JP2012037483A - Method for determining partial discharge generation void class - Google Patents

Method for determining partial discharge generation void class Download PDF

Info

Publication number
JP2012037483A
JP2012037483A JP2010180435A JP2010180435A JP2012037483A JP 2012037483 A JP2012037483 A JP 2012037483A JP 2010180435 A JP2010180435 A JP 2010180435A JP 2010180435 A JP2010180435 A JP 2010180435A JP 2012037483 A JP2012037483 A JP 2012037483A
Authority
JP
Japan
Prior art keywords
partial discharge
void
temperature
voltage
humidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010180435A
Other languages
Japanese (ja)
Inventor
Yasunori Kanemitsu
康訓 金光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2010180435A priority Critical patent/JP2012037483A/en
Publication of JP2012037483A publication Critical patent/JP2012037483A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Relating To Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for determining the class of a void in which partial discharge occurs, without depending on a deterioration state of a measurement target.SOLUTION: A measurement target is installed within a device such as a constant-temperature/constant-humidity tub in which a temperature/humidity can be controlled and under a condition through a step of generating bedewing on a surface of the measurement target and a step of canceling bedewing, a partial discharge initiation voltage with a monopolar pulse voltage as a test voltage is measured. A characteristic where a behavior of the partial discharge initiation voltage in the bedewing canceling step is different in accordance with the class of a void in which partial discharge occurs, is utilized to determine the partial discharge occurrence void class.

Description

本発明は、樹脂によるモールドや含浸を施した変圧器や回転機等の電気機器の部分放電特性測定時において、部分放電の生じているボイド種別を判定するための試験方法に関する。   The present invention relates to a test method for determining the type of a void in which partial discharge has occurred when measuring partial discharge characteristics of an electric device such as a transformer or rotating machine that has been molded or impregnated with a resin.

高電圧印加により絶縁材料の内部や表面に局部的な電界集中を引き起こすような欠陥が存在する場合、その部分で局部的な放電(部分放電)が生じる恐れがある。有機絶縁材料が部分放電にさらされると、材料は放電による物理的・化学的な劣化を生じ、最悪の場合全路破壊に至ることもある。そのため電気機器に対しては、製造後の初期および一定期間運用後の診断時において部分放電試験を実施し、初期欠陥や経年劣化の診断を行う必要がある。   If there is a defect that causes local electric field concentration inside or on the surface of the insulating material due to application of a high voltage, local discharge (partial discharge) may occur in that portion. When an organic insulating material is exposed to a partial discharge, the material is physically and chemically deteriorated by the discharge, and in the worst case, the entire path may be destroyed. Therefore, it is necessary to carry out a partial discharge test for electrical equipment at the initial stage after manufacturing and at the time of diagnosis after a certain period of operation to diagnose initial defects and aging deterioration.

正弦波交流電圧による部分放電測定法に関しては古くから検討が進められ、各種測定法が確立されている(例えば非特許文献1)。また、インバータ駆動システムの絶縁で近年問題となっているインバータサージに対応するため、立ち上がりが急峻な電圧波形に対する部分放電の測定法に対しても検討が進められており、いくつかの測定法が提案されている(例えば非特許文献2、特許文献1)。   The partial discharge measurement method using a sinusoidal alternating voltage has been studied for a long time, and various measurement methods have been established (for example, Non-Patent Document 1). In addition, in order to cope with inverter surges, which have become a problem in recent years in the insulation of inverter drive systems, studies are also being conducted on partial discharge measurement methods for voltage waveforms with sharp rises. It has been proposed (for example, Non-Patent Document 2 and Patent Document 1).

ところで部分放電には絶縁層内部(密閉ボイド)で発生する放電と外部(開放ボイド)で発生する放電があり、ボイド形態により2種類に区分することができる。一般的に劣化初期に発生するボイドは密閉ボイドで、劣化が進行すると開放ボイドに進行するとされている。つまり、部分放電の発生しているボイド形態を判定することで、劣化の進展度合いを推定することができる。また、製造時の部分放電不良に関しても、内部放電であれば含浸樹脂のコイルへの浸透不足、外部放電であれば加熱硬化工程での樹脂のたれ、というように原因を推定することが可能になり、部分放電発生ボイド形態の特定は、絶縁システムの診断や不良時の対策を検討する上で有益な指標となる。   By the way, the partial discharge includes a discharge generated inside the insulating layer (sealed void) and a discharge generated outside (open void), and can be classified into two types depending on the void form. In general, voids generated in the early stage of deterioration are sealed voids, and when the deterioration progresses, the voids progress to open voids. In other words, the progress of deterioration can be estimated by determining the void form in which partial discharge has occurred. In addition, regarding the partial discharge failure during manufacturing, it is possible to estimate the cause such as insufficient penetration of the impregnated resin into the coil if internal discharge, and dripping of resin in the heat curing process if external discharge. Thus, the identification of the partial discharge generation void form is a useful index for diagnosis of the insulation system and examination of countermeasures in case of failure.

この部分放電発生ボイドを判別する手法については、最大放電電荷量qmaxと印加電圧Vの関係から、外部放電の方がqmax−V特性の傾きが大きくなる特徴を利用して、放電が発生しているボイドが密閉系か開放系かを判別する方法が提案されている(非特許文献3)。   With respect to the method for discriminating this partial discharge generation void, the discharge occurs by using the feature that the slope of the qmax-V characteristic is larger in the external discharge from the relationship between the maximum discharge charge amount qmax and the applied voltage V. A method for discriminating whether a void is a closed system or an open system has been proposed (Non-Patent Document 3).

特開2006−38471公報JP 2006-38471 A

「部分放電劣化」、電気学会技術報告(II部)第164号"Partial discharge deterioration", IEEJ Technical Report (Part II) No.164 「インバータサージの絶縁システムへの影響」、電気学会技術報告 第739号"Influence of inverter surge on insulation system", IEEJ Technical Report No. 739 「特別高圧回転機・ケーブルの絶縁劣化診断技術」、電気学会技術報告(II部)第267号"Special high-voltage rotating machine / insulation deterioration diagnosis technology for cables", IEEJ Technical Report (Part II) No. 267

しかし、この手法では、測定対象の劣化が進行している場合、劣化と共に部分放電開始電圧は低下し、外部放電であってもqmax−V特性の傾きは小さくなってしまう。反対に劣化が少ない場合には、部分放電開始電圧が高くなるため、内部放電でも傾きは大きくなってしまい、ボイド形態の判別は困難になる。   However, in this method, when the deterioration of the measurement target is progressing, the partial discharge start voltage decreases with the deterioration, and the slope of the qmax-V characteristic becomes small even with external discharge. On the other hand, when the deterioration is small, the partial discharge start voltage becomes high, so that the inclination becomes large even in the internal discharge, and it becomes difficult to determine the void form.

また、急峻なインパルス電圧を印加して試験する場合、放電電荷量の正確な測定が困難であることから、この場合もこの手法の適用は難しい。   In addition, when a test is performed by applying a steep impulse voltage, it is difficult to accurately measure the discharge charge amount, so that this method is also difficult to apply in this case.

本発明は、測定対象の劣化状態によらず部分放電を生じているボイド形態を判別するための測定方法を提供することを目的とする。   An object of this invention is to provide the measuring method for discriminating the void form which has produced partial discharge irrespective of the degradation state of a measuring object.

請求項1の発明によれば、測定対象を温度・湿度の制御が可能な恒温恒湿槽等に設置し、結露を伴う条件下で部分放電開始電圧を測定し、併せて絶縁抵抗値・静電容量値・tanδ値のいずれか1つもしくはこれらの組み合わせを測定することを特徴とする絶縁試験方法。測定対象を温度・湿度の制御が可能な恒温恒湿槽等に設置し、結露を伴う条件下で部分放電開始電圧を測定し、併せて絶縁抵抗値・静電容量値・tanδ値(誘電正接)等、測定対象の結露・吸湿状態を確認できる特性を測定することを特徴とする。   According to the first aspect of the present invention, the object to be measured is placed in a thermo-hygrostat capable of controlling temperature and humidity, the partial discharge start voltage is measured under conditions involving condensation, and the insulation resistance value / static An insulation test method comprising measuring any one of a capacitance value and a tan δ value, or a combination thereof. The measurement target is placed in a constant temperature and humidity chamber where temperature and humidity can be controlled, and the partial discharge start voltage is measured under conditions with condensation. In addition, the insulation resistance value, capacitance value, tanδ value (dielectric loss tangent) ) Etc., and the characteristics that can confirm the dew condensation / moisture absorption state of the measurement object are measured.

請求項2の発明によれば、請求項1の試験方法を用いた測定結果から、前記測定対象における放電発生源のボイド種別を判定することを特徴とする絶縁試験方法。部分放電発生源となるボイドが開放系か密閉系かによって、絶縁物表面の結露の状態が部分放電挙動に及ぼす影響が異なることを利用して、請求項1の試験方法を用いた測定結果から、放電発生源のボイド種別を判定することを特徴とする。   According to a second aspect of the present invention, there is provided an insulation test method for determining a void type of a discharge generation source in the measurement object from a measurement result using the test method of the first aspect. Based on the measurement results using the test method of claim 1, utilizing the fact that the influence of the dew condensation state on the insulator surface on the partial discharge behavior differs depending on whether the void that becomes the partial discharge generation source is an open system or a closed system. The void type of the discharge generation source is determined.

本発明は、恒温恒湿槽のような温度・湿度を制御できる環境下に測定対象を設置し、ある程度の速度で昇温することで測定対象の表面に結露が生じる環境下で単極性パルス電圧を試験電圧とする部分放電開始電圧の測定を実施することを特徴とする。結露解消過程における部分放電開始電圧の挙動が、部分放電を生じているボイド種別により異なる特性を利用して、測定対象の劣化状態によらず、部分放電発生ボイド種別を判定することができる。   The present invention provides a unipolar pulse voltage in an environment in which condensation is formed on the surface of a measurement object by setting the measurement object in an environment where the temperature and humidity can be controlled, such as a constant temperature and humidity chamber, and raising the temperature at a certain speed. The partial discharge start voltage is measured using the test voltage as a test voltage. The behavior of the partial discharge start voltage in the decondensation elimination process can determine the partial discharge occurrence void type regardless of the degradation state of the measurement object by using characteristics that differ depending on the type of void that generates the partial discharge.

部分放電開始電圧測定に際しては、パルス立ち上がり時間が10μs程度以下の単極性パルス電圧を試験電圧として用いることが望ましい。これは両極性パルス電圧を使用した場合には、残留電荷の効果が複雑に影響し、測定結果にばらつきが生じ易くなり、商用周波交流電圧を使用した場合には、絶対湿度を増加させていくと、あるポイントを超えると部分放電開始電圧が増大する効果が発現してしまうことが理由であり、パルスの立ち上がりに関しては、これが鈍い場合には、本発明を実施する場合の開放系ボイドのみに生じる特異な挙動が現れにくくなるためである。   When measuring the partial discharge start voltage, it is desirable to use a unipolar pulse voltage with a pulse rise time of about 10 μs or less as the test voltage. When bipolar pulse voltage is used, the effect of residual charge has a complicated effect, and measurement results tend to vary. When commercial frequency AC voltage is used, absolute humidity is increased. This is because the effect of increasing the partial discharge starting voltage is exhibited beyond a certain point.If the rise of the pulse is dull, only the open voids when the present invention is implemented are used. This is because the resulting unique behavior is less likely to appear.

部分放電開始電圧測定時の部分放電検出法に関しては、ある程度急峻なパルス電圧を試験電源とした測定であるため、従来の正弦波交流による部分放電測定装置を使用することはできないが、高周波CT法のような簡単な装置を用いて測定することが可能である。図1に測定装置の一例を示す。1の恒温恒湿槽内に2の測定対象を設置し、3の高圧パルス電源により2にパルス電圧を印加する。一定の速度で昇圧し、2に部分放電が生じると、その際に流れる部分放電電流を4の高周波CTが検知し、5のハイパスフィルタを通しノイズ成分を排除した波形を6のデジタルオシロスコープで検出する。   The partial discharge detection method at the time of measuring the partial discharge start voltage is a measurement using a somewhat steep pulse voltage as a test power supply. Therefore, a conventional partial discharge measurement device using a sinusoidal alternating current cannot be used. It is possible to measure using a simple device such as FIG. 1 shows an example of a measuring apparatus. A measuring object of 2 is installed in a constant temperature and humidity chamber of 1, and a pulse voltage is applied to 2 by a high voltage pulse power source of 3. When a partial discharge occurs at 2 at a constant speed, a partial discharge current flowing at that time is detected by 4 high-frequency CT, and a waveform that eliminates noise components through 5 high-pass filters is detected by 6 digital oscilloscopes. To do.

温度・湿度の制御に関しては、測定対象の表面に十分な結露を生じさせることが目的となる。具体的には、恒温恒湿槽内の温度・湿度に対して、測定対象の温度が露点温度以下になるような制御が必要になる。図2(a)に各温度・湿度に対する露点温度を示し、図2(b)に結露に必要な温度差を示す。これを目安に温度・湿度を制御し、ある程度高い設定温度と、早い温度上昇速度により、恒温恒湿槽内温度と測定対象温度に十分な差を生じさせる必要がある。   The purpose of controlling the temperature and humidity is to cause sufficient condensation on the surface of the measurement object. Specifically, it is necessary to control the temperature to be measured to be equal to or lower than the dew point temperature with respect to the temperature and humidity in the constant temperature and humidity chamber. FIG. 2 (a) shows the dew point temperature for each temperature and humidity, and FIG. 2 (b) shows the temperature difference necessary for condensation. It is necessary to control the temperature and humidity with this as a guideline, and to produce a sufficient difference between the temperature in the constant temperature and humidity chamber and the temperature to be measured by a relatively high set temperature and a fast temperature rise rate.

恒温恒湿槽内の温度上昇よりも測定対象の温度上昇が遅れることで生じる結露は、恒温恒湿槽内の温度が設定温度に到達し、次いで測定対象の温度も設定温度に到達することで解消に転じる。この過程を通して単極性パルス電圧印加による部分放電開始電圧の測定を実施する。特に結露が解消に転じる付近で、部分放電の発生しているボイドが密閉系か開放系かで部分放電開始電圧が異なる挙動を示すことを利用して部分放電発生ボイドの種別を判定する。部分放電発生ボイドが密閉系である場合、結露の段階で部分放電開始電圧は十分な低下を示し、結露解消時の影響は受けない。しかし、部分放電発生ボイドが開放系である場合、結露解消に転じる付近で更に部分放電開始電圧が低下する現象が起こる。この違いを見分けることより、部分放電発生ボイドを区分することが可能になる。測定対象表面の結露、あるいは絶縁層の吸湿状態は、部分放電開始電圧の測定と併せて静電容量・tanδ、もしくは絶縁抵抗の測定を行うことで把握することができる。   Condensation that occurs when the temperature rise of the measurement target is delayed from the temperature rise in the temperature and humidity chamber is that the temperature in the temperature and humidity chamber reaches the set temperature, and then the temperature of the measurement target also reaches the set temperature. It turns into cancellation. Through this process, the partial discharge start voltage is measured by applying a unipolar pulse voltage. In particular, the type of the partial discharge occurrence void is determined using the fact that the partial discharge start voltage shows different behavior depending on whether the void where the partial discharge is generated is a closed system or an open system in the vicinity where the condensation starts to disappear. When the partial discharge generation void is a closed system, the partial discharge start voltage is sufficiently reduced at the stage of condensation, and is not affected when condensation is eliminated. However, when the partial discharge generation void is an open system, a phenomenon occurs in which the partial discharge start voltage further decreases in the vicinity where the condensation is eliminated. By distinguishing this difference, it becomes possible to classify the partial discharge generation voids. The condensation on the surface to be measured or the moisture absorption state of the insulating layer can be grasped by measuring the capacitance / tan δ or the insulation resistance together with the measurement of the partial discharge start voltage.

本発明によれば、測定対象の劣化状態によらず、部分放電発生ボイドの種別を判定することが可能になる。   According to the present invention, it is possible to determine the type of the partial discharge occurrence void regardless of the deterioration state of the measurement target.

部分放電開始電圧測定装置の一例を示した概略図であるIt is the schematic which showed an example of the partial discharge start voltage measuring apparatus. 結露を生じる条件となる露点温度を各温度・湿度について示した図である。It is the figure which showed the dew point temperature used as the conditions which produce dew condensation about each temperature and humidity. ボイド種別判定法実施時の温度・湿度制御の説明図である。(実施例1)It is explanatory drawing of temperature and humidity control at the time of void type determination method implementation. Example 1 ボイド種別判定の実施方法を示した説明図である。(実施例1)It is explanatory drawing which showed the implementation method of void type determination. Example 1

測定対象が一旦結露し、それが解消する過程を通して単極性パルス電圧を試験電圧とする部分放電開始電圧測定を実施することで、部分放電発生ボイド種別を判定する手法を実現した。   By implementing partial discharge start voltage measurement using the unipolar pulse voltage as the test voltage through the process of condensation once the measurement object has been eliminated, a method for determining the type of the partial discharge occurrence void has been realized.

部分放電開始電圧の測定は、図1に示す高周波CT法を用いた測定装置で実施する。   The partial discharge start voltage is measured with a measuring apparatus using the high-frequency CT method shown in FIG.

図3は、測定対象表面に結露の過程と結露解消の過程を生じさせるために行った恒温恒湿槽による温度・湿度制御の1実施例であって、図4は図3のように制御された環境下で行った部分放電開始電圧と、結露状態を判定するために併せて測定したtanδ(誘電正接)のデータを密閉系ボイドサンプルと開放系ボイドサンプルのそれぞれを測定対象として行った測定結果である。   FIG. 3 shows an example of temperature / humidity control by a thermo-hygrostat performed to cause the process of condensation and the process of eliminating condensation on the surface to be measured. FIG. 4 is controlled as shown in FIG. Measurement results of partial discharge start voltage and tan δ (dielectric loss tangent) data measured together to determine the dew condensation state for each of the closed void sample and open void sample It is.

図3のように高温域にまで、ある程度の温度勾配で昇温することで、測定対象の表面に結露が生じる。結露の度合いは図4のtanδのデータで確認できるように、試験開始から徐々に進行し、tanδの最大値付近でピークを迎え、その後解消に転じる。   Condensation occurs on the surface of the object to be measured by raising the temperature to a high temperature range with a certain temperature gradient as shown in FIG. As the degree of condensation can be confirmed by the data of tan δ in FIG. 4, it gradually proceeds from the start of the test, reaches a peak near the maximum value of tan δ, and then turns to cancellation.

図4(a)の密閉系サンプルにおける測定結果をみると、測定開始から表面の結露とともに生じる絶縁層の吸湿の影響で、部分放電開始電圧が低下していくが、結露のピーク近辺で、それまでの急激な低下傾向から安定領域に移り、結露解消過程の影響はほとんど受けない。   Looking at the measurement results of the closed system sample in FIG. 4A, the partial discharge start voltage decreases due to the moisture absorption of the insulating layer that occurs along with the surface condensation from the start of measurement. From the rapid decline trend until the transition to the stable region, it is hardly affected by the process of eliminating condensation.

一方、図4(b)の開放系ボイドサンプルの測定結果を見ると、結露の進行過程における部分放電開始電圧の低下は密閉系ボイドサンプルと同様であるが、結露のピークから解消の過程で密閉系ボイドとは大きく異なる特徴を示す。絶縁物表面に存在する開放系ボイドで起こる部分放電は、結露の進行と解消による絶縁物の表面導電率の変動の影響を直接的に受けることから、結露解消過程でさらに部分放電開始電圧の低下が確認できる。   On the other hand, when the measurement result of the open type void sample in FIG. 4B is seen, the decrease of the partial discharge start voltage in the process of dew condensation is the same as in the closed type void sample, but it is sealed in the process of elimination from the peak of dew condensation. It shows characteristics that are very different from system voids. The partial discharge that occurs in the open void on the surface of the insulator is directly affected by the change in the surface conductivity of the insulator due to the progress and elimination of condensation. Can be confirmed.

このように、結露解消過程における部分放電開始電圧の特徴的な挙動を見分けることで、部分放電発生ボイドが密閉系か開放系かを判定することが可能になる。   Thus, by distinguishing the characteristic behavior of the partial discharge start voltage in the condensation elimination process, it is possible to determine whether the partial discharge generation void is a closed system or an open system.

製造時や、経年劣化の診断時におこなう絶縁特性試験において部分放電不良を検出した場合、本発明の手法を用いることで、測定対象の劣化の度合いによらず、部分放電が発生しているボイド種別を判定し、その後の対策検討に大いに役立つ指標を得ることができる。   When a partial discharge failure is detected in an insulation characteristic test performed at the time of manufacturing or when aging deterioration is diagnosed, the method of the present invention can be used to determine the type of void in which partial discharge occurs regardless of the degree of deterioration of the measurement target. It is possible to obtain an index that is greatly useful for studying countermeasures thereafter.

1 恒温恒湿槽
2 測定対象
3 高圧パルス電源
4 高周波CT
5 ハイパスフィルタ
6 デジタルオシロスコープ
1 Constant temperature and humidity chamber 2 Measurement object 3 High voltage pulse power supply 4 High frequency CT
5 High-pass filter 6 Digital oscilloscope

Claims (2)

測定対象を温度・湿度の制御が可能な恒温恒湿槽等に設置し、結露を伴う条件下で部分放電開始電圧を測定し、併せて絶縁抵抗値・静電容量値・tanδ値のいずれか1つもしくはこれらの組み合わせを測定することを特徴とする絶縁試験方法。   Install the object to be measured in a constant temperature and humidity chamber that can control temperature and humidity, measure the partial discharge start voltage under conditions with condensation, and select either insulation resistance value, capacitance value, or tanδ value. An insulation test method characterized by measuring one or a combination thereof. 請求項1の試験方法を用いた測定結果から、前記測定対象における放電発生源のボイド種別を判定することを特徴とする絶縁試験方法。   An insulation test method, comprising: determining a void type of a discharge generation source in the measurement target from a measurement result using the test method according to claim 1.
JP2010180435A 2010-08-11 2010-08-11 Method for determining partial discharge generation void class Pending JP2012037483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010180435A JP2012037483A (en) 2010-08-11 2010-08-11 Method for determining partial discharge generation void class

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010180435A JP2012037483A (en) 2010-08-11 2010-08-11 Method for determining partial discharge generation void class

Publications (1)

Publication Number Publication Date
JP2012037483A true JP2012037483A (en) 2012-02-23

Family

ID=45849609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010180435A Pending JP2012037483A (en) 2010-08-11 2010-08-11 Method for determining partial discharge generation void class

Country Status (1)

Country Link
JP (1) JP2012037483A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104931866A (en) * 2015-06-17 2015-09-23 深圳供电局有限公司 Device used for researching influence of SF6 gas humidity on insulator flashover characteristic
JP2017219352A (en) * 2016-06-03 2017-12-14 トヨタ自動車株式会社 Power supply device for insulation inspection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104931866A (en) * 2015-06-17 2015-09-23 深圳供电局有限公司 Device used for researching influence of SF6 gas humidity on insulator flashover characteristic
JP2017219352A (en) * 2016-06-03 2017-12-14 トヨタ自動車株式会社 Power supply device for insulation inspection

Similar Documents

Publication Publication Date Title
JP5469052B2 (en) Winding insulation characteristics evaluation method
Guastavino et al. Measuring partial discharges under pulsed voltage conditions
CN114779021A (en) Method for detecting insulation level of generator stator of gas turbine unit
Leonov et al. Estimation of winding insulation resistance to the corona discharges
JP6164022B2 (en) Interlayer insulation diagnosis method for winding equipment
Ohlen et al. Dielectric frequency response and temperature dependence of power factor
JP2012037483A (en) Method for determining partial discharge generation void class
Matsuzoe et al. Dielectric and Insulation Properties of Polyimide-based Boehmite Nanocomposite Material
JP6147862B2 (en) Water-resistant tree evaluation method, insulation design method, and rotating electric machine
Smulko et al. Acoustic emission for detecting deterioration of capacitors under aging
Gao et al. Towards a holistic approach to inverter-fed machine design: FEM-based PDIV prediction of complete windings
WO2016088156A1 (en) Water tree testing method and water tree testing device
Raetzke et al. Modern insulation condition assessment for instrument transformers
Notingher et al. Lifetime estimation of composite insulations by absorption/resorption currents method
Niasar et al. Dielectric frequency response of oil-impregnated paper: The effect of partial discharges compared to other influences
ZA200603232B (en) Coil residual life predicting method and apparatus
EP1703293B1 (en) Method and device for estimating remaining service life of coil
Lee et al. Recognition of partial discharge defects in cable terminations
Kozako et al. Prediction of Lifetime in Surge Resistant Enamel Twisted Pair by Partial Discharge Degradation under Repetitive Impulse Voltage Application
JP2013148481A (en) Method for determining deterioration of motor coil
RU2491565C1 (en) Method to define resistance of enamelled wire insulation to surface discharge
Uchimura et al. Electrical insulation performance evaluation of PVF wire under thermal and electrical accelerated aging
David et al. Low-frequency dielectric response of asphalt bonded insulation
JPH09304467A (en) Method for diagnosing insulation deterioration of electric insulator
Calo et al. Dielectric frequency response of a MV stator coil: effect of humidity and thermal ageing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140624