価することが困難であるという問題があった。   In the above prior art, with the diversification of the insulation system, especially in the insulation system in which the mica layer is fixed with resin, the mica pieces are fine, so when the defect progresses, these mica pieces obstruct the direction of progress. Therefore, the progress direction does not necessarily match the electric field direction. For this reason, there is a problem that it is difficult to correlate the maximum partial discharge charge amount with the degree of defect development, and it is difficult to accurately evaluate the defect state.

本発明の目的は、部分放電電荷量の変化に着目し、マイカ層をレジンで固着した固定子コイルの絶縁システムに対して精度よく劣化程度や余寿命を評価できる絶縁診断法を提供することである。   An object of the present invention is to provide an insulation diagnostic method that can accurately evaluate the degree of deterioration and remaining life of an insulation system of a stator coil in which a mica layer is fixed with a resin, focusing on a change in the amount of partial discharge charge. is there.

本発明では前記目的を達成するために、回転電機の固定子コイルに印加した電圧を連続的に昇圧または降圧し、印加電圧に対する部分放電電荷量のパターン情報を取得し、部分放電電荷量が急増または急減する電圧や程度またその回数から絶縁劣化状態を評価できる。   In order to achieve the above object, the present invention continuously increases or decreases the voltage applied to the stator coil of the rotating electrical machine, acquires partial discharge charge amount pattern information with respect to the applied voltage, and the partial discharge charge amount rapidly increases. Alternatively, the state of insulation deterioration can be evaluated from the voltage, degree, and number of sudden decreases.

本発明によれば、前記部分放電電荷量のパターンを予め測定した基礎データとフィンガープリント法などを用いて比較することで、マイカ層をレジンで固着した絶縁システムを用いた回転電機の欠陥種、絶縁の劣化状態や絶縁余寿命を精度よく評価可能となる。   According to the present invention, the defect type of the rotating electrical machine using the insulation system in which the mica layer is fixed with the resin by comparing the pattern of the partial discharge charge amount with the basic data measured in advance and the fingerprint method, It is possible to accurately evaluate the deterioration state of insulation and the remaining life of insulation.

測定結果を示す説明図。Explanatory drawing which shows a measurement result. 診断に用いる印加電圧に対する部分放電電荷量パターンの熱劣化特性図。The thermal deterioration characteristic figure of the partial discharge charge amount pattern with respect to the applied voltage used for a diagnosis. 診断に用いる印加電圧に対する部分放電電荷量パターンの機械的劣化特性図。The mechanical deterioration characteristic figure of the partial discharge charge amount pattern with respect to the applied voltage used for a diagnosis. 回転電機の全体図。FIG. 回転電機のスロット断面図。The slot sectional view of a rotation electrical machinery. 測定フロー図。Measurement flow diagram. 測定系の概略構成図。The schematic block diagram of a measurement system. 測定系の具体的構成を示す図。The figure which shows the specific structure of a measurement system. 測定フローの説明図。Explanatory drawing of a measurement flow. 実施例1の診断フロー図。FIG. 2 is a diagnosis flowchart of the first embodiment. 熱劣化実測データの特性図。The characteristic figure of heat deterioration measurement data. 機械的劣化実測データの特性図。The characteristic figure of mechanical deterioration measurement data. 熱劣化後の絶縁層の模式図。The schematic diagram of the insulating layer after heat deterioration. 機械的劣化後の絶縁層の模式図。The schematic diagram of the insulating layer after mechanical deterioration. 実施例2の診断フロー図。FIG. 9 is a diagnosis flow diagram of the second embodiment. 実施例4の診断フロー図。FIG. 6 is a diagnosis flowchart of Example 4; 余寿命推定の説明図。Explanatory drawing of remaining life estimation. 実施例3による余寿命推定の説明図。Explanatory drawing of the remaining life estimation by Example 3. FIG.

以下、本発明における実施例について、図面を用いて説明する。先ず、実施例を説明する前に回転電機の構造について簡単に述べる。   Embodiments of the present invention will be described below with reference to the drawings. First, the structure of the rotating electrical machine will be briefly described before describing the embodiments.

図3には、回転電機1の例を示す。回転電機1は、回転子2と固定子3とから概略構成される。この固定子3は図4に示すように固定子鉄心4と鉄心スロット5と固定子コイル6からなり、前記固定子コイル6は上コイル6a、底コイル6bから構成されており、前記固定子コイル6を鉄心スロット5に固定するために楔7、上底コイルの間のスペースを確保するために、絶縁部材スペーサ8が配置されている。なお、固定子コイル6は固定子鉄心4の外部で電気的に接続される。   FIG. 3 shows an example of the rotating electrical machine 1. The rotating electrical machine 1 is generally composed of a rotor 2 and a stator 3. As shown in FIG. 4, the stator 3 includes a stator core 4, an iron core slot 5, and a stator coil 6. The stator coil 6 includes an upper coil 6a and a bottom coil 6b. In order to secure a space between the wedge 7 and the upper bottom coil for fixing 6 to the iron core slot 5, an insulating member spacer 8 is arranged. The stator coil 6 is electrically connected outside the stator core 4.

前記固定子コイル6は、素線絶縁10を施した数本の素線9aを整列し、前記素線9aを束ね絶縁詰め物11を施し一体化した、素線固めコイル9により構成され、前記素線固めコイル9の周囲にガラスクロスなどを裏打ち材としたマイカテープを所定回数巻回し主絶縁層12が形成されている。前記固定子コイル6は、例えば含浸槽にてエポキシ樹脂などの熱硬化性樹脂を主絶縁層12に加圧含浸し、その後、熱硬化性樹脂を加熱硬化させたものや、予めエポキシ樹脂などの熱硬化性樹脂を含んだ半硬化状態のプリプレグマイカテープを熱プレスし形成したものがある。前記に代表される処理工程により、ボイドに代表される欠陥の少ない絶縁特性の良好な主絶縁層12を備えた固定子コイル6を得ることができる。   The stator coil 6 is composed of a wire fixing coil 9 in which several strands 9a subjected to strand insulation 10 are aligned, the strands 9a are bundled, and an insulation stuffing 11 is applied and integrated. A main insulating layer 12 is formed by winding mica tape with a glass cloth or the like as a backing material around the wire-tightening coil 9 a predetermined number of times. The stator coil 6 is formed by, for example, impregnating the main insulating layer 12 with a thermosetting resin such as an epoxy resin in an impregnation tank, and then heat-curing the thermosetting resin, or an epoxy resin or the like in advance. Some of them are formed by hot pressing a semi-cured prepreg mica tape containing a thermosetting resin. By the processing steps represented by the above, the stator coil 6 including the main insulating layer 12 having a good insulation characteristic with few defects represented by voids can be obtained.

主絶縁層12は、マイカテープ層と熱硬化性樹脂が完全に充填されていることが望まれるが、発電機用のコイルにはボイドや剥離といった欠陥がある程度存在する。内部にボイドや剥離が存在する絶縁層に部分放電開始電圧以上の電圧が加わるとボイドや剥離といった微小欠陥部で部分放電が発生する。   The main insulating layer 12 is desired to be completely filled with the mica tape layer and the thermosetting resin, but the generator coil has some defects such as voids and peeling. When a voltage equal to or higher than the partial discharge start voltage is applied to an insulating layer having voids or peeling inside, partial discharge occurs at a minute defect such as a void or peeling.

絶縁層内に初期から存在していた微小欠陥に加え、主に熱的及び機械的ストレスにより新たに微小欠陥が形成される。長期間の運転により熱的/機械的/電気的/その他のストレスが加わると、これらが進展していくので、絶縁破壊電圧や機械強度が低下していくことが知られている。   In addition to the micro defects existing from the beginning in the insulating layer, micro defects are newly formed mainly by thermal and mechanical stress. It is known that when a thermal / mechanical / electrical / other stress is applied due to a long-term operation, the stress develops and the breakdown voltage and mechanical strength decrease.

図5に印加電圧に対する部分放電電荷量パターンの測定フローを、図6に測定系のブロック図を示す。   FIG. 5 shows a measurement flow of the partial discharge charge amount pattern with respect to the applied voltage, and FIG. 6 shows a block diagram of the measurement system.

測定対象である回転電機1の固定子コイル6に対して、高電圧電源21から接続端子32を介して交流電圧を印加し、昇圧する。なお、測定対象は回転電機1から抜き取った固定子コイル6一本の状態とすることも可能である。その時、固定子コイル6に印加した電圧と部分放電電荷量を診断システム26にて測定する。その後、電圧を昇圧し、その時の部分放電電荷量を測定する。これを繰り返し、所定の電圧まで印加電圧に対する部分放電電荷量パターンを取得する。部分放電電荷量は、例えば電流や電磁波の検出を用いたものが知られている。一例としては、特開平3−99286号公報の第4図に記載されている構成が挙げられる。   An AC voltage is applied to the stator coil 6 of the rotating electrical machine 1 to be measured from the high voltage power source 21 via the connection terminal 32 to boost the voltage. Note that the measurement object can be in the state of one stator coil 6 extracted from the rotating electrical machine 1. At that time, the voltage applied to the stator coil 6 and the partial discharge charge amount are measured by the diagnostic system 26. Thereafter, the voltage is boosted, and the partial discharge charge amount at that time is measured. This is repeated to obtain a partial discharge charge amount pattern with respect to the applied voltage up to a predetermined voltage. For example, a partial discharge charge amount using detection of current or electromagnetic waves is known. As an example, there is a configuration described in FIG. 4 of Japanese Patent Laid-Open No. 3-99286.

上記方法で得られた、印加電圧に対する部分放電電荷量パターンの結果例を図1に示す。なお、本実施例中では昇圧時のデータを基に説明しているが、図2に示すような降圧時のデータを基にしても良い。   FIG. 1 shows a result example of the partial discharge charge amount pattern with respect to the applied voltage obtained by the above method. In this embodiment, the description is based on the data at the time of step-up, but it may be based on the data at the time of step-down as shown in FIG.

図1中の警戒レベルのパターン27では、印加電圧を0Vから所定の電圧例えば、運転電圧の2倍程度まで上昇させた時に部分放電電荷量がバックグラウンドレベルに対して有意な差を持って部分放電電荷量が急増する電圧領域(以下、第1段目の立ち上がり28)と、その後部分放電電荷量はほぼ一定となっている電圧領域からなっている。警戒レベルのパターン27の第1段目の立ち上がり28は、運転電圧での連続監視では捉えることのできない現象である。前記測定方法によって測定された警戒レベルのパターン27は、図10(a)に示すように熱劣化時のパターンであり、これは、図11(a)の模式図に示すように沿層方向の剥離やボイドが発生・進展しているためであり、熱劣化が進む程、前記発生・進展の程度が大きくなる傾向を示す。このため、熱劣化により機械的強度が低下し、振動や電磁力、遠心力などにより絶縁層に亀裂を生じやすくなる。図10(a)の例では、絶縁層の貫層方向に亀裂などの欠陥が形成されやすい状態になっていることを意味しており、診断期間の短縮などの対策を行う必要が有ると考えられるため、例えば警戒レベルと評価できる。   In the warning level pattern 27 in FIG. 1, when the applied voltage is increased from 0 V to a predetermined voltage, for example, about twice the operating voltage, the partial discharge charge amount has a significant difference from the background level. It consists of a voltage region in which the amount of discharge charge increases rapidly (hereinafter referred to as the first stage rising 28) and a voltage region in which the partial discharge charge amount is substantially constant thereafter. The first rise 28 of the warning level pattern 27 is a phenomenon that cannot be detected by continuous monitoring at the operating voltage. The alert level pattern 27 measured by the measurement method is a pattern at the time of thermal degradation as shown in FIG. 10A, and this is a pattern in the creeping direction as shown in the schematic diagram of FIG. This is because peeling and voids are generated and progressing, and the degree of the generation and progress tends to increase as the thermal deterioration progresses. For this reason, the mechanical strength decreases due to thermal deterioration, and the insulating layer is easily cracked by vibration, electromagnetic force, centrifugal force, or the like. In the example of FIG. 10A, this means that a defect such as a crack is easily formed in the penetration direction of the insulating layer, and it is considered necessary to take measures such as shortening the diagnosis period. Therefore, for example, it can be evaluated as a warning level.

図1中の危険レベルのパターン29では、最大部分放電電荷量に代表される特性の絶対値は最も低いレベルであるが、印加電圧を0Vから所定の電圧例えば、運転電圧の2倍程度まで上昇させた時に第1段目の立ち上がり28以降に、第2段目の立ち上がり30が現れている。危険レベルのパターン29の第2段目の立ち上がり30も、警戒レベルのパターン27の第1段目の立ち上がり28と同様に、僅かな電圧変化によって生じる部分放電電荷量の急増であり、前述したように本発明に示す連続的に印加電圧及び部分放電電荷量を取得した印加電圧に対する部分放電電荷量のパターン情報によって特徴的なパターンとして捉えることができる。前記測定方法によって測定された危険レベルのパターン29は、図10(b)に示すように機械的劣化のパターンであり、これは、図11(b)の模式図に示すように絶縁層の貫層方向に進展する微小な亀裂や亀裂を介したボイドや剥離といった欠陥の結合が形成・進展していることによるためである。そのため、絶縁層の貫層方向に進展する欠陥は、絶縁層にとっては致命的な欠陥であり、絶縁破壊電圧に代表される絶縁性能の大幅な低下を引き起こす可能性が高く、コイルの抜き取り検査など詳細な診断を行う必要が有ると考えられるため、例えば危険レベルと評価できる。ただし、危険レベルの中でも欠陥の形成・進展の程度があるため、実施例2に記載する評価指標を基により詳細な評価を行い、前記形成・進展の程度を把握することでより正確な診断を提供することができる。   In the danger level pattern 29 in FIG. 1, the absolute value of the characteristic represented by the maximum partial discharge charge amount is the lowest level, but the applied voltage is increased from 0 V to a predetermined voltage, for example, about twice the operating voltage. When the first stage rises, the second stage rise 30 appears after the first stage rise 28. Similarly to the first stage rise 28 of the warning level pattern 27, the second stage rise 30 of the danger level pattern 29 is a sudden increase in the partial discharge charge amount caused by a slight voltage change. In the present invention, the applied voltage and the partial discharge charge amount can be grasped as a characteristic pattern by the pattern information of the partial discharge charge amount with respect to the applied voltage obtained continuously. The pattern 29 of the dangerous level measured by the measurement method is a pattern of mechanical deterioration as shown in FIG. 10B, which is the penetration of the insulating layer as shown in the schematic diagram of FIG. This is due to the formation and progress of microscopic cracks that progress in the layer direction, and defect bonds such as voids and delamination via cracks. For this reason, defects that progress in the penetration direction of the insulating layer are fatal defects for the insulating layer, and are likely to cause a significant decrease in insulation performance represented by dielectric breakdown voltage, such as coil sampling inspection. Since it is considered necessary to make a detailed diagnosis, for example, it can be evaluated as a danger level. However, since there is a degree of defect formation / development within the risk level, a detailed evaluation is performed based on the evaluation index described in Example 2, and a more accurate diagnosis can be made by grasping the degree of formation / development. Can be provided.

図1中の監視レベルのパターン31では、最大部分放電電荷量は警戒レベルのパターン27、危険レベルのパターン29に比べて大きいが、前記いずれの特徴もないことから、絶縁層に加わっている熱や機械力による劣化は小さく現時点では問題ないことを示している。このため、定期的な診断を継続して実施すれば良いと考えられるため、例えば、監視レベルと評価できる。   In the monitoring level pattern 31 in FIG. 1, the maximum partial discharge charge amount is larger than the warning level pattern 27 and the dangerous level pattern 29. However, since neither of the above features is present, the heat applied to the insulating layer is large. It shows that there is no problem at the present time due to the small deterioration caused by mechanical force. For this reason, since it is thought that periodic diagnosis should be continued, it can be evaluated as a monitoring level, for example.

これらをまとめた診断フローを図9に示す。   FIG. 9 shows a diagnosis flow summarizing these.

以上のように、従来の最大部分放電電荷量に代表される特性の絶対値には現れにくかった微小な欠陥の形成・進展による劣化現象を、本実施例によれば印加電圧−部分放電電荷量特性のパターンを基に捉えることが可能となるため、微小な欠陥の連結に伴って生じる急速に絶縁破壊電圧に代表される絶縁性能が低下する劣化現象を捉えることが可能となり、絶縁余寿命を診断可能な絶縁診断技術を提供することができる。   As described above, according to the present embodiment, the deterioration phenomenon due to the formation and progress of minute defects, which is difficult to appear in the absolute value of the characteristic represented by the conventional maximum partial discharge charge, is applied according to the present embodiment. Since it is possible to capture the characteristics based on the pattern of characteristics, it is possible to capture the deterioration phenomenon, which is caused by the rapid breakdown of the insulation performance represented by the breakdown voltage, which occurs with the connection of minute defects. Diagnosis of insulation diagnostic technology can be provided.

図7に診断システムの構成の一例を、図8に図7の構成での測定フローの一例を示す。   FIG. 7 shows an example of the configuration of the diagnostic system, and FIG. 8 shows an example of the measurement flow in the configuration of FIG.

診断システム26は、部分放電測定システム23と電圧測定システム22とコンピュータ24と表示装置25から構成されている。印加電圧と部分放電電荷量との関連付けをコンピュータ24にて行い、表示装置25に出力する。その際、コンピュータ24内に蓄えている部分放電電荷量パターンの基礎データとフィンガープリント法を用いて比較すると欠陥種や欠陥の進展程度を定量化できるようにしている。   The diagnosis system 26 includes a partial discharge measurement system 23, a voltage measurement system 22, a computer 24, and a display device 25. The computer 24 associates the applied voltage with the partial discharge charge amount and outputs it to the display device 25. At that time, if the basic data of the partial discharge charge amount pattern stored in the computer 24 is compared with the fingerprint method, the defect type and the progress of the defect can be quantified.

図8に示す測定フローの一例を示す。測定終了電圧V、1秒間当りの昇圧または降圧速度v、電圧及び部分放電電荷量を測定する時間間隔Δtを設定することで、図8に示すように、コンピュータ24で電圧測定システム22と部分放電測定システム23に同期した指令を出すことにより印加電圧に対する部分放電電荷量のパターンを自動で収録することができる。このようなシステムを構築するとより安定したデータ収集が可能である。なお、部分放電電荷量の発生頻度を任意で設定しても良い。一例としては、商用周波数が50Hzの場合には、発生頻度レベルを50パルス/秒、商用周波数が60Hzの場合には、60パルス/秒、即ち印加電圧1サイクルに1回以上の発生頻度の信号を部分放電電荷量として取得するとノイズが効果的に除去できる。また、Δtは0.5秒程度、vは0.1kV/秒程度とすると、データ数と評価精度のバランスが適切に保てることを確認している。   An example of the measurement flow shown in FIG. 8 is shown. By setting the measurement end voltage V, the step-up or step-down speed v per second, the voltage and the time interval Δt for measuring the partial discharge charge amount, as shown in FIG. By issuing a command in synchronization with the measurement system 23, the pattern of the partial discharge charge amount with respect to the applied voltage can be automatically recorded. If such a system is constructed, more stable data collection is possible. The occurrence frequency of the partial discharge charge amount may be arbitrarily set. As an example, when the commercial frequency is 50 Hz, the generation frequency level is 50 pulses / second, and when the commercial frequency is 60 Hz, 60 pulses / second, that is, a signal having a frequency of occurrence of one or more per applied voltage cycle. Is acquired as the partial discharge charge amount, noise can be effectively removed. In addition, when Δt is about 0.5 seconds and v is about 0.1 kV / second, it has been confirmed that the balance between the number of data and the evaluation accuracy can be appropriately maintained.

上記設定をした後、電圧を印加し測定を開始する。   After the above setting, voltage is applied and measurement is started.

その際、印加電圧と部分放電電荷量のそれぞれの情報は、GPIB(General Purpose Interface Bus)などによって、三機器間で同期が取れている、コンピュータ24と電圧測定システム22と部分放電測定システム23を用いて、コンピュータ24から電圧測定システム22と部分放電測定システム23に対して指令を出し、前記設定した測定間隔でそれぞれの情報を収録し、コンピュータ24内に逐次記憶される。   At this time, the information on the applied voltage and the partial discharge charge amount is synchronized among the three devices by GPIB (General Purpose Interface Bus) or the like, and the computer 24, the voltage measurement system 22 and the partial discharge measurement system 23 are synchronized. Using this, a command is issued from the computer 24 to the voltage measurement system 22 and the partial discharge measurement system 23, and the respective information is recorded at the set measurement intervals and sequentially stored in the computer 24.

測定が終了するとコンピュータ24内に記憶した印加電圧と部分放電電荷量のそれぞれの情報を基に印加電圧に対する部分放電電荷量パターンの結果を表示装置25に表示する。なお、測定と同時に結果を随時表示しても良い。   When the measurement is completed, the result of the partial discharge charge amount pattern with respect to the applied voltage is displayed on the display device 25 based on the information on the applied voltage and the partial discharge charge amount stored in the computer 24. The result may be displayed at any time simultaneously with the measurement.

前記表示装置25で得られた結果を基に診断を実施する。なお、コンピュータ24,表示装置25の機能が一体となっていても良い。   Diagnosis is performed based on the result obtained by the display device 25. The functions of the computer 24 and the display device 25 may be integrated.

本実施例は実施例1にある、図1中の警戒レベルのパターン27の第1段目の立ち上がり28を図2(a)のV1及びQ1を用いて熱劣化レベルを評価し、危険レベルのパターン29の第1段目の立ち上がり28と第2段目の立ち上がり30を図2(b)のV1、V2、Q2を用いて機械的劣化レベルを評価する絶縁診断方法である。本実施例を用いた診断フローを図12に示す。なお、本実施例中では、昇圧時のデータを基に説明しているが、降圧時のデータ即ち図2中のV1′、Q1′などを基にしても良い。   In the present embodiment, the first stage rise 28 of the warning level pattern 27 in FIG. 1 in the first embodiment is evaluated using V1 and Q1 in FIG. This is an insulation diagnostic method for evaluating the mechanical deterioration level of the rising edge 28 of the first stage and the rising edge 30 of the second stage of the pattern 29 using V1, V2, and Q2 of FIG. A diagnosis flow using this embodiment is shown in FIG. In the present embodiment, the description is based on the data at the time of step-up, but it may be based on the data at the time of step-down, that is, V1 ′, Q1 ′ in FIG.

熱劣化では図10(a)のように第1段目の立ち上がり28の開始電圧V1が初期の値V1sに比べV1dへ低下し、部分放電電荷量の増加率が低下する部分放電電荷量Q1が確認されるようになる。図12では一例として、Q1≧5000pCと設定した場合の診断フローを示している。   In the thermal deterioration, as shown in FIG. 10A, the start voltage V1 of the first-stage rising 28 is reduced to V1d compared to the initial value V1s, and the partial discharge charge amount Q1 at which the increase rate of the partial discharge charge amount is decreased. It will be confirmed. FIG. 12 shows a diagnosis flow when Q1 ≧ 5000 pC is set as an example.

機械的劣化では、図10(b)のように、第1段目の立ち上がりの開始電圧V1は機械力の増加と共に初期の値V1sに比べてV1dへ低下する傾向を確認している。また、第2段目の立ち上がりの開始点の印加電圧をV2、開始点の部分放電電荷量をQ2も、共に機械力の増加に伴い低下する傾向を確認している。V1の低下は、亀裂を介したボイドや剥離といった欠陥の結合の形成・進展を表し、V2、Q2の低下は、微小な亀裂の形成・進展を示している。これらの指標を用いることで、機械力に伴う絶縁層の貫層方向に進展する亀裂の形成・進展を評価すると共に、図14のように余寿命推定も可能となる。   In the mechanical degradation, as shown in FIG. 10B, it is confirmed that the start voltage V1 at the first stage rises to V1d as compared with the initial value V1s as the mechanical force increases. In addition, it has been confirmed that the applied voltage at the start point of the second stage rise is V2, and the partial discharge charge amount at the start point is Q2, both of which tend to decrease as the mechanical force increases. The decrease in V1 represents the formation / progress of defect bonds such as voids and delamination via cracks, and the decrease in V2 and Q2 represents the formation / progress of minute cracks. By using these indices, it is possible to evaluate the formation / progress of cracks that propagate in the penetration direction of the insulating layer due to mechanical force, and to estimate the remaining life as shown in FIG.

本実施例によれば、熱劣化レベルと機械的劣化レベルを評価することが可能となるため、両方を勘案して警戒レベル及び危険レベルを更に細分化した絶縁余寿命診断技術を提供することができる。   According to the present embodiment, it is possible to evaluate the thermal deterioration level and the mechanical deterioration level, and therefore, it is possible to provide a remaining insulation life diagnosis technology that further subdivides the warning level and the danger level in consideration of both. it can.

本実施例は初期の値や定期検査時の値を組み合わせて測定結果を比較することで、欠陥の形成・進展を経年的に把握することが可能な絶縁診断方法である。   The present embodiment is an insulation diagnosis method capable of grasping formation and progress of defects over time by combining measurement results by combining initial values and values at the time of periodic inspection.

V1、V2、Q2は欠陥が形成・進展すると低下する傾向がある。図15に示すような各値の寿命に対するマスターカーブに、初期の値や定期検査時の値をプロットし、各値の変化を評価することで、経年的な欠陥の形成・進展を把握することができ、寿命限界の時期を推定することができる。また、運転状況などに起因する劣化速度の異なる機器毎に応じた余寿命診断も可能となる。   V1, V2, and Q2 tend to decrease as defects are formed and progress. By plotting the initial value and the value at the periodical inspection on the master curve for the life of each value as shown in Fig. 15, and evaluating the change of each value, grasp the formation and progress of defects over time. It is possible to estimate the life limit period. In addition, it is possible to perform a remaining life diagnosis according to each device having a different deterioration rate due to an operation state or the like.

本実施例によれば、経年的な劣化レベル評価の精度が向上し、絶縁余寿命をより精度よく診断することが可能となる。   According to the present embodiment, the accuracy of evaluation of deterioration over time can be improved, and the remaining insulation life can be diagnosed more accurately.

本実施例は、実施例1,2,3の方法に加えて、絶縁層を評価する誘電特性のうち、2kVの誘電正接と定格電圧の誘電正接の差(以下、Δ2と記載する。)を用いることで、部分放電特性とは異なる視点から絶縁層の劣化を評価することが可能な絶縁診断方法である。図13にΔ2を加えた診断フローを示す。   In this embodiment, in addition to the methods of Embodiments 1, 2, and 3, the difference between the dielectric tangent of 2 kV and the dielectric loss tangent of the rated voltage (hereinafter referred to as Δ2) among the dielectric characteristics for evaluating the insulating layer. It is an insulation diagnosis method that can evaluate deterioration of an insulating layer from a viewpoint different from the partial discharge characteristics. FIG. 13 shows a diagnosis flow in which Δ2 is added.

誘電特性のうち、Δ2は、電気学会技術報告第752号にも記載されている通り、絶縁層での相対的なボイド放電の量を評価する指標として広く知られている。一方で、最大部分放電電荷量と同様に微小な欠陥の形成・進展を捉えることは困難であることを確認している。また、Δ2は測定環境(現地や試験場内)や、測定対象の形状(実機構造やサンプリングコイル)などの要因によって値が異なる場合があるため、判定値はそれぞれの測定条件に応じて変更しても良い。ここでは一例として、Δ2≧2%で要注意レベルと設定した場合の診断フローを示す。熱劣化と機械的劣化が複合した場合には、熱劣化の特徴量の1つであるQ1が、実施例2中で一例として設定した5000pCよりも小さくなる場合もある。一方、Δ2は、複合的な劣化が加わった場合でも熱劣化は精度よく診断できる。そのため、熱劣化と機械的劣化が複合した場合では、熱劣化をΔ2で、機械的劣化を図1中の危険レベルのパターン29または、V2、Q2の評価指標で診断することが可能となり、複合した劣化でも、劣化を切り分けることによって正確な絶縁診断が可能となる。   Among the dielectric characteristics, Δ2 is widely known as an index for evaluating the amount of relative void discharge in the insulating layer, as described in IEEJ Technical Report No. 752. On the other hand, as with the maximum partial discharge charge amount, it has been confirmed that it is difficult to capture the formation and progress of minute defects. In addition, Δ2 may vary depending on factors such as the measurement environment (in the field or test site) and the shape of the measurement target (actual machine structure or sampling coil), so the judgment value can be changed according to each measurement condition. Also good. Here, as an example, a diagnosis flow when Δ2 ≧ 2% and the level requiring attention is set is shown. When heat deterioration and mechanical deterioration are combined, Q1 which is one of the characteristic amounts of heat deterioration may be smaller than 5000 pC set as an example in the second embodiment. On the other hand, Δ2 can accurately diagnose thermal degradation even when complex degradation is applied. Therefore, when thermal degradation and mechanical degradation are combined, it is possible to diagnose thermal degradation with Δ2 and mechanical degradation with the risk level pattern 29 in FIG. Even in the case of deterioration, accurate insulation diagnosis is possible by isolating the deterioration.

1 回転電機
2 回転子
3 固定子
4 固定子鉄心
5 鉄心スロット
6 固定子コイル
6a 上コイル
6b 底コイル
7 楔
8 絶縁部材スペーサ
9 素線固めコイル
9a 素線
10 素線絶縁
11 絶縁詰め物
12 主絶縁層
21 高電圧電源
22 電圧測定システム
23 部分放電測定システム
24 コンピュータ
25 表示装置
26 診断システム
27 警戒レベルのパターン
28 第1段目の立ち上がり
29 危険レベルのパターン
30 第2段目の立ち上がり
31 監視レベルのパターン
32 接続端子
DESCRIPTION OF SYMBOLS 1 Rotating electrical machine 2 Rotor 3 Stator 4 Stator core 5 Iron core slot 6 Stator coil 6a Top coil 6b Bottom coil 7 Wedge 8 Insulation member spacer 9 Stranding coil 9a Strand 10 Strand insulation 11 Insulation padding 12 Main insulation Layer 21 High voltage power supply 22 Voltage measurement system 23 Partial discharge measurement system 24 Computer 25 Display device 26 Diagnostic system 27 Warning level pattern 28 First stage rise 29 Danger level pattern 30 Second stage rise 31 Monitoring level Pattern 32 connection terminal

Claims (5)

回転電機の固定子コイルに印加した電圧を連続的に昇圧または降圧して得られた印加電圧に対する部分放電電荷量のパターン情報において、バックグラウンドレベルから有意な差を持って部分放電電荷量が増加する(第1段目の立ち上がり)電圧領域よりも高い印加電圧で再び部分放電電荷量の増加率が上昇する(第2段目の立ち上がり)領域からなる場合を機械的劣化パターンとし、危険レベルと診断することを特徴とした絶縁診断法。   The partial discharge charge amount increases with a significant difference from the background level in the pattern information of the partial discharge charge amount with respect to the applied voltage obtained by continuously boosting or lowering the voltage applied to the stator coil of the rotating electrical machine. A case in which the rate of increase of the partial discharge charge increases again at the applied voltage higher than the voltage region (rising of the first stage) (rising of the second stage) is a mechanical deterioration pattern, Insulation diagnostic method characterized by diagnosis. 請求項1記載の方法で取得した印加電圧に対する部分放電電荷量のパターン情報の内、前記第1段目の立ち上がり電圧領域の部分放電電荷量が増加し始める点の印加電圧、または、前記第2段目の立ち上がり領域の部分放電電荷量が増加し始める点の印加電圧に基づき前記危険レベルの程度を評価することを特徴とした請求項1記載の絶縁診断法。 Of pattern information of the partial discharge charge amount for the obtained applied voltage The method of claim 1, applied voltage that partial discharge charge quantity of rising electricity pressure region of the first stage begins to increase, or, , insulation diagnostic method of claim 1 wherein characterized in that to evaluate the degree of the risk level based on the voltage applied that partial discharge charge quantity of rising realm of the second stage starts to increase. 請求項1記載の方法で取得した印加電圧に対する部分放電電荷量のパターン情報の内、前記第1段目の立ち上がり電圧領域の部分放電電荷量が増加し始める点の部分放電電荷量、または、前記第2段目の立ち上がり領域の部分放電電荷量が増加し始める点の部分放電電量に基づき前記危険レベルの程度を評価することを特徴とした請求項1記載の絶縁診断法。 Of pattern information of the partial discharge charge amount for the obtained applied voltage The method of claim 1, the partial discharge charge quantity of points partial discharge charge quantity of rising electricity pressure region of the first stage begins to increase or, according to claim 1 wherein characterized in that to evaluate the degree of the risk level based on the partial discharge electric load volume of that partial discharge charge quantity of rising realm of the second stage starts to increase of insulation diagnosis method. 回転電機の固定子コイルに印加した電圧を連続的に昇圧または降圧して得られた印加電圧に対する部分放電電荷量のパターン情報において、バックグラウンドレベルから有意な差を持って部分放電電荷量が増加する(第1段目の立ち上がり)電圧領域と、部分放電電荷量はほぼ一定となる電圧領域からなる場合を熱劣化パターンとし、警戒レベルと診断することを特徴とした絶縁診断法。   The partial discharge charge amount increases with a significant difference from the background level in the pattern information of the partial discharge charge amount with respect to the applied voltage obtained by continuously boosting or lowering the voltage applied to the stator coil of the rotating electrical machine. An insulation diagnosis method characterized by diagnosing a warning level by using a voltage region in which a voltage region and a voltage region in which a partial discharge charge amount is substantially constant as a thermal deterioration pattern. 2kVの誘電正接と定格電圧の誘電正接の差を用いて絶縁層の誘電特性を評価した後で請求項1乃至4の何れか1項に記載の絶縁診断を行うことを特徴とした請求項1乃至4の何れか1項に記載の絶縁診断法。 The insulation diagnosis according to any one of claims 1 to 4, wherein the dielectric diagnosis of the insulating layer is evaluated using the difference between the dielectric loss tangent of 2 kV and the dielectric loss tangent of the rated voltage. 5. The insulation diagnostic method according to any one of items 1 to 4.
JP2011158544A 2011-07-20 2011-07-20 Insulation diagnosis method for rotating electrical machines Active JP5587259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011158544A JP5587259B2 (en) 2011-07-20 2011-07-20 Insulation diagnosis method for rotating electrical machines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011158544A JP5587259B2 (en) 2011-07-20 2011-07-20 Insulation diagnosis method for rotating electrical machines

Publications (3)

Publication Number Publication Date
JP2013024669A JP2013024669A (en) 2013-02-04
JP2013024669A5 JP2013024669A5 (en) 2013-05-02
JP5587259B2 true JP5587259B2 (en) 2014-09-10

Family

ID=47783200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011158544A Active JP5587259B2 (en) 2011-07-20 2011-07-20 Insulation diagnosis method for rotating electrical machines

Country Status (1)

Country Link
JP (1) JP5587259B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6147099B2 (en) * 2013-06-03 2017-06-14 三菱日立パワーシステムズ株式会社 Remaining life diagnosis system and remaining life diagnosis method
JP6164022B2 (en) * 2013-10-03 2017-07-19 株式会社明電舎 Interlayer insulation diagnosis method for winding equipment
DE102015200544A1 (en) * 2015-01-15 2016-07-21 Siemens Aktiengesellschaft Electrostatic charge and dielectric strength test of an insulator
JP7157517B2 (en) * 2018-11-20 2022-10-20 三菱電機プラントエンジニアリング株式会社 Method for diagnosing remaining life of rotating electric machine and apparatus for diagnosing remaining life of rotating electric machine
CN112505510B (en) * 2020-12-15 2023-09-26 国网四川省电力公司电力科学研究院 Electric power equipment insulation state evaluation and early warning method based on dielectric accumulation effect

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119783B2 (en) * 1987-09-30 1995-12-20 東京電力株式会社 Insulation tester by AC method
JP2000206213A (en) * 1999-01-18 2000-07-28 Mitsubishi Electric Corp Method for monitoring insulation of rotating machine
JP2007047184A (en) * 2006-10-02 2007-02-22 Hitachi Ltd Dynamo-electric machine and method for measuring voltage being applied to its coil

Also Published As

Publication number Publication date
JP2013024669A (en) 2013-02-04

Similar Documents

Publication Publication Date Title
JP5587259B2 (en) Insulation diagnosis method for rotating electrical machines
Istad et al. A review of results from thermal cycling tests of hydrogenerator stator windings
CN108646152B (en) Method for detecting and evaluating insulation aging state of stator bar by polarization/depolarization current method
JP5602952B2 (en) Defect detection method for generator stator slot and wedge
JP5882019B2 (en) Inverter-driven rotating electrical machine testing method and rotating electrical machine testing method
CN101988945A (en) Method for diagnosing interturn short circuit of rotor winding
CN109375072B (en) Method for evaluating insulation aging state of stator bar by space charge method
Leuzzi et al. Analysis and detection of electrical aging effects on high-speed motor insulation
Montanari Time behavior of partial discharges and life of type II turn insulation specimens under repetitive impulse and sinusoidal waveforms
JP6147099B2 (en) Remaining life diagnosis system and remaining life diagnosis method
Griffo et al. Lifetime of machines undergoing thermal cycling stress
Verginadis et al. Determination of the insulation condition in synchronous generators: Industrial methods and a case study
Williamson et al. Investigation of equivalent stator-winding thermal resistance during insulation system ageing
JP5584002B2 (en) Winding insulation deterioration diagnosis method and winding insulation deterioration diagnosis device
JP2011117844A (en) Insulation diagnostic device
Kokko Ageing due to thermal cycling by power regulation cycles in lifetime estimation of hydroelectric generator stator windings
Rux et al. Assessing the condition of hydrogenerator stator winding insulation using the ramped high direct-voltage test method
KR101886192B1 (en) Apparatus for diagnosing a power transformer
Upadhyay et al. Characterization of onboard condition monitoring techniques for stator insulation systems in electric vehicles-a review
JP5961462B2 (en) Insulation diagnosis method for rotating electrical machines
Danikas et al. A review on electrical machines insulation aging and its relation to the power electronics arrangements with emphasis on wind turbine generators
JP2014215099A (en) Insulation diagnostic method of rotating electrical machinery
JP2008002893A (en) Remaining life expectancy evaluation method for turbogenerator stator coil
JP2010112755A (en) Method and device for diagnosing insulation of rotating machine stator coil
Sun et al. Study of a prediction method of the failure time and failure voltage of generator stator bars under the electrical stress test

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130314

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130314

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140224

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140225

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140723

R150 Certificate of patent or registration of utility model

Ref document number: 5587259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350