JP5469052B2 - Winding insulation characteristics evaluation method - Google Patents

Winding insulation characteristics evaluation method Download PDF

Info

Publication number
JP5469052B2
JP5469052B2 JP2010284518A JP2010284518A JP5469052B2 JP 5469052 B2 JP5469052 B2 JP 5469052B2 JP 2010284518 A JP2010284518 A JP 2010284518A JP 2010284518 A JP2010284518 A JP 2010284518A JP 5469052 B2 JP5469052 B2 JP 5469052B2
Authority
JP
Japan
Prior art keywords
winding
insulation
characteristic
moisture absorption
dry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010284518A
Other languages
Japanese (ja)
Other versions
JP2012132767A (en
Inventor
史典 小林
達雄 光永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010284518A priority Critical patent/JP5469052B2/en
Publication of JP2012132767A publication Critical patent/JP2012132767A/en
Application granted granted Critical
Publication of JP5469052B2 publication Critical patent/JP5469052B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Testing Relating To Insulation (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Description

本発明は、例えば、電動機、発電機等の回転電機の巻線の絶縁状態を評価する巻線の絶縁特性評価方法に関するものである。   The present invention relates to a winding insulation characteristic evaluation method for evaluating the insulation state of a winding of a rotating electrical machine such as an electric motor or a generator.

一般に、電動機等の電気機器において経年変化による絶縁特性を計測することは、電気機器の劣化度や余寿命を評価する上で重要である。そこで、絶縁抵抗測定器を使用して、初期状態の絶縁抵抗と経年後の絶縁抵抗を測定し、その測定値を比較して劣化の有無、余寿命の推定を行っている。しかしながら、測定時の状況、すなわち、周囲の温度や湿度、被測定対象機器の吸湿度によって絶縁抵抗値が変動するため、正確に機器の劣化度を評価することは困難である。   In general, it is important to measure an insulation characteristic due to secular change in an electric device such as an electric motor in order to evaluate the deterioration degree and remaining life of the electric device. Therefore, the insulation resistance measuring instrument is used to measure the insulation resistance in the initial state and the insulation resistance after aging, and the measured values are compared to estimate the presence or absence of deterioration and the remaining life. However, since the insulation resistance value varies depending on the situation at the time of measurement, that is, the ambient temperature and humidity, and the moisture absorption of the device under measurement, it is difficult to accurately evaluate the degree of deterioration of the device.

そこで、従来の絶縁診断方法では、巻線が置かれている環境状態の差異すなわち乾燥状態と吸湿状態の絶縁特性の差異に注目して絶縁劣化の推定を可能とするもので、絶縁劣化度の進んだ絶縁物は吸湿状態においてはその絶縁抵抗が極端に低下するのでその乾燥状態と吸湿状態の抵抗値の差異を測定することにより絶縁劣化度を診断している。(例えば、特許文献1参照。)。具体的には、巻線を蒸気中に暴露し、強制吸湿させた吸湿状態の絶縁抵抗と、その後乾燥させた乾燥状態の絶縁抵抗とを測定し、これらの絶縁抵抗比を求め、さらに、高電圧印加による絶縁破壊電圧を測定した結果と照らし合わせると、絶縁抵抗比と絶縁抵抗破壊電圧とには相関関係があり、これにより絶縁劣化状態や絶縁破壊強度を推定することができる。   Therefore, the conventional insulation diagnosis method makes it possible to estimate insulation deterioration by paying attention to the difference in the environmental condition where the winding is placed, that is, the difference in insulation characteristics between the dry state and the moisture absorption state. Since the insulation resistance of the advanced insulator is extremely lowered in the moisture absorption state, the degree of insulation deterioration is diagnosed by measuring the difference in resistance value between the dry state and the moisture absorption state. (For example, refer to Patent Document 1). Specifically, the insulation resistance in the moisture absorption state where the winding was exposed to steam and forcedly absorbed and the insulation resistance in the dried state after drying were measured to obtain the ratio of these insulation resistances. When compared with the result of measuring the dielectric breakdown voltage due to voltage application, there is a correlation between the insulation resistance ratio and the insulation resistance breakdown voltage, so that it is possible to estimate the insulation degradation state and the dielectric breakdown strength.

特開昭58−55768号公報JP-A-58-55768

しかしながら、従来の絶縁診断方法では、経年後の吸湿状態の絶縁抵抗と、乾燥状態の絶縁抵抗を測定し、この絶縁抵抗を比較することによって、絶縁劣化状態や絶縁破壊強度を推定している。実際には、巻線の乾燥/吸湿状態や巻線の温度によって絶縁抵抗、静電容量、tanδ(誘電正接)の値が変化するため、個々の巻線の特性のばらつきもあり、経年後の交流電流試験やtanδ試験の絶縁特性だけで絶縁劣化度を正確に評価することは難しい。従来の絶縁特性の評価法では、巻線の乾燥/吸湿状態や巻線の温度による絶縁抵抗、静電容量、tanδ(誘電正接)の変化を考慮に入れておらず、必ずしも正確に経年後の巻線の絶縁特性が評価されているとは云えないという問題があった。   However, in the conventional insulation diagnosis method, the insulation resistance in the moisture absorption state after the aging and the insulation resistance in the dry state are measured, and the insulation resistance state and the dielectric breakdown strength are estimated by comparing the insulation resistance. Actually, the insulation resistance, capacitance, and tan δ (dielectric loss tangent) values vary depending on the dry / moisture absorption state of the winding and the temperature of the winding. It is difficult to accurately evaluate the degree of insulation deterioration only by the insulation characteristics of the alternating current test and the tan δ test. Conventional methods for evaluating insulation characteristics do not take into account changes in insulation resistance, capacitance, and tan δ (dielectric loss tangent) due to the drying / moisture absorption state of the winding and the temperature of the winding. There has been a problem that the insulation characteristics of the winding cannot be said to have been evaluated.

本発明は、上記の課題を解決するためになされたものであり、経年後の巻線に対して精度よく絶縁特性を評価することができる巻線の絶縁特性評価方法を提供することを目的としている。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide a method for evaluating the insulation characteristics of a winding that can accurately evaluate the insulation characteristics of a winding after a lapse of time. Yes.

上記課題を解決するために、本発明の巻線の絶縁特性評価方法は、経年後の巻線の絶縁特性を評価する巻線の絶縁特性評価方法において、静電容量C、誘電正接(tanδ0)、絶縁抵抗R及び静電容量比KC(=C/C0、C0:初期静電容量)により定義される巻線の乾燥/吸湿評価指標IX(=R・C0/Kc/tanδ0)を導入し、前記経年後の乾燥/吸湿評価指標における巻線の絶縁特性を、初期状態での乾燥/吸湿評価指標における巻線の絶縁特性に換算し、前記換算された巻線の絶縁特性と初期状態での巻線の絶縁特性とを比較することによって経年後の巻線の絶縁特性を評価するものである。 In order to solve the above problems, the insulating characteristic evaluation method of the winding of the present invention, the insulating characteristic evaluation method of winding evaluating insulating properties of the winding after aging, the electrostatic capacitance C, the dielectric loss tangent (tan [delta 0 ), Winding drying / humidity evaluation index I X (= R · C 0 / Kc /) defined by the insulation resistance R and the capacitance ratio K C (= C / C 0 , C 0 : initial capacitance). tan δ 0 ), the insulation characteristics of the winding in the dry / moisture absorption evaluation index after the aging are converted into the insulation characteristics of the winding in the dry / moisture absorption evaluation index in the initial state, and the converted winding The insulation characteristics of the winding after the lapse of time are evaluated by comparing the insulation characteristics with the insulation characteristics of the winding in the initial state.

本発明の巻線の絶縁特性評価方法によれば、絶縁抵抗、静電容量、誘電正接(tanδ0)を評価に用いて、経年後の巻線の乾燥/吸湿状態や巻線の温度の条件が初期状態での絶縁特性評価時と異なっていても、絶縁抵抗、静電容量、tanδ(誘電正接)を初期状態での絶縁特性評価時の乾燥/吸湿状態と同じ条件に換算して評価するようにしたので、巻線の乾燥/吸湿状態や巻線の温度に係わらず経年後の絶縁特性を精度よく評価することができる。 According to the method for evaluating the insulation characteristics of a winding according to the present invention, the insulation resistance, capacitance, and dielectric loss tangent (tan δ 0 ) are used for the evaluation, and the condition of the drying / moisture absorption state of the winding and the temperature of the winding after aging Even if the insulation characteristics are different from those at the initial state, the insulation resistance, capacitance, and tan δ (dielectric loss tangent) are converted into the same conditions as the dry / moisture-absorbed state at the time of initial state insulation characteristics evaluation. As a result, it is possible to accurately evaluate the insulation characteristics after aging regardless of the drying / moisture absorption state of the winding and the temperature of the winding.

本発明の実施の形態における評価手順を示すフロー図である。It is a flowchart which shows the evaluation procedure in embodiment of this invention. 本発明の実施の形態における初期状態及び経年後の誘電正接−電圧特性を示す図である。It is a figure which shows the dielectric loss tangent-voltage characteristic after the initial state in the embodiment of this invention, and aged. 本発明の実施の形態における絶縁抵抗を測定するための電流−時間特性を示す図である。It is a figure which shows the current-time characteristic for measuring the insulation resistance in embodiment of this invention. 本発明の実施の形態における初期状態及び経年後の電流−電圧特性を示す図である。It is a figure which shows the electric current-voltage characteristic after the initial state in embodiment of this invention, and aged. 本発明の実施の形態における初期状態及び経年後の電流急増電圧による絶縁特性を示す図である。It is a figure which shows the insulation characteristic by the electric current rapid increase voltage after the initial state in the embodiment of this invention, and aged. 本発明の実施の形態における初期状態及び経年後の電流勾配増加率による絶縁特性を示す図である。It is a figure which shows the insulation characteristic by the current gradient increase rate after the initial state in the embodiment of this invention, and aged. 本発明の実施の形態における初期状態及び経年後の絶縁抵抗による絶縁特性を示す図である。It is a figure which shows the insulation characteristic by the insulation resistance after the initial state in the embodiment of this invention, and aged. 本発明の実施の形態における初期状態及び経年後の静電容量による絶縁特性を示す図である。It is a figure which shows the insulation characteristic by the electrostatic capacitance after the initial state in the embodiment of this invention, and aged. 本発明の実施の形態における初期状態及び経年後の誘電正接による絶縁特性を示す図である。It is a figure which shows the insulation characteristic by the dielectric loss tangent after the initial state in the embodiment of this invention, and aged. 本発明の実施の形態における初期状態及び経年後の誘電正接変化量による絶縁特性を示す図である。It is a figure which shows the insulation characteristic by the dielectric loss tangent variation | change_quantity after the initial state in the embodiment of this invention, and aged.

以下、本発明の実施の形態に係る巻線の絶縁特性評価方法について図1〜図10を参照して説明する。本発明の絶縁特性評価において、新たに、式(1)で定義される乾燥/吸湿評価指標Ixを導入する。
Ix=R・C0/Kc/tanδ0 ・・・・(1)
ここで、Rは巻線の絶縁抵抗、C0は巻線の初期静電容量、tanδ0は低電圧時の巻線の誘電正接、KCは巻線の静電容量比(C/C0)である。
吸湿状態では、絶縁抵抗Rは減少し、誘電正接tanδ0と静電容量Cは増加する。逆に乾燥状態では、絶縁抵抗Rは増加し、誘電正接tanδ0と静電容量Cは減少する。
Hereinafter, a method for evaluating an insulation characteristic of a winding according to an embodiment of the present invention will be described with reference to FIGS. In the insulation characteristic evaluation of the present invention, a drying / moisture absorption evaluation index Ix defined by the formula (1) is newly introduced.
Ix = R · C 0 / Kc / tan δ 0 (1)
Here, R is the insulation resistance of the winding, C 0 is the initial capacitance of the winding, tan δ 0 is the dielectric loss tangent of the winding at low voltage, and K C is the capacitance ratio of the winding (C / C 0 ).
In the moisture absorption state, the insulation resistance R decreases, and the dielectric loss tangent tan δ 0 and the capacitance C increase. Conversely, in the dry state, the insulation resistance R increases, and the dielectric loss tangent tan δ 0 and the capacitance C decrease.

図1は、実施の形態に係る巻線の絶縁特性評価方法における評価手順を示すフロー図である。図2は、発電機等の回転電機の固定子巻線の初期状態及び経年後の誘電正接(tanδ)−電圧特性(tanδ−V特性)を示す図である。図3は、絶縁抵抗を測定するための電流−時間特性(I−t特性)を示す図である。図4は、初期状態及び経年後の電流−電圧特性(I−V特性)を示す図である。   FIG. 1 is a flowchart showing an evaluation procedure in the winding insulation characteristic evaluation method according to the embodiment. FIG. 2 is a diagram showing an initial state and a dielectric loss tangent (tan δ) -voltage characteristic (tan δ-V characteristic) of a stator winding of a rotating electrical machine such as a generator after a lapse of time. FIG. 3 is a diagram showing current-time characteristics (It characteristics) for measuring the insulation resistance. FIG. 4 is a diagram showing current-voltage characteristics (IV characteristics) after the initial state and aging.

実施の形態に係る巻線の絶縁特性評価方法では、図1の評価手順を示すフロー図に示すように、初期状態及び経年後における巻線の交流試験、絶縁抵抗測定、交流電流試験の測
定を実施し、測定された静電容量C、誘電正接tanδ、絶縁抵抗Rからそれぞれ乾燥/吸湿評価指標Ixを求め、併せて電流急増電圧Pi、電流勾配aの測定結果から経年後の絶縁特性(電流急増電圧比Es/Pi、電流勾配増加率(a−a0)/a0、絶縁抵抗R、静電容量C、誘電正接tanδ及び誘電正接変化量Δtanδ)を初期状態の乾燥/吸湿評価指標Ixの条件に換算して、初期状態の絶縁特性と比較することによって巻線の絶縁劣化や余寿命を判定するための判定材料となる絶縁特性を提供する。
In the winding insulation characteristic evaluation method according to the embodiment, as shown in the flow chart showing the evaluation procedure of FIG. 1, the AC test, the insulation resistance measurement, and the AC current test of the winding in the initial state and after the aging are performed. The dry / moisture absorption evaluation index Ix is obtained from the measured capacitance C, dielectric loss tangent tan δ, and insulation resistance R, respectively, and the insulation characteristics (current) after the lapse of time from the measurement results of the current sudden increase voltage Pi and the current gradient a. Rapid increase voltage ratio Es / Pi, current gradient increase rate (a−a 0 ) / a 0 , insulation resistance R, capacitance C, dielectric loss tangent tan δ and dielectric loss tangent change amount Δtan δ) in the initial state of dry / moisture evaluation index Ix Insulation characteristics serving as a judgment material for judging the insulation deterioration and remaining life of the winding by converting to the initial condition and comparing with the insulation characteristics in the initial state.

次に、図1、図2及び図3を参照して、巻線の絶縁特性評価手順について説明する。まず、初期状態における巻線の絶縁特性及び経年後における巻線の絶縁特性を求める(S1〜S4、S5〜S8)。測定項目として、交流試験、絶縁抵抗測定及び交流電流試験を実施する(S1、S5)。   Next, the procedure for evaluating the insulation characteristics of the winding will be described with reference to FIGS. First, the insulation characteristics of the winding in the initial state and the insulation characteristics of the winding after aging are obtained (S1 to S4, S5 to S8). As a measurement item, an AC test, an insulation resistance measurement, and an AC current test are performed (S1, S5).

交流試験は、巻線の導体部と鉄心(アース)間で交流電圧を印加し、静電容量C,C’及び誘電正接(tanδ,tanδ’)を測定する(図2)。ここで、巻線の温度を同じにして測定する。また、図において、初期状態での誘電正接(tanδ)は実線で、経年後での誘電正接(tanδ)は破線で表す。記号の「’」は経年後の値を示す。   In the AC test, an AC voltage is applied between the conductor part of the winding and the iron core (earth), and capacitances C and C ′ and dielectric loss tangent (tan δ, tan δ ′) are measured (FIG. 2). Here, the winding temperature is measured at the same temperature. In the figure, the dielectric loss tangent (tan δ) in the initial state is represented by a solid line, and the dielectric loss tangent (tan δ) after the passage of time is represented by a broken line. The symbol “′” indicates a value after aging.

絶縁抵抗測定は、巻線の導体部と鉄心(アース)間で直流電圧を印加して、巻線の絶縁抵抗R,R’を測定する(図3)。直流電圧Edを巻線に印加すると測定時間tと共に電流Iが変化する。絶縁抵抗Rは、直流電圧Edを電流Iで除したものであるが、本発明の絶縁評価においては充電時あるいは放電時のいずれの電流値を用いてもよい。充電電流は、実測定された全充電電流Ipと全充電電流Ipから飽和充電電流(図3左の破線で表示)を差し引いた充電電流Ia、放電電流は、実測定された全放電電流Idと全放電電流Idから飽和放電電流(図3右の破線で表示)を差し引いた放電電流Ir、また、測定時間tも30秒時、1分時、10分時によりそれぞれ異なるが、ここでは、1分時での充電電流Ia1minを用いた絶縁抵抗Rとする。経年後での絶縁抵抗R’も同様である。絶縁抵抗Rは巻線温度に左右される。絶縁抵抗Rは巻線温度が高いと減少し、巻線温度が低いと増加する。このため、初期状態と経年後の測定は同じ温度にて実施される。 In the insulation resistance measurement, a DC voltage is applied between the conductor portion of the winding and the iron core (earth) to measure the insulation resistances R and R ′ of the winding (FIG. 3). When the DC voltage Ed is applied to the winding, the current I changes with the measurement time t. The insulation resistance R is obtained by dividing the DC voltage Ed by the current I. In the insulation evaluation of the present invention, any current value at the time of charging or discharging may be used. The charging current is the actual measured total charging current Ip and the charging current Ia obtained by subtracting the saturation charging current (indicated by the broken line on the left in FIG. 3) from the total charging current Ip, and the discharging current is the actual measured total discharging current Id. The discharge current Ir obtained by subtracting the saturation discharge current (indicated by the broken line on the right in FIG. 3) from the total discharge current Id, and the measurement time t also differ depending on 30 seconds, 1 minute, and 10 minutes. It is assumed that the insulation resistance R uses the charging current Ia 1 min in minutes. The same applies to the insulation resistance R ′ after a lapse of time. The insulation resistance R depends on the winding temperature. The insulation resistance R decreases when the winding temperature is high, and increases when the winding temperature is low. For this reason, the initial state and the measurement after aging are carried out at the same temperature.

交流電流試験は、巻線の導体部と鉄心(アース)間で交流電圧を印加し、電流−電圧特性(I−V特性)を測定する(図4)。図4で、初期状態での電流は実線で、経年後での電流は破線で表わされる。初期状態での電流急増電圧Pi及び電流急増電圧Piの前後の電圧での電流勾配a0,aと、経年後での電流急増電圧Pi’及び電流急増電圧Pi’の前後の電圧での電流勾配a0’,a’を求める。 In the alternating current test, an alternating voltage is applied between the conductor portion of the winding and the iron core (earth), and current-voltage characteristics (IV characteristics) are measured (FIG. 4). In FIG. 4, the current in the initial state is represented by a solid line, and the current after aging is represented by a broken line. The current gradient a 0 , a at the current before and after the current sudden increase voltage Pi and the current sudden increase voltage Pi in the initial state, and the current gradient at the current before and after the current sudden increase voltage Pi ′ and the current sudden increase voltage Pi ′. Find a 0 ', a'.

誘電正接の測定では、図2に示すように、低電圧における初期状態の誘電正接はtanδ0、経年後の誘電正接はtanδ0’、高電圧における誘電正接と、低電圧おける誘電正接との初期状態での誘電正接変化量はΔtanδ、経年後での誘電正接変化量はΔtanδ’である。 In the measurement of the dielectric loss tangent, as shown in FIG. 2, the initial dielectric tangent at low voltage is tan δ 0 , the dielectric tangent after aging is tan δ 0 ′, and the initial value between the dielectric tangent at high voltage and the dielectric loss tangent at low voltage. The amount of change in dielectric loss tangent in the state is Δtan δ, and the amount of change in dielectric loss tangent after aging is Δtan δ ′.

経年後の巻線の絶縁抵抗測定、交流電流試験及び誘電正接の測定では、巻線が置かれたそのままの乾燥/吸湿状態での測定に加えて、巻線を加熱して、乾燥/吸湿状態を変えた条件での測定も併せて実施する。   In the insulation resistance measurement, AC current test, and dielectric loss tangent measurement of the winding after the aging, in addition to the measurement in the dry / moisture absorption state where the winding is placed, the winding is heated to the dry / moisture absorption state. Measurements under different conditions are also performed.

続いて、静電容量比Kc(=C/C0、C0は初期静電容量)を算出する(S2、S6)。初期状態での巻線においてはKc=1である。 Subsequently, a capacitance ratio Kc (= C / C 0 , C 0 is an initial capacitance) is calculated (S2, S6). In the winding in the initial state, Kc = 1.

初期状態における乾燥/吸湿評価指標Ixを絶縁抵抗R、初期静電容量C0、静電容量比Kc及び低電圧時の誘電正接tanδ0を用いて求める。同様に、経年後における乾燥/吸湿評価指標Ix’を絶縁抵抗R’、初期静電容量C0、静電容量比Kc’及び低電圧
時の誘電正接tanδ0’を用いて求める(S3、S7)。
The dry / moisture absorption evaluation index Ix in the initial state is obtained by using the insulation resistance R, the initial capacitance C 0 , the capacitance ratio Kc, and the dielectric loss tangent tan δ 0 at low voltage. Similarly, the dry / moisture absorption evaluation index Ix ′ after the aging is obtained using the insulation resistance R ′, the initial capacitance C 0 , the capacitance ratio Kc ′, and the dielectric loss tangent tan δ 0 ′ at low voltage (S3, S7). ).

続いて、初期状態及び経年後における巻線の絶縁特性を算出する(S4、S8)。絶縁の劣化や余寿命の判定に使用される絶縁特性の項目は、巻線の交流定格電圧Esに対する電流急増電圧Piの比(Es/Pi)、電流急増電圧Piの前後の電圧での電流勾配増加率((a−a0)/a0)、絶縁抵抗R、静電容量C、誘電正接tanδ、誘電正接変化量はΔtanδである。 Subsequently, the insulation characteristics of the winding in the initial state and after aging are calculated (S4, S8). The items of the insulation characteristics used for the determination of the deterioration of the insulation and the remaining life are the ratio (Es / Pi) of the current sudden increase voltage Pi to the AC rated voltage Es of the winding, the current gradient at the voltage before and after the current sudden increase voltage Pi. The increase rate ((a−a 0 ) / a 0 ), insulation resistance R, capacitance C, dielectric loss tangent tan δ, and dielectric loss tangent change amount are Δtan δ.

経年後の乾燥/吸湿評価指標Ix’に対する巻線の絶縁特性を初期状態における乾燥/吸湿評価指標Ixの条件に合わせた絶縁特性に換算する(S9)。   The insulation characteristic of the winding with respect to the dry / moisture absorption evaluation index Ix ′ after the aging is converted into an insulation characteristic in accordance with the condition of the dry / moisture absorption evaluation index Ix in the initial state (S9).

図5は、電流急増電圧Pi比(Es/Pi)を絶縁特性として用いる場合を示すものである。経年後のEs/Pi’(▲)を乾燥/吸湿評価指標Ixの条件での値Es/Pisに変換する。このため、経年後の巻線の乾燥/吸湿状態を変更するため、巻線を加熱して、乾燥度を高めた乾燥/吸湿評価指標Ix’’上で、Es/Pi’’(×)を求める。このEs/Pi’(▲)とEs/Pi’’(×)を結ぶ直線の延長線上で乾燥/吸湿評価指標Ixと交差する点を換算されたEs/Pis(△)として、初期状態のEs/Pi(●)と比較する。この換算された絶縁特性は、乾燥/吸湿状態を考慮せずに比較したAに比べて、乾燥/吸湿状態を初期状態と同一条件にしたBで比較することにより、本来の絶縁特性の経年変化を精度よく評価することができる。   FIG. 5 shows a case where the current sudden increase voltage Pi ratio (Es / Pi) is used as the insulation characteristic. Es / Pi '(A) after the lapse of time is converted into a value Es / Pis under the condition of the dry / moisture absorption evaluation index Ix. For this reason, in order to change the drying / moisture absorption state of the winding after the lapse of time, Es / Pi ″ (×) is set on the drying / moisture absorption evaluation index Ix ″ by heating the winding and increasing the dryness. Ask. The Es / Pis (Δ) in the initial state is defined as the converted Es / Pis (Δ) where the point intersecting the drying / moisture absorption evaluation index Ix on the extended line of the straight line connecting Es / Pi ′ (▲) and Es / Pi ″ (×) is obtained. Compare with / Pi (●). This converted insulation characteristic shows the secular change of the original insulation characteristic by comparing B with the dry / moisture absorption condition in the same condition as the initial condition compared with A compared without considering the dry / moisture absorption condition. Can be evaluated with high accuracy.

図6は、電流急増電圧Piの前後の電圧での電流勾配増加率((a−a0)/a0)を絶縁特性として用いる場合を示すものである。経年後の(a’−a0’)/a0’(▲)を乾燥/吸湿評価指標Ixの条件での値(aS−a0S)/a0Sに変換する。このため、経年後の巻線の乾燥/吸湿状態を変更するため、巻線を加熱して、乾燥度を高めた乾燥/吸湿評価指標Ix’’上で、(a’’−a0’’)/a0’’(×)を求める。この(a’−a0’)/a0’(▲)と(a’’−a0’’)/a0’’(×)を結ぶ直線の延長線上で乾燥/吸湿評価指標Ixと交差する点を換算された(aS−a0S)/a0S(△)として、初期状態の(a−a0)/a0(●)と比較する。この換算された絶縁特性は、乾燥/吸湿状態を考慮せずに比較したAに比べて、乾燥/吸湿状態を初期状態と同一条件にしたBで比較することにより、本来の絶縁特性の経年変化を精度よく評価することができる。 FIG. 6 shows a case where the current gradient increase rate ((a−a 0 ) / a 0 ) at the voltages before and after the current sudden increase voltage Pi is used as the insulation characteristic. The aged (a′−a 0 ′) / a 0 ′ (▲) is converted into a value (a S −a 0S ) / a 0S under the condition of the dry / moisture absorption evaluation index Ix. For this reason, in order to change the drying / moisture absorption state of the winding after the lapse of time, the winding is heated to increase the dryness on the drying / moisture absorption evaluation index Ix ″ (a ″ −a 0 ″). ) / A 0 ″ (×). Crosses the dry / moisture absorption index Ix on the extension of the straight line connecting (a′−a 0 ′) / a 0 ′ (▲) and (a ″ −a 0 ″) / a 0 ″ (×) The point to be converted is converted into (a S −a 0S ) / a 0S (Δ) and compared with (a−a 0 ) / a 0 (●) in the initial state. This converted insulation characteristic shows the secular change of the original insulation characteristic by comparing B with the dry / moisture absorption condition in the same condition as the initial condition compared with A compared without considering the dry / moisture absorption condition. Can be evaluated with high accuracy.

図7は、絶縁抵抗R(MΩ)を絶縁特性として用いる場合を示すものである。経年後のR’(▲)を乾燥/吸湿評価指標Ixの条件での値Rsに変換する。このため、経年後の巻線の乾燥/吸湿状態を変更するため、巻線を加熱して、乾燥度を高めた乾燥/吸湿評価指標Ix’’上で、R’’(×)を求める。このR’(▲)とR’’(×)を結ぶ直線の延長線上で乾燥/吸湿評価指標Ixと交差する点を換算されたRs(△)として、初期状態のR(●)と比較する。この換算された絶縁特性は、乾燥/吸湿状態を考慮せずに比較したAに比べて、乾燥/吸湿状態を初期状態と同一条件にしたBで比較することにより、本来の絶縁特性の経年変化を精度よく評価することができる。   FIG. 7 shows a case where the insulation resistance R (MΩ) is used as an insulation characteristic. R '(▲) after the lapse of time is converted into a value Rs under the condition of the dry / moisture absorption evaluation index Ix. For this reason, in order to change the drying / moisture absorption state of the winding after the lapse of time, the winding is heated, and R ″ (x) is obtained on the drying / moisture absorption evaluation index Ix ″ with increased dryness. A point where the dry / moisture absorption evaluation index Ix intersects on the extended line of the straight line connecting R ′ (▲) and R ″ (×) is compared with R (●) in the initial state as converted Rs (Δ). . This converted insulation characteristic shows the secular change of the original insulation characteristic by comparing B with the dry / moisture absorption condition in the same condition as the initial condition compared with A compared without considering the dry / moisture absorption condition. Can be evaluated with high accuracy.

図8は、静電容量C(μF)を絶縁特性として用いる場合を示すものである。経年後のC’(▲)を乾燥/吸湿評価指標Ixの条件での値Csに変換する。このため、経年後の巻線の乾燥/吸湿状態を変更するため、巻線を加熱して、乾燥度を高めた乾燥/吸湿評価指標Ix’’上で、C’’(×)を求める。このC’(▲)とC’’(×)を結ぶ直線の延長線上で乾燥/吸湿評価指標Ixと交差する点を換算されたCs(△)として、初期状態のC(●)と比較する。この換算された絶縁特性は、乾燥/吸湿状態を考慮せずに比較したAに比べて、乾燥/吸湿状態を初期状態と同一条件にしたBで比較することにより、本来の絶縁特性の経年変化を精度よく評価することができる。   FIG. 8 shows a case where the capacitance C (μF) is used as an insulation characteristic. The C ′ ()) after the lapse of time is converted into a value Cs under the condition of the dry / moisture absorption evaluation index Ix. For this reason, in order to change the drying / moisture absorption state of the winding after a lapse of time, the winding is heated, and C ″ (x) is obtained on the drying / moisture absorption evaluation index Ix ″ with increased dryness. A point where the dry / moisture absorption evaluation index Ix intersects on the extended line of the straight line connecting C ′ (▲) and C ″ (x) is compared with C (●) in the initial state as converted Cs (Δ). . This converted insulation characteristic shows the secular change of the original insulation characteristic by comparing B with the dry / moisture absorption condition in the same condition as the initial condition compared with A compared without considering the dry / moisture absorption condition. Can be evaluated with high accuracy.

図9は、低電圧時の誘電正接tanδ0(%)を絶縁特性として用いる場合を示すものである。経年後のtanδ0’(▲)を乾燥/吸湿評価指標Ixの条件での値tanδ0sに変換する。このため、経年後の巻線の乾燥/吸湿状態を変更するため、巻線を加熱して、乾燥度を高めた乾燥/吸湿評価指標Ix’’上で、tanδ0’’(×)を求める。このtanδ0’(▲)とtanδ0’’(×)を結ぶ直線の延長線上で乾燥/吸湿評価指標Ixと交差する点を換算されたtanδ0s(△)として、初期状態のtanδ0(●)と比較する。この換算された絶縁特性は、乾燥/吸湿状態を考慮せずに比較したAに比べて、乾燥/吸湿状態を初期状態と同一条件にしたBで比較することにより、本来の絶縁特性の経年変化を精度よく評価することができる。 FIG. 9 shows a case where the dielectric loss tangent tan δ 0 (%) at low voltage is used as the insulation characteristic. The tan δ 0 ′ (▲) after the lapse of time is converted into a value tan δ 0 s under the condition of the dry / moisture absorption evaluation index Ix. Therefore, in order to change the drying / moisture absorption state of the winding after aging, the winding is heated to obtain tan δ 0 ″ (×) on the drying / moisture absorption evaluation index Ix ″ with increased dryness. . On the extended line of the straight line connecting tan δ 0 ′ (▲) and tan δ 0 ″ (×), a point intersecting with the dry / moisture absorption evaluation index Ix is converted into tan δ 0 s (Δ), and the initial state tan δ 0 ( ● Compare with. This converted insulation characteristic shows the secular change of the original insulation characteristic by comparing B with the dry / moisture absorption condition in the same condition as the initial condition compared with A compared without considering the dry / moisture absorption condition. Can be evaluated with high accuracy.

図10は、誘電正接変化量Δtanδ(%)を絶縁特性として用いる場合を示すものである。経年後のΔtanδ’(▲)を乾燥/吸湿評価指標Ixの条件での値Δtanδsに変換する。このため、経年後の巻線の乾燥/吸湿状態を変更するため、巻線を加熱して、乾燥度を高めた乾燥/吸湿評価指標Ix’’上で、Δtanδ’’(×)を求める。このΔtanδ’(▲)とΔtanδ’’(×)を結ぶ直線の延長線上で乾燥/吸湿評価指標Ixと交差する点を換算されたΔtanδs(△)として、初期状態のΔtanδ(●)と比較する。この換算された絶縁特性は、乾燥/吸湿状態を考慮せずに比較したAに比べて、乾燥/吸湿状態を初期状態と同一条件にしたBで比較することにより、本来の絶縁特性の経年変化を精度よく評価することができる。   FIG. 10 shows a case where the dielectric loss tangent variation Δtan δ (%) is used as the insulation characteristic. Δtanδ ′ (▲) after the lapse of time is converted to a value Δtanδs under the condition of the dry / moisture absorption evaluation index Ix. For this reason, in order to change the drying / moisture absorption state of the winding after the lapse of time, Δtanδ ″ (×) is obtained on the drying / moisture absorption evaluation index Ix ″ with increased dryness by heating the winding. On the extended line of the line connecting Δtanδ ′ (▲) and Δtanδ ″ (×), a point intersecting with the dry / moisture absorption evaluation index Ix is compared with Δtanδs (Δ) converted to the initial state Δtanδ (●). . This converted insulation characteristic shows the secular change of the original insulation characteristic by comparing B with the dry / moisture absorption condition in the same condition as the initial condition compared with A compared without considering the dry / moisture absorption condition. Can be evaluated with high accuracy.

最後に、必要に応じて、初期状態の巻線の絶縁特性と換算された巻線の絶縁特性とを比較し、巻線の絶縁劣化、余寿命の評価を行う(S10)。   Finally, if necessary, the insulation characteristics of the winding in the initial state are compared with the converted insulation characteristics of the winding, and the insulation deterioration of the winding and the remaining life are evaluated (S10).

このように、実施の形態による巻線の絶縁特性評価方法では、静電容量、誘電正接、絶縁抵抗及び静電容量比により定義される乾燥/吸湿評価指標を導入することによって、巻線の絶縁特性が乾燥/吸湿状態によって左右されずに評価することが可能になり、経年後の巻線の絶縁特性を精度よく評価することができるという顕著な効果がある。   Thus, in the winding insulation characteristic evaluation method according to the embodiment, the insulation of the winding is introduced by introducing the dry / moisture absorption evaluation index defined by the capacitance, dielectric loss tangent, insulation resistance, and capacitance ratio. It is possible to evaluate the characteristics without being influenced by the dry / moisture absorption state, and there is a remarkable effect that the insulating characteristics of the winding after the lapse of time can be accurately evaluated.

なお、本実施の形態では、発電機等の回転電機の固定子巻線の絶縁特性を評価する場合について説明したが、他の電気機器の巻線等の絶縁特性を評価するものであっても、同様の効果を得ることができる。

In the present embodiment, the case of evaluating the insulation characteristics of the stator winding of a rotating electrical machine such as a generator has been described. However, even if the insulation characteristics of the winding of other electrical equipment are evaluated. The same effect can be obtained.

Claims (7)

経年後の巻線の絶縁特性を評価する巻線の絶縁特性評価方法において、
静電容量C、誘電正接tanδ0、絶縁抵抗R及び静電容量比KC(=C/C0、C0:初期静電容量)により定義される巻線の乾燥/吸湿評価指標IX(=R・C0/Kc/tanδ0)を導入し、前記経年後の乾燥/吸湿評価指標における巻線の絶縁特性を、初期状態での乾燥/吸湿評価指標における巻線の絶縁特性に換算し、前記換算された巻線の絶縁特性と初期状態での巻線の絶縁特性とを比較することによって経年後の巻線の絶縁特性を評価することを特徴とする巻線の絶縁特性評価方法。
In the method of evaluating the insulation characteristics of the winding to evaluate the insulation characteristics of the winding after the aging,
Winding dry / moisture evaluation index I X defined by capacitance C, dielectric loss tangent tan δ 0 , insulation resistance R and capacitance ratio K C (= C / C 0 , C 0 : initial capacitance) = R · C 0 / Kc / tan δ 0 ), and the insulation characteristics of the winding in the dry / moisture absorption evaluation index after the aging are converted into the insulation characteristics of the winding in the dry / moisture absorption evaluation index in the initial state. A method for evaluating an insulation characteristic of a winding, wherein the insulation characteristic of the coil after the aging is evaluated by comparing the converted insulation characteristic of the winding with the insulation characteristic of the winding in an initial state.
前記巻線の絶縁特性として、定格電圧Esを電流急増電圧Piで除した電流急増電圧比Es/Piを用いることを特徴とする請求項1に記載の巻線の絶縁特性評価方法。   2. The method for evaluating insulation characteristics of a winding according to claim 1, wherein a current rapid increase voltage ratio Es / Pi obtained by dividing the rated voltage Es by the current rapid increase voltage Pi is used as the insulation characteristic of the winding. 前記巻線の絶縁特性として、電流急増電圧Piの前後の電圧における電流勾配増加率(a−a0)/a0(a:高電圧側電流勾配、a0:低電圧側電流勾配)を用いることを特徴とする請求項1に記載の巻線の絶縁特性評価方法。 As the insulation characteristic of the winding, the current gradient increase rate (a−a 0 ) / a 0 (a: high voltage side current gradient, a 0 : low voltage side current gradient) at the voltage before and after the current sudden increase voltage Pi is used. The method for evaluating an insulation characteristic of a winding according to claim 1. 前記巻線の絶縁特性として、絶縁抵抗Rを用いることを特徴とする請求項1に記載の巻線の絶縁特性評価方法。   The insulation characteristic evaluation method for a winding according to claim 1, wherein an insulation resistance R is used as the insulation characteristic of the winding. 前記巻線の絶縁特性として、静電容量Cを用いることを特徴とする請求項1に記載の巻線の絶縁特性評価方法。   The method for evaluating insulation characteristics of a winding according to claim 1, wherein a capacitance C is used as the insulation characteristics of the winding. 前記巻線の絶縁特性として、低電圧での誘電正接tanδ0を用いることを特徴とする請求項1に記載の巻線の絶縁特性評価方法。 2. The method for evaluating an insulation characteristic of a winding according to claim 1, wherein a dielectric loss tangent tan δ 0 at a low voltage is used as the insulation characteristic of the winding. 前記巻線の絶縁特性として、低電圧での誘電正接tanδ0と高電圧での誘電正接tanδとの差である誘電正接変化量Δtanδを用いることを特徴とする請求項1に記載の巻線の絶縁特性評価方法。

The dielectric loss tangent variation Δtanδ, which is the difference between the dielectric loss tangent tan δ 0 at a low voltage and the dielectric loss tangent tan δ at a high voltage, is used as the insulation characteristic of the winding. Insulation property evaluation method.

JP2010284518A 2010-12-21 2010-12-21 Winding insulation characteristics evaluation method Expired - Fee Related JP5469052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010284518A JP5469052B2 (en) 2010-12-21 2010-12-21 Winding insulation characteristics evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010284518A JP5469052B2 (en) 2010-12-21 2010-12-21 Winding insulation characteristics evaluation method

Publications (2)

Publication Number Publication Date
JP2012132767A JP2012132767A (en) 2012-07-12
JP5469052B2 true JP5469052B2 (en) 2014-04-09

Family

ID=46648527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010284518A Expired - Fee Related JP5469052B2 (en) 2010-12-21 2010-12-21 Winding insulation characteristics evaluation method

Country Status (1)

Country Link
JP (1) JP5469052B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105301417A (en) * 2015-12-01 2016-02-03 中国南方电网有限责任公司超高压输电公司检修试验中心 Assessment method for insulating property of mossed and moldy composite insulator for converter station/transformer station
CN110926797A (en) * 2019-12-10 2020-03-27 航天新长征大道科技有限公司 Compact peripheral interconnection bus board card

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2522177C2 (en) * 2012-10-31 2014-07-10 Открытое акционерное общество "Бугульминский электронасосный завод" Method for determining quality of compounding of electric machine windings
CN103278756B (en) * 2013-05-29 2015-08-12 国家电网公司 A kind of method assessing transformer oil paper insulation ageing state
CN104020401B (en) * 2014-06-17 2016-11-23 国家电网公司 The appraisal procedure of transformer insulated heat ageing state based on cloud models theory
CN105242151A (en) * 2015-11-05 2016-01-13 广东电网有限责任公司电力科学研究院 Evaluation method for influence of intruding wave impact on degradation of transformation equipment
KR101839218B1 (en) 2016-08-10 2018-03-15 한국전력공사 Technique of Healty Judgement in High Voltage Motors
CN107436388B (en) * 2017-07-28 2019-11-05 中国西电电气股份有限公司 A kind of evaluation method of power frequency testing transformer safeguard measure effect
CN107422234B (en) * 2017-08-24 2018-10-30 西南交通大学 A method of tractive transformer humidified insulation state during assessment is on active service
JP6767963B2 (en) * 2017-12-28 2020-10-14 三菱電機株式会社 Motor control device and motor control method
CN115421013A (en) * 2022-10-09 2022-12-02 哈尔滨理工大学 Insulation damping and aging evaluation method for inverted current transformer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02147971A (en) * 1988-11-30 1990-06-06 Toyo Electric Mfg Co Ltd Method for diagnosing insulation
JP2961756B2 (en) * 1989-08-15 1999-10-12 株式会社明電舎 Method for determining insulation deterioration of rotating machine coil
JPH07191082A (en) * 1993-12-27 1995-07-28 Nippon Telegr & Teleph Corp <Ntt> Method and device for evaluating insulation deterioration of cable

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105301417A (en) * 2015-12-01 2016-02-03 中国南方电网有限责任公司超高压输电公司检修试验中心 Assessment method for insulating property of mossed and moldy composite insulator for converter station/transformer station
CN110926797A (en) * 2019-12-10 2020-03-27 航天新长征大道科技有限公司 Compact peripheral interconnection bus board card
CN110926797B (en) * 2019-12-10 2021-07-06 航天新长征大道科技有限公司 Compact peripheral interconnection bus board card

Also Published As

Publication number Publication date
JP2012132767A (en) 2012-07-12

Similar Documents

Publication Publication Date Title
JP5469052B2 (en) Winding insulation characteristics evaluation method
Nemeth Measuring voltage response: A non-destructive diagnostic test method HV of insulation
Gyftakis et al. Dielectric characteristics of electric vehicle traction motor winding insulation under thermal aging
CN110736905A (en) Insulation aging evaluation method for 110kV XLPE high-voltage cable
Madonna et al. Evaluation of strand‐to‐strand capacitance and dissipation factor in thermally aged enamelled coils for low‐voltage electrical machines
CN107957436A (en) A kind of method for the uneven damp degree for assessing oil-impregnated paper insulation component
Soltani et al. Impact of humidity on dielectric response of rotating machines insulation system
Rogalski Measurement Stand, Method and Results of Composite Electrotechnical Pressboard-Mineral Oil Electrical Measurements
Ohlen et al. Dielectric frequency response and temperature dependence of power factor
JP6164022B2 (en) Interlayer insulation diagnosis method for winding equipment
Torkaman et al. Influence of ambient and test conditions on insulation resistance/polarization index in HV electrical machines-a survey
CN108535612B (en) SF6 insulating sleeve insulation detection database construction method and detection method and device thereof
Weindl et al. Development of the p-factor in an accelerated ageing experiment of the MV PILC cables
Qin et al. Study on return voltage measurement of oil-paper insulation testing technology in transformers
David et al. The use of time domain spectroscopy as a diagnostic tool for rotating machine windings
RU2683031C1 (en) Method for determining the constant heating time of a dry transformer
JP2013148481A (en) Method for determining deterioration of motor coil
David et al. Progress in DC testing of generator stator windings: theoretical considerations and laboratory tests
Kumar et al. Importance of Depolarization Current in the Diagnosis of Oil-Paper Insulation of Power Transformer
David et al. Measurements of polarization/depolarization currents for modern epoxy-mica bars in different conditions
Shadmand et al. PDC characteristics of modern stator insulation systems
David et al. Dielectric response of machine insulation extracted from DC ramp test on individual stator bars
CN110837004A (en) High-voltage equipment dielectric loss factor calculation method based on carrier frequency correction
RU2708685C1 (en) Method of determining distribution of electric voltage across electrical machine insulation layers
JP2012037483A (en) Method for determining partial discharge generation void class

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140130

R151 Written notification of patent or utility model registration

Ref document number: 5469052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees