JP2005059029A - 連続鋳造機の鋳片引抜き方法及び装置 - Google Patents
連続鋳造機の鋳片引抜き方法及び装置 Download PDFInfo
- Publication number
- JP2005059029A JP2005059029A JP2003289729A JP2003289729A JP2005059029A JP 2005059029 A JP2005059029 A JP 2005059029A JP 2003289729 A JP2003289729 A JP 2003289729A JP 2003289729 A JP2003289729 A JP 2003289729A JP 2005059029 A JP2005059029 A JP 2005059029A
- Authority
- JP
- Japan
- Prior art keywords
- slab
- continuous casting
- casting machine
- molten metal
- moving speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Continuous Casting (AREA)
Abstract
【課題】本発明は、スリップの規模が小さい場合には溶融金属の鋳込みを中止せずに操業が継続できるばかりでなく、スリップの規模が大きい場合には鋳込み中止及びブリードの発生を低減し、従来より操業トラブルの発生が抑制可能な連続鋳造機の鋳片引抜き方法及び装置を提供することを目的としている。
【解決手段】ピンチロール及びガイドロールを用い、鋳型から連続的に金属鋳片を引き抜き、下流側へ搬送する連続鋳造機の鋳片引抜き方法及び装置を改良した。その要点は、前記ピンチロールでのスリップ発生を、鋳型への溶融金属の注入量に応じた前記金属鋳片の移動速度と実際の移動速度との差で判断し、その差の大きさに応じて前記ピンチロール及び/又は前記ガイドロールの該金属鋳片に対する押付力を調整することにある。
【選択図】 図1
【解決手段】ピンチロール及びガイドロールを用い、鋳型から連続的に金属鋳片を引き抜き、下流側へ搬送する連続鋳造機の鋳片引抜き方法及び装置を改良した。その要点は、前記ピンチロールでのスリップ発生を、鋳型への溶融金属の注入量に応じた前記金属鋳片の移動速度と実際の移動速度との差で判断し、その差の大きさに応じて前記ピンチロール及び/又は前記ガイドロールの該金属鋳片に対する押付力を調整することにある。
【選択図】 図1
Description
本発明は、連続鋳造機の鋳片引抜き方法及び装置に係わり、特に、溶鋼を鋳型に注入し、鋳片を連続的に製造する連続鋳造機において、該鋳片を鋳型から引き抜き、下流側へ搬送する搬送ロールにスリップが発生した際に起きる操業トラブルを未然に防止する技術に関する。
金属鋳片を得るには、溶融金属を鋳型に連続的に注入し、該鋳型から未凝固の溶融金属を包含した半凝固体(鋳片)を引き抜きながら水冷し、一定距離を搬送する間に完全凝固させる所謂「連続鋳造方法」が普及している。そこで利用する連続鋳造機は、例えば、図4(a)に示すように、平断面が長方形、正方形、円形等の空間を形成し、溶融金属1が注入される鋳型2と、それ自体に駆動力が付帯され、前記鋳型2から前記鋳片3を挟んで支えつつ引き抜き、下流側へ搬送する搬送ロール4(鋳片に押付圧を付与する駆動装置を接続したピンチロール41と、そのような駆動装置を接続していないガイドロール42の2種類がある)と、鋳片3を水冷する水噴射ノズル6等の冷却手段とを、垂直(垂直型連続鋳造機という)、湾曲(湾曲型連続鋳造機という)あるいは垂直―湾曲―水平(垂直湾曲型連続鋳造機という)になる搬送路に多数配列したものである。また、該搬送路の最終端には、完全に凝固した鋳片を所定長さに切断するガストーチ等の切断機8が備えてある。
このような連続鋳造機で鋳片(以下、前記半凝固体も含めて、単に鋳片という)を製造する操業においては、溶融金属1の鋳込み中に、種々の原因で前記ピンチロール4にスリップ(ピンチロールの周速と鋳片の移動速度が不一致になること)の発生することが多い。このスリップが発生すると、円滑に操業できなくなるので、従来は、オペレータがスリップを目視で観察し、押付圧を調整し、スリップを解消するようにしていた。なお、上記押付圧の調整は、図4(b)に示すようなピンチロール4に可動フレーム9を介して接続されており、押付圧を調整する駆動装置である油圧シリンダ13等により行われる。
しかしながら、オペレータの目視によるスリップの確認は、明瞭でないばかりでなく、時間がかかるので、迅速な処置ができないという問題があった。そのため、前記したピンチロールの回転速度とガイドロールの回転速度との差をスリップとして把握し、その差を解消するように、前記押付圧を適当に調整する技術が開発された(例えば、特許文献1参照)。
ところが、スリップの規模は大きいものから小さいもの、あるいは自然に解消するもの等様々あり、すべてのスリップを前記技術だけで対処できるとは限らない。しかも、スリップが解消できない場合には、鋳込み(溶融金属の注入)を継続させても、所望の形状及び特性を有する鋳片にならないので、該鋳込みを直ちに中止し、連続鋳造機内に存在する鋳片の残部をすべて強制的に引き抜いて除去する必要がある。従来、この強制引き抜きは、「重引抜モード」と称し、ピンチロールに対する鋳片への押付圧を通常の円滑な操業時の値の数倍に調整して行っていた。
この「重引抜モード」を採用すれば、スリップ発生時に連続鋳造機内で凝固した鋳片を引き抜きできなくなるトラブルは避けられるが、ピンチロールの鋳片押付力が大き過ぎるため、鋳片トップ(鋳込み中止で最後に鋳型から抜ける鋳片の尾端になる部分)の未凝固部分から溶融金属が噴出し、作業環境を汚したり、危険にするトラブル(ブリードと称する)の発生することもある。
特開昭63−137558号公報
本発明は、かかる事情に鑑み、スリップの規模が小さい場合には溶融金属の鋳込みを中止せずに操業が継続できるばかりでなく、スリップの規模が大きい場合には鋳込み中止及びブリードの発生を低減し、従来より操業トラブルの発生を抑制可能な連続鋳造機の鋳片引抜き方法及び装置を提供することを目的としている。
発明者は、上記目的を達成するため鋭意研究を重ね、その成果を本発明に具現化した。
すなわち、本発明は、連続鋳造機で鋳片を引き抜くに際して、前記鋳片の実際の移動速度VMがVB−P1>VMを満たしたら、鋳型への溶融金属の注入を中止することを特徴とする連続鋳造機の鋳片引抜き方法である。ただし、VB=溶融金属の注入速度(t/min)/(鋳型断面積(m2)×鋳片密度(t/m3))、P1:予め設定される移動速度の閾値である。なお、前記溶融金属の注入中止に伴い、前記鋳片に付与する押付圧を該鋳片の幅に応じて調整するのが好ましい。
また、本発明は、鋳型から連続的に鋳片を引き抜き、下流側へ搬送する搬送ロールと、鋳片の実際の移動速度VMを計測して出力する移動速度計測手段と、鋳型への溶融金属の注入中止手段と、前記移動速度VMがVB−P1>VMを満たしたら、前記注入中止手段へ注入中止命令を出力する演算手段とを備えたことを特徴とする連続鋳造機の鋳片引抜き装置である。
以上述べたように、本発明により、溶融金属の連続鋳造に際して、スリップの規模が小さい場合には、溶融金属の鋳込みを中止せずに操業が継続でき、スリップの規模が大きい場合には、鋳込み中止及びブリードの発生を低減し、従来より操業トラブルの発生を抑制できる。
以下、発明をなすに至った経緯をまじえ、本発明の実施の形態を説明する。
まず、発明者は、スリップの検出を、ピンチロールの回転速度とガイドロールの回転速度との差による従来方式に代え、溶融金属の注入速度から計算される計算上の鋳片の移動速度VBと、実際の鋳片の移動速度VM(例えば鋳片の先端速度)を用いるのが良いと考えた。その理由は、鋳片にスリップの発生が無いとすると、計算上の鋳片の移動速度VBは実際の鋳片の移動速度VMに等しいが、スリップが発生すると、VMは、前記VBより必ず遅くなるからである。なお、図2は、下記の式を図示したものである。
計算上の鋳片の移動速度VB(m/min)
=溶融金属の注入速度XB(t/min)/(鋳型断面積(m2)×鋳片密度(t/m3))
そこで、発明者は、スリップの規模を鋳型への溶融金属の注入速度XBから計算される鋳片の移動速度VBと実際の移動速度VMとの差ΔV(=VB−VM)で評価し、そのΔVに応じてピンチロール及び/又はガイドロールの該鋳片に対する押付圧を調整することを本発明として完成させたのである。
計算上の鋳片の移動速度VB(m/min)
=溶融金属の注入速度XB(t/min)/(鋳型断面積(m2)×鋳片密度(t/m3))
そこで、発明者は、スリップの規模を鋳型への溶融金属の注入速度XBから計算される鋳片の移動速度VBと実際の移動速度VMとの差ΔV(=VB−VM)で評価し、そのΔVに応じてピンチロール及び/又はガイドロールの該鋳片に対する押付圧を調整することを本発明として完成させたのである。
図1に本発明に係る鋳片引抜き方法を実施する場合のフローチャート例を示すが、この場合、前記スリップの発生を、鋳型内の溶融金属湯面の上昇でも確認すると一層良い。スリップが発生すると、必ず鋳型内の溶融金属湯面が上昇することは従来の経験から認識されているからである。具体的には、ある一定距離の湯面上昇があれば、スリップの発生と判断すれば良い。なお、鋳片の移動速度の検出や押付圧の調整については後述する。
また、本発明では、図1に示すように、前記鋳型への溶融金属の注入量XBから計算される鋳片の移動速度VBと実際の移動速度VMとの差ΔVに閾値P1を設け、該閾値P1を超えたら前記鋳型への溶融金属の注入を中止する。さらに、前記押付圧を鋳片の幅に応じて調整して連続鋳造機内に残存する鋳片を該連続鋳造機内より引き抜いても良い。これにより、スリップの規模が大きい場合には、鋳片トップの未凝固部より溶融金属が噴出する等の操業トラブルも回避できるようになる。なお、閾値P1は、本発明を実施する連続鋳造機で予め試験操業等を行い、適切な値を決めておけば良い。
図1の各「押付圧モード」A,B,C,Dは、それぞれ押付圧をどの程度にするかを区分する操業指針であり、具体的な押付圧の数値は後述する。「押付圧モードD」は従来から行われている「重引抜モード」に相当し、前記した閾値P1よりも小さい別の閾値P2を予め設定して使用する。なお、「押付圧モードD」の実施でスリップが停止しない場合には、「押付圧モード」A,B,Cのいずれかを実施すると良い。また、図1のフローチャートから明らかなように、「押付圧モード」A,B,Cは、金属鋳片の幅に応じて選択するようになっているが、これは、鋳片サイズによって同一押付圧になる押付力が異なるからである。ちなみに、発明者の検討によれば、鋳片の幅と「押付圧モード」との関係は、鋳片幅の「大」を1500〜1900mmとしてモードAに,鋳片幅の「中」を1000〜1500mm未満としてモードBに,鋳片幅の「小」を600〜1000mm未満としてモードCに対応させるのが良かった。さらに、図1のフローチャートにおける「スリップの解消判断(スリップ解消か)」は、前記したスリップの発生確認に利用した鋳型内湯面レベルを監視することで行える。
上記した本発明を実施する装置は、以下のような構成にすれば良い。
本装置には、図3に示すように、鋳型2から連続的に鋳片3を引き抜き下流側へ搬送する搬送ロール4が、該半凝固体等の搬送路に沿って設けられている。鋳片の実際の移動速度VMを得るには、鋳片の一定位置の移動速度を切断機8よりも下流側で計測すれば良い。該一定位置としては、鋳片にマーキングをすれば良い。具体例としては、図3に示すように、一定距離(Lm)だけ離隔して2ケ所に鋳片3の先端を検出するセンサ10を新しく設けた。このセンサ10は、鋳片3の先端がその設置位置を通過することを認識できるものであれば、如何なるものでも良い。本発明では、非接触方式で検出できる光電管等で十分である。そして、このセンサ10の出力及び一定距離の通過時間に基づき、該鋳片3の移動速度VMを演算器で計算して別の演算器11に出力する。演算器11は、鋳型への溶融金属の注入速度XBから計算される鋳片の移動速度VBと前記移動速度VMとを比較して両者の差ΔVを求め、該ΔVが予め設定した該差の閾値P1を超えた場合に、鋳型への溶融金属注入を中止する命令を、図示していない溶融金属注入中止手段(例えば、ストッパ等)に出力する。なお、スリップ発生を確認する鋳型内の溶融金属レベルの監視は、湯面の上方に電気伝導性のある棒材を配置し、その先端を湯面から一定距離しておき、湯の接触を信号としてキャッチすることで行える。
また、前記した溶融金属注入の中止と共に、前記鋳片に付与する押付圧を該鋳片の幅に応じて調整する場合は、前記演算器11の出力に従って作動する押付圧調整手段12も備えるようにしてある。なお、押付圧の具体的な調整は、図4(b)に示した公知の押付圧調整手段を利用し、油圧量の変更等で行われる。その場合、調整量は、前記ΔVに応じて決められ、異なる「押付圧モード」に従って調整されることになる。押付力調整手段12に記憶させておく「押付圧モード」の一例を、ある垂直湾曲型連続鋳造機の場合で以下に示しておく。
「押付圧モードD」
・垂直部=1.10×通常の押付圧
・湾曲部=1.15×通常の押付圧
・水平部=1.20×通常の押付圧
「押付圧モードA」
・垂直部=0.70×モードDの押付圧
・湾曲部=0.75×モードDの押付圧
・水平部=0.80×モードDの押付圧
「押付圧モードB」
・垂直部=0.75×モードDの押付圧
・湾曲部=0.80×モードDの押付圧
・水平部=0.85×モードDの押付圧
「押付圧モードC」
・垂直部=0.80×モードDの押付圧
・湾曲部=0.85×モードDの押付圧
・水平部=0.90×モードDの押付圧
ここで、垂直部、湾曲部及び水平部の押付圧が異なるのは、鋳片の姿勢によってロールの圧下力に違いがあるからである。従って、例えば連続鋳造機が垂直型であれば、垂直部だけの数値からなる「押付圧モード」になる。また、上記の通常の押付圧としては、垂直部、湾曲部及び水平部でそれぞれ4メガパスカル、7メガパスカル及び7メガパスカルである。さらに、本発明では、上記した各数値は必ずしも固定したものではない。それら数値は連続鋳造機の特性に依存するので、機種に応じて異なるからである。従って、本発明の実施に際しては、その機種に応じて予め試験操業、データ解析等を行い、各押付圧モードの数値を決めておく必要がある。
・垂直部=1.10×通常の押付圧
・湾曲部=1.15×通常の押付圧
・水平部=1.20×通常の押付圧
「押付圧モードA」
・垂直部=0.70×モードDの押付圧
・湾曲部=0.75×モードDの押付圧
・水平部=0.80×モードDの押付圧
「押付圧モードB」
・垂直部=0.75×モードDの押付圧
・湾曲部=0.80×モードDの押付圧
・水平部=0.85×モードDの押付圧
「押付圧モードC」
・垂直部=0.80×モードDの押付圧
・湾曲部=0.85×モードDの押付圧
・水平部=0.90×モードDの押付圧
ここで、垂直部、湾曲部及び水平部の押付圧が異なるのは、鋳片の姿勢によってロールの圧下力に違いがあるからである。従って、例えば連続鋳造機が垂直型であれば、垂直部だけの数値からなる「押付圧モード」になる。また、上記の通常の押付圧としては、垂直部、湾曲部及び水平部でそれぞれ4メガパスカル、7メガパスカル及び7メガパスカルである。さらに、本発明では、上記した各数値は必ずしも固定したものではない。それら数値は連続鋳造機の特性に依存するので、機種に応じて異なるからである。従って、本発明の実施に際しては、その機種に応じて予め試験操業、データ解析等を行い、各押付圧モードの数値を決めておく必要がある。
図4に示した垂直湾曲型連続鋳造機で極低炭素溶鋼を連続的に鋳造し、サイズが幅1500mm×厚み260mmの鋼鋳片を製造した。その際、本発明に係る鋳片引抜き装置を設置し、目標とする鋳片の移動速度を2m/minとし、これを達成するための目標とする溶鋼の注入速度=2(m/min)×1.5(m)×0.26(m)×7(t/m3)=5.46t/minで操業を行った。
なお、演算器に入力されているピンチロール及びガイドロールに対する前記押付圧モードは、前記例を採用している。また、演算器に予め入力しておく、鋳型への溶融金属の注入量XBと金属鋳片の移動速度VBとの関係は、VB=XB/(1.5×0.26×7)を、図1の閾値としては、P1=0.1m/min,P2=0.06m/minを採用した。
なお、演算器に入力されているピンチロール及びガイドロールに対する前記押付圧モードは、前記例を採用している。また、演算器に予め入力しておく、鋳型への溶融金属の注入量XBと金属鋳片の移動速度VBとの関係は、VB=XB/(1.5×0.26×7)を、図1の閾値としては、P1=0.1m/min,P2=0.06m/minを採用した。
操業は、図1に示した本発明に係る鋳片引抜き方法のフローチャートに従って自動的に行われたが、スリップが発生し、その規模が小さい場合には、「押付圧モードD」で、鋳込みを中止することなく、操業が可能であった。
また、同一鋼鋳片の鋳込時に、スリップが発生し、その規模が大きい場合もあった。しかしながら、その場合には、図1のフローチャートに従い、鋳込が中止され、機内に残存する鋼鋳片の引抜きは、「押付圧モードA」で前記ブリードによるトラブル発生もなく円滑に行われた。
なお、上記実施例は自動的に行われたが、本発明は、オペレータが必要な機器を組み込んだ操作盤を介して遠隔操作することでも可能である。また、本発明は、上記のような垂直湾曲型に限らず、垂直型、湾曲型の連続鋳造機にも適用できることは言うまでもない。
1 溶融金属(溶鋼)
2 鋳型
3 鋳片(半凝固体)
4 搬送ロール
41 ピンチロール
42 ガイドロール
6 水噴射ノズル
8 切断機
9 可動フレーム
10 センサ
11 演算器
12 押付圧調整手段
13 油圧シリンダ
2 鋳型
3 鋳片(半凝固体)
4 搬送ロール
41 ピンチロール
42 ガイドロール
6 水噴射ノズル
8 切断機
9 可動フレーム
10 センサ
11 演算器
12 押付圧調整手段
13 油圧シリンダ
Claims (3)
- 連続鋳造機で鋳片を引き抜くに際して、
前記鋳片の実際の移動速度VMがVB−P1>VMを満たしたら、鋳型への溶融金属の注入を中止することを特徴とする連続鋳造機の鋳片引抜き方法。
ただし、VB=溶融金属の注入速度(t/min)/(鋳型断面積(m2)×鋳片密度(t/m3))、P1:予め設定される移動速度の閾値 - 前記溶融金属の注入中止に伴い、前記鋳片に付与する押付圧を該鋳片の幅に応じて調整することを特徴とする請求項1記載の連続鋳造機の鋳片引抜き方法。
- 鋳型から連続的に鋳片を引き抜き、下流側へ搬送する搬送ロールと、鋳片の実際の移動速度VMを計測して出力する移動速度計測手段と、鋳型への溶融金属の注入中止手段と、前記移動速度VMがVB−P1>VMを満たしたら、前記注入中止手段へ注入中止命令を出力する演算手段とを備えたことを特徴とする連続鋳造機の鋳片引抜き装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003289729A JP2005059029A (ja) | 2003-08-08 | 2003-08-08 | 連続鋳造機の鋳片引抜き方法及び装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003289729A JP2005059029A (ja) | 2003-08-08 | 2003-08-08 | 連続鋳造機の鋳片引抜き方法及び装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005059029A true JP2005059029A (ja) | 2005-03-10 |
Family
ID=34367966
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003289729A Withdrawn JP2005059029A (ja) | 2003-08-08 | 2003-08-08 | 連続鋳造機の鋳片引抜き方法及び装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005059029A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011016142A (ja) * | 2009-07-08 | 2011-01-27 | Nippon Steel Corp | 連続鋳造におけるブリード防止方法 |
-
2003
- 2003-08-08 JP JP2003289729A patent/JP2005059029A/ja not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011016142A (ja) * | 2009-07-08 | 2011-01-27 | Nippon Steel Corp | 連続鋳造におけるブリード防止方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104392107B (zh) | 一种基于受力分析预测连铸坯初始裂纹的方法 | |
EP2937162A1 (en) | Hybrid cooling nozzle apparatus, and method for controlling cooling nozzle of continuous casting equipment using same | |
JP5092642B2 (ja) | 鋼の連続鋳造方法及び連続鋳造機 | |
JP2012011459A (ja) | 連続鋳造における鋳片の軽圧下方法 | |
JP5154997B2 (ja) | 連続鋳造におけるブレークアウト予知方法 | |
JP5900215B2 (ja) | 連続鋳造鋳片の凝固完了位置検出方法及び装置、連続鋳造方法及び装置 | |
JP2002066704A (ja) | 連続鋳造鋳片の凝固完了位置検出方法及び制御方法 | |
TW201938286A (zh) | 鑄片的製造方法及連續鑄造設備 | |
JP2005059029A (ja) | 連続鋳造機の鋳片引抜き方法及び装置 | |
JP2009125770A (ja) | 連続鋳造鋳片の製造方法及び連続鋳造機 | |
JP2007245168A (ja) | 連続鋳造の凝固完了検出方法、装置及び連続鋳造方法、装置 | |
JPS6221449A (ja) | 鋼の連続鋳造法および装置 | |
US4729420A (en) | Method for concluding the operation of the continuous casting of strip metal | |
JP5068687B2 (ja) | 連続鋳造設備のガイドロール制御システム | |
JP2004276050A (ja) | 連続鋳造のスタート方法 | |
JP2019018247A (ja) | 連続鋳造機における鋳片表面欠陥及び設備異常の検知方法並びに検知設備 | |
JP3240978B2 (ja) | 連続鋳造鋳片の製造方法 | |
JP2914817B2 (ja) | 連続鋳造における欠落鋳造方法 | |
JPH0515956A (ja) | 連続鋳造方法 | |
JP5821632B2 (ja) | 連続鋳造機のロール圧力制御方法 | |
JP2003080356A (ja) | 連続鋳造材のガス切断方法 | |
KR20170068640A (ko) | 연속주조설비의 더미바 안내장치 | |
JP2774920B2 (ja) | 連続鋳造機の鋳型内湯面レベル制御装置 | |
JP4358809B2 (ja) | 連続鋳造方法 | |
KR101243120B1 (ko) | 쌍롤식 박판 주조공정에서 주조 초기에 주편 인발시 판파단을 방지하는 장치 및 그 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20061107 |