JP5527442B2 - Vibrator and oscillator - Google Patents

Vibrator and oscillator Download PDF

Info

Publication number
JP5527442B2
JP5527442B2 JP2013006283A JP2013006283A JP5527442B2 JP 5527442 B2 JP5527442 B2 JP 5527442B2 JP 2013006283 A JP2013006283 A JP 2013006283A JP 2013006283 A JP2013006283 A JP 2013006283A JP 5527442 B2 JP5527442 B2 JP 5527442B2
Authority
JP
Japan
Prior art keywords
film
silicone
frequency
piezoelectric
vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013006283A
Other languages
Japanese (ja)
Other versions
JP2013110755A (en
Inventor
剛 大島
伸 長谷川
紀之 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2013006283A priority Critical patent/JP5527442B2/en
Publication of JP2013110755A publication Critical patent/JP2013110755A/en
Application granted granted Critical
Publication of JP5527442B2 publication Critical patent/JP5527442B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

本発明は絶縁容器内にシリコーン系導電性接着剤によって固定された状態で気密封止された圧電振動素子の共振周波数が経時的に低下する不具合を、生産性の低下を招くことなく効率的に解決することができる圧電振動素子、圧電振動子、圧電発振器、周波数安定化方法、及び圧電振動子の製造方法に関する。   The present invention effectively eliminates the problem that the resonance frequency of a piezoelectric vibration element hermetically sealed in a state where it is fixed in an insulating container with a silicone-based conductive adhesive decreases with time without causing a decrease in productivity. The present invention relates to a piezoelectric vibration element, a piezoelectric vibrator, a piezoelectric oscillator, a frequency stabilization method, and a piezoelectric vibrator manufacturing method that can be solved.

水晶振動子の如く、圧電振動素子を絶縁容器内に気密封止した構造の表面実装型の圧電デバイスは、携帯電話機、ページャ等の通信機器や、コンピュータ等の電子機器等において、基準周波数発生源、フィルタ等として利用されているが、これらの各種機器の小型化に対応して圧電デバイスに対しても小型化が求められている。
また、表面実装用の圧電デバイスとしての圧電発振器は、例えばセラミック等から成る絶縁容器本体の上面に形成された凹所内に、圧電振動素子と、発振回路を構成する回路部品を収納した状態で凹所開口を金属蓋により封止した構成を備えている。
圧電振動素子は、圧電基板面に励振電極、リード電極を構成する金属膜を形成した構成を備えており、圧電振動素子を表面実装用の絶縁容器内の内部電極上にシリコーン系導電性接着剤(以下、シリコーン接着剤、という)を用いて保持した状態で該容器を気密封止した構成を備えている。
図4は絶縁容器内に気密封止した水晶振動素子の共振周波数が周波数低下する現象を示すものであり、同図から明らかなように周波数低下は急激に起こる訳ではなく、時間の経過と共に徐々に周波数が低下することが判る。
つまり、圧電デバイスメーカが水晶振動子を製造した段階ではその傾向は殆ど現れないが、圧電デバイスをアセンブリメーカにてプリント基板上に搭載し、製品が市場に出回った頃になって周波数低下が表面化するという厄介な事態が出現する。
更に、圧電デバイスをアセンブリメーカにてプリント基板上に搭載するべくリフロー工程を経た後に周波数低下の傾向が強く現れることが判明している。また、近年の小型化の要求により水晶振動子の容器が小型化したことに伴い、周波数低下の発生頻度が増していると云う事実もある。
しかし、これらの現象の原因については種々の推論がなされているものの、明確な要因が掴めておらず、根本的な解決がなされていないというのが実情である。
例えば、特開平7−154187号公報には水晶振動子の経年的な周波数低下現象の解決を目的とした技術が開示されている。
この公報では、水晶振動子の経年的な周波数低下現象の発生原因が、電極を構成する金属膜の表層で発生する酸化現象にあると捉え、金属膜の表層に蒸着やスパッタの手法で絶縁性膜(SiO2膜)を付着してその全面を覆う、或いは金属膜の表層を予め酸化処理、窒化処理もしくは炭化処理して保護膜を形成すると云った解決方法を開示している。
尚、この酸化現象は金膜の下にニッケル下地膜を設けたときに、金膜の表層まで析出したニッケル部分に対してのみ発生する。ニッケル部分以外の金部分は安定しているので酸化しない。
A surface mount type piezoelectric device having a structure in which a piezoelectric vibration element is hermetically sealed in an insulating container, such as a crystal resonator, is a reference frequency generation source in communication equipment such as a mobile phone and a pager, and electronic equipment such as a computer. Although these are used as filters, etc., miniaturization is also required for piezoelectric devices in response to miniaturization of these various devices.
In addition, a piezoelectric oscillator as a piezoelectric device for surface mounting is a concave in a state where a piezoelectric vibration element and a circuit component constituting an oscillation circuit are housed in a recess formed on the upper surface of an insulating container body made of, for example, ceramic. The opening is sealed with a metal lid.
The piezoelectric vibration element has a structure in which a metal film constituting an excitation electrode and a lead electrode is formed on the surface of a piezoelectric substrate, and the piezoelectric vibration element is formed on the internal electrode in an insulating container for surface mounting with a silicone-based conductive adhesive. The container is hermetically sealed in a state of being held using (hereinafter referred to as a silicone adhesive).
FIG. 4 shows a phenomenon in which the resonance frequency of the quartz resonator element hermetically sealed in the insulating container decreases. As is clear from FIG. 4, the frequency decrease does not occur suddenly, but gradually with time. It can be seen that the frequency decreases.
In other words, the tendency hardly appears when the piezoelectric device manufacturer manufactures the crystal unit, but the piezoelectric device is mounted on the printed circuit board by the assembly manufacturer, and when the product is put on the market, the frequency drop appears on the surface. The troublesome situation of doing appears.
Furthermore, it has been found that the tendency of frequency reduction appears strongly after a reflow process for mounting a piezoelectric device on a printed circuit board by an assembly manufacturer. In addition, there is also a fact that the frequency of occurrence of the frequency decrease is increasing with the recent miniaturization of the quartz crystal vessel due to the demand for miniaturization.
However, although various inferences have been made about the causes of these phenomena, no clear factor has been grasped and no fundamental solution has been made.
For example, Japanese Patent Application Laid-Open No. 7-154187 discloses a technique aimed at solving an aged frequency decrease phenomenon of a crystal resonator.
This publication considers that the cause of the frequency reduction phenomenon of the crystal unit over time is the oxidation phenomenon that occurs on the surface layer of the metal film that constitutes the electrode. A solution is disclosed in which a protective film is formed by attaching a film (SiO 2 film) and covering the entire surface thereof, or by previously oxidizing, nitriding or carbonizing the surface layer of the metal film.
It should be noted that this oxidation phenomenon occurs only in the nickel portion deposited up to the surface layer of the gold film when a nickel underlayer is provided under the gold film. Gold parts other than the nickel part are stable and do not oxidize.

しかしながら、この従来技術にあっては、次の如き多くの問題が発生する。即ち、金属膜の表面に蒸着等によってSiO2膜を形成して覆う際に、厳密な厚み管理制御が必要となる。SiO2膜は金との密着性に乏しいため剥がれやすい一方で、SiO2膜が金表面から剥離しないように膜厚を厚くすると膜応力により振動子に残留応力が生じる。つまり温度変化により歪みが生じて温度特性の劣化に繋がる。更に、酸化膜、窒化膜、或いは炭化膜等の保護膜を金膜表面に形成する場合、ニッケルが析出した部分にのみ膜が形成されることは上述の通りであるが、ニッケルが析出した領域の面積は個体によりバラツキがあるので、保護膜による質量付加にバラツキが生じ周波数調整が必要となる。ニッケルが析出していない金膜部分には保護膜が形成されないため、実施形態の説明中において後述する理由から封止後の経年的な周波数低下現象が解消されない(金膜部分にシリコーン分子が徐々に化学吸着してしまう)。
つまり、金膜表面に部分的、不規則的に析出したニッケル部分の酸化は、周波数低下の一つの要因であるが、根本的な原因ではないことが判明した。従って、上記公報によって提案されている解決策は充分とは言えない。
なお、気密封止後の共振周波数が低下する速度を遅らせるために、封止前に絶縁容器内からシリコーン蒸気を抜くこと(所謂、アニーリング)も考えられるが、一旦ガス抜きを実施したとしても、シリコーン接着剤が容器内に存在している限りシリコーン蒸気は発生し、徐々に励振電極膜に付着して周波数変動をもたらすこととなる。また、接着剤の種類を変えることも考えられるが、耐衝撃性という仕様を満たすためにはシリコーン接着剤は極めて有用であり、現状ではシリコーン接着剤に勝る接着剤は存在しない。
However, this conventional technique has many problems as follows. That is, when the SiO 2 film is formed and covered on the surface of the metal film by vapor deposition or the like, strict thickness control is required. While the SiO 2 film is poor in adhesion with gold and easily peeled off, if the film thickness is increased so that the SiO 2 film does not peel from the gold surface, residual stress is generated in the vibrator due to the film stress. That is, distortion occurs due to temperature change, leading to deterioration of temperature characteristics. Furthermore, when a protective film such as an oxide film, a nitride film, or a carbonized film is formed on the gold film surface, the film is formed only on the portion where nickel is deposited. Since there is a variation in the area of the individual, there is a variation in mass addition by the protective film, and a frequency adjustment is required. Since a protective film is not formed on the gold film portion on which nickel is not deposited, the phenomenon of aging frequency reduction after sealing is not eliminated for the reason described later in the description of the embodiment (silicon molecules are gradually added to the gold film portion. To chemisorb).
In other words, it was found that the oxidation of the nickel portion partially or irregularly deposited on the gold film surface is one cause of the frequency decrease but not the fundamental cause. Therefore, the solution proposed by the above publication is not sufficient.
In addition, in order to delay the speed at which the resonance frequency after hermetic sealing decreases, it is possible to extract silicone vapor from the inside of the insulating container before sealing (so-called annealing), but even if degassing is performed once, As long as the silicone adhesive is present in the container, silicone vapor is generated and gradually adheres to the excitation electrode film, resulting in frequency fluctuations. Although it is conceivable to change the type of adhesive, a silicone adhesive is extremely useful in order to satisfy the specifications of impact resistance, and at present there is no adhesive superior to a silicone adhesive.

特開平7−154187号公報JP 7-154187 A

本発明は、上記に鑑みてなされたものであり、圧電振動子の経年的な周波数低下現象の原因をつかむことと、該周波数低下を防止するための根本的な解決をはかり、経年的に周波数が安定した水晶振動子を提供することを課題とする。
具体的には、本発明は、圧電振動素子を絶縁容器内に導電性接合部材により保持した状態で気密封止した構造の圧電デバイスにおいて、導電性接合部材から放出されるガス成分が圧電振動素子の金属膜上に付着堆積することによって共振周波数が経時的に最終目標周波数よりも低下する不具合を解決することができる圧電振動素子、圧電振動子、圧電発振器、及び周波数安定化方法を提供することを目的としている。
The present invention has been made in view of the above, and grasps the cause of an aged frequency decrease phenomenon of a piezoelectric vibrator and seeks a fundamental solution to prevent the frequency decrease, and the frequency is increased over time. Is to provide a stable crystal resonator.
Specifically, the present invention relates to a piezoelectric device having a structure in which the piezoelectric vibration element is hermetically sealed in a state where the piezoelectric vibration element is held in the insulating container by the conductive bonding member. To provide a piezoelectric vibration element, a piezoelectric vibrator, a piezoelectric oscillator, and a frequency stabilization method capable of solving the problem that the resonance frequency lowers over time from the final target frequency by being deposited on the metal film It is an object.

上記目的を達成するため、本発明の第1の実施形態は、主面に励振電極が設けられている基板と、前記基板が収容されている容器と、を含み、前記励振電極は、ダングリングボンドを有するが表面に露出しており、前記は、前記ダングリングボンドと非結合電子対をもったジメチルポリシロキサン分子との化学吸着による単分子膜によって覆われている振動子を特徴とする。
また、本発明の第2の実施形態は、前記金の下地膜はニッケル又はクロムである第1の実施形態の振動子を特徴とする。
また、本発明の第の実施形態は、前記ジメチルポリシロキサン分子は、環状の分子である第1又は第2の実施形態の振動子を特徴とする。
また、本発明の第の実施形態は、前記容器の内部に、非結合電子対をもった物質が配置されていることを特徴とする第1乃至第3の何れかの実施形態の振動子を特徴とする。
また、本発明の第の実施形態は、前記ジメチルポリシロキサン分子は、前記物質から蒸散した成分である第の実施形態の振動子を特徴とする。
また、本発明の第の実施形態は、前記物質は、導電性接合部材に含まれている第又は第の実施形態の振動子を特徴とする。
また、本発明の第の実施形態は、前記物質は、シリコーン系接着剤である第乃至第の何れかの実施形態の振動子を特徴とする。
また、本発明の第の実施形態は、前記容器は、気密封止されている第1乃至第の何れかの実施形態の振動子を特徴とする。
また、本発明の第の実施形態は、第1乃至第の何れかの実施形態の振動子と、発振回路と、を備えている発振器を特徴とする。
[適用例1]本適用例に係る圧電振動素子は、厚み滑り系の圧電材料から成る圧電基板と、該圧電基板面に形成した金属膜とを備えた圧電振動素子において、前記金属膜表面が、非結合電子対をもった物質との化学吸着によって形成された膜によって覆われていることを特徴とする。
[適用例2]本適用例に係る圧電振動素子は、圧電基板と、該圧電基板面に形成した金属膜とを備えた圧電振動素子において、前記金属膜表面が非結合電子対をもった物質との化学吸着によって形成された膜によって覆われており、該膜によって覆われていない金属膜表面に更に膜を形成しても共振周波数の低下量が1ppm未満となるように金属膜のほぼ全面が前記膜によって覆われていることを特徴とする。
[適用例3]本適用例に係る圧電振動子は、適用例1、又は2に記載の圧電振動素子と、この圧電振動素子を気密封止した容器と、を備えたことを特徴とする。
[適用例4]本適用例に係る圧電振動子は、適用例1、又は2に記載の圧電振動素子と、この圧電振動素子をシリコーン系導電性接着剤を用いて保持した状態で収容して不活性ガス中に気密封止した容器と、を備えたことを特徴とする。
[適用例5]本適用例に係る圧電発振器は、適用例3、又は4に記載の容器の内部又は外部に発振回路部品を配置したことを特徴とする。
[適用例6]本適用例に係る圧電振動素子の周波数安定化方法は、厚み滑り系の圧電材料から成る圧電基板面に金属膜を備えた圧電振動素子を、環状ジメチルポリシロキサン蒸気の雰囲気中に配置することにより、前記金属膜表面に前記環状ジメチルポリシロキサン分子を化学吸着させて該環状ジメチルポリシロキサン分子の膜を形成したことを特徴とする。
In order to achieve the above object, a first embodiment of the present invention includes a substrate provided with an excitation electrode on a main surface thereof, and a container in which the substrate is accommodated, wherein the excitation electrode is dangling. Gold having a bond is exposed on the surface, and the gold is characterized by a vibrator covered with a monomolecular film by chemical adsorption between the dangling bond and a dimethylpolysiloxane molecule having a non-bonded electron pair. To do.
In addition, the second embodiment of the present invention is characterized by the vibrator according to the first embodiment in which the gold base film is nickel or chromium.
In addition, the third embodiment of the present invention is characterized by the vibrator of the first or second embodiment in which the dimethylpolysiloxane molecule is a cyclic molecule.
In the fourth embodiment of the present invention, the vibrator according to any one of the first to third embodiments is characterized in that a substance having a non-bonded electron pair is disposed inside the container. It is characterized by.
Further, the fifth embodiment of the present invention is characterized in that the dimethylpolysiloxane molecule is the vibrator according to the fourth embodiment, which is a component evaporated from the substance.
In addition, the sixth embodiment of the present invention is characterized by the vibrator of the fourth or fifth embodiment in which the substance is included in a conductive bonding member.
In addition, the seventh embodiment of the present invention is characterized by the vibrator according to any one of the fourth to sixth embodiments, wherein the substance is a silicone-based adhesive.
The eighth embodiment of the present invention is characterized in that the container is the vibrator according to any one of the first to seventh embodiments in which the container is hermetically sealed.
The ninth embodiment of the present invention is characterized by an oscillator including the vibrator of any one of the first to eighth embodiments and an oscillation circuit.
[Application Example 1] A piezoelectric vibration element according to this application example includes a piezoelectric substrate made of a thickness-slip type piezoelectric material and a metal film formed on the surface of the piezoelectric substrate. The film is covered with a film formed by chemisorption with a substance having a non-bonded electron pair.
Application Example 2 A piezoelectric vibration element according to this application example is a piezoelectric vibration element including a piezoelectric substrate and a metal film formed on the surface of the piezoelectric substrate, wherein the metal film surface has a non-bonded electron pair. The film is covered with a film formed by chemical adsorption, and even if a film is further formed on the surface of the metal film that is not covered with the film, the resonance frequency is reduced substantially less than 1 ppm so that the amount of decrease in resonance frequency is less than 1 ppm. Is covered with the film.
Application Example 3 A piezoelectric vibrator according to this application example includes the piezoelectric vibration element according to Application Example 1 or 2, and a container in which the piezoelectric vibration element is hermetically sealed.
Application Example 4 A piezoelectric vibrator according to this application example is accommodated in a state where the piezoelectric vibration element according to Application Example 1 or 2 and the piezoelectric vibration element are held using a silicone-based conductive adhesive. And a container hermetically sealed in an inert gas.
Application Example 5 A piezoelectric oscillator according to this application example is characterized in that an oscillation circuit component is disposed inside or outside the container described in Application Example 3 or 4.
[Application Example 6] The frequency stabilization method for a piezoelectric vibration element according to this application example is such that a piezoelectric vibration element having a metal film on a piezoelectric substrate surface made of a thickness-slip type piezoelectric material is placed in an atmosphere of cyclic dimethylpolysiloxane vapor. The cyclic dimethylpolysiloxane molecules are chemically adsorbed on the surface of the metal film to form a film of the cyclic dimethylpolysiloxane molecules.

[適用例7]本適用例に係る圧電振動子は、厚み滑り系の圧電材料から成る圧電基板と、該圧電基板面に形成した金属膜とを備えた圧電振動素子を導電性接合部材により容器内に保持した圧電振動子において、雰囲気中に露出している金属膜表面が、非結合電子対をもった物質との化学吸着によって形成された膜によって覆われていることを特徴とする。
[適用例8]本適用例に係る圧電振動子は、圧電基板と、該圧電基板面に形成した金属膜とを備えた圧電振動素子導電性接合部材により容器内に保持した圧電振動子において、雰囲気中に露出している金属膜表面が非結合電子対をもった物質との化学吸着によって形成された単分子膜によって覆われており、該膜によって覆われていない金属膜表面に更に単分子膜を形成しても共振周波数の低下量が1ppm未満となるように金属膜のほぼ全面が前記単分子膜によって覆われていることを特徴とする。
[適用例9]本適用例に係る圧電振動子は、適用例8において、前記単分子膜が前記金属膜表面全体に占める面積が、該金属膜表面全体の100%に相当する場合の共振周波数が大気中における目標周波数に合致していることを特徴とする。
[適用例10]本適用例に係る圧電振動子は、適用例1、又は2に記載の圧電振動素子を容器内に気密封止したことを特徴とする。
[適用例11]本適用例に係る圧電振動子は、適用例1、又は2に記載の圧電振動素子をシリコーン系導電性接着剤を用いて保持した状態で収容して不活性ガス雰囲気にて気密封止したことを特徴とする。
[適用例12]本適用例に係る圧電発振器は、適用例7、8、9、10又は11に記載の容器の内部又は外部に発振回路部品を配置したことを特徴とする。
Application Example 7 A piezoelectric vibrator according to this application example includes a piezoelectric vibration element including a piezoelectric substrate made of a thickness-slip type piezoelectric material and a metal film formed on the surface of the piezoelectric substrate. In the piezoelectric vibrator held therein, the surface of the metal film exposed in the atmosphere is covered with a film formed by chemical adsorption with a substance having a non-bonded electron pair.
Application Example 8 A piezoelectric vibrator according to this application example is a piezoelectric vibrator held in a container by a piezoelectric vibration element conductive bonding member including a piezoelectric substrate and a metal film formed on the surface of the piezoelectric substrate. The surface of the metal film exposed in the atmosphere is covered by a monomolecular film formed by chemical adsorption with a substance having a non-bonded electron pair, and the surface of the metal film not covered by the film is further monomolecular. Even when the film is formed, almost the entire surface of the metal film is covered with the monomolecular film so that the decrease amount of the resonance frequency is less than 1 ppm.
[Application Example 9] In the piezoelectric vibrator according to this application example, the resonance frequency in the application example 8 in which the area occupied by the monomolecular film on the entire surface of the metal film corresponds to 100% of the entire surface of the metal film. Matches the target frequency in the atmosphere.
Application Example 10 A piezoelectric vibrator according to this application example is characterized in that the piezoelectric vibration element according to Application Example 1 or 2 is hermetically sealed in a container.
[Application Example 11] A piezoelectric vibrator according to this application example is accommodated in a state where the piezoelectric vibration element according to Application Example 1 or 2 is held using a silicone-based conductive adhesive and in an inert gas atmosphere. It is hermetically sealed.
Application Example 12 A piezoelectric oscillator according to this application example is characterized in that an oscillation circuit component is disposed inside or outside the container described in Application Example 7, 8, 9, 10 or 11.

[適用例13]本適用例に係る圧電振動素子の周波数安定化方法は、厚み滑り系の圧電材料から成る圧電基板面に金属膜を備えた圧電振動素子を容器内に保持した状態で、環状ジメチルポリシロキサン蒸気の雰囲気中に配置することにより、雰囲気中に露出する金属膜表面に前記環状ジメチルポリシロキサン分子を化学吸着させて該環状ジメチルポリシロキサン分子の単分子膜を形成したことを特徴とする。
[適用例14]本適用例に係る圧電振動素子の周波数安定化方法は、適用例13において、前記単分子膜は、該単分子膜によって覆われていない金属膜表面に更に膜を形成しても共振周波数の低下量が1ppm未満となるように金属膜のほぼ全面を覆っていることを特徴とする。
[適用例15]本適用例に係る圧電振動素子の周波数安定化方法は、厚み滑り系の圧電材料から成る圧電基板面に金属膜を形成した圧電振動素子を、シリコーン系接着剤により保持した容器内に、環状ジメチルポリシロキサン液を滴下して該表面実装容器を封止することにより、露出した金属膜表面に前記環状ジメチルポリシロキサン分子を化学吸着させて該環状ジメチルポリシロキサン分子の膜を形成したことを特徴とする。
[Application Example 13] A frequency stabilization method for a piezoelectric vibration element according to this application example is an annular structure in which a piezoelectric vibration element having a metal film on a piezoelectric substrate surface made of a thickness-slip type piezoelectric material is held in a container. A monomolecular film of the cyclic dimethylpolysiloxane molecules is formed by chemical adsorption of the cyclic dimethylpolysiloxane molecules on the surface of the metal film exposed in the atmosphere by being placed in an atmosphere of dimethylpolysiloxane vapor. To do.
[Application Example 14] In the frequency stabilization method for a piezoelectric resonator element according to this application example , in the application example 13, the monomolecular film further includes a film formed on the surface of the metal film not covered with the monomolecular film. Is characterized by covering almost the entire surface of the metal film so that the amount of decrease in the resonance frequency is less than 1 ppm.
Application Example 15 A method for stabilizing the frequency of a piezoelectric vibration element according to this application example is a container in which a piezoelectric vibration element in which a metal film is formed on a piezoelectric substrate surface made of a thickness sliding piezoelectric material is held by a silicone adhesive. A cyclic dimethylpolysiloxane liquid is dropped into the surface to seal the surface mounting container, thereby chemically adsorbing the cyclic dimethylpolysiloxane molecules on the exposed metal film surface to form a film of the cyclic dimethylpolysiloxane molecules. It is characterized by that.

[適用例16]本適用例に係る周波数安定化方法は、適用例15において、前記単分子膜は、該単分子膜によって覆われていない金属膜表面に更に膜を形成しても共振周波数の低下量が1ppm未満となるように金属膜のほぼ全面を覆っていることを特徴とする。
[適用例17]本適用例に係る圧電振動子の製造方法は、厚み滑り系の圧電材料からなる圧電基板面に金属膜を形成した圧電振動素子を容器内に導電性接合部材にて保持する保持工程と、前記圧電振動素子の共振周波数を所定値に調整するため前記金属膜の厚みを追加もしくは削減する周波数調整工程と、前記圧電振動素子を保持した前記容器を非結合電子対をもった物質の蒸気が満たされた雰囲気内に放置することにより露出する金属膜に非結合電子対をもった物質を化学吸着する吸着工程と、不活性ガス雰囲気に置換した状態で容器を気密封止する封止工程と、を備えたことを特徴とする。
[適用例18]本適用例に係る圧電振動子の製造方法は、厚み滑り系の圧電材料からなる圧電基板面に金属膜を形成した圧電振動素子を容器内にシリコーン系導電性接着材にて保持する保持工程と、前記圧電振動素子の共振周波数を所定値に調整するため前記金属膜の厚みを追加もしくは削減する周波数調整工程と、不活性ガス雰囲気に置換した状態で前記容器を気密封止する封止工程と、気密封止した前記容器に所定時間加熱処理を施してシリコーン系接着剤から蒸散する非結合電子対をもった物質を金属膜に化学吸着させる吸着工程とを備えたことを特徴とする。
[適用例19]本適用例に係る圧電振動子の製造方法は、厚み滑り系の圧電材料からなる圧電基板面に金属膜を形成した圧電振動素子を容器内にシリコーン系導電性接着剤にて保持する保持工程と、前記圧電振動素子の共振周波数を所定値に調整するため前記金属膜の厚みを追加もしくは削減する周波数調整工程と、不活性ガス雰囲気に置換した状態で前記容器を気密封止する封止工程と、気密封止した前記容器を温度Kの雰囲気中に時間T以上放置することによりシリコーン系接着剤から蒸散する非結合電子対をもった物質を金属膜に化学吸着する吸着工程と、を備え、前記温度Kと時間Tとの関係が、T=24294e-0.0251Kを満足することを特徴とする。
[適用例20]本適用例に係る圧電振動子の製造方法は、厚み滑り系の圧電材料からなる圧電基板面に金属膜を形成した圧電振動素子を容器内にシリコーン系導電性接着剤にて保持する保持工程と、前記圧電振動素子の共振周波数を所定値に調整するため前記金属膜の厚みを追加もしくは削減する周波数調整工程と、前記容器内に非結合電子対をもった物質を載置する載置工程と不活性ガス雰囲気に置換した状態で前記容器を気密封止する封止工程と、非結合電子対をもった物質が蒸散するのに必要な温度に所定時間加熱して非結合電子対をもった物質を金属膜に化学吸着させる吸着工程と、を備えたことを特徴とする。
[Application Example 16] In the frequency stabilization method according to this application example , in the application example 15, the monomolecular film has a resonance frequency even when a film is further formed on the surface of the metal film not covered with the monomolecular film. It is characterized by covering almost the entire surface of the metal film so that the amount of decrease is less than 1 ppm.
Application Example 17 In the method of manufacturing a piezoelectric vibrator according to this application example, a piezoelectric vibration element in which a metal film is formed on a piezoelectric substrate surface made of a thickness-slip type piezoelectric material is held in a container by a conductive bonding member. A holding step; a frequency adjusting step for adding or reducing the thickness of the metal film to adjust the resonance frequency of the piezoelectric vibration element to a predetermined value; and the container holding the piezoelectric vibration element has a non-bonded electron pair. An adsorption process in which a substance having a non-bonded electron pair is chemisorbed on a metal film exposed by leaving it in an atmosphere filled with vapor of the substance, and the container is hermetically sealed in a state where the inert gas atmosphere is substituted. And a sealing step.
[Application Example 18] In the method of manufacturing a piezoelectric vibrator according to this application example, a piezoelectric vibration element in which a metal film is formed on a piezoelectric substrate surface made of a thickness-slip type piezoelectric material is placed in a container with a silicone-based conductive adhesive. A holding step for holding, a frequency adjusting step for adding or reducing the thickness of the metal film in order to adjust the resonance frequency of the piezoelectric vibration element to a predetermined value, and the container hermetically sealed in a state replaced with an inert gas atmosphere And an adsorption step of chemically adsorbing a substance having a non-bonded electron pair evaporating from the silicone adhesive to the metal film by heat-treating the hermetically sealed container for a predetermined time. Features.
[Application Example 19] A method of manufacturing a piezoelectric vibrator according to this application example includes a piezoelectric vibration element in which a metal film is formed on a piezoelectric substrate surface made of a thickness-slip type piezoelectric material, and a silicone-based conductive adhesive in a container. A holding step for holding, a frequency adjusting step for adding or reducing the thickness of the metal film in order to adjust the resonance frequency of the piezoelectric vibration element to a predetermined value, and the container hermetically sealed in a state replaced with an inert gas atmosphere And an adsorption step of chemically adsorbing a substance having a non-bonded electron pair evaporating from the silicone-based adhesive by leaving the hermetically sealed container in a temperature K atmosphere for a time T or longer. The relationship between the temperature K and the time T satisfies T = 24294e −0.0251K .
[Application Example 20] A method for manufacturing a piezoelectric vibrator according to this application example includes a piezoelectric vibration element in which a metal film is formed on a piezoelectric substrate surface made of a thickness-slip type piezoelectric material, and a silicone-based conductive adhesive in a container. A holding step for holding, a frequency adjusting step for adding or reducing the thickness of the metal film to adjust the resonance frequency of the piezoelectric vibration element to a predetermined value, and a substance having a non-bonded electron pair in the container are placed. And a sealing step for hermetically sealing the container in a state replaced with an inert gas atmosphere, and heating to a temperature necessary for evaporation of a substance having a non-bonded electron pair for a predetermined time to perform non-bonding An adsorption step of chemically adsorbing a substance having an electron pair to a metal film.

圧電振動素子を絶縁容器内に固定する手段として耐衝撃性に優れるシリコーン系導電性接着剤は極めて有用である一方で、絶縁容器を気密封止した際にシリコーン接着剤から放出されるシリコーン蒸気成分が圧電振動素子の金属膜上に付着堆積すると、共振周波数が経時的に最終目標周波数よりも低下し、圧電デバイスを搭載した機器の作動不良などの原因となる。本発明によれば、簡単な設備、手順による低コストな装置、方法により、数秒から数分という極めて短時間内で金属膜上にシリコーン分子からなる膜を形成してシリコーン分子吸着量を飽和させることにより、共振周波数の低下を停止させて安定化させて、生産性の低下をもたらすことなく従来の不具合を解決することができる圧電振動素子、圧電振動子、圧電発振器、周波数安定化方法、及び圧電振動子の製造方法を提供することができる。   Silicone conductive adhesive with excellent impact resistance as a means for fixing the piezoelectric vibration element in the insulating container is extremely useful, while the silicone vapor component released from the silicone adhesive when the insulating container is hermetically sealed. If it adheres and accumulates on the metal film of the piezoelectric vibration element, the resonance frequency decreases with time over the final target frequency, which may cause malfunction of the device equipped with the piezoelectric device. According to the present invention, a film composed of silicone molecules is formed on a metal film within a very short time of several seconds to several minutes by a low-cost apparatus and method using simple equipment and procedures to saturate the adsorption amount of silicone molecules. Therefore, the piezoelectric vibration element, the piezoelectric vibrator, the piezoelectric oscillator, the frequency stabilization method, and the conventional problem can be solved without stopping the decrease in the resonance frequency and stabilizing, and causing the decrease in productivity. A method for manufacturing a piezoelectric vibrator can be provided.

(a)は本発明の一実施形態に係る表面実装型圧電発振器の一例としての水晶発振器の構成を示す断面図であり、(b)はその要部拡大説明図である。(A) is sectional drawing which shows the structure of the crystal oscillator as an example of the surface mount-type piezoelectric oscillator which concerns on one Embodiment of this invention, (b) is the principal part expansion explanatory drawing. (a)乃至(d)は本発明において水晶振動素子の励振電極膜上にシリコーン単分子膜を形成する工程を含む製造工程を示す説明図である。(A) thru | or (d) is explanatory drawing which shows the manufacturing process including the process of forming a silicone monomolecular film | membrane on the excitation electrode film | membrane of a quartz-crystal vibrating element in this invention. (a)乃至(c)は周辺温度と、圧電振動素子の周波数が安定領域に達するまでの期間との関係を示す図。(A) thru | or (c) is a figure which shows the relationship between ambient temperature and the period until the frequency of a piezoelectric vibration element reaches a stable area | region. 絶縁容器内に気密封止した水晶振動素子の共振周波数が周波数低下する現象を示す説明図。Explanatory drawing which shows the phenomenon in which the resonant frequency of the crystal vibration element airtightly sealed in the insulating container falls.

実施形態についての説明に先立ち、本発明が成立するに至った経緯を説明する。
即ち、上述の如く従来は、容器内に気密封止された水晶振動素子の周波数が経年的に低下し続けるという現象が知られていたが、その原因の究明がなされていなかった。従って、このような不具合を解決する手法として、これまでは専ら如何にして周波数が低下する速度を遅らせるかという対策について研究されてきた。
このような現状に対して、本発明者らは周波数が低下する原因の究明を続けてきたが、その研究過程で行ったエージングを加速させる試験(加速エージング試験)において、周波数が所定値にまで低下した後に安定領域が存在することを初めて見い出し、周波数安定領域に達するとそれ以降の周波数変動が起こらないことを発見した。この発見に基づいて本発明者らは、出荷前の水晶振動素子の周波数を早期に低下させて安定領域に到達させた上で出荷するという加工方法について創案するに至った。
即ち、図3に示すように、安定領域に達するまでの期間は周囲温度を高温にするに従って短くなる。このことから、従来の圧電デバイスが、リフローのための加熱後に周波数低下現象が顕著になる理由が判明した。
但し、加熱温度が230℃を越えた場合には、シリコーン接着剤の変質が懸念されるため、230℃以下にて加熱することが望ましく、実際に230℃を越えた温度とした場合、図3(a)に示すように周波数安定領域に達した後も、さらにその周波数以下に周波数が低下し続ける現象が起きることも確認されている。
このことから、230℃以下の温度で周波数安定領域に達するまで加熱処理することにより、経年的な周波数変動の少ない水晶振動子が得られることが判明した。
Prior to the description of the embodiment, the background of the present invention will be described.
That is, as described above, conventionally, there has been known a phenomenon in which the frequency of the quartz vibration element hermetically sealed in the container continues to decrease over time, but the cause has not been investigated. Therefore, as a method for solving such a problem, a measure for how to delay the speed of decreasing the frequency has been studied so far.
In response to this situation, the present inventors have continued to investigate the cause of the decrease in frequency, but in a test for accelerating aging (accelerated aging test) performed in the course of the research, the frequency reaches a predetermined value. We found for the first time that there was a stable region after the drop, and found that once the frequency stable region was reached, no further frequency fluctuations occurred. Based on this discovery, the present inventors have come up with a processing method in which the frequency of the crystal resonator element before shipment is quickly reduced to reach the stable region before shipment.
That is, as shown in FIG. 3, the period until reaching the stable region becomes shorter as the ambient temperature is increased. From this, it was found that the conventional piezoelectric device has a remarkable frequency reduction phenomenon after heating for reflow.
However, when the heating temperature exceeds 230 ° C., the silicone adhesive may be deteriorated. Therefore, it is desirable to heat at 230 ° C. or lower. When the temperature actually exceeds 230 ° C., FIG. It has been confirmed that even after reaching the frequency stable region as shown in (a), a phenomenon in which the frequency continues to decrease below that frequency occurs.
From this, it was found that a crystal resonator with little frequency fluctuation over time can be obtained by performing heat treatment at a temperature of 230 ° C. or lower until reaching the frequency stable region.

加熱処理による手法では230℃にて70時間放置することにより水晶振動子の共振周波数が周波数安定領域に達することを確認した。一方、このような加熱処理する手法では生産効率が低い。
以上の研究結果に基づいた更なる考究の結果、本発明者らは経年的な周波数低下現象の原因が、水晶振動素子を容器内の電極上に接着するためのシリコーン樹脂導電性接着剤を構成するシリコーン樹脂より蒸散されるシリコーン分子(環状ジメチルポリシロキサン分子:ジメチルポリシロキサンを4〜7重合したもの)が水晶振動素子の金属膜上に化学吸着することによる質量増加が主因であることを見出した。そして、狭い密閉空間ほどシリコーン分子の濃度を高く設定し易くなるので、水晶振動子の容器の小型化に伴って周波数低下現象が顕著になる現象の発生原因が判明した。
また、本発明者によって見出された、加熱処理により周波数安定領域に達する期間が短縮される現象は、加熱によってシリコーン樹脂からのシリコーン分子の蒸散が加速されることに原因があることも明らかになった。
しかし、加熱処理による手法では最短でも230℃にて70時間を要するため生産効率が悪い。
そこで、本発明者らは、開放状態にある容器内に収容された水晶振動素子を、シリコーン蒸気に満たされた雰囲気中に晒すことで金属膜にシリコーン分子を一気に付着する手法を創案するに至った。
この手法によると数秒で水晶振動素子の周波数が周波数安定領域に達することが判明し、量産可能な手法と言うことができる。
In the method using heat treatment, it was confirmed that the resonance frequency of the crystal resonator reached the frequency stable region by leaving it at 230 ° C. for 70 hours. On the other hand, such a heat treatment method has low production efficiency.
As a result of further investigation based on the above research results, the present inventors have constituted a silicone resin conductive adhesive for adhering the crystal resonator element on the electrode in the container as the cause of the frequency decrease phenomenon over time. Found that the increase in mass due to the chemical adsorption of silicone molecules (cyclic dimethylpolysiloxane molecules: dimethylpolysiloxane 4 to 7 polymerized) evaporated from the silicone resin on the crystal film is found. It was. Then, since the concentration of silicone molecules is easily set higher in a narrow sealed space, the cause of occurrence of a phenomenon in which the frequency lowering phenomenon becomes conspicuous with the miniaturization of the crystal resonator container has been found.
In addition, the phenomenon found by the present inventor that the period for reaching the frequency stable region by heat treatment is shortened is clearly caused by the accelerated evaporation of silicone molecules from the silicone resin by heating. became.
However, the heat treatment method requires 70 hours at 230 ° C. at the shortest, so that the production efficiency is poor.
Accordingly, the present inventors have devised a technique for attaching silicone molecules to a metal film at a stretch by exposing a quartz crystal vibrating element housed in an open container to an atmosphere filled with silicone vapor. It was.
According to this method, it has been found that the frequency of the crystal resonator element reaches the frequency stable region within a few seconds, which can be said to be a mass production method.

以下、本発明を図面に示した実施の形態により詳細に説明する。
図1(a)は本発明の一実施形態に係る表面実装型圧電発振器の一例としての水晶発振器の構成を示す断面図であり、(b)は励振電極膜の表面の状態を分子レベルで示した構成図である。
この水晶発振器(圧電発振器)は、上部と下部に夫々凹所2、3を備えると共に環状の底面4に4つの実装端子5を備えた縦断面形状が略H型の絶縁容器1(例えば、セラミック容器)と、上部凹所2内に設けた2つの内部パッド11に厚み滑り系の圧電材料として例えばATカット水晶板からなる水晶振動素子(圧電振動素子)12上の2つの励振電極膜21を夫々シリコーン系導電性接着剤(以下、シリコーン接着剤、という)13を用いて電気的、機械的に接続した状態で上部凹所2を気密封止する金属リッド15と、下部凹所3の天井面3aに配置され各内部パッド11、及び各実装端子5と導通した下部パッド6と、下部パッド6に実装される発振回路を構成するIC部品25と、を備える。
実装端子5のうちの水晶振動子側実装端子は、夫々内部パッド11の一方と電気的に接続されている。
上部凹所2を備えた絶縁容器1の上部と、内部パッド11と、水晶振動素子12と、金属リッド15は、水晶振動子(圧電振動子)を構成している。即ち、水晶振動子はセラミック等の絶縁材料からなる絶縁容器1の上部凹所2内の内部電極11上に水晶振動素子12をシリコーン接着剤13を用いて電気的・機械的に接続し、絶縁容器1の外璧上面の導体リングに金属リッド15を溶接等によって電気的・機械的に接続して凹所2内を気密封止したものである。水晶振動素子12は、厚み滑り系圧電材料である水晶基板(圧電基板)20の表裏両面に金等の金属材料から成る励振電極膜(金属膜)21と、励振電極膜21から基板端縁に延びるリード電極22を形成した構成を備えている。
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings.
FIG. 1A is a cross-sectional view showing a configuration of a crystal oscillator as an example of a surface-mount piezoelectric oscillator according to an embodiment of the present invention, and FIG. 1B shows a state of the surface of an excitation electrode film at a molecular level. FIG.
This crystal oscillator (piezoelectric oscillator) is provided with an insulative container 1 (for example, a ceramic) having a substantially H-shaped longitudinal cross-section with recesses 2 and 3 at the top and bottom and four mounting terminals 5 on an annular bottom surface 4. Container) and two excitation electrode films 21 on a quartz vibrating element (piezoelectric vibrating element) 12 made of, for example, an AT-cut quartz plate as a thickness-slip type piezoelectric material on two internal pads 11 provided in the upper recess 2. A metal lid 15 that hermetically seals the upper recess 2 in an electrically and mechanically connected state using a silicone-based conductive adhesive (hereinafter referred to as a silicone adhesive) 13 and a ceiling of the lower recess 3. A lower pad 6 arranged on the surface 3 a and connected to each internal pad 11 and each mounting terminal 5, and an IC component 25 constituting an oscillation circuit mounted on the lower pad 6 are provided.
Of the mounting terminals 5, the crystal oscillator side mounting terminal is electrically connected to one of the internal pads 11.
The upper part of the insulating container 1 having the upper recess 2, the internal pad 11, the crystal resonator element 12, and the metal lid 15 constitute a crystal resonator (piezoelectric resonator). That is, the quartz resonator is electrically and mechanically connected to the internal electrode 11 in the upper recess 2 of the insulating container 1 made of an insulating material such as ceramic by using a silicone adhesive 13 to insulate. The inside of the recess 2 is hermetically sealed by electrically and mechanically connecting a metal lid 15 to the conductor ring on the upper surface of the outer wall of the container 1 by welding or the like. The quartz resonator element 12 includes an excitation electrode film (metal film) 21 made of a metal material such as gold on both the front and back surfaces of a quartz substrate (piezoelectric substrate) 20 that is a thickness-slip piezoelectric material, and the excitation electrode film 21 from the substrate edge to the substrate edge. It has a configuration in which an extended lead electrode 22 is formed.

前述した如く、水晶振動素子を容器内に気密封止した後に経年的に周波数が低下する現象の要因はこれまで明かではなかったが、本発明者による研究の結果、シリコーン接着剤13から発生して容器内に充満した環状ジメチルポリシロキサン蒸気(以下、シリコーン蒸気、という)中のシリコーン分子が励振電極膜表面に徐々に化学吸着することに原因があると考えられる。
即ち、シリコーン接着剤13は、シリコーン樹脂に銀フィラーを混在させた導電性接着剤であり、常温においても、また、水晶発振器をマザーボード上にリフローによって実装する際の加熱や、IC部品25をフリップチップ実装する際の加熱によっても、夫々シリコーン樹脂からシリコーン蒸気を放出させる。放出したシリコーン蒸気は上述のようにリッド15によって封止された絶縁容器1内に拡散する。非結合電子対を有するシリコーン分子30は、励振電極膜(金属膜)21を構成する金属表面に対して化学吸着し易い性質を有し、シリコーン分子膜が所定以上励振電極膜表面に吸着すると、完成品としての水晶発振器の発振周波数が経時的に低下する不具合をもたらす。このような不具合は、絶縁容器が超小型化して内部容積が極小化している現状においては更に顕著に発生する。
As described above, the cause of the phenomenon in which the frequency decreases over time after the quartz resonator element is hermetically sealed in the container has not been clarified so far. However, as a result of research by the present inventor, it is generated from the silicone adhesive 13. It is considered that the cause is that the silicone molecules in the cyclic dimethylpolysiloxane vapor (hereinafter referred to as silicone vapor) filled in the container gradually chemisorbs on the surface of the excitation electrode film.
In other words, the silicone adhesive 13 is a conductive adhesive in which a silver filler is mixed in a silicone resin. At room temperature, the silicon oscillator 13 is heated when the crystal oscillator is mounted on the motherboard by reflow, and the IC component 25 is flipped. Silicone vapor is also released from the silicone resin by heating during chip mounting. The released silicone vapor diffuses into the insulating container 1 sealed with the lid 15 as described above. The silicone molecule 30 having a non-bonded electron pair has a property of easily adsorbing to the metal surface constituting the excitation electrode film (metal film) 21, and when the silicone molecule film is adsorbed on the excitation electrode film surface more than a predetermined amount, This causes a problem that the oscillation frequency of the crystal oscillator as a finished product decreases with time. Such a problem occurs more remarkably in the present situation where the insulating container is miniaturized and the internal volume is minimized.

このような不具合を解消するための本発明の第1の実施形態として、出荷前の加熱による周波数の早期安定化方法を提供する。即ち、この早期安定化方法では、圧電デバイスを封止状態にて常温より高い温度、望ましくは、シリコーン分子の沸点(例えばD3では188℃)を越える温度であってシリコーンの熱分解温度より低い温度、例えば、230℃にて70時間以上加熱処理することにより、気密封止された絶縁容器内においてシリコーン接着剤からシリコーン蒸気を積極的に噴出させることができるので、自然エージングの場合と比較してシリコーン蒸気の濃度を短時間で高めて単位時間における励振電極膜表面へのシリコーン分子の吸着量を増加させることが可能である。この結果、周波数安定領域(状態)に達するまでに要する時間を大幅に短縮させて出荷までの時間を短縮し、トータルの生産性を高めることができる。
即ち、第1の実施形態では、水晶基板20などの厚み滑り系の圧電材料からなる圧電基板面に金属膜(ニッケル又はクロムを下地膜として表層に金を成膜した構成)としての励振電極膜21を形成した水晶振動素子(圧電振動素子)12を容器1内にシリコーン接着剤(導電性接合部材)13にて保持する保持工程と、水晶振動素子12の共振周波数を所定値(完成時における水晶振動素子の共振周波数より高い値)に調整するため励振電極膜21の厚みを追加もしくは削減する周波数調整工程と、不活性ガス雰囲気に置換した状態で容器1を気密封止する封止工程と、気密封止した容器1に所定時間加熱処理を施してシリコーン接着剤から蒸散する非結合電子対をもった物質(シリコーン分子)を励振電極膜に化学吸着させる吸着工程と、を順次実施する。
As a first embodiment of the present invention for solving such problems, an early frequency stabilization method by heating before shipment is provided. That is, in this early stabilization method, the piezoelectric device is in a sealed state at a temperature higher than room temperature, preferably a temperature exceeding the boiling point of the silicone molecule (for example, 188 ° C. for D3) and lower than the thermal decomposition temperature of silicone. For example, by performing heat treatment at 230 ° C. for 70 hours or more, silicone vapor can be actively ejected from the silicone adhesive in an airtightly sealed insulating container, so compared with the case of natural aging It is possible to increase the amount of silicone molecules adsorbed on the surface of the excitation electrode film per unit time by increasing the concentration of silicone vapor in a short time. As a result, the time required to reach the frequency stable region (state) can be greatly shortened, the time to shipment can be shortened, and the total productivity can be increased.
That is, in the first embodiment, an excitation electrode film as a metal film (a structure in which nickel or chromium is used as a base film and gold is formed on a surface layer) on a piezoelectric substrate surface made of a thickness-slip type piezoelectric material such as the quartz substrate 20. A holding step of holding the crystal resonator element (piezoelectric resonator element) 12 formed with 21 in the container 1 with a silicone adhesive (conductive bonding member) 13, and a resonance frequency of the crystal resonator element 12 at a predetermined value (when completed) A frequency adjusting step for adding or reducing the thickness of the excitation electrode film 21 to adjust to a value higher than the resonance frequency of the crystal resonator element, and a sealing step for hermetically sealing the container 1 in a state where the thickness is replaced with an inert gas atmosphere. An adsorption step of chemically adsorbing a substance (silicone molecule) having non-bonded electron pairs evaporating from the silicone adhesive to the excitation electrode film by subjecting the hermetically sealed container 1 to heat treatment for a predetermined time; Performed sequentially.

図3(a)は、共振周波数が26MHzである水晶振動素子に於ける、加熱温度の違いと共振周波数の変動特性との関係を示すものである。図3(b)は、加熱中に水晶振動素子の共振周波数がほぼ一定値(加熱開始から約−4ppm周波数が低下した共振周波数)に達するまでの時間を計測した結果を示すものである。図3(c)は、図3(b)に示す計測結果をプロットして加熱温度と加熱時間との関係を示す近似線を描いたものである。
図3(a)に示すように、加熱温度が230℃以下の場合では、加熱開始直後では共振周波数が低下する傾向がみられるものの、特定時間が経過すると、共振周波数の低下量が減少し、やがて共振周波数が安定化する傾向がみられた。
更に、加熱温度が230℃以下の場合では、安定化するまでの周波数の低下量は加熱温度にかかわらず同じであり、例えば26MHzの共振周波数の場合では安定化するまでの周波数低下量は約−4ppmであった.
これに対して、加熱温度が230℃より高温の場合、例えば250℃、270℃、300℃の時には何れも、加熱開始後から急激な周波数低下が起こり、同一周波数低下量後周波数が安定化するといった傾向がみられなかった。
従って、この結果から少なくとも230℃以下にて水晶振動素子を加熱すれば特定の周波数だけ低下した後、周波数が安定化するまでに必要な加熱時間が存在することが解る。
そこで、各加熱温度条件に於いて、共振周波数が安定化(加熱開始後−4ppm低下した状態)するまでの所要時間を計測した結果、図3(b)に示すような値が得られた。
更に、図3(b)に示す数値データを基に、加熱温度と周波数安定化までの所要時間との関係を図3(c)に示すような近似線にて示した。
そして、当該近似線より加熱温度Kと周波数安定化までの所要時間との関係が、
T=24294e-0・0251K
であることが確認できた.
即ち、この吸着工程における加熱処理方法として、具体的には、例えば、気密封止した容器1を温度Kの雰囲気中に時間T以上放置することによりシリコーン系導電性接着剤(導電性接合部材)13から蒸散する非結合電子対をもった物質を励振電極膜20(金属膜)に化学吸着させ、前記温度Kと時間Tとの関係が、
T=24294e-0.0251K(25℃<K≦230℃)
を満足するようにするのが好ましい。
FIG. 3A shows the relationship between the difference in heating temperature and the fluctuation characteristics of the resonance frequency in a crystal resonator element having a resonance frequency of 26 MHz. FIG. 3B shows the result of measuring the time until the resonance frequency of the crystal resonator element reaches a substantially constant value (resonance frequency at which the frequency is reduced by about −4 ppm from the start of heating) during heating. FIG.3 (c) plots the measurement result shown in FIG.3 (b), and drawn the approximate line which shows the relationship between heating temperature and heating time.
As shown in FIG. 3A, when the heating temperature is 230 ° C. or lower, the resonance frequency tends to decrease immediately after the start of heating, but when the specific time has elapsed, the amount of decrease in the resonance frequency decreases, There was a tendency for the resonance frequency to stabilize over time.
Further, when the heating temperature is 230 ° C. or less, the amount of decrease in frequency until stabilization is the same regardless of the heating temperature. For example, in the case of a resonance frequency of 26 MHz, the amount of decrease in frequency until stabilization is about − It was 4 ppm.
On the other hand, when the heating temperature is higher than 230 ° C., for example, when the heating temperature is 250 ° C., 270 ° C., or 300 ° C., a sudden frequency decrease occurs after the start of heating, and the frequency is stabilized after the same frequency decrease amount. There was no such tendency.
Therefore, it can be seen from this result that if the crystal resonator element is heated at least at 230 ° C. or less, there is a heating time necessary for the frequency to stabilize after the frequency is lowered by a specific frequency.
Therefore, as a result of measuring the time required until the resonance frequency was stabilized (in a state where the resonance frequency was lowered by −4 ppm) under each heating temperature condition, values as shown in FIG. 3B were obtained.
Further, based on the numerical data shown in FIG. 3 (b), the relationship between the heating temperature and the time required for frequency stabilization is shown by an approximate line as shown in FIG. 3 (c).
And the relationship between the heating temperature K and the time required for frequency stabilization from the approximate line is
T = 24294e -0 ・ 0251K
It was confirmed that
That is, as a heat treatment method in this adsorption step, specifically, for example, a silicone-based conductive adhesive (conductive bonding member) is formed by leaving the hermetically sealed container 1 in a temperature K atmosphere for a time T or longer. A substance having a non-bonded electron pair evaporating from 13 is chemisorbed on the excitation electrode film 20 (metal film), and the relationship between the temperature K and the time T is
T = 24294e -0.0251K (25 ℃ <K ≦ 230 ℃)
Is preferably satisfied.

次に、本発明の第2の実施形態においては、加熱によらずに水晶振動素子の周波数を周波数安定領域に短時間に到達させるシリコーン分子吸着加速手法を提供する。
即ち、本実施形態では、絶縁容器1を封止する前に予め用意したシリコーン蒸気の雰囲気に励振電極膜21を曝すことにより、励振電極膜21の表面全体を覆うようにシリコーン分子の単分子膜30を予め形成しておく。これによれば、第一の実施形態で必要であった絶縁容器1の凹所2内をシリコーン蒸気の雰囲気とするための長期の加熱処理工程がないので、水晶振動素子の共振周波数を周波数調整行程時の設定値から一挙に所定の目標値(目標周波数)にまで低下させて安定させた状態とすることができる。なお、この所定の目標周波数とは、金属リッド15による封止前の完成直前(質量付加による周波数調整が完了した状態)における水晶振動素子12の共振周波数であり、当該共振周波数を大気中にて測定した場合、絶縁容器内の不活性ガス雰囲気中に気密封止された状態における共振周波数はこれとほぼ一致するが、真空にて封止する場合は周知のように、大気中における目標周波数よりも数ppm高い値である。
また、目標周波数とは、励振電極膜21表面にシリコーン単分子膜30以外には質量付加効果を与える物質が付着していない状態、換言すればシリコーン単分子膜30上に他の物質が堆積していない状態での共振周波数である。
Next, in the second embodiment of the present invention, there is provided a silicon molecule adsorption acceleration technique that allows the frequency of the crystal resonator element to reach the frequency stable region in a short time without being heated.
That is, in the present embodiment, a monomolecular film of silicone molecules is formed so as to cover the entire surface of the excitation electrode film 21 by exposing the excitation electrode film 21 to an atmosphere of silicone vapor prepared in advance before sealing the insulating container 1. 30 is formed in advance. According to this, since there is no long-term heat treatment step for making the inside of the recess 2 of the insulating container 1 necessary for the first embodiment into an atmosphere of silicone vapor, the resonance frequency of the crystal resonator element is adjusted in frequency. A set value at the time of the process can be lowered to a predetermined target value (target frequency) at once, and a stable state can be obtained. The predetermined target frequency is the resonance frequency of the crystal resonator element 12 immediately before completion with the metal lid 15 (in a state where the frequency adjustment by mass addition has been completed), and the resonance frequency in the atmosphere. When measured, the resonance frequency in the state of being hermetically sealed in the inert gas atmosphere in the insulating container is almost the same as this. However, when sealing in a vacuum, as is well known, from the target frequency in the atmosphere. Is a value several ppm higher.
Further, the target frequency is a state in which no substance that gives a mass addition effect other than the silicone monomolecular film 30 is attached to the surface of the excitation electrode film 21, in other words, other substances are deposited on the silicone monomolecular film 30. It is the resonance frequency in the state which is not.

即ち、金を初めとした金属材料の原子はダングリングボンドを備えており、非結合電子対を備えた物質と化学的に吸着し易い状態にあるため、シリコーン蒸気濃度を所定以上に高めた雰囲気中に励振電極膜表面を短時間露出配置するだけで、励振電極表面に位置する全ての金属原子21のダングリングボンドはシリコーン分子30の非結合電子対と極めて短時間(数秒)に吸着する(図1(b)に示す状態)ので、その結果として短時間に励振電極膜表面全体に単分子膜30を形成する。励振電極表面及びリード電極表面のダングリングボンドの数は有限であり、更に化学吸着によって励振電極膜表面全体に一旦成膜されたシリコーンの単分子膜30を形成するシリコーン分子は吸着の手(電子対)を持たないので、単層膜30の上に更にシリコーン分子が重ねて化学吸着することはできず、新たなシリコーン膜が形成されないことから、付着可能なシリコーン分子の個数(単分子膜の膜厚、質量)は決まっており、シリコーン分子が励振電極全面を覆った以降で化学吸着によって、共振周波数が低下することはない。また、図1(b)に示すように単分子膜30はシリコーン分子一つ分の厚みを有するものであるため、膜厚制御が不要である。このように単層膜30の厚さが既定できることで、単層膜30の影響による水晶振動素子の共振周波数の低下量を正確に予測又は算出することが可能であり、単分子膜30が形成された時点での共振周波数が目標周波数となるように周波数調整行程において、当該目標周波数より周波数を予め高く設定することができる。従って、歩留まり良く周波数の安定した水晶振動子、水晶発振器を製造することが可能となる。一方、水晶基板を構成する水晶材料はダングリングボンドを有さないSiO2の結晶構造体であるため、シリコーン分子は水晶基板面に化学吸着することができない。 That is, the atoms of metal materials such as gold have dangling bonds and are easily adsorbed chemically with substances having non-bonded electron pairs. The dangling bonds of all the metal atoms 21 located on the surface of the excitation electrode are adsorbed to the non-bonded electron pairs of the silicone molecule 30 in a very short time (several seconds) only by exposing the surface of the excitation electrode film for a short time. As a result, the monomolecular film 30 is formed on the entire surface of the excitation electrode film in a short time. The number of dangling bonds on the surface of the excitation electrode and the surface of the lead electrode is finite, and the silicone molecules forming the monomolecular film 30 of the silicone once formed on the entire surface of the excitation electrode film by chemical adsorption are adsorbed by hand (electron Therefore, the number of silicone molecules that can be attached (the number of monomolecular films) cannot be increased. The film thickness and mass) are determined, and the resonance frequency does not decrease due to chemical adsorption after the silicone molecules cover the entire surface of the excitation electrode. In addition, as shown in FIG. 1B, the monomolecular film 30 has a thickness equivalent to one silicone molecule, so that film thickness control is unnecessary. Since the thickness of the single layer film 30 can be determined in this way, it is possible to accurately predict or calculate the amount of decrease in the resonance frequency of the crystal resonator element due to the influence of the single layer film 30, and the monomolecular film 30 is formed. In the frequency adjustment process, the frequency can be set higher in advance than the target frequency so that the resonance frequency at the time point is set to the target frequency. Accordingly, it is possible to manufacture a crystal resonator and a crystal oscillator having a stable frequency with a high yield. On the other hand, since the quartz material constituting the quartz substrate is a SiO 2 crystal structure having no dangling bonds, silicone molecules cannot be chemically adsorbed on the quartz substrate surface.

図2は本発明において水晶振動素子の励振電極膜上にシリコーン単分子膜を形成する工程を含む製造工程を示す略図である。
水晶基板ウェハに対する加工工程(a)では、大面積の水晶ウェハ35上の各個片領域36に対してフォトリソグラフィ技術による水晶材料のエッチング、蒸着等による電極形成を実施して各水晶振動素子個片を形成すると共に、周波数調整工程(励振電極膜の厚みを追加若しくは削減する工程)を実施して各個片の共振周波数が目標周波数よりも所定周波数だけ高くなるように設定しておく。目標周波数よりも高い所定周波数とは最終目標周波数であり、後述するようにチャンバー内において励振電極膜全面にシリコーン単分子膜を成膜してから大気中に開封することによりシリコーン単分子膜上に付着した(化学吸着していない)余剰のシリコーン成分を除去した後で、不活性ガスを充填した絶縁容器をリッドにより気密封止した状態での周波数である。
基板材料として使用する圧電材料は、厚みの違いにより周波数が決まる厚み滑り系の圧電材料であれば水晶に限らない。励振電極に使用する電極材料は例えば金、アルミ等を使用するが、シリコーン蒸気との間で化学吸着が起きる金属ならなんでもよい。
個片への分割工程(b)では、水晶ウェハを個片領域の境界に沿ってダイシング、エッチング等によって分割する。
FIG. 2 is a schematic diagram showing a manufacturing process including a process of forming a silicone monomolecular film on the excitation electrode film of the quartz crystal resonator element in the present invention.
In the processing step (a) for the quartz substrate wafer, electrodes are formed on each piece region 36 on the quartz wafer 35 having a large area by etching or vapor deposition of a quartz material by a photolithography technique. And a frequency adjustment step (a step of adding or reducing the thickness of the excitation electrode film) is performed so that the resonance frequency of each piece is set higher than the target frequency by a predetermined frequency. The predetermined frequency higher than the target frequency is the final target frequency. As described later, a silicone monomolecular film is formed on the entire surface of the excitation electrode film in the chamber and then opened in the atmosphere to open the silicone monomolecular film on the silicone monomolecular film. This is a frequency in a state where an insulating container filled with an inert gas is hermetically sealed with a lid after removing an excessive silicone component that has adhered (not chemically adsorbed).
The piezoelectric material used as the substrate material is not limited to quartz as long as it is a thickness-slip type piezoelectric material whose frequency is determined by the difference in thickness. The electrode material used for the excitation electrode is, for example, gold, aluminum, or the like, but any metal that causes chemical adsorption with silicone vapor may be used.
In the dividing step (b), the crystal wafer is divided along the boundaries of the individual regions by dicing, etching, or the like.

次の工程(c)では、分割された水晶振動素子12を絶縁容器1の上部凹所2内の内部電極11上にシリコーン接着剤(導電性接合部材)13を用いて接続する(保持工程)。
次のシリコーン単分子膜形成工程(吸着工程)(d)では、例えば(d)に示した如くシリコーン蒸気(非結合電子対をもった物質の蒸気)を充満させたチャンバー40内に、水晶振動素子12を内部に保持した絶縁容器1を配置して励振電極膜21表面に対してシリコーン分子を化学的に吸着させ、均一厚みの単分子膜を形成する。これによりシリコーン単分子膜30が励振電極膜の全面に均一厚で成膜される。
シリコーンには揮発性が高い低分子量([(CH32SiO]n:Dnの重合度n値が4〜7)の成分を有するものを使用するのが好ましい。またシリコーンは、常温でも揮発し易いが、例えば重合度がD5の場合には、沸点が211℃であるため、チャンバー40内においてシリコーン原液41を沸点、或いはそれ以下の任意の温度に加熱することにより、短時間にてシリコーン蒸気[(CH32SiO]5をチャンバー内に所望の濃度にて充満させることが可能となり、濃度(ppm)を高めれば単分子膜が形成される時間(飽和に要する時間)を短縮することができる。チャンバー内の温度は、常温であっても良いし、安定してシリコーン蒸気の状態を持続させるために、所定以上に加熱しても良い。
In the next step (c), the divided crystal resonator element 12 is connected to the internal electrode 11 in the upper recess 2 of the insulating container 1 using a silicone adhesive (conductive bonding member) 13 (holding step). .
In the next silicone monomolecular film formation step (adsorption step) (d), for example, as shown in (d), the quartz crystal vibration is contained in the chamber 40 filled with silicone vapor (vapor of a substance having a non-bonded electron pair). The insulating container 1 holding the element 12 inside is disposed, and silicone molecules are chemically adsorbed to the surface of the excitation electrode film 21 to form a monomolecular film having a uniform thickness. Thereby, the silicone monomolecular film 30 is formed with a uniform thickness on the entire surface of the excitation electrode film.
It is preferable to use a silicone having a component having a low molecular weight ([(CH 3 ) 2 SiO] n : Dn polymerization degree n value of 4 to 7) having high volatility. Silicone tends to volatilize even at room temperature. For example, when the degree of polymerization is D5, the boiling point is 211 ° C., so the silicone stock solution 41 is heated to an arbitrary temperature below or below the boiling point in the chamber 40. Thus, it becomes possible to fill the chamber with silicone vapor [(CH 3 ) 2 SiO] 5 at a desired concentration in a short time, and when the concentration (ppm) is increased, the time for forming a monomolecular film (saturation) Time). The temperature in the chamber may be room temperature, or may be heated to a predetermined level or more in order to stably maintain the silicone vapor state.

励振電極膜21の表層及びリード電極22の表層を構成する個々の金属原子はダングリングボンドを備えている。このダングリングボンドに対してシリコーン分子側の非結合電子対が取り付き、化学吸着することにより、励振電極膜21及びリード電極22と分離しにくい安定した単分子膜30を得ることができる。全てのダングリングボンドがシリコーン分子と吸着した段階では、それ以上シリコーン分子は化学吸着しないが、チャンバー内のシリコーン分子濃度が高い状態では、チャンバー内に漂うシリコーン分子がシリコーン単分子膜30上に付着、堆積(物理的に付着)するため、励振電極上にシリコーン単分子膜30のみが化学吸着している場合の周波数よりも、シリコーン単分子膜上に他のシリコーン成分が堆積している場合の周波数の方が物理的な付着物による質量付加の影響を受けて低くなる。そこで、シリコーン単分子膜を成膜した後でチャンバー外において大気(又は乾燥気体内)に開放することによって物理的な付着により堆積したシリコーン成分だけを飛散(蒸発)、除去すれば、単層膜30を形成する際に精密に膜厚管理を行う必要なく、所望の厚みの単層膜30を容易に構成できると共に、所定の目標周波数を容易に得ることができる。但し、この目標周波数は、大気中における共振周波数であるため、絶縁容器内に不活性ガスと共に封入した場合はそのまま最終目標周波数となるが、真空にて封止する場合は大気中における共振周波数を、真空封止による低下分をオフセットした目標周波数に設定することにより、真空封止した際の周波数を最終目標周波数と合致させることが可能となる。
単に励振電極の質量を増加させるために蒸着やスパッタといった物理吸着工法によって膜を形成する場合には、単分子膜(単層膜)とすることが難しく複数層膜となり易いため、その厚みを厳密に管理することは容易ではないが、シリコーン単分子膜はほぼ単分子の大きさの厚さに等しく一定厚なので膜厚のモニタリングや成膜時間の厳密な計測といった膜厚管理の必要がない。予め水晶基板の振動部の膜厚を所定に設定しておくことにより、換言すれば、振動部に形成される励振電極の面積(質量)と、そこに全面吸着するシリコーン単分子膜の質量による周波数低下分を加味した上で、目標共振周波数を得ることができるように水晶基板振動部の膜厚を設定しておけば容易に周波数精度を確保することができる。
即ち、シリコーン単分子膜30の厚み(単分子の大きさ)は、シリコーンの重合度がD4の場合、1.3nm程度となる。このように単分子膜の場合には、その厚みと、周波数の低下量が正確に予測できるので、シリコーン単分子膜を形成する前の共振周波数をある程度高く設定しておくことにより、シリコーン単分子膜形成後の周波数を目標周波数に容易に設定できる。例えば、シリコーン単分子膜30が励振電極膜全面に形成された時点での共振周波数(例えば、26メガヘルツ)が、シリコーン単分子膜形成以前の共振周波数に対して、5ppm低い結果が得られ、更に、同じ共振周波数を有した同じ寸法構造からなる水晶振動素子については個体間で同等の周波数低下が起きるので、周波数の微調整が極めて容易となる。
Individual metal atoms constituting the surface layer of the excitation electrode film 21 and the surface layer of the lead electrode 22 have dangling bonds. A non-bonded electron pair on the silicone molecule side is attached to this dangling bond and chemically adsorbed, whereby a stable monomolecular film 30 that is difficult to separate from the excitation electrode film 21 and the lead electrode 22 can be obtained. At the stage where all the dangling bonds are adsorbed to the silicone molecules, no further silicone molecules are chemisorbed, but when the silicone molecule concentration in the chamber is high, the silicone molecules floating in the chamber adhere to the silicone monomolecular film 30. In order to deposit (physically adhere), the frequency when other silicone components are deposited on the silicone monomolecular film than the frequency when only the silicone monomolecular film 30 is chemisorbed on the excitation electrode. The frequency is lower due to the effect of mass addition due to physical deposits. Therefore, if a silicone monomolecular film is formed and then released to the atmosphere (or in a dry gas) outside the chamber, only the silicone component deposited by physical adhesion is scattered (evaporated) and removed, so that a single layer film is obtained. It is possible to easily configure the single-layer film 30 having a desired thickness and easily obtain a predetermined target frequency without the need for precise film thickness management when forming the film 30. However, since this target frequency is the resonance frequency in the atmosphere, it becomes the final target frequency as it is when enclosed in an insulating container together with an inert gas, but when sealed in a vacuum, the resonance frequency in the atmosphere is By setting the target frequency offset by the decrease due to vacuum sealing to the target frequency, it is possible to match the frequency at the time of vacuum sealing with the final target frequency.
When the film is formed by physical adsorption methods such as vapor deposition or sputtering to simply increase the mass of the excitation electrode, it is difficult to form a monomolecular film (single layer film), and it is easy to form a multi-layer film. However, since the silicone monomolecular film is almost equal to the monomolecular thickness and has a constant thickness, there is no need for film thickness management such as film thickness monitoring or strict measurement of the film formation time. By setting the film thickness of the vibrating part of the quartz substrate in advance, in other words, depending on the area (mass) of the excitation electrode formed on the vibrating part and the mass of the silicone monomolecular film adsorbed on the entire surface thereof If the film thickness of the crystal substrate vibrating portion is set so that the target resonance frequency can be obtained after taking into account the frequency drop, the frequency accuracy can be easily ensured.
That is, the thickness (monomolecular size) of the silicone monomolecular film 30 is about 1.3 nm when the polymerization degree of the silicone is D4. Thus, in the case of a monomolecular film, the thickness and the amount of decrease in frequency can be accurately predicted. By setting the resonance frequency before forming the silicone monomolecular film to a certain extent, The frequency after film formation can be easily set to the target frequency. For example, the resonance frequency (for example, 26 megahertz) when the silicone monomolecular film 30 is formed on the entire surface of the excitation electrode film is 5 ppm lower than the resonance frequency before the silicone monomolecular film is formed. In the case of quartz resonator elements having the same resonant frequency and the same dimensional structure, the same frequency drop occurs between individuals, so that fine adjustment of the frequency becomes very easy.

シリコーン単分子膜が形成されて周波数が安定した後は、例えば50年で1ppm変動し、次の1ppm変動するのに約500年かかることは長期の加速エージング試験により確認している。このように飽和後の状態が安定しているため、信頼性評価、温度サイクルにおいて問題が起きることがない。
シリコーン単分子膜形成工程において水晶振動素子の励振電極上にシリコーン単分子膜を成膜する場合、シリコーン蒸気の濃度を所定値以上に設定することによって数秒後には励振電極全面にシリコーン単分子膜が形成され、単分子膜が励振電極表面全体に占める面積は励振電極表面全体の100%に相当する最大面積となる。
ただ、仮に上記最大面積(100%)に達しない範囲の占有率を有したシリコーン単分子膜を形成することによって得られた共振周波数(励振電極が部分的にシリコーン単分子膜にて被われていない状態の水晶振動素子の共振周波数)が、最大面積(励振電極をシリコーン単分子膜にて完全に被った場合)における圧電振動素子の共振周波数よりも+1ppm〜0ppm高い範囲内である場合には、シリコーン単分子膜の面積が励振電極表面全体に占める面積が100%未満であっても、その後、50年間(加速エージング試験より)は共振周波数の低下が生じても共振周波数が目標周波数±1ppmの範囲内(一般的な動作補償可能なバラツキの範囲)に収まるので水晶振動子を組み込んだ装置が寿命を迎える間の動作上の問題は生じない。即ち、シリコーン単分子膜30によって覆われていない励振電極膜表面に更に膜を追加形成しても共振周波数の低下量が1ppm未満となるように励振電極膜のほぼ全面が単分子膜によって覆われていればよい。
なお、シリコーン単分子膜形成工程(d)では、チャンバー40内でシリコーン単分子膜を形成した後で、大気に開放して乾燥させ、単分子膜上に付着したシリコーン成分を飛散させて除去する。
そして、最後の封止工程において、絶縁容器内に窒素等の不活性ガスを封入した状態で開口部をリッドにて封止して図1(a)の状態とする。
図2に示した各工程を、一連の製造ラインに沿って実施できるように構成することにより、生産性の高い製造装置、製造方法を実現することができる。
It has been confirmed by a long-term accelerated aging test that, after the silicone monomolecular film is formed and the frequency is stabilized, for example, it varies by 1 ppm in 50 years and takes about 500 years to move to the next 1 ppm. Thus, since the state after saturation is stable, no problem occurs in reliability evaluation and temperature cycle.
When the silicone monomolecular film is formed on the excitation electrode of the quartz crystal vibrating element in the silicone monomolecular film forming step, the silicone monomolecular film is formed on the entire surface of the excitation electrode after a few seconds by setting the silicone vapor concentration to a predetermined value or more. The area of the formed monomolecular film occupying the entire excitation electrode surface is the maximum area corresponding to 100% of the entire excitation electrode surface.
However, the resonance frequency obtained by forming a silicone monomolecular film having an occupation ratio that does not reach the maximum area (100%) (excitation electrode is partially covered with the silicone monomolecular film). When the resonance frequency of the crystal resonator element in a non-existing state is within a range of +1 ppm to 0 ppm higher than the resonance frequency of the piezoelectric resonator element in the maximum area (when the excitation electrode is completely covered with a silicone monomolecular film) Even if the area of the silicone monomolecular film occupies less than 100% of the entire surface of the excitation electrode, the resonance frequency remains at the target frequency ± 1 ppm for 50 years (according to the accelerated aging test) even if the resonance frequency decreases. Because it is within the range of (the range of variation that can be compensated for general operation), there will be no operational problems during the lifetime of the device incorporating the crystal unit. That is, almost the entire surface of the excitation electrode film is covered with the monomolecular film so that the reduction amount of the resonance frequency is less than 1 ppm even if an additional film is formed on the surface of the excitation electrode film not covered with the silicone monomolecular film 30. It only has to be.
In the silicone monomolecular film forming step (d), after the silicone monomolecular film is formed in the chamber 40, it is opened to the atmosphere and dried, and the silicone component adhering to the monomolecular film is scattered and removed. .
In the final sealing step, the opening is sealed with a lid in a state where an inert gas such as nitrogen is sealed in the insulating container to obtain the state shown in FIG.
By configuring each process shown in FIG. 2 so as to be performed along a series of manufacturing lines, a highly productive manufacturing apparatus and manufacturing method can be realized.

図2(d)に示した製造装置、或いは製造方法においては、厚み滑り系の圧電材料としての水晶基板20面に励振電極膜(金属膜)21を備えた圧電振動素子12を、チャンバー40内のシリコーン蒸気(環状ジメチルポリシロキサン蒸気)の高濃度雰囲気中に配置することにより、励振電極膜表面にシリコーン分子を化学吸着させて該シリコーン分子の単分子膜30を形成する例を示したが、これは一例に過ぎず、他の装置構成、方法によっても単分子膜を形成することは可能である。例えば、厚み滑り系の圧電材料から成る圧電基板20面に励振電極膜21を形成した圧電振動素子12を、シリコーン系接着剤により保持した絶縁容器1内に、シリコーン原液を微量滴下して該絶縁容器を封止し、更に必要に応じてシリコーン原液が蒸散するのに適した温度にて加熱することにより、励振電極膜表面にシリコーン分子を化学吸着させて該シリコーン分子の単分子膜を形成するようにしてもよい。
即ち、この実施形態に係る製造方法は、厚み滑り系の圧電材料からなる圧電基板としての水晶基板20面に金属膜としての励振電極膜21を形成した水晶振動素子(圧電振動素子)12を容器1内にシリコーン系導電性接着剤(導電性接合部材)13にて保持する保持工程と、圧電振動素子12の共振周波数を所定値に調整するため励振電極膜21の厚みを追加もしくは削減する周波数調整工程と、容器1内に非結合電子対をもった物質を載置する載置工程と、不活性ガス雰囲気に置換した状態で容器1を気密封止する封止工程と、非結合電子対をもった物質が蒸散するのに必要な温度に所定時間加熱して非結合電子対をもった物質を励振電極膜21に化学吸着させる吸着工程と、を備えて構成される。
この際、単分子膜が前記金属膜表面全体に占める面積は、最大面積(100%)である必要はなく、最大面積における圧電振動素子の共振周波数よりも1ppm(仕様における許容範囲)低下した許容範囲内である場合には、シリコーン単分子膜の面積が励振電極表面全体に占める面積が100%未満であっても、上記許容範囲内であれば仕様上の問題は生じない。即ち、シリコーン単分子膜30によって覆われていない励振電極膜表面に更に膜を追加形成しても共振周波数の低下量が1ppm未満となるように励振電極膜のほぼ全面が単分子膜によって覆われていればよい。
また、励振電極と化学吸着して単分子膜を形成するための物質としては、シリコーンに限らず、非結合電子対を持った物質であればどのような物質であってもよい。従って、上記の各実施形態において圧電振動素子を容器内に保持する導電性接合部材としてもシリコーン接着剤に限らず、非結合電子対を持った物質を生成する接着剤であればよい。
In the manufacturing apparatus or manufacturing method shown in FIG. 2 (d), the piezoelectric vibration element 12 having the excitation electrode film (metal film) 21 on the surface of the quartz substrate 20 as a thickness-slip type piezoelectric material is placed in the chamber 40. Although an example in which a silicone molecule is chemically adsorbed on the surface of the excitation electrode film by placing it in a high concentration atmosphere of the silicone vapor (cyclic dimethylpolysiloxane vapor) is shown, This is only an example, and it is possible to form a monomolecular film by other apparatus configurations and methods. For example, a small amount of a silicone stock solution is dropped in an insulating container 1 in which a piezoelectric vibration element 12 having an excitation electrode film 21 formed on a surface of a piezoelectric substrate 20 made of a thickness-slip type piezoelectric material is held by a silicone-based adhesive. The container is sealed and, if necessary, heated at a temperature suitable for the silicone stock solution to evaporate, thereby chemically adsorbing silicone molecules on the surface of the excitation electrode film to form a monomolecular film of the silicone molecules. You may do it.
That is, in the manufacturing method according to this embodiment, a crystal resonator element (piezoelectric resonator element) 12 in which an excitation electrode film 21 as a metal film is formed on the surface of a crystal substrate 20 as a piezoelectric substrate made of a thickness-slip piezoelectric material is used as a container. 1 is a frequency of adding or reducing the thickness of the excitation electrode film 21 in order to adjust the resonance frequency of the piezoelectric vibration element 12 to a predetermined value. An adjustment step, a placement step of placing a substance having a non-bonded electron pair in the container 1, a sealing step of hermetically sealing the container 1 in a state of being replaced with an inert gas atmosphere, and a non-bonded electron pair And an adsorption process in which the substance having a non-bonded electron pair is chemically adsorbed on the excitation electrode film 21 by heating to a temperature necessary for the substance having a vaporization to evaporate for a predetermined time.
At this time, the area that the monomolecular film occupies on the entire surface of the metal film does not need to be the maximum area (100%), and is allowed to decrease by 1 ppm (allowable range in the specification) from the resonance frequency of the piezoelectric vibration element in the maximum area. If it is within the range, even if the area of the silicone monomolecular film occupies the entire surface of the excitation electrode is less than 100%, there is no problem in the specification as long as it is within the allowable range. That is, almost the entire surface of the excitation electrode film is covered with the monomolecular film so that the reduction amount of the resonance frequency is less than 1 ppm even if an additional film is formed on the surface of the excitation electrode film not covered with the silicone monomolecular film 30. It only has to be.
The substance for forming a monomolecular film by chemisorbing with the excitation electrode is not limited to silicone, and any substance having a non-bonded electron pair may be used. Accordingly, in each of the embodiments described above, the conductive bonding member that holds the piezoelectric vibration element in the container is not limited to the silicone adhesive, and any adhesive that generates a substance having a non-bonded electron pair may be used.

1 絶縁容器、2、3 凹所、4 底面、5 実装端子、11 内部パッド、12 水晶振動素子(圧電振動素子)、3 シリコーン系導電性接着剤(導電性接合部材)、15 金属リッド、20 水晶基板(圧電基板)、21 励振電極(金属膜)、22 リード電極、25 IC部品、30 シリコーン単分子膜、40 チャンバー、41 シリコーン原液   DESCRIPTION OF SYMBOLS 1 Insulation container, 2, 3 recesses, 4 bottom surface, 5 mounting terminal, 11 internal pad, 12 crystal vibration element (piezoelectric vibration element), 3 silicone type conductive adhesive (conductive joining member), 15 metal lid, 20 Quartz substrate (Piezoelectric substrate), 21 Excitation electrode (Metal film), 22 Lead electrode, 25 IC component, 30 Silicone monomolecular film, 40 Chamber, 41 Silicone stock solution

Claims (9)

主面に励振電極が設けられている基板と、
前記基板が収容されている容器と、
を含み、
前記励振電極は、ダングリングボンドを有するが表面に露出しており、
前記は、前記ダングリングボンドと非結合電子対をもったジメチルポリシロキサン分子との化学吸着による単分子膜によって覆われていることを特徴とする振動子。
A substrate provided with excitation electrodes on the main surface;
A container containing the substrate;
Including
The excitation electrode has gold dangling bonds exposed on the surface,
The vibrator is characterized in that the gold is covered with a monomolecular film formed by chemisorption of the dangling bond and a dimethylpolysiloxane molecule having a non-bonded electron pair.
請求項1において、  In claim 1,
前記金の下地膜はニッケル又はクロムであることを特徴とする振動子。  The vibrator according to claim 1, wherein the gold base film is nickel or chromium.
請求項1又は2において、  In claim 1 or 2,
前記ジメチルポリシロキサン分子は、環状の分子であることを特徴とする振動子。  The vibrator, wherein the dimethylpolysiloxane molecule is a cyclic molecule.
請求項1乃至3の何れか一項において、  In any one of Claims 1 thru | or 3,
前記容器の内部に、非結合電子対をもった物質が配置されていることを特徴とする振動子。  A vibrator having a non-bonded electron pair disposed inside the container.
請求項4において、  In claim 4,
前記ジメチルポリシロキサン分子は、前記物質から蒸散した成分であることを特徴とする振動子。  The vibrator, wherein the dimethylpolysiloxane molecule is a component evaporated from the substance.
請求項4又は5において、  In claim 4 or 5,
前記物質は、導電性接合部材に含まれていることを特徴とする振動子。  The vibrator is characterized in that the substance is contained in a conductive bonding member.
請求項4乃至6の何れか一項において、  In any one of Claims 4 thru | or 6,
前記物質は、シリコーン系接着剤であることを特徴とする振動子。  The vibrator is characterized in that the substance is a silicone-based adhesive.
請求項1乃至7の何れか一項において、  In any one of Claims 1 thru | or 7,
前記容器は、気密封止されていることを特徴とする振動子。  The vibrator is hermetically sealed.
請求項1乃至8の何れか一項に記載の振動子と、  The vibrator according to any one of claims 1 to 8,
発振回路と、  An oscillation circuit;
を備えていることを特徴とする発振器。An oscillator comprising:
JP2013006283A 2013-01-17 2013-01-17 Vibrator and oscillator Expired - Fee Related JP5527442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013006283A JP5527442B2 (en) 2013-01-17 2013-01-17 Vibrator and oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013006283A JP5527442B2 (en) 2013-01-17 2013-01-17 Vibrator and oscillator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011193181A Division JP5223955B2 (en) 2011-09-05 2011-09-05 Method for stabilizing frequency of vibration element and method for manufacturing vibrator

Publications (2)

Publication Number Publication Date
JP2013110755A JP2013110755A (en) 2013-06-06
JP5527442B2 true JP5527442B2 (en) 2014-06-18

Family

ID=48707042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013006283A Expired - Fee Related JP5527442B2 (en) 2013-01-17 2013-01-17 Vibrator and oscillator

Country Status (1)

Country Link
JP (1) JP5527442B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4485635B2 (en) * 2000-01-24 2010-06-23 株式会社増田研究所 Corona discharger and gas processing apparatus using the same
JP4501315B2 (en) * 2001-06-15 2010-07-14 三菱電機株式会社 Insulation diagnostic sensor for power distribution facility and remaining life diagnostic method
JP2005147890A (en) * 2003-11-17 2005-06-09 Hitachi Ltd Insulation abnormality diagnostic device

Also Published As

Publication number Publication date
JP2013110755A (en) 2013-06-06

Similar Documents

Publication Publication Date Title
JP4852850B2 (en) Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, frequency stabilization method, and piezoelectric vibrator manufacturing method
US8093785B2 (en) Piezoelectric resonator, piezoelectric oscillator, electronic device and method for manufacturing piezoelectric resonator
JP4809848B2 (en) Method for forming a predetermined internal pressure in a cavity of a semiconductor device
US8405463B2 (en) Electronic device, electronic apparatus, and electronic device manufacturing method
TWI527371B (en) Method for manufacturing piezoelectric vibration device
JP5088657B2 (en) Manufacturing method of surface mount type piezoelectric device, manufacturing method of piezoelectric vibrator
JP4992987B2 (en) Method for manufacturing piezoelectric vibrator and method for stabilizing frequency of piezoelectric vibrator
JP5527442B2 (en) Vibrator and oscillator
JP2005203858A (en) Crystal oscillator
JP5223955B2 (en) Method for stabilizing frequency of vibration element and method for manufacturing vibrator
JP6183152B2 (en) Temperature compensated crystal oscillator
JP5526665B2 (en) Manufacturing method of surface acoustic wave device
JP2016144091A (en) Vibrator manufacturing method
JP2004343571A (en) Piezoelectric vibrating device
JPH0446411A (en) Crystal resonator and oscillator module provided with the resonator and manufacture of the module
US11070190B2 (en) Silver-bonded quartz crystal
JP2017034454A (en) Electronic component and manufacturing method of electronic component
JP2004023688A (en) Piezoelectric part manufacturing method
JPH0878955A (en) Surface-mounting piezoelectric oscillator and manufacture thereof
JP5754523B2 (en) Manufacturing method of surface acoustic wave device
JP2007335938A (en) Method of manufacturing piezoelectric vibrator
JP3391118B2 (en) Manufacturing method of surface mount type piezoelectric oscillator
JP5526635B2 (en) Manufacturing method of surface acoustic wave device
JP2015213230A (en) Electronic component, manufacturing method of the same, electronic apparatus and movable body
JP2008035181A (en) Manufacturing method of piezoelectric device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140331

R150 Certificate of patent or registration of utility model

Ref document number: 5527442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees