JPH02147971A - Method for diagnosing insulation - Google Patents

Method for diagnosing insulation

Info

Publication number
JPH02147971A
JPH02147971A JP30345788A JP30345788A JPH02147971A JP H02147971 A JPH02147971 A JP H02147971A JP 30345788 A JP30345788 A JP 30345788A JP 30345788 A JP30345788 A JP 30345788A JP H02147971 A JPH02147971 A JP H02147971A
Authority
JP
Japan
Prior art keywords
insulation
measured
meg
deterioration
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30345788A
Other languages
Japanese (ja)
Inventor
Yasukazu Uchio
内尾 能一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP30345788A priority Critical patent/JPH02147971A/en
Publication of JPH02147971A publication Critical patent/JPH02147971A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)

Abstract

PURPOSE:To improve accuracy of diagnosing insulation of a main electric motor for railway by humidifying an object to be measured. CONSTITUTION:An object to be measured which has been subjected to test 3 after being cleaned and dried is placed in a box having a humidifier and is subjected to humidification test 5. The object is stored in a state of almost 100% RH at 30 to 40 deg.C during daytime, and from evening to next morning the object is continuously kept in the box with the humidifier stopped and its MEG R0, R1, R2 are calculated. This cycle of humidification and leaving is performed one cycle/day, and if the need arises, cycles can be repeated. After measurement, recovery rate of MEG Rr6 is calculated to estimate moisture proofness of the object. With this result and the result of intermediate determination 7 mentioned above are combined and estimated together to perform general determination 8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は定期検査などの目的で工場へ移送されてくる電
気機器の絶縁診断に係り、例えば鉄道用の主電動機(以
下MMという)のように、使用電圧の高い電気機器の絶
縁劣化を判定する絶縁診断方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to insulation diagnosis of electrical equipment transported to factories for the purpose of periodic inspection, etc., such as a main motor for a railway (hereinafter referred to as MM). The present invention relates to an insulation diagnosis method for determining insulation deterioration in electrical equipment that uses high voltages.

〔従来の技術〕[Conventional technology]

一般に、鉄道用電気機器、特にMMの故障による運転停
止は、多大の利用者に迷惑がかかる上に経済上の損害も
大きくなるおそれがある。したがって、安全な運行がで
きるように鉄道運行者は定期的に電車をとめて検修を行
い、次回の定期検査までの安全を計っている。
In general, suspension of operation due to failure of electrical equipment for railways, especially MM, causes inconvenience to many users and may also cause great economic damage. Therefore, to ensure safe operation, railway operators regularly stop trains for inspection and repair to ensure safety until the next regular inspection.

寿命期に近づいて絶縁劣化の進んだMMは早期に新製す
ることが望ましいが、新製には膨大な費用がかかる。こ
のため絶縁劣化の程度を高度の確実さで診断し、絶縁劣
化の程度に応じた対策、例えば仕上げワニス処理、ワニ
ス再含浸、絶縁更新等を施すことが望まれている。
It is desirable to quickly manufacture a new MM whose insulation has deteriorated as it approaches the end of its service life, but manufacturing a new one costs a huge amount of money. Therefore, it is desired to diagnose the degree of insulation deterioration with a high degree of certainty and to take measures depending on the degree of insulation deterioration, such as finishing varnish treatment, re-impregnation with varnish, insulation renewal, etc.

ところで、従来は後述するtanδ試験法、直流分試験
法、直流高電圧試験法の三つの試験から得られる清掃前
及び清掃・乾燥後の特性を使用してMM絶絶縁表面汚損
、吸湿、熱及び傷のそれぞれの劣化を区別し診断してき
た。
By the way, conventionally, properties before cleaning and after cleaning and drying obtained from three tests (tan δ test method, DC component test method, and DC high voltage test method, which will be described later) are used to evaluate MM insulating insulation surface fouling, moisture absorption, heat, and The deterioration of each wound has been distinguished and diagnosed.

tanδ試験法は、被測定物に印加する交流電圧とta
nδの関係から表面汚損、吸湿及び熱のそれぞれの劣化
状態を判別する。前述の1者、すなわち表面汚損劣化ま
たは吸湿劣化を生ずると、第3図のtanδ−印加電圧
特性から、ハで示すようにtanJo (通常AOlk
vのtanδをいう)値が劣化前の特性イのそれより大
きくなり、熱劣化を生ずると第3図に示す口のようにΔ
tanδ(通常3kvのtanδ−1kvのtanδ)
の値が同じく劣化前イのそれより大きくなる。
The tan δ test method is based on the AC voltage applied to the object to be measured and the tan δ test method.
The respective deterioration states of surface contamination, moisture absorption, and heat are determined from the relationship of nδ. If one of the above-mentioned conditions occurs, that is, surface contamination deterioration or moisture absorption deterioration, tanJo (normally AOlk
When the value of tan δ of v) becomes larger than that of characteristic A before deterioration and thermal deterioration occurs, Δ
tan δ (usually 3 kv tan δ - 1 kv tan δ)
The value of is also larger than that of A before deterioration.

直流分試験法は、被測定物に交流電圧を印加し、そこに
流れる直流の微小電流をフィルタ回路を通し測定する。
In the DC component test method, an AC voltage is applied to the object under test, and the minute DC current flowing there is measured through a filter circuit.

直流分発生のメカニズムは実機の場合難しいが、熱劣化
による絶縁層のクラック、打痕等に鉄粉、カーボン粉な
どのゴミがつくと直流分が発生することがある。従って
、直流分は電気的9機械的、化学的な要因等に起因する
絶縁層の傷を検出できる。通常は金種劣化が進展しない
とみることはできない。
Although it is difficult to understand the mechanism of DC component generation in actual equipment, DC components may be generated if iron powder, carbon powder, or other debris gets stuck in cracks or dents in the insulation layer due to thermal deterioration. Therefore, the DC component can detect flaws in the insulating layer caused by electrical, mechanical, or chemical factors. Normally, it is not possible to predict whether the denomination is deteriorating or not.

直流高電圧試験法は、被測定物に直流電圧を印加し、そ
こに流れる微小電流の1分後の値を微少電流測定器で測
定し、印加電圧をこの測定電流で割って絶縁抵抗を求め
るか、直読できる超絶線抵抗測定器で測定する。この絶
縁抵抗(以下メグという)は汚損劣化や吸湿劣化により
その値は小さくなる。
In the DC high voltage test method, a DC voltage is applied to the object to be measured, the value of the minute current flowing there is measured after 1 minute using a minute current measuring device, and the insulation resistance is determined by dividing the applied voltage by this measured current. Alternatively, measure with a direct-readable super wire resistance measuring device. This insulation resistance (hereinafter referred to as MEG) decreases in value due to deterioration due to contamination and moisture absorption.

MMを固定子と回転子とに分解し、汚れたままの状態す
なわち、清掃前に前記の特性を測定してその特性が悪か
った場合には、表面汚損劣化か吸湿劣化かあるいは熱劣
化かの区別がつけにくい。
If the MM is disassembled into the stator and rotor and the characteristics are determined in a dirty state, i.e., before cleaning, and the characteristics are found to be poor, it is possible to determine whether the MM is due to surface fouling, moisture absorption, or thermal deterioration. Difficult to distinguish.

そこで、分解後清掃・乾燥し、前記と同様な特性を測定
し、tanJoの値が清掃前の値より小さくなり、Δt
anδがMMfi造後の特性(初期特性)または前回の
定期検査より大きくなり、メグが清掃前の値より大きく
なった場合は熱劣化による絶縁層のフクレまたはハクリ
等が生じたと診断できる。
Therefore, after disassembling and cleaning and drying, the same characteristics as above were measured, and the value of tanJo was smaller than the value before cleaning, and Δt
If an δ becomes larger than the characteristics after MMfi fabrication (initial characteristics) or the previous regular inspection, and MEG becomes larger than the value before cleaning, it can be diagnosed that blistering or peeling of the insulating layer has occurred due to thermal deterioration.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかるに、前記の条件でΔtanδが初期特性と変らな
かった場合には、表面汚損劣化かあるいは吸湿劣化かの
区別がつけにくい欠点があった。すなわち、絶縁の表面
がカーボン粉や鉄粉等導電性物質で汚れていると吸湿し
やすく、jan5gは大きくなり、メグは逆に小さくな
る。これを清掃・乾燥すると、汚れも湿気も除去され、
tana6は小さくなり、メグは逆に大きくなる。いず
れの特性も同時に悪くなるか良くなるかなので、汚損と
吸湿の区別がつけにくい。この点を区別しようとすると
、測定条件を一つ増やして清掃後と乾燥後を測る必要が
あるが、工数、工期とも増加する。
However, if Δtanδ remains unchanged from the initial characteristic under the above conditions, it is difficult to distinguish between surface staining deterioration and moisture absorption deterioration. That is, if the surface of the insulation is contaminated with conductive substances such as carbon powder or iron powder, it will easily absorb moisture, and jan5g will become large, while meg will become small. Cleaning and drying this removes dirt and moisture,
tana6 becomes smaller, and meg becomes larger. Both characteristics deteriorate or improve at the same time, so it is difficult to distinguish between staining and moisture absorption. In order to distinguish this point, it is necessary to add one more measurement condition and measure after cleaning and after drying, but this increases both the man-hours and the construction period.

また、仮に途中で測定条件を増やし吸湿劣化と判定して
も、その絶縁の耐湿性がどの程度であるかまではわかり
にくい。
Furthermore, even if the measurement conditions are increased midway through and it is determined that moisture absorption deterioration has occurred, it is difficult to determine the degree of moisture resistance of the insulation.

本発明は上述した点に鑑みて創案されたもので、その目
的とするところは、前述した欠点を改良し、高度の確実
さによる判定を行い、絶縁劣化の程度に応じた保全を経
済的に実施することが可能な絶縁診断方法を提供するこ
とにある。
The present invention was devised in view of the above-mentioned points, and its purpose is to improve the above-mentioned drawbacks, to perform judgment with a high degree of certainty, and to economically carry out maintenance according to the degree of insulation deterioration. An object of the present invention is to provide an insulation diagnosis method that can be implemented.

〔問題点を解決するための手段〕[Means for solving problems]

つまり、その目的を達成するための手段は、被測定物と
しての前記電気機器の絶縁劣化を示すパラメータとして
、 (1)tanδ試験法から求められるtanaoとΔt
anδ(4直流分試験法からの直流分 (3)直流高電圧試験法からの被測定物の絶縁抵抗これ
らの試験法によって、じんあい、カーボン。
In other words, the means to achieve this purpose is to use (1) tanao and Δt obtained from the tanδ test method as parameters that indicate the insulation deterioration of the electrical equipment as the object to be measured.
anδ (4 DC components from the DC component test method (3) Insulation resistance of the measured object from the DC high voltage test method

鉄粉などが付着している清掃前、及びエアー吹きあるい
は蒸気で吹き付けを行った清掃・乾燥後の特性と、被測
定物の清掃後2強制的に一定期間吸湿させ、その後一定
期間放置した間のメグ特性とを用い、清掃前の絶縁特性
に所定の演算処理を施して所要の値を算出し、清掃・乾
燥後の絶縁特性にも前記と同様の処理を施し、これら両
者の特性の比較を行い、この結果と被測定物を前記と同
様の吸湿させたメグに所定の演算処理をした結果とを併
せて絶縁劣化の総合判定を行う方法である。
Characteristics before cleaning with iron powder etc. attached, after cleaning/drying with air blowing or steam spraying, and after cleaning the object to be measured (2) Forced moisture absorption for a certain period of time, then leaving it for a certain period of time. Using the MEG characteristics of In this method, the results are combined with the results of performing predetermined arithmetic processing on MEG, which has been made to absorb moisture in the same way as described above, to make a comprehensive judgment of insulation deterioration.

すなわち清掃前・後の特性測定に加えて、被測定物を加
湿ボックスの中で一定期間強制的に吸湿させ、その後同
じボックスの中で一定期間放置させる。その間にメグの
時間に対する低下特性並びにメグの回復性を測定する。
That is, in addition to measuring the characteristics before and after cleaning, the object to be measured is forced to absorb moisture in a humidifying box for a certain period of time, and then left in the same box for a certain period of time. During this time, the deterioration characteristics of MEG with respect to time and the recovery property of MEG are measured.

これらの特性を一定の基準に従って演算処理し、特性ご
とに良、可。
These characteristics are calculated and processed according to certain standards, and each characteristic is judged as good or fair.

不可等に分類し、先の清掃前・後の特性と併せて絶縁診
断する方法である。
This is a method of diagnosing insulation based on the characteristics before and after cleaning.

加湿試験を加える理由は絶縁層の耐湿性をみることで、
清掃前のデータからもある程度吸湿の程度はみることが
できるが、自然吸湿の場合は雨期とか乾期、湿度の高い
日とか低い日により被測定物の吸湿状態は種々であるた
め、同じ条件で比較する必要がある。また上述したメグ
の回復性も耐湿性を判定する上で役に立つ。
The reason for adding a humidification test is to check the moisture resistance of the insulation layer.
The degree of moisture absorption can be seen to some extent from the data before cleaning, but in the case of natural moisture absorption, the moisture absorption state of the measured object varies depending on the rainy season, dry season, high humidity days and low humidity days, so comparisons should be made under the same conditions. There is a need to. The above-mentioned MEG recovery properties are also useful in determining moisture resistance.

次にその作用について説明する。Next, its effect will be explained.

〔作 用〕[For production]

被測定物を湿度発生装置を有するボックスに設置し、例
えば人がマニュアルで測定する場合は、日中は強制的に
加湿し、夜間は湿度発生装置を止めた状態で被測定物は
引続きボックスの中に留め、その間メグの測定を行いメ
グの回復性をみる。
For example, if the object to be measured is placed in a box with a humidity generator and a person manually performs measurements, the humidity is forcibly humidified during the day, and the object to be measured continues to be placed in the box at night with the humidity generator turned off. Keep it inside, and measure Meg during that time to see how Meg recovers.

自動測定の場合は、加湿と放置の時間を定めれば特に昼
夜の区別をつける必要はなくても支障はない。
In the case of automatic measurement, there is no need to distinguish between day and night as long as the humidification and leaving times are determined.

メグ測定の結果、被測定物の絶縁層がまだ健全な場合表
面的に劣化し、内部が健全な場合2内部まで極度に劣化
している場合に分け、加湿中のメグの低下、加湿終了直
後のメグ(馬)、放置中のメグ回復率(Rr)のそれぞ
れを分類すると、第2図に示すメグ−時間特性、並びに
表1に示すデータのようになる。
As a result of MEG measurement, if the insulating layer of the object to be measured is still healthy, it has deteriorated on the surface, if the inside is healthy, or if the inside has deteriorated extremely. If the Meg (horse) and the Meg recovery rate (Rr) during neglect are classified, the Meg-time characteristics shown in FIG. 2 and the data shown in Table 1 will be obtained.

以上のように被測定物を加湿することにより、絶縁層の
劣化程度に応じてメグの低下2回復性が異なり、絶縁診
断に有用である。このような手段を講することにより、
鉄道用主電動機の絶縁診断が精度よくできる。
By humidifying the object to be measured as described above, the MEG drop 2 recovery properties vary depending on the degree of deterioration of the insulating layer, which is useful for insulation diagnosis. By taking such measures,
Insulation diagnosis of railway traction motors can be performed with high accuracy.

以下、本発明の絶縁診断方法の一実施例を、図面に基づ
いて説明する。
Hereinafter, one embodiment of the insulation diagnosis method of the present invention will be described based on the drawings.

〔実 施 例〕〔Example〕

第1図は本発明の絶縁診断方法の一実施例を示すブロッ
ク図であり、第1図において、絶縁診断を受けるため持
込まれたMMは、固定子側と回転子側に分解され、それ
ぞれ清掃前試験1として、tanδ−電圧特性、直流分
−電圧特性、メグが測定される。tanδ−電圧特性か
ら第3図の定義に従ってjtanδ2(架線′1圧15
00VのMMの場合tanδ−電圧特性は通常AO3k
vまでが印加される)を算出する。そして、ここで清掃
前の絶縁特性の評価を行う。
FIG. 1 is a block diagram showing an embodiment of the insulation diagnosis method of the present invention. In FIG. 1, a MM brought in for insulation diagnosis is disassembled into a stator side and a rotor side, and each is cleaned. As pre-test 1, tan δ-voltage characteristics, DC component-voltage characteristics, and MEG are measured. From the tan δ-voltage characteristics, jtan δ2 (overhead line'1 pressure 15
In the case of 00V MM, the tanδ-voltage characteristics are usually AO3k.
(up to v is applied) is calculated. Then, the insulation properties before cleaning are evaluated.

続0て清掃・乾燥後試験3として、被測定物を! 圧搾奈気または汚れの程度に応じて蒸気洗浄等で汚れ、
ダストを落とし、さらに乾燥を行う。冷却後、清掃前と
同じ項目を測定する。Δtanδ4を演算で求めた後、
清掃前・後の特性の比較または新製時との比較を行いな
がら被測定物の絶縁状態の中間判定7を施す。一方、清
掃・乾燥後試験3を終えた被測定物は湿度発生装置を有
するボックスに設置し、加湿試験5を行う。日中は30
〜40℃でほぼ100 S RHの状態に保持し、加湿
5を行い、夕方から翌朝にかけては湿度発生装置を止め
た状態で被測定物は引続きボックスの中に留め、その間
第2図に示すような特性を測定し、メグRO+ R1*
R2がそれぞれ求められるようにする。この加湿・放置
を1サイクル/日として必要によりサイクルを重ねても
よい。
Next, after cleaning and drying, test the object to be measured! Remove dirt using compressed air or steam cleaning depending on the degree of dirt.
Remove dust and dry further. After cooling, measure the same items as before cleaning. After calculating Δtanδ4,
Intermediate judgment 7 of the insulation state of the object to be measured is performed while comparing the characteristics before and after cleaning or comparing with the new product. On the other hand, the object to be measured, which has been cleaned and dried and has undergone Test 3, is placed in a box equipped with a humidity generator and subjected to Humidification Test 5. 30 during the day
The specimen was maintained at ~40°C and approximately 100 S RH, and humidified 5. From the evening until the next morning, the object to be measured was kept in the box with the humidity generator turned off, as shown in Figure 2. MegRO+ R1*
Let each R2 be determined. This humidification/leaving may be repeated once per day as necessary.

測定後、第2図の定義に従ってメグ回復率Rr6を演算
で求め、被測定物の耐湿性を評価する。この結果と先の
中間判定7の結果を併せて再び評価し、総合判定8を行
う。
After the measurement, the MEG recovery rate Rr6 is calculated according to the definition in FIG. 2, and the moisture resistance of the object to be measured is evaluated. This result and the result of the previous intermediate judgment 7 are evaluated again, and a comprehensive judgment 8 is made.

また、直流高電圧法から求められるPI(成極指数)を
絶縁劣化のパラメータに加えても診1析は可能であるが
、診断の機能としてはtanJgと重なるところがあり
、tanJgとは負の相関関係がある。
Diagnostic analysis is also possible by adding PI (polarization index) obtained from the DC high voltage method to the parameters of insulation deterioration, but the diagnostic function overlaps with tanJg and has a negative correlation with tanJg. There is a relationship.

すなわち、janδ0値が小さいとPIは大きくなり、
jan90値が大きくなるとPIは小さくなるが、PI
は印加10分後の絶縁抵抗と印加1分後の絶縁抵抗の比
であるから一般に1より小さくはならない。
In other words, when the janδ0 value is small, the PI becomes large,
As the jan90 value increases, the PI decreases, but the PI
is the ratio of the insulation resistance after 10 minutes of application to the insulation resistance after 1 minute of application, so it generally does not become smaller than 1.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明は、清掃前、清掃・乾燥後お
よび加湿のそれぞれの試験によるデータを用いて汚損劣
化、吸湿劣化、熱劣化およびクラック、ピンホール等を
含めた傷の絶縁診断を行うようにしたもので、汚損劣化
には仕上げワニス処理を、吸湿劣化はその耐湿性に応じ
て仕上げワニス処理またはワニス再含浸処理を、熱劣化
もその程度に応じてワニス再含浸処理または絶縁更新処
理を、傷についてもその程度に応じて仕上げワニス処理
、ワニス再含浸または絶縁更新を、それぞれ高度の確実
さで判定し、絶縁劣化の程度に応じた保全を経済的に実
施することが可能な絶縁診断方法を提供できる。
As detailed above, the present invention uses data from tests before cleaning, after cleaning/drying, and humidification to diagnose insulation deterioration due to staining, moisture absorption deterioration, thermal deterioration, and damage including cracks, pinholes, etc. For staining and deterioration, finish varnish treatment is applied, moisture absorption deterioration is treated with finish varnish treatment or varnish re-impregnation treatment depending on the moisture resistance, and thermal deterioration is treated with varnish re-impregnation treatment or insulation renewal depending on the degree. It is possible to judge with a high degree of certainty whether to apply finishing varnish, varnish re-impregnation, or insulation renewal depending on the degree of damage, and to economically carry out maintenance according to the degree of insulation deterioration. A method for diagnosing insulation can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図は
本発明の一実施例の加湿試験のメグ特性の代表例を示す
特性図、第3図は代表的なtanδ−電圧特性を示し、
tana□およびatanδの定義を示す特性図である
。 1・・・・・・清掃前試験、2・・・・・・Δtanδ
、3・・・・・・清掃・乾燥後試験、4・・・・・・Δ
tanδ、5・・・・・・加湿試験、6・・・・・・Y
Lrs 7・・・・・・中間判定、8・・・・・・総合
判定、イ・・・・・・正常な特性、口・・・・・・熱劣
化を受けた特性、ハ・・・・・・吸湿・汚損劣化を受け
た特性、a・・・・・・tanJgの定義、b・・・・
・・Δtanδの定義、A・・・・・・正常な例、B・
・・・・・表面が劣化し内部が正常な例、C・・・・・
・表面も内部も劣化した例。
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a characteristic diagram showing a typical example of MEG characteristics in a humidification test of an embodiment of the present invention, and Fig. 3 is a typical tan δ-voltage characteristic. shows,
FIG. 2 is a characteristic diagram showing the definitions of tana□ and atanδ. 1... Pre-cleaning test, 2... Δtanδ
, 3...Test after cleaning and drying, 4...Δ
tan δ, 5...humidification test, 6...Y
Lrs 7...Intermediate judgment, 8...Overall judgment, A...Normal characteristics, Mouth...Characteristics subjected to thermal deterioration, C... ...Characteristics subjected to moisture absorption, staining and deterioration, a...Definition of tanJg, b...
...Definition of Δtanδ, A... Normal example, B.
...Example where the surface is deteriorated and the inside is normal, C...
・Example of deterioration both on the surface and inside.

Claims (1)

【特許請求の範囲】 定期検査などの目的で工場へ移送されてくる電気機器の
絶縁診断において、被測定物としての前記電気機器の絶
縁劣化を示すパラメータとして、(1)tanδ試験法
から求められるtanδ_0とΔtanδ(2)直流分
試験法からの直流分 (3)直流高電圧試験法からの被測定物の絶縁抵抗これ
らの試験法によって、じんあい、カーボン、鉄粉などが
付着している清掃前、及びエアー吹きあるいは蒸気で吹
き付けを行った清掃・乾燥後の特性と、被測定物の清掃
後、強制的に一定期間吸湿させ、その後一定期間放置し
た間のメグ特性とを用い、清掃前の絶縁特性に所定の演
算処理を施して所要の値を算出し、清掃・乾燥後の絶縁
特性にも前記と同様の処理を施し、これら両者の特性の
比較を行い、この結果と被測定物を前記と同様の吸湿さ
せたメグに所定の演算処理をした結果とを併せて絶縁劣
化の総合判定を行うことを特徴とする絶縁診断方法。
[Scope of Claims] In the insulation diagnosis of electrical equipment transported to a factory for the purpose of periodic inspection, etc., as a parameter indicating insulation deterioration of the electrical equipment as an object to be measured, (1) determined from the tan δ test method. tanδ_0 and Δtanδ (2) DC component from the DC component test method (3) Insulation resistance of the measured object from the DC high voltage test method Using the characteristics before cleaning and after cleaning and drying by blowing with air or steam, and the MEG characteristics after cleaning the object to be measured, forcing it to absorb moisture for a certain period of time, and then leaving it for a certain period of time, Calculate the required value by performing prescribed arithmetic processing on the insulation properties of An insulation diagnosis method comprising performing a comprehensive judgment of insulation deterioration by combining the results of predetermined arithmetic processing on MEG that has absorbed moisture in the same manner as described above.
JP30345788A 1988-11-30 1988-11-30 Method for diagnosing insulation Pending JPH02147971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30345788A JPH02147971A (en) 1988-11-30 1988-11-30 Method for diagnosing insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30345788A JPH02147971A (en) 1988-11-30 1988-11-30 Method for diagnosing insulation

Publications (1)

Publication Number Publication Date
JPH02147971A true JPH02147971A (en) 1990-06-06

Family

ID=17921210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30345788A Pending JPH02147971A (en) 1988-11-30 1988-11-30 Method for diagnosing insulation

Country Status (1)

Country Link
JP (1) JPH02147971A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232637A (en) * 2007-03-16 2008-10-02 Railway Technical Res Inst Deterioration state measuring device and deterioration state measuring method
JP2012132767A (en) * 2010-12-21 2012-07-12 Mitsubishi Electric Corp Insulation characteristic evaluation method for coils
JP2016046014A (en) * 2014-08-20 2016-04-04 株式会社東芝 Insulation recovery method of insulation material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232637A (en) * 2007-03-16 2008-10-02 Railway Technical Res Inst Deterioration state measuring device and deterioration state measuring method
JP2012132767A (en) * 2010-12-21 2012-07-12 Mitsubishi Electric Corp Insulation characteristic evaluation method for coils
JP2016046014A (en) * 2014-08-20 2016-04-04 株式会社東芝 Insulation recovery method of insulation material

Similar Documents

Publication Publication Date Title
JP7241476B2 (en) Short-circuit remaining life diagnostic method and short-circuit remaining life diagnostic system for power receiving and distributing equipment
US20140049264A1 (en) Prognostics system and method for fault detection in electrical insulation
JP2005061901A (en) Insulation diagnostic method for electric equipment
CN112611924A (en) Method for evaluating service life of circuit breaker mechanism
JPH02147971A (en) Method for diagnosing insulation
JP6460003B2 (en) Diagnosis method of electrical equipment
JP2003009316A (en) Life time diagnosis method for power-receiving and distributing facility
Torkaman et al. Influence of ambient and test conditions on insulation resistance/polarization index in HV electrical machines-a survey
JP6941994B2 (en) Methods and equipment for evaluating the decrease or recovery from the decrease in the insulation resistance value of an insulator
KR100901855B1 (en) Method for diagnosing the insulation condition of three phase alternating current rotating machinery, and a medium having computer readable program for executing the method
JPS6324267B2 (en)
JP3313916B2 (en) Rotor Deterioration Diagnosis Method and Rotor Replacement Prediction Method in Two-Stage Dry Dehumidification System
Sultonov et al. Stator Winding Partial Discharge Rise Due to Surface Humidity
CN107782660B (en) Test method for evaluating environment durability of disconnecting link contact material
JP3568206B2 (en) Inspection method and test solution for electrical components of power plant
JP6200198B2 (en) Rotation electricity insulation diagnosis method
JP3533983B2 (en) Method and apparatus for diagnosing insulation deterioration of DC machine and DC machine
Phumipunepon et al. Experience with polarization and depolarization current measurements on contaminated motor
JP2019105557A (en) Method and device for diagnosing deterioration of insulator
JPS60131476A (en) Method and device for deciding on quality of insulator of electric equipment
Phloymuk et al. Improvement of Insulation for Rotating Machine by Dry Ice Method
JP4400293B2 (en) Insulation degradation diagnosis method for electrical equipment
WO2012135241A2 (en) Prognostic system and method for fault detection in electrical insulation
Jayantha et al. Field experience of generator stator insulation monitoring and failures in Sri Lanka
Szrot et al. On-site modernisation of power transformers