JP4501315B2 - Insulation diagnostic sensor for power distribution facility and remaining life diagnostic method - Google Patents

Insulation diagnostic sensor for power distribution facility and remaining life diagnostic method Download PDF

Info

Publication number
JP4501315B2
JP4501315B2 JP2001181488A JP2001181488A JP4501315B2 JP 4501315 B2 JP4501315 B2 JP 4501315B2 JP 2001181488 A JP2001181488 A JP 2001181488A JP 2001181488 A JP2001181488 A JP 2001181488A JP 4501315 B2 JP4501315 B2 JP 4501315B2
Authority
JP
Japan
Prior art keywords
surface electrical
electrical resistivity
sensor
power distribution
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001181488A
Other languages
Japanese (ja)
Other versions
JP2002372561A (en
Inventor
誠 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001181488A priority Critical patent/JP4501315B2/en
Publication of JP2002372561A publication Critical patent/JP2002372561A/en
Application granted granted Critical
Publication of JP4501315B2 publication Critical patent/JP4501315B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電力設備として用いられている受配電設備の絶縁診断センサおよび余寿命診断方法に関するものである。
【0002】
【従来の技術】
受配電設備は、通常の環境下でも長い年月使用していると、劣化が進行し、場合によっては大きな事故にもつながるおそれがある。そのため、一般的には定期的な機器の診断が行われている。
従来の機器診断方法として、例えば図8に示す「配電盤老朽度評価表」(「長期使用受変電設備の信頼性の考察」日本電機工業会、平成11年)に基づいて、点数方式による評価方法などが採用されている。そして、図9の「配電盤機器構成図」(同上)に示したように、評価表による評価結果から不良部分が検出され、それが「修理系」に相当する場合は修理され、機器は継続して使用される。しかし、問題は「非修理系」の異常が検出された場合である。この場合には、通常は機器本体が寿命と判断され、設備が新品に更新される。
【0003】
図9において「非修理系」の主な部位は、「匡体部分」と「主回路部分」であるが、「匡体部分」については肉眼観察でも異常は大体検知可能である。しかし、「主回路部分」については異常の検知は困難である。特にそれが絶縁材料に関係する場合は、例えば、「炭化物の生成」などのように、肉視では事故が発生してからでなければ検知できず、その前兆を把握することができない。
【0004】
事故発生のメカニズムとして、例えば、「汚損の進行」→「吸湿の進行」→「絶縁抵抗低下」→「トラッキング発生」→「部分放電」→「沿面閃絡」→「気中放電」→「短絡・地絡」などが一般的にも良く知られている。
「主回路部分」における事故発生の前兆を把握するための絶縁診断方法として従来から、電磁波検出、放電パルス電流、放電音検出、オゾンガス検知、漏れ電流検出、部分放電(電気式、機械式)測定、ガスチェッカーなどの方法で測定したデータを総合判定する方法や、簡易的には絶縁抵抗を測定する方法などが採用されてきた。
【0005】
【発明が解決しようとする課題】
従来の受配電設備の診断方法は以上のようにしてなされており、図8,9に示すような従来方法においては診断に要する時間も長く、高コストとなる問題があった。また、前述した電磁波検出、放電パルス電流等の測定による診断方法は診断の精度が低いという問題があった。また、これらの方法は機器の「異常診断」には対応可能であるが、機器の「余寿命診断」には対応できないという問題があった。
【0006】
機器の「余寿命診断」に対しては、例えば特開平11−326429号公報に開示される方法がある。この方法は、稼働状態の絶縁機器の温度分布を非接触にて検出し、検出された温度分布と絶縁部の既知の熱劣化特性とからこの絶縁機器の経年劣化状態を診断し、寿命を診断するものであり、さらには稼働状態の絶縁機器の接地線に流れる部分放電電流を非接触で検出し、既知の放電劣化特性との比較により放電劣化状態を診断し、これらの診断結果に基づいて上記絶縁機器の余寿命を判断している。
【0007】
しかし、この方法も診断時の周辺環境(例えば、温度・湿度など)によって測定データが大きく変化するので、それを高精度で補正するためのデータ処理を繰込むと診断コストが著しく高価なものとなり、例えば、数十台〜数百台といった多数の機器を使用している工場などでは効力を発揮することが期待されるが、一般施設(1台〜数台の機器を使用する)には不向きな方法であった。
【0008】
この発明は上記のような問題点を解消するためになされたものであり、受配電設備の使用中の事故を未然に防ぐためばかりでなく、高精度の絶縁診断が可能となると共に、特に機器の余寿命の定量的な算出が、高精度かつ容易に可能な絶縁診断センサを提供することを目的とする。
また、機器の余寿命の定量的な算出が、高精度かつ容易に可能な新規の余寿命診断方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明の受配電設備の絶縁診断センサは、受配電設備を構成する主回路部分に用いる固体絶縁材料と同等材料より成り、湿50%の下、上記同等材料の上記絶縁診断センサ作製時における表面電気抵抗率が1.22×10 14 Ωから5.01×10 10 Ωの範囲で異なる複数の部位を有し、上記複数の部位にそれぞれ上記表面電気抵抗率を測定する電極を設けたものである。
【0010】
また、本発明の受配電設備の絶縁診断センサは、上記複数の部位が、該同等材料が絶縁診断センサ作製時における表面電気抵抗率が1.22×10 14 Ωである未劣化部位と、上記表面電気抵抗率が1.22×10 14 Ωでない劣化部位とを含むものである。
【0012】
また、本発明の受配電設備の絶縁診断センサは、上記各絶縁診断センサにおいて、くし型電極を用いて表面電気抵抗率を測定したものである。
【0013】
また、本発明の余寿命診断方法は、請求項1ないし請求項のいずれかに記載の受配電設備の絶縁診断センサを上記受配電設備に一定期間取り付け、この取り付け期間における該センサの異なる複数の部位の表面電気抵抗率の変化を測定すると共に、予め、受配電設備を構成する主回路部分に用いられる固体絶縁材料と同等材料から成る部材の表面電気抵抗率を、表面電気抵抗測定環境の相対湿度をパラメータとして、受配電設備の実使用時間または実使用時間に相当する時間毎に測定し、表面電気抵抗率の時間依存性基準曲線を得、上記時間依存性基準曲線と、上記取り付け期間における表面電気抵抗率の変化とに基づいて受配電設備の余寿命を算出したものである。
【0014】
また、本発明の余寿命診断方法は、上記余寿命診断方法において、余寿命を次式より求めるものである。
=t×ΔT/Δt−T−ΔT
ここで、Tは余寿命、Tは受配電設備のそれまでの実使用時間、ΔTは受配電設備にセンサを取り付け、上記センサの表面電気抵抗率の変化を測定する取り付け期間、tは予め測定された表面電気抵抗率の時間依存性基準曲線において寿命と判定される時間、Δtは、上記時間依存性基準曲線上において、測定された表面電気抵抗率の変化を生じるのに要する時間である。
【0017】
【発明の実施の形態】
実施の形態1.
本発明は、受配電設備の劣化と、該設備を構成する主回路部分に用いられる固体絶縁材料の表面劣化との間に定量的な相関性のあることを見い出し、これを利用して、上記固体絶縁材料と同等材料より成るセンサの表面劣化を表面電気抵抗の測定により検出することにより受配電設備本体の絶縁診断および余寿命の診断を行うというものである。
また前記したように、機器の劣化機構として、汚損や絶縁材料自身の劣化があるが、表面汚損の結果として材料表面のイオン量が増加するはずである。このうちの伝導に寄与する総イオン量(Σμeff・N)を検出することで絶縁材料の劣化を診断し、機器の寿命を診断しようということが本発明に至った経緯である。
すなわち、伝導に寄与する総イオン量(Σμeff・N)は、

Figure 0004501315
で表される。ここで、μeffはイオンの移動度、Nはイオンの数、Σは総和である。また式中、例えば、μeff(Na)はナトリウムイオンの移動度、N(Na)はナトリウムイオンの数を表している。
ここで、注意すべきはμeffが湿度によって変化すること(電解液として扱えるので、温度による変化をあまり気にしなくても良い)であり、測定環境における湿度をパラメータとして押さえることが重要である。
【0018】
本発明に係わる受配電設備を構成する主回路部分に用いられている固体絶縁材料とは、電力を受配する導体を支持するための絶縁物や遮蔽板などのことで、例えば紙フェノール樹脂積層板、無機物を含有するポリエステル樹脂成形品、ジアリルフタレート樹脂成形品、エポキシ樹脂注型品などのことである。
【0019】
本実施の形態1の絶縁診断センサは、これら固体絶縁材料と同等材料の未劣化部位、および該同等材料の劣化部位から成り、これらの部位にそれぞれ、各部位の表面電気抵抗率を測定する電極を設けたものであり、このようなセンサを用いて受配電設備の絶縁診断を行うことにより高精度の絶縁診断が可能になり、また余寿命診断も可能になる。
【0020】
ここで言う同等材料とは、材料組成や化学構造が同一であっても、また必ずしも同一でなくとも良い。次に述べる電気特性の測定値が未劣化時および劣化時において同等でありさえすれば良い。
なお、本発明で言う劣化部位とは、該同等材料を故意に劣化させた部位を意味し、具体的には、物理的または化学的な表面処理(例えば機械的処理、光照射、コロナ放電処理、イオン化(酸、アルカリ)処理、グラフト反応処理、オゾン処理など)や、材料バルクの化学的処理(例えば、モルフォロジーやトポロジーの改変など)や熱的処理(過熱劣化)などの方法で行われる。
【0021】
本実施の形態においては、固体絶縁材料と同等材料を上記のようにして故意に劣化させた劣化部位と、固体絶縁材料と同等材料を劣化させていない未劣化部位との表面にそれぞれ、表面電気抵抗率を測定するためのくし型電極が設けられる。
【0022】
図1(a)は本発明の実施の形態1による絶縁診断センサを示す図であり、センサの上面と側面を示す。図において、1は絶縁診断センサ、11は受配電設備を構成する主回路部分に用いる固体絶縁材料と同等材料が未劣化の状態の未劣化部位、12は上記固体絶縁材料と同等材料が劣化した状態の劣化部位、31,32は、未劣化部位11、劣化部位12に各々設けられたくし型電極であり、それぞれ上記各部位の表面電気抵抗率を測定する。
このような絶縁診断センサ1を受配電設備に取り付け、表面電気抵抗率の変化を見ることにより絶縁診断をおこなう。
なお、ここで表面電気抵抗率とは、W/L=1の時における抵抗値である。図1(b)に示すように、Wは電極の幅(対向する電極部分の長さ)、Lは電極間距離である。
【0023】
本発明の実施の形態1による絶縁診断センサは、劣化した部位を有するため、未劣化部位のみで構成されるセンサに比べて低抵抗領域で変化するので、計測技術の点において有利であり、また複数の部位による測定によって絶縁診断しているので高精度の評価が行えるという効果がある。
【0024】
また、実際の機器の絶縁診断にあたって、センサを搭載しないまま使用開始されている機器に対しても、本センサをいつでも搭載することが可能であり、特に現実問題として寿命の近づいている機器の余寿命の算出に有効であるという効果がある。
【0025】
また、その際、後述の方法により受配電設備の余寿命診断が容易に、しかも高精度で行えるので、設備の異常による事故の発生を未然に防ぐことができるばかりでなく、設備の効率良い更新を行うことができる。
【0026】
実施の形態2.
図2は本発明の実施の形態2による絶縁診断センサを示す図であり、センサの上面と側面を示す。図において、2は本実施の形態2による絶縁診断センサであり、実施の形態1と同様、未劣化部位11と劣化部位12を有する。また、未劣化部位11と劣化部位12は、それぞれ、くし型電極31,32を設けた領域A,A’と、電極31,32を設けない領域B,B’とから成っている。電極31,32を設けた領域A,A’は電気特性の測定に供せられるが、設けない領域B,B’は必要があれば電気特性以外の特性測定用に供せられる。例えば、熱的(ガラス転移温度、モルフォロジー変化)、スペクトル的(UV−VIS、IR)、微量分析(TG、DTA、I/C、GPC、GC−MS、ESR)等の測定も必要に応じて可能にしている。
【0027】
このようにすることにより、実施の形態1の効果に加え、電極を設けない領域を電気抵抗測定以外の測定に供することが可能となり、劣化部位および未劣化部位の表面電気抵抗率の変化を他の方法でも裏付けることができるため、診断の信頼性を高める効果がある。
【0028】
実施の形態3.
図3は本発明の実施の形態3による絶縁診断センサを示す図であり、センサの上面と側面を示す。図において、3は絶縁診断センサ、13は受配電設備を構成する主回路部分に用いる固体絶縁材料と同等材料が劣化した状態の劣化部位であり、劣化の程度が劣化部位12より強い劣化部位である。本実施の形態3のセンサ3において、未劣化部位11、劣化部位12,13は、劣化の程度が段階的に強くなるように配列されている。33は劣化部位13に設けられたくし型電極であり、劣化部位13の表面電気抵抗率を測定する。
【0029】
このようにすることにより、実施の形態1の効果に加え、本発明の絶縁診断センサを後述する余寿命診断方法に適用する場合、診断精度を高めることが可能となる。
【0030】
なお、本実施の形態においては、劣化部位は劣化の程度が異なる2つの劣化部位12,13で構成されているが、その数はさらに多くても良い。
【0031】
実施の形態4.
上記実施の形態1〜3では、未劣化部位11と劣化部位12、あるいは未劣化部位11と劣化部位12,13というように、劣化の程度が互いに異なる複数の部位からなり、かつこれら複数の部位には未劣化部位11を含むセンサを示したが、未劣化部位11を有さず、固体絶縁材料と同等材料の劣化の程度が異なる複数の劣化部位を有し、上記複数の劣化部位にそれぞれ各部位の表面電気抵抗率を測定する電極を設けるようにしてもよく、上記各実施の形態と同様の効果がある。
なお、実施の形態1〜3のように、複数の部位の内の1つを未劣化部位11とする効果としては、新品の受配電設備に取り付けた場合、受配電設備と同じ状態の固体絶縁材料の表面電気抵抗率を測定することができるため、信頼性が増すという効果がある。また、後述するように、余寿命診断にあたって、センサの取り付け期間を短くできる効果もある。
【0032】
実施の形態5.
本実施の形態においては、上記実施の形態1の絶縁診断センサ1を用いて、受配電設備の余寿命を計算する方法を示す。
実施の形態1に示す絶縁診断センサ1を受配電設備に一定期間取り付ける。この取り付け期間において、センサ1により検出される電気特性が変化する。上記取り付け期間中に変化する劣化部位と未劣化部位の表面電気抵抗率の変化を測定し、上記取り付け期間における変化量を基にして該受配電設備の余寿命が計算できる。具体的なその方法の一例を示す。
【0033】
図4は本実施の形態5に係わる表面電気抵抗率の時間依存性基準曲線の一例を示す図である。この曲線は、例えば、受配電設備を構成する主回路部分に用いられる固体絶縁材料と同等材料から成る部材を加速劣化させることによって、予め、実機における絶縁材料の劣化を模擬して得たものである。図4の曲線は、相対湿度H%下での測定結果であり、横軸は加速劣化時間、縦軸は上記部材の表面電気抵抗率である。
【0034】
図において、ρ00Ωは受配電設備の固体絶縁材料と同等材料からなる部材が未劣化状態である初期における表面電気抵抗率(相対湿度H%)、ρ10Ωは上記部材が寿命に到達したときにおける相対湿度H%での上記部材の表面電気抵抗率、tは上記部材を加速劣化して、相対湿度H%での表面電気抵抗率をρ10Ωとするのに要する加速劣化時間であり、時間依存性基準曲線において寿命と判定される時間である。
【0035】
なお、図4に示す表面電気抵抗率の時間依存性基準曲線は、寿命と判定される加速劣化時間tを100として、横軸を劣化率として表すことも可能である。
【0036】
また、本実施の形態5による余寿命診断方法において用いられる診断センサは、図1に示す絶縁診断センサ1が用いられ、受配電設備の固体絶縁材料と同等材料が未劣化状態である未劣化部位11(表面電気抵抗率はρ00Ω)と、上記同等材料がt時間加速劣化された劣化部位12(表面電気抵抗率はρ10Ω)とを有しているものとする。
【0037】
このセンサ1を、既にT時間使用されている受配電設備に取り付け、さらにΔT時間使用した後に、該センサ1の未劣化部位11および劣化部位12の表面電気抵抗率を相対湿度H%で測定したところ、未劣化部位11の表面電気抵抗率はρ00→ρ01に、劣化部位12の表面電気抵抗率はρ10→ρ11に変化したとする。そして、図4においてρ00→ρ01、ρ10→ρ11に変化するのに要する時間を読み取ったところ、平均でΔt時間であったとする。
該受配電設備の余寿命(ΔT時間経過後の余寿命)をTとすると、
(T+ΔT+T)/t=ΔT/Δt
であるから、余寿命T
=t×ΔT/Δt−T−ΔT (1)
で表される。
【0038】
ここで、上記加速劣化と実機における実際の劣化(実機劣化)の相関性について述べておく。通常の屋内環境で使用されている受配電設備に搭載されている固体絶縁材料(紙フェノール樹脂積層板など)をサンプリングして、表面電気抵抗率を温度25℃、相対湿度50%で測定し、その平均表面電気抵抗率の使用年数依存性をプロットしたのが図5である。図5では、機器使用年数20年を寿命の目安として、この時の値を劣化率100%の値としているが、図5に見られる曲線は上記図4の加速劣化曲線に極似していることがわかる。両図の比較から、本発明に係わる加速劣化と実機劣化には相関性のあることが明確である。
【0039】
以上のように、本実施の形態においては、余寿命診断が容易に、しかも高精度で行えるので、設備の異常による事故の発生を未然に防ぐことができるばかりでなく、設備の効率良い更新を行うことができる。
【0040】
また、本実施の形態では未劣化部位を有する実施の形態1のセンサを用いているので、高抵抗領域が高精度で検出できるのであれば、取り付け期間ΔTが短くても、表面電気抵抗率の時間依存性基準曲線よりΔtを容易に算出できるので、余寿命診断にあたって、センサの取り付け期間を短くできる効果がある。
【0041】
なお、本実施の形態では実施の形態1に示した絶縁診断センサ1を用いて余寿命診断を行ったが、実施の形態2〜4の絶縁診断センサを用いて同様に余寿命診断を行ってもよい。
【0042】
また、受配電設備に一定期間取り付けるセンサは、実施の形態1〜4のような複数の部位から成るものに限らず、固体絶縁材料と同等材料から成り、未劣化状態あるいは劣化状態のいずれかの状態の1つの部材で構成されるセンサを用いても良い。この場合においても、該センサを受配電設備に一定期間取り付け、この取り付け期間における該センサの表面電気抵抗率の変化を測定し、表面電気抵抗率の時間依存性基準曲線と、測定された取り付け期間における表面電気抵抗率の変化とに基づいて受配電設備の余寿命を算出すればよい。
【0043】
また、本実施の形態において、表面電気抵抗率の時間依存性基準曲線は加速試験により予め求めたが、表面電気抵抗率の湿度依存性基準曲線を実際の受配電設備の実使用時間より直接得るようにしてしても良く、また、他の模擬試験により求めても良い。
【0044】
【実施例】
本発明の絶縁診断方法および余寿命診断方法を以下の実施例によって具体的に説明する。
実施例1.
紙フェノール樹脂積層板(PL−PEM:3mm×100mm×100mm)を1N硝酸水溶液の蒸気に室温下で、0.5日、1日、2日、4日、6日間曝し、100℃で1時間乾燥させた後、一対のくし型電極を金で真空蒸着した(W/L=2290、L=0.2mm)。試料数は各々4個とした。これら試料について、恒温恒湿室(20℃、5%〜85%)にて表面電気抵抗率測定を行った。測定は微少電流計(HP−4140B)を用い、DC印加電圧10Vで1分値を採用した。結果を図6に示す。図6は横軸を加速劣化時間と劣化率の両方で表しており、図6を、本実施例における、湿度をパラメータとした表面電気抵抗率の劣化時間依存性基準曲線図とする。
【0045】
なお、ここで、診断対象となる受配電設備の寿命に相当する絶縁材料の表面電気抵抗率は、湿度50%において、5×1010Ωとした(実機劣化の統計的なデータによる)。従って、図6においては、加速劣化時間4日の表面電気抵抗率値が寿命のしきい値に相当し、これを劣化率100%とした。
【0046】
3mm×100mm×50mmの上記と同じ紙フェノール樹脂積層板(PL−PEM)の半分(3mm×50mm×50mm)をパラフィンフィルムでマスクして、残り半分(3mm×50mm×50mm)を上記と同様に、1N硝酸水溶液の蒸気に室温下で4日間曝し、100℃で1時間乾燥させて劣化部位を形成する。マスクした半分の部分は未劣化部位となる。上記未劣化部位および劣化部位に、図1に示すように、それぞれ、くし型電極を金蒸着(W/L=2290、L=0.2mm)して、絶縁診断センサ1を試作した。
【0047】
これを、電力設備として10年間使用経過した受配電設備の主回路部分の固体絶縁材料の近傍に取り付け、さらに2年間運転を行った後に、センサ1の表面電気抵抗率を湿度50%で測定した。測定された表面電気抵抗率値の変化状況を、図6に示される表面電気抵抗率の劣化時間依存性基準曲線上で示すと、図7のようになる。
測定された表面電気抵抗率値は、未劣化部位11では、1.22×1014Ω→2.35×1013Ω、劣化部位12では、5.01×1010Ω→3.61×1010Ωの変化が観察された。この変化は、図7の矢印1−11,1−12に示すように、劣化率約10%であった。寿命となる加速劣化時間tを100とすれば、Δtは劣化率10%で表され、式(1)を適用すると、該受配電設備の余寿命は8年と計算される。
【0048】
実施例2.
3mm×100mm×70mmの、実施例1と同様の紙フェノール樹脂積層板(PL−PEM)の半分(3mm×50mm×70mm)をパラフィンフィルムでマスクして、残り半分(3mm×50mm×70mm)を、実施例1と同様に1N硝酸水溶液の蒸気に室温下で4日間曝し、100℃で1時間乾燥させて劣化部位を形成する。マスクした半分の部分は未劣化部位となる。上記未劣化部位および劣化部位の一部(それぞれ、3mm×50mm×50mm)に、図2に示すように、くし型電極を金蒸着(W/L=2290、L=0.2mm)して、絶縁診断センサ2を試作した。
【0049】
これを、電力設備として8年間使用経過した受配電設備の主回路部分の固体絶縁材料の近傍に取り付け、さらに4年間運転を行った後に、センサ2の表面電気抵抗率を測定した。この時の相対湿度は湿度40%であった。測定結果は、未劣化部位11で2.20×1013Ω、劣化部位12で1.26×1011Ωであった。なお、湿度40%で、このセンサの各部位11,12の表面電気抵抗率の初期値は、図6または図7に示す値と同じであり、それぞれ1.48×1014Ω、2.06×1011Ωであった。
実施例1と同様に、この変化量を図7で見積ると、矢印2−11,2−12に示すようになり、劣化率は約15%となる。同様に、式(1)を適用すると、該受配電設備の余寿命は約15年と計算される。
【0050】
また、このセンサ2の、電極を設けない領域(それぞれ、3mm×50mm×20mm)を用いて、表面に付着したイオン種と量をイオンクロマト法で測定したところ、陽イオンとしてアンモニウムイオンが、陰イオンとして硝酸イオンが多量に存在することもわかった。センサ2の表面電気抵抗率の低下は、センシング期間中に生成あるいは付着したイオン量の増加と相関のあることもわかった。
【0051】
実施例3.
3mm×150mm×70mmの、実施例1と同様の紙フェノール樹脂積層板(PL−PEM)の一部(3mm×50mm×70mm)をパラフィンフィルムでマスクして、残りの部分(3mm×100mm×70mm)を、実施例1と同様に1N硝酸水溶液の蒸気に室温下で2日間曝し、さらにこの残りの部分の半分(3mm×50mm×70mm)をマスクした後、残り半分(3mm×50mm×70mm)をさらに1日間曝し、100℃で1時間乾燥させて劣化の程度の異なる2つの劣化部位を形成する。最初にマスクした部分は未劣化部位となる。上記未劣化部位および劣化部位の一部(それぞれ、3mm×50mm×50mm)に、図3に示すように、くし型電極を金蒸着(W/L=2290、L=0.2mm)して、絶縁診断センサ3を試作した。
【0052】
これを、電力設備として6年間使用経過した受配電設備の主回路部分の固体絶縁材料の近傍に取り付け、さらに3年間運転を行った後に、センサ3の表面電気抵抗率を測定した。この時の相対湿度は湿度60%であった。測定結果は、未劣化部位11で7.94×1012Ω、劣化部位12で2.96×1010Ω、劣化部位13で9.06×10Ωであった。なお、湿度60%で、このセンサの各部位11,12,13の表面電気抵抗率の初期値は、図6または図7に示す値と同じであり、それぞれ6.74×1013Ω、3.98×1010Ω、1.14×1010Ωであった。
実施例1と同様に、この変化量を図7で見積ると、矢印3−11,3−12,3−13に示すようになり、劣化率は約10%となる。同様に、式(1)を適用すると、該受配電設備の余寿命は約21年と計算される。
【0053】
また、このセンサの電極を設けない領域(それぞれ、3mm×50mm×20mm)を用いて、実施例2と同様にして表面に付着したイオン種と量をイオンクロマト法で測定したところ、実施例2と同様に、陽イオンとしてアンモニウムイオンが、陰イオンとして硝酸イオンの存在が確認され、しかもその量は、劣化部位13>劣化部位12>未劣化部位11であった。センサ3における表面電気抵抗率の低下も、センシング期間中に生成あるいは付着したイオン量の増加と相関のあることもわかった。
【0054】
【発明の効果】
以上のように、本発明の受配電設備の絶縁診断センサは、受配電設備を構成する主回路部分に用いる固体絶縁材料と同等材料より成り、該同等材料の劣化の程度が異なる複数の部位を有し、上記複数の部位にそれぞれ上記各部位の表面電気抵抗率を測定する電極を設けたので、劣化した部位は低抵抗領域で表面電気抵抗率が変化するため、計測技術の点において有利であり、また複数の部位による測定によって絶縁診断しているので高精度の評価が行えるという効果がある。
また、実際の機器の絶縁診断にあたって、センサを搭載しないまま使用開始されている機器に対しても、本センサをいつでも搭載することが可能である。
また、このようなセンサを用いれば、後述の方法により受配電設備の余寿命の定量的な算出が容易に、しかも高精度で行えるため、設備の異常による事故の発生を未然に防ぐことができる。
【0055】
また、本発明の受配電設備の絶縁診断センサは、上記複数の部位が、受配電設備を構成する主回路部分に用いる固体絶縁材料と同等材料が未劣化の状態の未劣化部位と、該同等材料が劣化した状態の劣化部位とから成るので、新品の受配電設備に取り付けた場合、受配電設備と同じ状態の固体絶縁材料の表面電気抵抗率を測定することができるため、信頼性が増すという効果がある。また、余寿命診断にあたって、センサの取り付け期間を短くできる効果もある。
【0056】
また、本発明の受配電設備の絶縁診断センサは、上記複数の部位が、各々、電極を設けた領域と、上記電極を設けない領域とから成るので、電極を設けない領域を電気抵抗測定以外の測定に供することが可能となり、劣化部位および未劣化部位の表面電気抵抗率の変化を他の方法でも裏付けることができるため、診断の信頼性を高める効果がある。
ある。
【0057】
また、本発明の受配電設備の絶縁診断センサは、上記各絶縁診断センサにおいて、くし型電極を用いて表面電気抵抗率を測定したので、表面電気抵抗率が小面積で精度良く測定できる効果がある。
【0058】
また、本発明の余寿命診断方法は、受配電設備を構成する主回路部分に用いられる固体絶縁材料と同等材料から成るセンサを上記受配電設備に一定期間取り付け、この取り付け期間における該センサの表面電気抵抗率の変化を測定すると共に、予め、受配電設備を構成する主回路部分に用いられる固体絶縁材料と同等材料から成る部材の表面電気抵抗率を、表面電気抵抗測定環境の相対湿度をパラメータとして、受配電設備の実使用時間または実使用時間に相当する時間毎に測定し、表面電気抵抗率の時間依存性基準曲線を得、上記時間依存性基準曲線と、上記取り付け期間における表面電気抵抗率の変化とに基づいて受配電設備の余寿命を算出したので、受配電設備の余寿命診断が容易に、しかも高精度で行えるので、設備の異常による事故の発生を未然に防ぐことができるばかりでなく、設備の効率良い更新を行うことができる。
【0059】
また、本発明の余寿命診断方法は、上記余寿命診断方法において、余寿命を次式より求めたので、余寿命を容易に、定量的かつ高精度で求められる効果がある。
=t×ΔT/Δt−T−ΔT
ここで、Tは余寿命、Tは受配電設備のそれまでの実使用時間、ΔTは受配電設備にセンサを取り付け、上記センサの表面電気抵抗率の変化を測定する取り付け期間、tは予め測定された表面電気抵抗率の時間依存性基準曲線において寿命と判定される時間、Δtは、上記時間依存性基準曲線上において、測定された表面電気抵抗率の変化を生じるのに要する時間である。
【0060】
また、本発明の余寿命診断方法は、上記余寿命診断方法において、センサとして上記絶縁診断センサを用い、取り付け期間における該センサの劣化部位と未劣化部位の表面電気抵抗率の変化を測定し、表面電気抵抗率の時間依存性基準曲線と、上記各部位の表面電気抵抗率の変化とに基づいて受配電設備の余寿命を算出したので、受配電設備の余寿命診断が容易に、しかもより高精度で行えるので、設備の異常による事故の発生を未然に防ぐことができるばかりでなく、設備の効率良い更新を行うことができる。
【0061】
また、本発明の余寿命診断方法は、上記余寿命診断方法において、余寿命を次式より求めたので、余寿命を容易に、定量的、かつより高精度で求められる効果がある。
=t×ΔT/Δt−T−ΔT
ここで、Tは余寿命、Tは受配電設備のそれまでの実使用時間、ΔTは受配電設備に絶縁診断センサを取り付け、上記センサの劣化部位と未劣化部位の表面電気抵抗率の変化を測定する取り付け期間、tは予め測定された表面電気抵抗率の時間依存性基準曲線において寿命と判定される時間、Δtは、上記時間依存性基準曲線上において、測定された各部位の表面電気抵抗率の変化を生じるのに要する時間の平均値である。
【図面の簡単な説明】
【図1】 本発明の実施の形態1による絶縁診断センサを示す図である。
【図2】 本発明の実施の形態2による絶縁診断センサを示す図である。
【図3】 本発明の実施の形態3による絶縁診断センサを示す図である。
【図4】 本発明の実施の形態5に係わる表面電気抵抗率の時間依存性基準曲線の一例を示す図である。
【図5】 本発明の実施の形態5に係わる表面電気抵抗率の時間依存性曲線を実機において測定した図である。
【図6】 本発明の実施例1における表面電気抵抗率の劣化時間依存性基準曲線を示す図である。
【図7】 本発明の実施例1〜3における表面電気抵抗率の変化状況を図6の劣化時間依存性基準曲線上で示す図である。
【図8】 従来の機器診断方法を示す図である。
【図9】 従来の機器診断方法を説明する図である。
【符号の説明】
1,2,3 絶縁診断センサ、11 未劣化部位、12,13 劣化部位、31,32,33 くし型電極。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an insulation diagnosis sensor and a remaining life diagnosis method for a power receiving and distribution facility used as a power facility.
[0002]
[Prior art]
If power distribution facilities are used for many years even under normal circumstances, deterioration will progress and in some cases there is a risk of a major accident. For this reason, in general, periodic device diagnosis is performed.
As a conventional device diagnosis method, for example, an evaluation method based on a point system based on the “Electricity Evaluation Table for Switchboard” shown in FIG. 8 (“Consideration of Reliability of Long-Term Substation Equipment”, Japan Electrical Manufacturers' Association, 1999) Etc. are adopted. Then, as shown in “Switchboard equipment configuration diagram” in FIG. 9 (same as above), a defective part is detected from the evaluation result by the evaluation table, and if it corresponds to “repair system”, it is repaired and the equipment continues. Used. However, the problem is when an “unrepairable” abnormality is detected. In this case, it is usually determined that the device main body is at the end of its life and the equipment is updated to a new one.
[0003]
In FIG. 9, the main parts of the “non-repair system” are the “housing part” and the “main circuit part”, but the “housing part” can be roughly detected by visual observation. However, it is difficult to detect an abnormality in the “main circuit portion”. In particular, when it is related to an insulating material, it can be detected only after an accident has occurred, such as “carbide generation”, and its precursor cannot be grasped.
[0004]
As the mechanism of the accident occurrence, for example, “Progress of fouling” → “Progress of moisture absorption” → “Insulation resistance decrease” → “Tracking occurrence” → “Partial discharge” → “Creeping flash” → “Air discharge” → “Short circuit” "Ground fault" is generally well known.
Conventionally, as an insulation diagnosis method to grasp the sign of an accident occurrence in the “main circuit part”, electromagnetic wave detection, discharge pulse current, discharge sound detection, ozone gas detection, leakage current detection, partial discharge (electrical and mechanical) measurement A method of comprehensively determining data measured by a method such as a gas checker or a method of simply measuring insulation resistance has been adopted.
[0005]
[Problems to be solved by the invention]
The conventional method for diagnosing power receiving and distributing equipment has been performed as described above, and the conventional methods as shown in FIGS. 8 and 9 have a problem that the time required for diagnosis is long and the cost is high. Further, the above-described diagnostic method based on electromagnetic wave detection, measurement of discharge pulse current, etc. has a problem that the accuracy of diagnosis is low. Further, these methods can cope with “abnormal diagnosis” of the device, but cannot cope with “remaining life diagnosis” of the device.
[0006]
For example, there is a method disclosed in Japanese Patent Application Laid-Open No. 11-326429 for “remaining life diagnosis” of equipment. This method detects the temperature distribution of an insulated device in operation without contact, diagnoses the aging state of this insulated device from the detected temperature distribution and the known thermal degradation characteristics of the insulation, and diagnoses the life In addition, the partial discharge current flowing through the ground line of the insulated equipment in the operating state is detected in a non-contact manner, and the discharge deterioration state is diagnosed by comparison with the known discharge deterioration characteristics, and based on these diagnosis results The remaining life of the insulation equipment is judged.
[0007]
However, this method also changes the measurement data greatly depending on the surrounding environment at the time of diagnosis (for example, temperature, humidity, etc.). If data processing is performed to correct the measurement data with high accuracy, the diagnostic cost will be extremely expensive. For example, it is expected to be effective in factories that use many devices such as tens to hundreds, but is not suitable for general facilities (using one to several devices). It was a method.
[0008]
The present invention has been made to solve the above-described problems, and not only prevents accidents during use of the power receiving and distribution equipment, but also enables high-precision insulation diagnosis, and in particular, equipment. An object of the present invention is to provide an insulation diagnosis sensor capable of easily and quantitatively calculating the remaining life of the sensor.
It is another object of the present invention to provide a new remaining life diagnosis method capable of easily and quantitatively calculating the remaining life of equipment.
[0009]
[Means for Solving the Problems]
The insulation diagnosis sensor for power receiving / distributing equipment of the present invention is made of a material equivalent to a solid insulating material used for a main circuit portion constituting the power receiving / distributing equipment.WetEvery time50%UnderThe surface electrical resistivity at the time of manufacturing the insulation diagnostic sensor of the same material is 1.22 × 10 14 Ω to 5.01 × 10 10 Different in Ω rangeThe electrode which measures the said surface electrical resistivity in each of the said some site | part is provided.
[0010]
Moreover, the insulation diagnostic sensor for the power distribution facility according to the present invention includes the plurality of parts having the equivalent material.Surface electrical resistivity at the time of production of an insulation diagnostic sensor is 1.22 × 10 14 The undegraded part which is Ω, and the surface electrical resistivity is 1.22 × 10 14 Including degraded parts that are not ΩIs.
[0012]
Moreover, the insulation diagnostic sensor of the power distribution facility according to the present invention is obtained by measuring the surface electrical resistivity using a comb-shaped electrode in each of the insulation diagnostic sensors.
[0013]
Further, the remaining life diagnosis method of the present invention is as follows.3The insulation diagnosis sensor for the power distribution facility according to any of the above is attached to the power distribution facility for a certain period, and changes in the surface electrical resistivity of a plurality of different parts of the sensor during the attachment period are measured in advance. The surface electrical resistivity of a member made of the same material as the solid insulation material used for the main circuit part that constitutes the equipment, and the relative humidity of the surface electrical resistance measurement environment as a parameter. Measure at each corresponding time to obtain a time-dependent reference curve for surface electrical resistivity, and determine the remaining life of power distribution equipment based on the time-dependent reference curve and the change in surface electrical resistivity during the installation period. It is calculated.
[0014]
Moreover, the remaining life diagnosis method of this invention calculates | requires a remaining life from the following Formula in the said remaining life diagnosis method.
TR= T1× ΔT / Δt-T-ΔT
Where TRIs the remaining service life, T is the actual use time of the power receiving and distribution equipment, ΔT is a mounting period for attaching the sensor to the power receiving and distributing equipment, and measuring the change in surface electrical resistivity of the sensor,1Is a time determined to be a lifetime in a time-dependent reference curve of surface electrical resistivity measured in advance, and Δt is a time required to cause a change in the measured surface electrical resistivity on the time-dependent reference curve. It is.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
The present invention finds that there is a quantitative correlation between the deterioration of the power receiving and distribution equipment and the surface deterioration of the solid insulating material used in the main circuit portion constituting the equipment. By detecting the surface deterioration of the sensor made of the same material as the solid insulating material by measuring the surface electric resistance, the insulation diagnosis and the remaining life diagnosis of the power receiving / distributing equipment body are performed.
As described above, the deterioration mechanism of the device includes fouling and deterioration of the insulating material itself, but the amount of ions on the surface of the material should increase as a result of surface fouling. Total amount of ions contributing to conduction (ΣμeffThe background of the present invention is to diagnose the deterioration of the insulating material by detecting N) and to diagnose the life of the device.
That is, the total amount of ions contributing to conduction (Σμeff・ N)
Figure 0004501315
It is represented by Where μeffIs the ion mobility, N is the number of ions, and Σ is the sum. In the formula, for example, μeff(Na+) Is the mobility of sodium ion, N (Na+) Represents the number of sodium ions.
Here, it should be noted that μeffChanges with humidity (it can be handled as an electrolyte, so there is no need to worry about changes due to temperature), and it is important to suppress humidity in the measurement environment as a parameter.
[0018]
The solid insulating material used in the main circuit portion constituting the power distribution facility according to the present invention is an insulator or a shielding plate for supporting a conductor that receives and distributes power, such as a paper phenolic resin laminate. Polyester resin molded products containing inorganic substances, diallyl phthalate resin molded products, epoxy resin cast products, and the like.
[0019]
The insulation diagnostic sensor according to the first embodiment includes an undegraded portion of the same material as the solid insulating material and a deteriorated portion of the equivalent material, and electrodes that measure the surface electrical resistivity of each portion, respectively. By using this sensor to perform insulation diagnosis of power receiving and distribution equipment, high-precision insulation diagnosis can be performed, and a remaining life diagnosis can be performed.
[0020]
The equivalent material mentioned here may or may not have the same material composition and chemical structure. It is only necessary that the measured values of the electrical characteristics described below are the same when undegraded and when degraded.
The degradation site in the present invention means a site where the equivalent material is intentionally degraded, specifically, physical or chemical surface treatment (for example, mechanical treatment, light irradiation, corona discharge treatment). , Ionization (acid, alkali) treatment, graft reaction treatment, ozone treatment, etc.), chemical treatment of the material bulk (for example, modification of morphology and topology) and thermal treatment (overheating degradation).
[0021]
In the present embodiment, surface electrical properties are respectively applied to the surfaces of the degraded portion where the material equivalent to the solid insulating material is intentionally degraded as described above and the undegraded portion where the material equivalent to the solid insulating material is not degraded. A comb electrode is provided for measuring resistivity.
[0022]
Fig.1 (a) is a figure which shows the insulation diagnostic sensor by Embodiment 1 of this invention, and shows the upper surface and side surface of a sensor. In the figure, 1 is an insulation diagnostic sensor, 11 is an undegraded portion of an undegraded material equivalent to a solid insulating material used for a main circuit portion constituting a power distribution facility, and 12 is an degraded material equivalent to the solid insulating material. Deteriorated parts 31 and 32 of the state are comb-shaped electrodes provided in the undegraded part 11 and the deteriorated part 12, respectively, and the surface electrical resistivity of each part is measured.
Such an insulation diagnosis sensor 1 is attached to a power distribution facility, and insulation diagnosis is performed by observing a change in surface electrical resistivity.
Here, the surface electrical resistivity is a resistance value when W / L = 1. As shown in FIG. 1B, W is the width of the electrode (the length of the opposing electrode portion), and L is the distance between the electrodes.
[0023]
Since the insulation diagnostic sensor according to Embodiment 1 of the present invention has a deteriorated portion, it changes in a low resistance region as compared with a sensor composed of only an undegraded portion, and is advantageous in terms of measurement technology. Since insulation diagnosis is performed by measurement using a plurality of parts, there is an effect that highly accurate evaluation can be performed.
[0024]
In addition, in actual equipment insulation diagnosis, this sensor can be installed at any time even for equipment that has been used without a sensor installed. There is an effect that it is effective in calculating the lifetime.
[0025]
At that time, the remaining life diagnosis of the power receiving and distribution equipment can be performed easily and with high accuracy by the method described later, so that not only can an accident due to equipment abnormality be prevented, but also the equipment can be updated efficiently. It can be performed.
[0026]
Embodiment 2. FIG.
FIG. 2 is a diagram showing an insulation diagnostic sensor according to Embodiment 2 of the present invention, and shows an upper surface and a side surface of the sensor. In the figure, reference numeral 2 denotes an insulation diagnostic sensor according to the second embodiment, which has an undegraded portion 11 and a deteriorated portion 12 as in the first embodiment. Further, the undegraded portion 11 and the deteriorated portion 12 are respectively composed of regions A and A ′ where the comb-shaped electrodes 31 and 32 are provided, and regions B and B ′ where the electrodes 31 and 32 are not provided. The areas A and A ′ provided with the electrodes 31 and 32 are used for measurement of electrical characteristics, but the areas B and B ′ not provided are used for measurement of characteristics other than electrical characteristics if necessary. For example, thermal (glass transition temperature, morphological change), spectral (UV-VIS, IR), trace analysis (TG, DTA, I / C, GPC, GC-MS, ESR) etc. are also required It is possible.
[0027]
In this way, in addition to the effect of the first embodiment, it is possible to use a region where no electrode is provided for measurements other than the electrical resistance measurement, and to change the surface resistivity of the deteriorated portion and the undegraded portion. Since this method can also be supported, there is an effect of improving the reliability of diagnosis.
[0028]
Embodiment 3 FIG.
FIG. 3 is a view showing an insulation diagnostic sensor according to Embodiment 3 of the present invention, and shows an upper surface and a side surface of the sensor. In the figure, 3 is an insulation diagnostic sensor, 13 is a deteriorated part in a state where a material equivalent to a solid insulating material used for a main circuit part constituting a power distribution facility has deteriorated, and a deterioration part whose deterioration degree is stronger than the deteriorated part 12 is there. In the sensor 3 of the third embodiment, the undegraded part 11 and the deteriorated parts 12 and 13 are arranged so that the degree of deterioration becomes stronger stepwise. Reference numeral 33 denotes a comb-shaped electrode provided in the deteriorated part 13, and measures the surface electrical resistivity of the deteriorated part 13.
[0029]
By doing in this way, in addition to the effect of Embodiment 1, when the insulation diagnostic sensor of this invention is applied to the remaining life diagnostic method mentioned later, it becomes possible to raise diagnostic accuracy.
[0030]
In the present embodiment, the deteriorated part is composed of two deteriorated parts 12 and 13 having different degrees of deterioration, but the number may be further increased.
[0031]
Embodiment 4 FIG.
In the first to third embodiments, there are a plurality of parts having different degrees of deterioration such as the undegraded part 11 and the deteriorated part 12, or the undegraded part 11 and the deteriorated parts 12 and 13, and the plurality of parts. 1 shows a sensor including an undegraded portion 11, but does not have the undegraded portion 11, has a plurality of deteriorated portions having different degrees of deterioration of the same material as the solid insulating material, and each of the plurality of deteriorated portions has An electrode for measuring the surface electrical resistivity of each part may be provided, and the same effects as those in the above embodiments are obtained.
In addition, as Embodiment 1-3, as an effect which makes one of several site | parts the undegraded site | part 11, when it attaches to a new power receiving / distribution installation, it is the solid insulation of the same state as a power receiving / distribution installation Since the surface electrical resistivity of the material can be measured, there is an effect that reliability is increased. In addition, as will be described later, there is an effect that the sensor mounting period can be shortened in the remaining life diagnosis.
[0032]
Embodiment 5 FIG.
In the present embodiment, a method for calculating the remaining life of the power receiving and distributing equipment using the insulation diagnostic sensor 1 of the first embodiment will be described.
The insulation diagnostic sensor 1 shown in Embodiment 1 is attached to the power distribution facility for a certain period. During this attachment period, the electrical characteristics detected by the sensor 1 change. Changes in the surface electrical resistivity of the deteriorated part and undegraded part that change during the mounting period can be measured, and the remaining life of the power distribution equipment can be calculated based on the amount of change in the mounting period. An example of a specific method is shown.
[0033]
FIG. 4 is a diagram showing an example of a time-dependent reference curve of the surface electrical resistivity according to the fifth embodiment. This curve is obtained in advance by simulating the deterioration of the insulation material in an actual machine by, for example, accelerating deterioration of a member made of the same material as the solid insulation material used for the main circuit part constituting the power distribution facility. is there. The curve in FIG.A%, The horizontal axis represents the accelerated deterioration time, and the vertical axis represents the surface electrical resistivity of the member.
[0034]
In the figure, ρ00Ω is the initial surface resistivity (relative humidity HA%), Ρ10Ω is the relative humidity H when the above member reaches the end of its lifeASurface electrical resistivity of the member in%, t1Accelerates and degrades the above-mentioned member, relative humidity HA% Surface electrical resistivity in%10This is the accelerated deterioration time required to make Ω, and is the time determined as the life in the time-dependent reference curve.
[0035]
In addition, the time dependence reference | standard curve of the surface electrical resistivity shown in FIG. 4 is the acceleration degradation time t determined to be a lifetime.1It is also possible to express the horizontal axis as the deterioration rate, with 100 being 100.
[0036]
In addition, the diagnostic sensor used in the remaining life diagnostic method according to the fifth embodiment uses the insulation diagnostic sensor 1 shown in FIG. 1, and an undegraded portion in which the material equivalent to the solid insulation material of the power distribution facility is in an undegraded state. 11 (surface electrical resistivity is ρ00Ω) and the above equivalent material is t1Deteriorated portion 12 that has been accelerated by time (surface electrical resistivity is ρ10Ω).
[0037]
After this sensor 1 is attached to a power distribution facility that has already been used for T time and further used for ΔT time, the surface electrical resistivity of the undegraded portion 11 and the deteriorated portion 12 of the sensor 1 is expressed as relative humidity H.AWhen measured in%, the surface electrical resistivity of the undegraded portion 11 is ρ00→ ρ01Furthermore, the surface electrical resistivity of the deteriorated part 12 is ρ10→ ρ11Suppose that And in FIG.00→ ρ01, Ρ10→ ρ11When the time required to change to is read, it is assumed that it is Δt time on average.
Remaining life of the power distribution equipment (remaining life after ΔT time)RThen,
(T + ΔT + TR) / T1= ΔT / Δt
Therefore, the remaining life TRIs
TR= T1× ΔT / Δt−T−ΔT (1)
It is represented by
[0038]
Here, the correlation between the accelerated deterioration and the actual deterioration (actual machine deterioration) in the actual machine will be described. Sampling solid insulation materials (paper phenolic resin laminates, etc.) mounted on power distribution equipment used in normal indoor environments, measuring surface electrical resistivity at a temperature of 25 ° C and a relative humidity of 50%, FIG. 5 is a plot of the service life dependence of the average surface electrical resistivity. In FIG. 5, the service life of 20 years is used as a guide for the life, and the value at this time is set to a value of 100%. However, the curve shown in FIG. 5 is very similar to the accelerated deterioration curve of FIG. I understand that. From the comparison of both figures, it is clear that there is a correlation between the accelerated deterioration and the actual machine deterioration according to the present invention.
[0039]
As described above, in the present embodiment, the remaining life diagnosis can be performed easily and with high accuracy, so that not only can an accident due to equipment abnormality be prevented, but also the equipment can be updated efficiently. It can be carried out.
[0040]
Further, in this embodiment, since the sensor of Embodiment 1 having an undegraded portion is used, if the high resistance region can be detected with high accuracy, even if the attachment period ΔT is short, the surface electrical resistivity can be reduced. Since Δt can be easily calculated from the time dependence reference curve, there is an effect that the sensor mounting period can be shortened in the remaining life diagnosis.
[0041]
In this embodiment, the remaining life diagnosis is performed using the insulation diagnostic sensor 1 shown in the first embodiment. However, the remaining life diagnosis is similarly performed using the insulation diagnosis sensor of the second to fourth embodiments. Also good.
[0042]
In addition, the sensor attached to the power distribution facility for a certain period is not limited to the one composed of a plurality of parts as in the first to fourth embodiments, but is composed of a material equivalent to the solid insulating material, and is either in an undegraded state or a degraded state. You may use the sensor comprised with one member of a state. Even in this case, the sensor is attached to the power distribution facility for a certain period, a change in the surface electrical resistivity of the sensor during the attachment period is measured, a time-dependent reference curve of the surface electrical resistivity, and the measured attachment period The remaining life of the power receiving and distribution equipment may be calculated based on the change in the surface electrical resistivity at.
[0043]
In the present embodiment, the time dependency reference curve of the surface electrical resistivity is obtained in advance by an acceleration test, but the humidity dependency reference curve of the surface electrical resistivity is obtained directly from the actual usage time of the actual power distribution equipment. Alternatively, it may be obtained by other simulation tests.
[0044]
【Example】
The insulation diagnosis method and the remaining life diagnosis method of the present invention will be specifically described with reference to the following examples.
Example 1.
Paper phenolic resin laminate (PL-PEM: 3mm x 100mm x 100mm) is exposed to 1N nitric acid aqueous solution at room temperature for 0.5 days, 1, 2, 4 and 6 days at 100 ° C for 1 hour After drying, a pair of comb electrodes was vacuum deposited with gold (W / L = 2290, L = 0.2 mm). The number of samples was 4 each. For these samples, surface electrical resistivity was measured in a constant temperature and humidity chamber (20 ° C., 5% to 85%). For the measurement, a minute ammeter (HP-4140B) was used, and a 1 minute value was adopted at a DC applied voltage of 10V. The results are shown in FIG. In FIG. 6, the horizontal axis represents both the accelerated deterioration time and the deterioration rate, and FIG. 6 is a reference curve diagram of the deterioration time dependence of the surface electrical resistivity with the humidity as a parameter in this example.
[0045]
Here, the surface electrical resistivity of the insulating material corresponding to the life of the power distribution facility to be diagnosed is 5 × 10 5 at 50% humidity.10Ω (based on statistical data on actual machine deterioration). Accordingly, in FIG. 6, the surface electrical resistivity value of the accelerated degradation time of 4 days corresponds to the life threshold value, and this is defined as the degradation rate of 100%.
[0046]
Half (3 mm x 50 mm x 50 mm) of the same paper phenolic resin laminate (PL-PEM) of 3 mm x 100 mm x 50 mm as above is masked with paraffin film, and the other half (3 mm x 50 mm x 50 mm) is the same as above It is exposed to steam of 1N nitric acid aqueous solution at room temperature for 4 days and dried at 100 ° C. for 1 hour to form a deteriorated site. Half of the masked part becomes an undegraded part. As shown in FIG. 1, comb-shaped electrodes were vapor-deposited in gold (W / L = 2290, L = 0.2 mm) on the undegraded portion and the deteriorated portion, respectively, to produce an insulation diagnostic sensor 1 as a prototype.
[0047]
This was installed in the vicinity of the solid insulating material of the main circuit portion of the power distribution facility that had been used for 10 years as a power facility, and after further operation for 2 years, the surface electrical resistivity of the sensor 1 was measured at 50% humidity. . FIG. 7 shows the change state of the measured surface electric resistivity value on the deterioration time dependence reference curve of the surface electric resistivity shown in FIG.
The measured surface electrical resistivity value is 1.22 × 10 6 for the undegraded portion 11.14Ω → 2.35 × 1013Ω, 5.01 × 10 at the deteriorated part 1210Ω → 3.61 × 1010A change in Ω was observed. This change was about 10% as indicated by arrows 1-11 and 1-12 in FIG. Accelerated deterioration time t1If Δ is 100, Δt is expressed by a deterioration rate of 10%, and applying Equation (1), the remaining life of the power distribution facility is calculated as 8 years.
[0048]
Example 2
Half of the paper phenolic resin laminate (PL-PEM) of 3 mm × 100 mm × 70 mm (PL-PEM) as in Example 1 (3 mm × 50 mm × 70 mm) is masked with paraffin film, and the other half (3 mm × 50 mm × 70 mm) is masked. In the same manner as in Example 1, it is exposed to a vapor of 1N nitric acid aqueous solution at room temperature for 4 days and dried at 100 ° C. for 1 hour to form a deteriorated portion. Half of the masked part becomes an undegraded part. As shown in FIG. 2, comb-shaped electrodes are gold-deposited (W / L = 2290, L = 0.2 mm) on the undegraded part and part of the degraded part (each 3 mm × 50 mm × 50 mm), An insulation diagnostic sensor 2 was prototyped.
[0049]
This was attached to the vicinity of the solid insulating material in the main circuit portion of the power distribution facility that had been used for 8 years as a power facility, and after further operation for 4 years, the surface electrical resistivity of the sensor 2 was measured. The relative humidity at this time was 40% humidity. The measurement result is 2.20 × 10 at the undegraded portion 11.13Ω, 1.26 × 10 at the deteriorated part 1211Ω. Note that the initial value of the surface electrical resistivity of each part 11 and 12 of this sensor at the humidity of 40% is the same as the value shown in FIG. 6 or FIG.14Ω, 2.06 × 1011Ω.
As in the first embodiment, when this amount of change is estimated in FIG. 7, it becomes as indicated by arrows 2-11 and 12-12, and the deterioration rate is about 15%. Similarly, when Equation (1) is applied, the remaining life of the power distribution facility is calculated to be about 15 years.
[0050]
Further, when the ion species and amount adhering to the surface were measured by ion chromatography using a region of the sensor 2 where no electrode was provided (each 3 mm × 50 mm × 20 mm), ammonium ions as anions were anion. It was also found that nitrate ions exist in large quantities as ions. It was also found that the decrease in the surface electrical resistivity of the sensor 2 correlates with an increase in the amount of ions generated or attached during the sensing period.
[0051]
Example 3
A portion (3 mm × 50 mm × 70 mm) of 3 mm × 150 mm × 70 mm paper phenolic resin laminate (PL-PEM) similar to that in Example 1 was masked with a paraffin film, and the remaining portion (3 mm × 100 mm × 70 mm). ) Was exposed to 1N nitric acid aqueous solution for 2 days at room temperature in the same manner as in Example 1, and after masking the remaining half (3 mm × 50 mm × 70 mm), the other half (3 mm × 50 mm × 70 mm) Is further exposed for 1 day and dried at 100 ° C. for 1 hour to form two deteriorated portions having different degrees of deterioration. The first masked portion becomes an undegraded portion. As shown in FIG. 3, gold electrodes are vapor-deposited (W / L = 2290, L = 0.2 mm) on the undegraded part and part of the degraded part (each 3 mm × 50 mm × 50 mm), An insulation diagnostic sensor 3 was prototyped.
[0052]
This was attached to the vicinity of the solid insulating material in the main circuit portion of the power distribution facility that had been used for 6 years as a power facility, and further operated for 3 years, and then the surface electrical resistivity of the sensor 3 was measured. The relative humidity at this time was 60%. The measurement result is 7.94 × 10 at the undegraded portion 11.12Ω, 2.96 × 10 at the deteriorated part 1210Ω, 9.06 × 10 at the deteriorated part 139Ω. The initial value of the surface electrical resistivity of each part 11, 12, 13 of this sensor at the humidity of 60% is the same as the value shown in FIG. 6 or FIG.13Ω, 3.98 × 1010Ω, 1.14 × 1010Ω.
As in the first embodiment, when this amount of change is estimated in FIG. 7, it becomes as indicated by arrows 3-11, 3-12, 3-13, and the deterioration rate is about 10%. Similarly, when Equation (1) is applied, the remaining life of the power distribution facility is calculated to be about 21 years.
[0053]
Further, when the ion species and amount adhering to the surface were measured by ion chromatography in the same manner as in Example 2 using regions (3 mm × 50 mm × 20 mm) where no electrode of this sensor was provided, Example 2 Similarly, the presence of ammonium ion as a cation and nitrate ion as an anion was confirmed, and the amount thereof was degraded part 13> degraded part 12> undegraded part 11. It was also found that the decrease in the surface electrical resistivity in the sensor 3 was correlated with the increase in the amount of ions generated or adhered during the sensing period.
[0054]
【The invention's effect】
As described above, the insulation diagnostic sensor for power receiving and distributing equipment according to the present invention is made of a material equivalent to the solid insulating material used for the main circuit part constituting the power receiving and distributing equipment, and has a plurality of parts having different degrees of deterioration of the equivalent material. Since the electrodes for measuring the surface electrical resistivity of the respective parts are provided in the plurality of parts, the surface electrical resistivity changes in the low resistance region of the deteriorated part, which is advantageous in terms of measurement technology. In addition, since the insulation diagnosis is performed by measurement using a plurality of parts, there is an effect that highly accurate evaluation can be performed.
Further, in the insulation diagnosis of an actual device, it is possible to mount this sensor at any time even for a device that has started to be used without mounting the sensor.
In addition, if such a sensor is used, a quantitative calculation of the remaining life of the power receiving and distribution equipment can be easily performed with high accuracy by the method described later, and therefore an accident due to equipment abnormality can be prevented in advance. .
[0055]
Further, the insulation diagnostic sensor for the power distribution facility according to the present invention is characterized in that the plurality of parts are equivalent to an undegraded part in which the same material as the solid insulation material used for the main circuit part constituting the power distribution equipment is undegraded. Since it is composed of degraded parts in a deteriorated state, the surface electrical resistivity of the solid insulating material in the same state as the power receiving / distributing equipment can be measured when attached to a new power receiving / distributing equipment, thus increasing the reliability. There is an effect. In addition, in the remaining life diagnosis, there is an effect that the sensor mounting period can be shortened.
[0056]
In the insulation diagnostic sensor for power distribution equipment according to the present invention, each of the plurality of parts is composed of a region where an electrode is provided and a region where the electrode is not provided. Since the change in surface electrical resistivity of the degraded part and the undegraded part can be supported by other methods, there is an effect of improving the reliability of diagnosis.
is there.
[0057]
In addition, the insulation diagnostic sensor for power distribution equipment according to the present invention has the effect that the surface electrical resistivity can be accurately measured with a small area because the surface electrical resistivity is measured using the comb-shaped electrode in each of the above insulation diagnostic sensors. is there.
[0058]
In the remaining life diagnosis method of the present invention, a sensor made of a material equivalent to a solid insulating material used for a main circuit part constituting a power distribution facility is attached to the power distribution facility for a certain period, and the surface of the sensor in the attachment period In addition to measuring the change in electrical resistivity, parameter the surface electrical resistivity of the member made of the same material as the solid insulation material used for the main circuit part of the power distribution equipment, and the relative humidity of the surface electrical resistance measurement environment. As a result, it is measured every time corresponding to the actual usage time or the actual usage time of the power distribution equipment, to obtain a time-dependent reference curve of the surface electrical resistivity, and the time-dependent reference curve and the surface electrical resistance in the mounting period Since the remaining life of the power receiving and distribution equipment is calculated based on the change in the rate, the remaining life of the power receiving and distribution equipment can be diagnosed easily and with high accuracy. Not only the occurrence can be prevented, it is possible to perform efficient update of equipment.
[0059]
Further, the remaining life diagnosis method of the present invention has the effect that the remaining life can be obtained easily, quantitatively and with high accuracy since the remaining life is obtained from the following equation in the remaining life diagnosis method.
TR= T1× ΔT / Δt-T-ΔT
Where TRIs the remaining service life, T is the actual use time of the power receiving and distribution equipment, ΔT is a mounting period for attaching the sensor to the power receiving and distributing equipment, and measuring the change in surface electrical resistivity of the sensor,1Is a time determined to be a lifetime in a time-dependent reference curve of surface electrical resistivity measured in advance, and Δt is a time required to cause a change in the measured surface electrical resistivity on the time-dependent reference curve. It is.
[0060]
Further, the remaining life diagnosis method of the present invention uses the insulation diagnostic sensor as a sensor in the remaining life diagnosis method, and measures a change in surface electrical resistivity between a deteriorated part and an undegraded part of the sensor during an installation period, Since the remaining life of the power receiving and distribution equipment was calculated based on the time dependence reference curve of the surface electrical resistivity and the change in the surface electrical resistivity of each of the above parts, the remaining life diagnosis of the power receiving and distributing equipment is easier and more Since it can be performed with high accuracy, it is possible not only to prevent the occurrence of an accident due to an abnormality of the facility, but also to efficiently update the facility.
[0061]
Further, the remaining life diagnosis method of the present invention has an effect that the remaining life can be obtained easily, quantitatively and with higher accuracy since the remaining life is obtained from the following equation in the remaining life diagnosis method.
TR= T1× ΔT / Δt-T-ΔT
Where TRIs the remaining life, T is the actual usage time of the power distribution equipment, ΔT is the installation period during which the insulation diagnostic sensor is attached to the power distribution equipment, and the change in the surface electrical resistivity between the degraded part and the undegraded part of the sensor is measured. , T1Is a time determined to be a lifetime in the time-dependent reference curve of the surface resistivity measured in advance, and Δt causes a change in the surface resistivity of each part measured on the time-dependent reference curve. It is an average value of the time required for.
[Brief description of the drawings]
FIG. 1 is a diagram showing an insulation diagnostic sensor according to a first embodiment of the present invention.
FIG. 2 is a diagram showing an insulation diagnostic sensor according to a second embodiment of the present invention.
FIG. 3 is a diagram showing an insulation diagnostic sensor according to a third embodiment of the present invention.
FIG. 4 is a diagram showing an example of a time-dependent reference curve of surface electrical resistivity according to Embodiment 5 of the present invention.
FIG. 5 is a diagram obtained by measuring a time-dependent curve of surface electrical resistivity according to Embodiment 5 of the present invention with an actual machine.
FIG. 6 is a graph showing a deterioration time dependence reference curve of surface electrical resistivity in Example 1 of the present invention.
7 is a diagram showing a change state of the surface electrical resistivity in Examples 1 to 3 of the present invention on the deterioration time dependence reference curve of FIG.
FIG. 8 is a diagram illustrating a conventional device diagnosis method.
FIG. 9 is a diagram for explaining a conventional device diagnosis method.
[Explanation of symbols]
1, 2, 3 Insulation diagnostic sensor, 11 Undegraded part, 12, 13 Degraded part, 31, 32, 33 Comb electrode.

Claims (5)

受配電設備の絶縁診断センサにおいて、上記受配電設備を構成する主回路部分に用いる固体絶縁材料と同等材料より成り、湿50%の下、上記同等材料の上記絶縁診断センサ作製時における表面電気抵抗率が1.22×10 14 Ωから5.01×10 10 Ωの範囲で異なる複数の部位を有し、
上記複数の部位にそれぞれ上記表面電気抵抗率を測定する電極を設けたことを特徴とする受配電設備の絶縁診断センサ。
In insulation diagnosis sensor power distribution equipment, consists solid insulating material equivalent material used in the main circuit portion constituting the power distribution equipment, under the humidity of 50%, the surface electrical in the Diagnosis sensor during manufacturing the same material resistivity has a plurality of sites different in a range of 5.01 × 10 10 Ω from 1.22 × 10 14 Ω,
An insulation diagnosis sensor for power distribution equipment, wherein the plurality of parts are provided with electrodes for measuring the surface electrical resistivity, respectively.
複数の部位は、同等材料の絶縁診断センサ作製時における表面電気抵抗率が1.22×10 14 Ωである未劣化部位と、上記表面電気抵抗率が1.22×10 14 Ωでない劣化部位とを含むことを特徴とする請求項1記載の受配電設備の絶縁診断センサ。 The plurality of portions include an undegraded portion having a surface electrical resistivity of 1.22 × 10 14 Ω at the time of manufacturing an insulation diagnostic sensor of an equivalent material, and a degraded portion having a surface electrical resistivity of not 1.22 × 10 14 Ω. The insulation diagnostic sensor for power distribution equipment according to claim 1 , comprising: くし型電極を用いて表面電気抵抗率を測定したことを特徴とする請求項1又は請求項2のいずれかに記載の受配電設備の絶縁診断センサ。3. The insulation diagnostic sensor for power receiving and distributing equipment according to claim 1, wherein surface electrical resistivity is measured using a comb-type electrode . 請求項1ないし請求項3のいずれかに記載の受配電設備の絶縁診断センサを上記受配電設備に一定期間取り付け、この取り付け期間における該センサの異なる複数の部位の表面電気抵抗率の変化を測定すると共に、予め、受配電設備を構成する主回路部分に用いられる固体絶縁材料と同等材料から成る部材の表面電気抵抗率を、表面電気抵抗測定環境の相対湿度をパラメータとして、受配電設備の実使用時間または実使用時間に相当する時間毎に測定し、表面電気抵抗率の時間依存性基準曲線を得、上記時間依存性基準曲線と、上記取り付け期間における表面電気抵抗率の変化とに基づいて受配電設備の余寿命を算出したことを特徴とする受配電設備の余寿命診断方法。The insulation diagnostic sensor for a power distribution facility according to any one of claims 1 to 3 is attached to the power distribution facility for a certain period, and changes in surface electrical resistivity of a plurality of different parts of the sensor during the attachment period are measured. In addition, the surface electrical resistivity of a member made of a material equivalent to the solid insulating material used for the main circuit part constituting the power distribution facility is preliminarily measured using the relative humidity of the surface electrical resistance measurement environment as a parameter. Measured every time corresponding to usage time or actual usage time to obtain a time-dependent reference curve of surface electrical resistivity, and based on the time-dependent reference curve and the change in surface electrical resistivity during the mounting period A method for diagnosing the remaining life of a power receiving / distributing facility, wherein the remaining life of the power receiving / distributing facility is calculated. 余寿命を次式より求めることを特徴とする請求項4記載の受配電設備の余寿命診断方法。5. A method for diagnosing a remaining life of a power distribution facility according to claim 4, wherein the remaining life is obtained from the following equation.
TR=t1×ΔT/Δt−T−ΔTTR = t1 × ΔT / Δt−T−ΔT
ここで、TRは余寿命、Tは受配電設備のそれまでの実使用時間、ΔTは受配電設備にセンサを取り付け、上記センサの表面電気抵抗率の変化を測定する取り付け期間、t1は予め測定された表面電気抵抗率の時間依存性基準曲線において寿命と判定される時間、Δtは、上記時間依存性基準曲線上において、測定された表面電気抵抗率の変化を生じるのに要する時間である。Here, TR is the remaining life, T is the actual usage time of the power distribution facility, ΔT is a sensor mounted on the power distribution facility, and the change period of the surface electrical resistivity of the sensor is measured. The time Δt is the time required to cause a change in the measured surface electrical resistivity on the time-dependent reference curve.
JP2001181488A 2001-06-15 2001-06-15 Insulation diagnostic sensor for power distribution facility and remaining life diagnostic method Expired - Lifetime JP4501315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001181488A JP4501315B2 (en) 2001-06-15 2001-06-15 Insulation diagnostic sensor for power distribution facility and remaining life diagnostic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001181488A JP4501315B2 (en) 2001-06-15 2001-06-15 Insulation diagnostic sensor for power distribution facility and remaining life diagnostic method

Publications (2)

Publication Number Publication Date
JP2002372561A JP2002372561A (en) 2002-12-26
JP4501315B2 true JP4501315B2 (en) 2010-07-14

Family

ID=19021750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001181488A Expired - Lifetime JP4501315B2 (en) 2001-06-15 2001-06-15 Insulation diagnostic sensor for power distribution facility and remaining life diagnostic method

Country Status (1)

Country Link
JP (1) JP4501315B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4937012B2 (en) * 2007-06-26 2012-05-23 三菱電機株式会社 Remaining life diagnosis method for power distribution equipment
JP5527442B2 (en) * 2013-01-17 2014-06-18 セイコーエプソン株式会社 Vibrator and oscillator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131363A (en) * 1998-10-20 2000-05-12 Toshiba Corp Method and apparatus for diagnosis of service life of electronic device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131363A (en) * 1998-10-20 2000-05-12 Toshiba Corp Method and apparatus for diagnosis of service life of electronic device

Also Published As

Publication number Publication date
JP2002372561A (en) 2002-12-26

Similar Documents

Publication Publication Date Title
KR100541996B1 (en) A dignosis method of insulation of electric apparatus
JP4045776B2 (en) Life diagnosis method for power distribution facilities
JP4937012B2 (en) Remaining life diagnosis method for power distribution equipment
CN101644654B (en) Aging diagnosis system of control device
CN108089101B (en) A kind of appraisal procedure of scene casing insulation ag(e)ing state
JP2020003277A (en) Method and system for diagnosing shorted residual life of power receiving/distributing apparatus
KR102198520B1 (en) Sensor module for diagnosis of gas insulation apparatus
CN113970516B (en) Metal material corrosion monitoring system and method
WO2001070003A3 (en) Method and apparatus for investigating corrosion
JPH03209180A (en) Method and device for inspecting insulating system condition
JP5562287B2 (en) Remaining life diagnosis method and remaining life diagnosis device for power distribution equipment
JP4501315B2 (en) Insulation diagnostic sensor for power distribution facility and remaining life diagnostic method
JP2004236465A (en) Estimating method for remaining lifetime of solid insulator for power receiving and distributing equipment
JP2012132718A (en) Corrosive gas resistance evaluation method and evaluation device of coating agent
JP3720291B2 (en) Degradation diagnosis method for solid insulation materials
WO2001069223A3 (en) Method and apparatus for investigating corrosion
JP2010071961A (en) Deterioration diagnosis method of polymer material
WO2019124357A1 (en) Evaluation system, evaluation method, selection method, manufacturing method, insulating material, and package
Takada et al. Space charge measurements as a diagnostic tool for power cables
CN111157174A (en) Apparatus, method and system for measuring vacuum of X-ray tube
JP3923257B2 (en) Insulation deterioration diagnosis method
JP2001185424A (en) High voltage equipment
KR102605712B1 (en) Condensation detection apparatus and condensation simulation test method for automotive parts
WO2024218862A1 (en) Method, device, and program for diagnosing deterioration of electric device including insulator
Zajadatz et al. Partial discharge diagnostics on medium-voltage switchgears measurement methods and benefits

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070214

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

R151 Written notification of patent or utility model registration

Ref document number: 4501315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term