JP2005049865A - Manufacturing method of optical phase difference element - Google Patents

Manufacturing method of optical phase difference element Download PDF

Info

Publication number
JP2005049865A
JP2005049865A JP2004210653A JP2004210653A JP2005049865A JP 2005049865 A JP2005049865 A JP 2005049865A JP 2004210653 A JP2004210653 A JP 2004210653A JP 2004210653 A JP2004210653 A JP 2004210653A JP 2005049865 A JP2005049865 A JP 2005049865A
Authority
JP
Japan
Prior art keywords
layer
liquid crystal
alignment
support material
crystal monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004210653A
Other languages
Japanese (ja)
Inventor
Yoshihiro Yoshihara
義弘 葭原
Tatsuya Sato
達弥 佐藤
Kei Fukaishi
圭 深石
Satoshi Nakamura
智 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arisawa Mfg Co Ltd
Original Assignee
Arisawa Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arisawa Mfg Co Ltd filed Critical Arisawa Mfg Co Ltd
Priority to JP2004210653A priority Critical patent/JP2005049865A/en
Publication of JP2005049865A publication Critical patent/JP2005049865A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an optical phase difference element which has a liquid crystal layer of high definition alignment pattern, is light in weight, has flexibility and has excellent practicality. <P>SOLUTION: The manufacturing method of the optical phase difference element is provided with following processes. An alignment layer 2 consisting of a polymer layer which desirably aligns molecules by the irradiation of polarized light is disposed on a first support material 1, the alignment layer 2 is irradiated with polarized light and, thereby, the alignment pattern of the alignment layer 2 is made to be an alignment pattern having a different slow axis direction or an alignment pattern having a different fast axis direction. Subsequently, a photopolymerizable liquid crystal monomer layer 3 is disposed on the alignment layer 2, the liquid crystal monomer layer 3 is heated to a predetermined temperature and liquid crystal in the liquid crystal monomer layer 3 is aligned so as to correspond to molecular alignment of the alignment layer 2. Further, the liquid crystal monomer layer 3 is irradiated with light, the liquid crystal monomer layer 3 is polymerized, the alignment of the liquid crystal is fixed, thereby, the liquid crystal polymer layer 3 is formed, a film-like or sheet-like second support material 5 is disposed on the liquid crystal polymer layer 3 via an adhesive layer 4 or a sticky layer 4 and, further, the first support material 1 is stripped from the alignment layer 2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光学位相差素子の製造方法に関するものである。   The present invention relates to a method for manufacturing an optical phase difference element.

従来、光学位相差素子は、ガラス等の支持材に、所定の方法により分子を配向させた配向層を設け、続いて、この配向層に液晶層を設け、この液晶層を加熱して該液晶層の液晶を前記配向層の分子配向に対応させて配向せしめ、続いて、この液晶層に紫外線を照射して該液晶層の液晶配向を固定せしめることで製造される。   Conventionally, in an optical retardation element, an alignment layer in which molecules are aligned by a predetermined method is provided on a support material such as glass, followed by providing a liquid crystal layer on the alignment layer, and heating the liquid crystal layer to It is manufactured by aligning the liquid crystal of the layer corresponding to the molecular alignment of the alignment layer, and subsequently irradiating the liquid crystal layer with ultraviolet rays to fix the liquid crystal alignment of the liquid crystal layer.

ところで、一般にこの液晶層の液晶を所望のパターンに配向せしめるための配向層の配向パターンの分子配向は、物理的な方法により作出される。   By the way, in general, the molecular alignment of the alignment pattern of the alignment layer for aligning the liquid crystal of the liquid crystal layer in a desired pattern is created by a physical method.

配向層の分子を物理的に配向せしめる方法としては、ポリビニルアルコールやポリカーボネートなどに代表されるプラスチック基材やシートなどの高分子基材を、一軸方向に延伸することで該基材内の分子を一軸方向に配向させる方法、また、ラビング処理されたポリイミド基材に、光重合性の液晶モノマーを設け、該液晶モノマー層に紫外線を照射することで該液晶モノマー層を重合させると共に、該液晶モノマー層の液晶をポリイミド基材の表面に対応した配向状態に配向させる方法がある。   As a method of physically aligning the molecules of the alignment layer, a polymer substrate such as a polyvinyl alcohol or a polycarbonate, or a polymer substrate such as a sheet is stretched in a uniaxial direction so that the molecules in the substrate are aligned. A method of aligning in a uniaxial direction, a photopolymerizable liquid crystal monomer is provided on a rubbed polyimide substrate, and the liquid crystal monomer layer is polymerized by irradiating the liquid crystal monomer layer with ultraviolet rays, and the liquid crystal monomer There is a method of aligning the liquid crystal of the layer in an alignment state corresponding to the surface of the polyimide substrate.

しかし、この配向層となるプラスチック基材に液晶を配向させる手段としての延伸処理若しくはラビング処理は、配向層の全ての領域において一律な処理のため、一定の遅相軸方向若しくは進相軸方向のみの分子配向しか得られない。   However, the stretching process or rubbing process as a means for aligning the liquid crystal on the plastic substrate that becomes the alignment layer is a uniform process in all regions of the alignment layer, and therefore only in a certain slow axis direction or fast axis direction. Only the molecular orientation can be obtained.

従って、必然的に液晶の配向も一定の遅相軸方向若しくは進相軸方向の配向となってしまう。   Accordingly, the alignment of the liquid crystal is necessarily in a certain slow axis direction or fast axis direction.

よって、遅相軸方向の異なる領域若しくは進相軸方向の異なる領域同志を隣接させ、ある一定の幅を有するさまざまな配向パターンを形成するのは非常に困難である。   Therefore, it is very difficult to form various alignment patterns having a certain width by adjoining regions having different slow axis directions or regions having different fast axis directions.

一方、配向層の分子を光学的に配向せしめる方法としては、偏光により配向可能な高分子層を偏光で露光して配向させ、その高分子層に光重合性の液晶モノマー層を設け、該液晶モノマー層に紫外線を照射することで該液晶モノマー層を重合させると共に、該液晶モノマー層の液晶を高分子層の配向に対応したパターンに配向固定させる方法がある。   On the other hand, as a method of optically aligning the molecules of the alignment layer, a polymer layer that can be aligned by polarized light is exposed and aligned with polarized light, a photopolymerizable liquid crystal monomer layer is provided on the polymer layer, and the liquid crystal There is a method in which the liquid crystal monomer layer is polymerized by irradiating the monomer layer with ultraviolet rays, and the liquid crystal of the liquid crystal monomer layer is aligned and fixed in a pattern corresponding to the alignment of the polymer layer.

この方法では、例えば、マスクを配向層に被覆して(直線偏光)紫外線を照射することで、所望の部分に所望の配向パターンを有する配向層が形成でき、よって、液晶ポリマー層も同様に所望の部分に所望の配向パターンを有するものとなる。   In this method, for example, an alignment layer having a desired alignment pattern can be formed at a desired portion by covering the alignment layer with an alignment layer (linearly polarized light) and irradiating ultraviolet rays, and thus a liquid crystal polymer layer is also desired. It has a desired orientation pattern in this part.

しかしながら、配向層が積層される支持材として、一般的にTACフィルム等の合成樹脂製フィルムなどが採用された場合、成形温度,溶剤などの影響を受けて配向層の収縮,膨潤が生じ、形成された配向パターンの精度などが悪くなり、結局、高精細な配向パターンを有する液晶層の形成は困難である。   However, when a synthetic resin film such as a TAC film is generally used as the support material on which the alignment layer is laminated, the alignment layer shrinks and swells due to the influence of molding temperature, solvent, etc. As a result, the accuracy of the alignment pattern is deteriorated, and eventually, it is difficult to form a liquid crystal layer having a high-definition alignment pattern.

この際、支持材として熱、溶剤などの影響を受けないガラスを採用すれば、上述のような問題点は生ぜず、高精細な配向パターンを形成することができるが、ガラスを支持材として採用すると、破損のおそれは避けられず、特に大型の場合にはその重さ・厚さから扱いにくく極めて汎用性に劣る。   At this time, if glass that is not affected by heat, solvent, etc. is used as the support material, the above-mentioned problems do not occur and a high-definition alignment pattern can be formed, but glass is used as the support material. Then, the possibility of breakage is unavoidable, and in particular in the case of a large size, it is difficult to handle due to its weight and thickness and is extremely inferior in versatility.

本発明は、上述のような問題点を解決したもので、高精細な配向パターンの液晶層を有し、且つ、軽量で柔軟性を有する極めて実用性に秀れた光学位相差素子の製造方法を提供するものである。   The present invention solves the problems as described above, and has a liquid crystal layer with a high-definition alignment pattern, and is a lightweight and flexible method for producing an optical retardation element that is extremely practical. Is to provide.

添付図面を参照して本発明の要旨を説明する。   The gist of the present invention will be described with reference to the accompanying drawings.

第一支持材1に、偏光を照射することで分子が所定の配向をする高分子層から成る配向層2を設け、続いて、この配向層2に偏光を照射して該配向層2の配向パターンが、隣接領域において、遅相軸方向が異なる配向パターン若しくは進相軸方向が異なる配向パターンとし、続いて、この配向層2に光重合性の液晶モノマー層3を設け、続いて、該液晶モノマー層3を所定の温度に加熱して該液晶モノマー層3の液晶を前記配向層2の分子配向に対応した配向とし、続いて、この液晶モノマー層3に光を照射して該液晶モノマー層3を重合せしめると共に、液晶の配向を固定させて液晶ポリマー層3とし、続いて、この液晶ポリマー層3に接着層4若しくは粘着層4を介してフィルム状若しくはシート状の第二支持材5を設け、続いて、前記第一支持材1を前記配向層2から剥離せしめることを特徴とする光学位相差素子の製造方法に係るものである。   The first support material 1 is provided with an alignment layer 2 composed of a polymer layer in which molecules are oriented in a predetermined direction by irradiating polarized light. Subsequently, the alignment layer 2 is irradiated with polarized light to align the alignment layer 2. In the adjacent region, the pattern is an alignment pattern having a different slow axis direction or an alignment pattern having a different fast axis direction. Subsequently, a photopolymerizable liquid crystal monomer layer 3 is provided on the alignment layer 2, and then the liquid crystal The monomer layer 3 is heated to a predetermined temperature to change the liquid crystal of the liquid crystal monomer layer 3 to an orientation corresponding to the molecular orientation of the orientation layer 2, and then the liquid crystal monomer layer 3 is irradiated with light to cause the liquid crystal monomer layer 3 to emit light. 3, and the orientation of the liquid crystal is fixed to form a liquid crystal polymer layer 3. Subsequently, a second support 5 in the form of a film or sheet is formed on the liquid crystal polymer layer 3 via the adhesive layer 4 or the adhesive layer 4. Followed by said Those relating to the manufacturing method of the optical retardation element, characterized in that allowed to peel the first support member 1 from the alignment layer 2.

また、請求項1記載の光学位相差素子の製造方法において、第二支持材5を設けた後、第一支持材1及び配向層2を液晶ポリマー層3から剥離せしめることを特徴とする光学位相差素子の製造方法に係るものである。   The optical phase difference element manufacturing method according to claim 1, wherein the first support material 1 and the alignment layer 2 are separated from the liquid crystal polymer layer 3 after the second support material 5 is provided. The present invention relates to a method for manufacturing a phase difference element.

また、請求項1,2いずれか1項に記載の光学位相差素子の製造方法において、第一支持材1として、平板状の基材を採用したことを特徴とする光学位相差素子の製造方法に係るものである。   The method for manufacturing an optical phase difference element according to any one of claims 1 and 2, wherein a flat substrate is employed as the first support material 1. It is related to.

また、請求項1〜3いずれか1項に記載の光学位相差素子の製造方法において、第二支持材5として、複屈折が30nm以下のプラスチック製のフィルムが採用されていることを特徴とする光学位相差素子の製造方法に係るものである。   Moreover, in the manufacturing method of the optical phase difference element of any one of Claims 1-3, the film made from a plastic whose birefringence is 30 nm or less is employ | adopted as the 2nd support material 5. The present invention relates to a method for manufacturing an optical phase difference element.

また、請求項1〜4いずれか1項に記載の光学位相差素子の製造方法において、液晶モノマー層3として、光重合架橋型の液晶モノマー層3が採用されていることを特徴とする光学位相差素子の製造方法に係るものである。   Further, in the method for producing an optical phase difference element according to any one of claims 1 to 4, an optical position in which a photopolymerization cross-linked liquid crystal monomer layer 3 is employed as the liquid crystal monomer layer 3. The present invention relates to a method for manufacturing a phase difference element.

また、請求項5記載の光学位相差素子の製造方法において、液晶モノマー層3に紫外線が照射されることで架橋した液晶ポリマー層3の配向パターンが、隣接領域において、遅相軸方向が異なる配向パターン若しくは進相軸方向が異なる配向パターンに設定されていることを特徴とする光学位相差素子の製造方法に係るものである。   6. The method of manufacturing an optical phase difference element according to claim 5, wherein the alignment pattern of the liquid crystal polymer layer 3 crosslinked by irradiating the liquid crystal monomer layer 3 with ultraviolet rays has different slow axis directions in adjacent regions. The present invention relates to a method for manufacturing an optical phase difference element, wherein the alignment pattern is different in pattern or fast axis direction.

また、請求項1〜6いずれか1項に記載の光学位相差素子の製造方法において、アクリル系若しくはゴム系の粘着材から成る粘着層4、又は、アクリル系若しくはウレタン系の接着材から成る接着層4が採用されていることを特徴とする光学位相差素子の製造方法に係るものである。   The method for manufacturing an optical retardation element according to any one of claims 1 to 6, wherein the adhesive layer 4 is made of an acrylic or rubber-based adhesive material, or the adhesive is made of an acrylic or urethane adhesive material. The present invention relates to a method for manufacturing an optical phase difference element, wherein the layer 4 is employed.

また、第一支持材1に、偏光を照射することで分子が所定の配向をする高分子層から成る配向層2を設け、続いて、この配向層2に偏光を照射して該配向層2の配向パターンが、隣接領域において、遅相軸方向が異なる配向パターン若しくは進相軸方向が異なる配向パターンとし、続いて、この配向層2に光重合性の液晶モノマー層3を設け、続いて、該液晶モノマー層3を所定の温度に加熱して該液晶モノマー層3の液晶を前記配向層2の分子配向に対応した配向とし、続いて、この液晶モノマー層3に光を照射して該液晶モノマー層3を重合せしめると共に、液晶の配向を固定させて液晶ポリマー層3とし、続いて、この液晶ポリマー層3に接着層4若しくは粘着層4を介してフィルム状若しくはシート状の第二支持材5を設け、続いて、前記第一支持材1を前記配向層2から剥離した後、この配向層2の表面に、該配向層2の保護層若しくは反射防止層を設けることを特徴とする光学位相差素子の製造方法に係るものである。   In addition, the first support material 1 is provided with an alignment layer 2 composed of a polymer layer in which molecules are aligned in a predetermined direction by irradiating polarized light, and subsequently, the alignment layer 2 is irradiated with polarized light to provide the alignment layer 2. In the adjacent region, the alignment pattern is an alignment pattern having a different slow axis direction or an alignment pattern having a different fast axis direction. Subsequently, the alignment layer 2 is provided with a photopolymerizable liquid crystal monomer layer 3, The liquid crystal monomer layer 3 is heated to a predetermined temperature to change the liquid crystal of the liquid crystal monomer layer 3 to an orientation corresponding to the molecular orientation of the orientation layer 2, and then the liquid crystal monomer layer 3 is irradiated with light to emit the liquid crystal. The monomer layer 3 is polymerized and the orientation of the liquid crystal is fixed to form the liquid crystal polymer layer 3. Subsequently, the film-like or sheet-like second support material is bonded to the liquid crystal polymer layer 3 via the adhesive layer 4 or the adhesive layer 4. 5 followed by In the method of manufacturing an optical retardation element, the first support material 1 is peeled from the alignment layer 2 and then a protective layer or an antireflection layer for the alignment layer 2 is provided on the surface of the alignment layer 2. It is related.

また、第一支持材1に、偏光を照射することで分子が所定の配向をする高分子層から成る配向層2を設け、続いて、この配向層2に偏光を照射して該配向層2の配向パターンが、隣接領域において、遅相軸方向が異なる配向パターン若しくは進相軸方向が異なる配向パターンとし、続いて、この配向層2に光を照射して該配向層2の分子を所定配向とし、続いて、この配向層2に光重合性の液晶モノマー層3を設け、続いて、該液晶モノマー層3を所定の温度に加熱して該液晶モノマー層3の液晶を前記配向層2の分子配向に対応した配向とし、続いて、この液晶モノマー層3に光を照射して該液晶モノマー層3を重合せしめると共に、液晶の配向を固定させて液晶ポリマー層3とし、続いて、この液晶ポリマー層3に接着層4若しくは粘着層4を介してフィルム状若しくはシート状の第二支持材5を設け、続いて、第一支持材1及び配向層2を液晶ポリマー層3から剥離した後、この液晶ポリマー層3の表面に、該液晶ポリマー層3の保護層若しくは反射防止層を設けることを特徴とする光学位相差素子の製造方法に係るものである。   In addition, the first support material 1 is provided with an alignment layer 2 composed of a polymer layer in which molecules are aligned in a predetermined direction by irradiating polarized light, and subsequently, the alignment layer 2 is irradiated with polarized light to provide the alignment layer 2. In the adjacent region, the alignment pattern is an alignment pattern having a different slow axis direction or an alignment pattern having a different fast axis direction. Subsequently, the alignment layer 2 is irradiated with light to align the molecules of the alignment layer 2 in a predetermined orientation. Subsequently, the alignment layer 2 is provided with a photopolymerizable liquid crystal monomer layer 3, and then the liquid crystal monomer layer 3 is heated to a predetermined temperature so that the liquid crystal of the liquid crystal monomer layer 3 is converted into the alignment layer 2. The liquid crystal monomer layer 3 is irradiated with light to polymerize the liquid crystal monomer layer 3, and the liquid crystal monomer layer 3 is fixed and the liquid crystal polymer layer 3 is fixed. Adhesive layer 4 or adhesive on polymer layer 3 4, a film-like or sheet-like second support material 5 is provided, and then, after the first support material 1 and the alignment layer 2 are peeled from the liquid crystal polymer layer 3, the surface of the liquid crystal polymer layer 3 The present invention relates to a method for producing an optical phase difference element, wherein a protective layer or an antireflection layer for the liquid crystal polymer layer 3 is provided.

本発明は上述のようにするから、高精細な配向パターンの液晶層を有し、且つ、軽量で柔軟性を有する極めて実用性に秀れた光学位相差素子の製造方法となる。   Since the present invention is as described above, it is a method for producing an optical phase difference element that has a liquid crystal layer with a high-definition alignment pattern, is lightweight and flexible, and is extremely practical.

好適と考える本発明の実施形態を、図面に基づいて本発明の作用を示して簡単に説明する。   An embodiment of the present invention which is considered to be suitable will be briefly described with reference to the drawings showing the operation of the present invention.

第一支持材1上に配向層2を設け、高精細な配向パターン(隣接領域において遅相軸方向が異なる配向パターン若しくは進相軸方向が異なる配向パターン)を有する液晶ポリマー層3を形成した後に、この液晶ポリマー層3に接着層4若しくは粘着層4を介してフィルム状若しくはシート状の第二支持材5を設け、前記第一支持材1を剥離するから、得られる光学位相差素子は、高精細な配向パターンの液晶ポリマー層3を有し、且つ、軽量で柔軟性を有するものとなる。   After providing the alignment layer 2 on the first support material 1 and forming the liquid crystal polymer layer 3 having a high-definition alignment pattern (an alignment pattern having a different slow axis direction or an alignment pattern having a different fast axis direction in an adjacent region). Since the liquid crystal polymer layer 3 is provided with a film-like or sheet-like second support material 5 via the adhesive layer 4 or the adhesive layer 4, and the first support material 1 is peeled off, the obtained optical retardation element is It has the liquid crystal polymer layer 3 with a high-definition alignment pattern, and is lightweight and flexible.

本発明の具体的な実施例を図面に基づいて説明する。   Specific embodiments of the present invention will be described with reference to the drawings.

本実施例は、第一支持材1に、偏光を照射することで分子が所定の配向をする高分子層から成る配向層2を設け、続いて、この配向層2に偏光を照射して該配向層2の配向パターンが、隣接領域において、遅相軸方向が異なる配向パターン若しくは進相軸方向が異なる配向パターンとし、続いて、この配向層2に光重合性の液晶モノマー層3を設け、続いて、該液晶モノマー層3を所定の温度に加熱して該液晶モノマー層3の液晶を前記配向層2の分子配向に対応した配向とし、続いて、この液晶モノマー層3に光を照射して該液晶モノマー層3を重合せしめると共に、液晶の配向を固定させて液晶ポリマー層3とし、続いて、この液晶ポリマー層3に接着層4若しくは粘着層4を介してフィルム状若しくはシート状の第二支持材5を設け、続いて、前記第一支持材1及び前記配向層2を液晶ポリマー層3から剥離せしめるものである。   In this embodiment, the first support material 1 is provided with an alignment layer 2 composed of a polymer layer in which molecules are oriented in a predetermined direction by irradiating polarized light. In the adjacent region, the alignment pattern of the alignment layer 2 is an alignment pattern having a different slow axis direction or an alignment pattern having a different fast axis direction. Subsequently, a photopolymerizable liquid crystal monomer layer 3 is provided on the alignment layer 2. Subsequently, the liquid crystal monomer layer 3 is heated to a predetermined temperature so that the liquid crystal of the liquid crystal monomer layer 3 has an orientation corresponding to the molecular orientation of the orientation layer 2, and then the liquid crystal monomer layer 3 is irradiated with light. The liquid crystal monomer layer 3 is polymerized, and the orientation of the liquid crystal is fixed to form the liquid crystal polymer layer 3. Subsequently, the liquid crystal polymer layer 3 is bonded to the liquid crystal polymer layer 3 via the adhesive layer 4 or the adhesive layer 4. Two support materials 5 are provided, There are, the first support member 1 and the alignment layer 2 are those allowed to peeling from the liquid crystal polymer layer 3.

第一支持材1としては、液晶層3を加熱する際の熱及び溶剤による影響を可及的に受けにくい平板状の基材が採用されている。具体的には、ガラスやセラミックス等の無機材料が採用される。本実施例においては、ソーダライムガラス板(及びノンアルカリガラス板)が採用されている。   As the first support material 1, a plate-like base material that is less susceptible to the influence of heat and solvent when the liquid crystal layer 3 is heated is employed. Specifically, inorganic materials such as glass and ceramics are employed. In this embodiment, a soda lime glass plate (and a non-alkali glass plate) is employed.

この第一支持材1に、高分子層から成る配向層2を形成する。この高分子層は、偏光が照射されることで分子が配向する機能を有する高分子層であれば良く、例えばシンナモイル基,クマリン基,カルコン基,ベンゾフェノン基等の官能基を有し、光二量化反応によって網目構造を形成するポリマーが採用される。   An alignment layer 2 made of a polymer layer is formed on the first support material 1. The polymer layer may be a polymer layer having a function of aligning molecules when irradiated with polarized light. For example, the polymer layer has a functional group such as a cinnamoyl group, a coumarin group, a chalcone group, and a benzophenone group, and is photodimerized. A polymer that forms a network structure by reaction is employed.

この配向層2にマスクを設け、所望の部位にのみ偏光(例えば、直線偏光紫外線)を照射する。これを繰り返して高分子層を所望の分子配向とする。本実施例においては、高分子層の分子配向を、遅相軸方向の異なる領域同士が夫々隣接する分子配向に設定している。   The alignment layer 2 is provided with a mask, and polarized light (for example, linearly polarized ultraviolet light) is irradiated only on a desired portion. This is repeated so that the polymer layer has a desired molecular orientation. In this embodiment, the molecular orientation of the polymer layer is set to a molecular orientation in which regions having different slow axis directions are adjacent to each other.

続いて、この配向層2に液晶モノマー層3を形成する(図1(a)参照)。この液晶モノマー層3としては、一般的な光重合架橋型の液晶モノマー等を採用すると良い。   Subsequently, a liquid crystal monomer layer 3 is formed on the alignment layer 2 (see FIG. 1A). As the liquid crystal monomer layer 3, a general photopolymerization crosslinking liquid crystal monomer or the like may be employed.

この液晶モノマー層3を加熱することで、この液晶モノマー層3は、前記高分子層に形成した分子配向と同様の配向パターンとなる。具体的には、この液晶モノマー層3は高分子層と同様、遅相軸方向の異なる領域同士が夫々隣接する液晶配向となる。   By heating the liquid crystal monomer layer 3, the liquid crystal monomer layer 3 has an alignment pattern similar to the molecular alignment formed in the polymer layer. Specifically, like the polymer layer, the liquid crystal monomer layer 3 has a liquid crystal orientation in which regions having different slow axis directions are adjacent to each other.

続いて、この液晶モノマー層3に光(紫外線)を照射して該液晶モノマー層3を重合せしめると共に、液晶の配向が固定された液晶ポリマー層3とする。   Subsequently, the liquid crystal monomer layer 3 is irradiated with light (ultraviolet rays) to polymerize the liquid crystal monomer layer 3, and the liquid crystal polymer layer 3 in which the alignment of the liquid crystal is fixed is obtained.

続いて、この液晶ポリマー層3に、耐候性に秀れたアクリル系若しくはウレタン系の接着材から成る接着層4、又は、アクリル系若しくはゴム系の粘着材から成る粘着層4を介して、フィルム状の第二支持材5を設ける(図1(b)参照)。具体的には、アクリル系接着材の硬化剤は、脂肪族イソシアネート系,金属キレート系,エポキシ系,アジリジン系が用いられ、ウレタン系接着材の硬化剤には、脂肪族ジオール系などが用いられる。また、両接着材の主剤としては、酢酸ビニル,スチレンやベンゼン環を構造に持たない主剤などが用いられる。   Subsequently, a film is formed on the liquid crystal polymer layer 3 via an adhesive layer 4 made of an acrylic or urethane adhesive material having excellent weather resistance, or an adhesive layer 4 made of an acrylic or rubber adhesive material. A second support member 5 is provided (see FIG. 1B). Specifically, aliphatic isocyanate-based, metal chelate-based, epoxy-based, and aziridine-based curing agents are used for acrylic adhesives, and aliphatic diol-based curing agents are used for urethane-based adhesive curing agents. . Also, as the main agent of both adhesives, a main agent having no structure with vinyl acetate, styrene or benzene ring is used.

本実施例においては、アクリル系の接着材から成る接着層4を塗布した第二支持材5を前記液晶ポリマー層3に設ける。   In this embodiment, the liquid crystal polymer layer 3 is provided with a second support material 5 coated with an adhesive layer 4 made of an acrylic adhesive material.

尚、本実施例においては接着層4を塗布した第二支持材5を液晶ポリマー層3に設けているが、この第二支持材5を配向層2に設けても良い。   In this embodiment, the second support material 5 coated with the adhesive layer 4 is provided on the liquid crystal polymer layer 3, but the second support material 5 may be provided on the alignment layer 2.

また、接着層4若しくは粘着層4を設ける方法として、配向層2若しくは液晶ポリマー層3上に接着材若しくは粘着材を塗布して第二支持材5を貼合する方法を採用しても良い。   Moreover, as a method of providing the adhesive layer 4 or the adhesive layer 4, a method of applying an adhesive material or an adhesive material on the alignment layer 2 or the liquid crystal polymer layer 3 and bonding the second support material 5 may be employed.

第二支持材5としては、第一支持材1を配向層2から良好に剥離するために、厚さ500μm以下のフィルム(若しくはシート)を採用するのが望ましい。500μm以上の厚いものであると、柔軟性がなく良好に剥離することが困難となる。   As the second support material 5, it is desirable to employ a film (or sheet) having a thickness of 500 μm or less in order to favorably peel the first support material 1 from the alignment layer 2. When the thickness is 500 μm or more, there is no flexibility and it is difficult to peel off well.

また、この第二支持材5は、複屈折が30nm以下(好ましくは20nm以下)の光学用透明プラスチック基材、例えばトリアセチルセルロース(TAC),シクロオレフィン系樹脂,ノルボルネン系樹脂等を採用するのが好ましい。本実施例においては、公知のTACフィルム(複屈折は20nm以下)が採用されている。   The second support material 5 is made of an optically transparent plastic base material having a birefringence of 30 nm or less (preferably 20 nm or less), such as triacetyl cellulose (TAC), cycloolefin resin, norbornene resin, or the like. Is preferred. In this embodiment, a known TAC film (birefringence is 20 nm or less) is employed.

尚、第二支持材5の複屈折が30nm以上の場合、光学軸や偏光軸が保持されなかったり、液晶ポリマー層で出した本来必要な位相差を乱したりするため好ましくない。   In addition, when the birefringence of the 2nd support material 5 is 30 nm or more, since an optical axis and a polarization axis are not hold | maintained or the originally required phase difference emitted by the liquid crystal polymer layer is disturbed, it is unpreferable.

また、この第二支持材5として、反射防止機能を有する反射防止フィルム若しくは偏光特性を有する偏光シートを採用しても良く、この場合には、一層良好な光学特性を発揮できる第二支持材5となる。   Moreover, you may employ | adopt the antireflection film which has an antireflection function, or the polarizing sheet which has a polarization characteristic as this 2nd support material 5, In this case, the 2nd support material 5 which can exhibit a more favorable optical characteristic. It becomes.

また、上述の配向層2,液晶ポリマー層3及び第二支持材5の線膨張率は、可及的に近い方が好ましい。上記各部材の線膨張率が異なる場合、所定の熱が加わると光学軸がずれてしまい、結果的に精度の良い光学位相差素子が得られなくなる。   The linear expansion coefficients of the alignment layer 2, the liquid crystal polymer layer 3, and the second support material 5 are preferably as close as possible. When the linear expansion coefficients of the respective members are different, the optical axis is shifted when predetermined heat is applied, and as a result, an accurate optical phase difference element cannot be obtained.

従って、配向層2,液晶ポリマー層3及び第二支持材5としては、線膨張率が略同一、具体的には、第二支持材5の線膨張率と配向層2及び液晶ポリマー層3の線膨張率との差が10-2-1以内となるものが夫々採用されている。また、接着層4も同様に第二支持材5との線膨張率の差が10-2-1以内となるものが採用されている。 Therefore, the alignment layer 2, the liquid crystal polymer layer 3 and the second support material 5 have substantially the same linear expansion coefficient. Specifically, the linear expansion coefficient of the second support material 5 and the alignment layer 2 and the liquid crystal polymer layer 3 Those having a difference from the coefficient of linear expansion within 10 −2 K −1 are employed. Similarly, the adhesive layer 4 has a difference in linear expansion coefficient with the second support material 5 within 10 −2 K −1 .

続いて、前記配向層2から第一支持材1を剥離する(図1(c)参照)。この際、ソーダライムガラス板と高分子層との付着力(密着力)を予め弱く設定しておくことで、剥離は良好に行うことができる。   Then, the 1st support material 1 is peeled from the said orientation layer 2 (refer FIG.1 (c)). Under the present circumstances, peeling can be performed favorably by setting weakly the adhesive force (adhesion force) of a soda-lime glass plate and a polymer layer beforehand.

以上のようにして、フィルム状の光学位相差素子が得られる。本実施例により製造された光学位相差素子は、第二支持材5/接着層4/液晶ポリマー層3/配向層2から成る構成となり、この配向層2により、従来最表面にあった液晶ポリマー層3を良好に保護することが可能となる。   As described above, a film-like optical retardation element is obtained. The optical retardation element manufactured according to the present example has a configuration composed of the second support material 5 / adhesive layer 4 / liquid crystal polymer layer 3 / alignment layer 2. By this alignment layer 2, the liquid crystal polymer that has been on the outermost surface in the past is formed. It becomes possible to protect the layer 3 well.

また、この場合、前記配向層2が液晶ポリマー層3を保護する保護層となるが、この配向層2は薄いため、より良好にこの液晶ポリマー層3を保護するためにこの配向層2の表面に保護層を設けても良い。   In this case, the alignment layer 2 serves as a protective layer for protecting the liquid crystal polymer layer 3, but since the alignment layer 2 is thin, the surface of the alignment layer 2 is better protected to protect the liquid crystal polymer layer 3. A protective layer may be provided.

保護層としては、ヘイズ,位相差,透過率,光学軸に影響しないものであればどのようなものを用いても良く、具体的には、例えばTAC等のフィルムやシリカ等のスペーサーを用いることができる。   Any protective layer may be used as long as it does not affect haze, retardation, transmittance, and optical axis. Specifically, for example, a film such as TAC or a spacer such as silica is used. Can do.

更に、この配向層2の表面に反射防止層を設けても良く、この場合には、一層良好な光学特性を発揮できる。   Furthermore, an antireflection layer may be provided on the surface of the alignment layer 2, and in this case, even better optical characteristics can be exhibited.

反射防止層としては、一般的な反射防止剤を用いることができ、具体的には、フッ素系樹脂組成物を用いることができる。   As the antireflection layer, a general antireflection agent can be used, and specifically, a fluorine-based resin composition can be used.

尚、第一支持材1と共に、配向層2を前記液晶ポリマー層3から剥離せしめ、更に、この液晶ポリマー層3の表面に、前記液晶ポリマー層3の保護層若しくは反射防止層を設けても良い。   The alignment layer 2 may be peeled off from the liquid crystal polymer layer 3 together with the first support material 1, and a protective layer or an antireflection layer for the liquid crystal polymer layer 3 may be provided on the surface of the liquid crystal polymer layer 3. .

また、保護層若しくは反射防止層を配向層2若しくは液晶ポリマー層3に設けることにより、本実施例に係る光学位相差素子を用いて例えば立体表示装置やLCDモニタ等を作製した際、対向する光学部材との接触によって生じるブロッキング現象を低減することができる。   In addition, when a protective layer or an antireflection layer is provided on the alignment layer 2 or the liquid crystal polymer layer 3, for example, when a stereoscopic display device, an LCD monitor, or the like is manufactured using the optical phase difference element according to the present embodiment, A blocking phenomenon caused by contact with a member can be reduced.

本実施例は上述のようにしたから、高精細な配向パターンを有する液晶ポリマー層3を形成した後に、フィルム状若しくはシート状の第二支持材5を設けるから、得られる光学位相差素子は、高精細な配向パターンの液晶ポリマー層3を有し、且つ、軽量で柔軟性を有するものとなる。   Since the present embodiment is as described above, the film-shaped or sheet-shaped second support material 5 is provided after the liquid crystal polymer layer 3 having a high-definition alignment pattern is formed. It has the liquid crystal polymer layer 3 with a high-definition alignment pattern, and is lightweight and flexible.

従って、本実施例によれば、ガラスを支持材としない軽量・薄型の光学位相差基材を得ることができる。   Therefore, according to the present Example, the lightweight and thin optical phase difference base material which does not use glass as a support material can be obtained.

更に、ガラスを支持材とした場合と異なり、破損することがほとんどなく、近年重要視されている製造物責任法に即したものといえる。   Further, unlike the case of using glass as a support material, the glass is hardly damaged, and can be said to be in accordance with the product liability law which has been regarded as important in recent years.

加えて、高精細なパターニングを有する光学位相差素子を提供することが可能となる。   In addition, it is possible to provide an optical phase difference element having high-definition patterning.

従って、本実施例は、高精細な配向パターンを形成でき、且つ、軽量で薄型のフィルム状の極めて実用性及び安全性に秀れた光学位相差素子を提供できることとなる。   Therefore, the present embodiment can provide an optical phase difference element that can form a high-definition alignment pattern and is extremely practical and safe in the form of a light and thin film.

このようにして製造した光学位相差素子(フィルム)を用いて、立体表示装置やLCDモニタ等を軽量・薄型に形成することが可能となり、また、製作作業も一層容易となる。   By using the optical retardation element (film) manufactured in this way, it becomes possible to form a stereoscopic display device, an LCD monitor, etc. in a light weight and thin shape, and the manufacturing work is further facilitated.

以下、本実施例の実験例について説明する。   Hereinafter, experimental examples of this example will be described.

第一実験例
一般的な汎用有機溶剤(例えばメチルエチルケトン等)に溶解した10%(重量)以下高分子溶液を0.7tソーダライムガラス板(以下、「支持体」という。)の上に回転数500〜1500rpmでスピンコーティングし、高分子層を形成した。
First Experimental Example A 10% (weight) or less polymer solution dissolved in a general general-purpose organic solvent (for example, methyl ethyl ketone) is rotated on a 0.7 t soda lime glass plate (hereinafter referred to as “support”). The polymer layer was formed by spin coating at 500-1500 rpm.

この高分子層が形成された支持体を、ホットプレートにより150℃〜180℃で約10分乾燥後、石英ガラス上に任意にクロムパターニングされているマスクを支持体の高分子層面上に配置し、その上から直線偏光UVを照射した。   The support on which this polymer layer is formed is dried for about 10 minutes at 150 ° C. to 180 ° C. with a hot plate, and then a mask arbitrarily patterned with chromium on quartz glass is placed on the polymer layer surface of the support. Then, linearly polarized UV was irradiated from above.

その後マスクを外し、再度その支持体に1回目の照射と異なる偏光方向の直線偏光UVを照射した。   Thereafter, the mask was removed, and the support was again irradiated with linearly polarized UV having a polarization direction different from that of the first irradiation.

次に支持体の高分子層面に適宜な溶媒に溶解した50%(重量)以下液晶モノマー溶液を回転数300〜1500rpmでスピンコーティングした。   Next, a 50% (weight) or less liquid crystal monomer solution dissolved in an appropriate solvent was spin-coated on the surface of the polymer layer of the support at a rotational speed of 300 to 1500 rpm.

この高分子層に液晶モノマー溶液がコーティングされた支持体を、ホットプレートにより40℃〜50℃の雰囲気下で約2分保持し液晶モノマーを配向させ、この層を(酸素濃度1%以下の雰囲気下に曝しながら)6KWメタルハライドランプにより500〜2000mJ/cm2照射し、架橋させた。 The support in which the polymer layer is coated on the polymer layer is held for about 2 minutes in an atmosphere of 40 ° C. to 50 ° C. by a hot plate to align the liquid crystal monomer, and this layer is placed in an atmosphere having an oxygen concentration of 1% or less. The mixture was irradiated with 500-2000 mJ / cm 2 with a 6 KW metal halide lamp (under exposure).

この架橋層は下の高分子層に対応するように配向した。この架橋した液晶モノマー層(以下、LCP層という。)面と片面に粘着剤が付与されているAR付きTACフィルムの粘着面とを圧力0.3MPa、スピード0.4m/minでラミネートし貼り合わせ、[ガラス板(支持体)/高分子層/LCP層/粘着剤層/AR付きTACフィルム]とした後、支持体を剥離し、[高分子層/LCP層/粘着剤層/AR付きTACフィルム]が得られた。AR付きTACフィルムは複屈折が20nm以下(王子計測機器製 KOBRA−21ADH 低レタデーション測定結果)であり、必要とする光学位相差素子機能を保持することが確認できた。   This cross-linked layer was oriented to correspond to the underlying polymer layer. The cross-linked liquid crystal monomer layer (hereinafter referred to as LCP layer) surface and the adhesive surface of the TAC film with AR having an adhesive applied on one surface are laminated and bonded at a pressure of 0.3 MPa and a speed of 0.4 m / min. , [Glass plate (support) / polymer layer / LCP layer / adhesive layer / AR-attached TAC film], and then peeled off the support, [polymer layer / LCP layer / adhesive layer / TAC-attached TAC Film] was obtained. The TAC film with AR had birefringence of 20 nm or less (KOBRA-21ADH low retardation measurement result, manufactured by Oji Scientific Instruments), and it was confirmed that the required optical phase difference element function was retained.

第二実験例
一般的な汎用有機溶剤(例えばメチルエチルケトン等)に溶解した10%(重量)以下高分子溶液を0.7tノンアルカリガラス板(以下、「支持体」という。)の上に回転数500〜1500rpmでスピンコーティングし、高分子層を形成した。
Second Experimental Example A 10% (weight) or less polymer solution dissolved in a general general-purpose organic solvent (such as methyl ethyl ketone) is rotated on a 0.7 t non-alkali glass plate (hereinafter referred to as “support”). The polymer layer was formed by spin coating at 500-1500 rpm.

この高分子層が形成された支持体を、ホットプレートにより150℃〜180℃で約10分乾燥後、石英ガラス上に任意にクロムパターニングされているマスクを支持体の高分子層面上に配置し、その上から直線偏光UVを照射した。   The support on which this polymer layer is formed is dried for about 10 minutes at 150 ° C. to 180 ° C. with a hot plate, and then a mask arbitrarily patterned with chromium on quartz glass is placed on the polymer layer surface of the support. Then, linearly polarized UV was irradiated from above.

その後マスクを外し、再度その支持体に1回目の照射と異なる偏光方向の直線偏光UVを照射した。次に支持体の高分子層面に適宜な溶媒に溶解した50%(重量)以下液晶モノマー溶液を回転数300〜1500rpmでスピンコーティングした。   Thereafter, the mask was removed, and the support was again irradiated with linearly polarized UV having a polarization direction different from that of the first irradiation. Next, a 50% (weight) or less liquid crystal monomer solution dissolved in an appropriate solvent was spin-coated on the surface of the polymer layer of the support at a rotational speed of 300 to 1500 rpm.

この高分子層に液晶モノマー溶液がコーティングされた支持体を、ホットプレートにより40℃〜50℃の雰囲気下で約2分保持し液晶モノマーを配向させ、この層を(酸素濃度1%以下の雰囲気下に曝しながら)6KWメタルハライドランプにより500〜2000mJ/cm2照射し、架橋させた。 The support in which the polymer layer is coated on the polymer layer is held for about 2 minutes in an atmosphere of 40 ° C. to 50 ° C. by a hot plate to align the liquid crystal monomer, and this layer is placed in an atmosphere having an oxygen concentration of 1% or less. The mixture was irradiated with 500-2000 mJ / cm 2 with a 6 KW metal halide lamp (under exposure).

この架橋層は下の高分子層に対応するように配向した。この架橋したLCP層面と片面に粘着剤が付与されている0.4t低複屈折ポリカーボネートの粘着面とを圧力0.3Mpa、スピード0.4m/minでラミネートし貼り合わせ、[ガラス板(支持体)/高分子層/LCP層/粘着剤層/ポリカーボネート]とした後、支持体を剥離し、[高分子層/LCP層/粘着剤層/ポリカーボネート]が得られた。0.4t低複屈折ポリカーボネートは複屈折が20nm以下(王子計測機器製 KOBRA−21ADH 低レタデーション測定結果)であり、必要とする光学位相差素子機能を保持することが確認できた。   This cross-linked layer was oriented to correspond to the underlying polymer layer. The cross-linked LCP layer surface and the adhesive surface of 0.4t low birefringence polycarbonate to which an adhesive is applied on one side are laminated and bonded together at a pressure of 0.3 Mpa and a speed of 0.4 m / min. ) / Polymer layer / LCP layer / adhesive layer / polycarbonate], and then the support was peeled off to obtain [polymer layer / LCP layer / adhesive layer / polycarbonate]. The 0.4 t low birefringence polycarbonate has a birefringence of 20 nm or less (KOBRA-21ADH low retardation measurement result manufactured by Oji Scientific Instruments), and it was confirmed that the required optical phase difference element function was maintained.

本実施例の概略説明図である。It is a schematic explanatory drawing of a present Example.

符号の説明Explanation of symbols

1 第一支持材
2 配向層
3 液晶モノマー層・液晶ポリマー層
4 接着層・粘着層
5 第二支持材
DESCRIPTION OF SYMBOLS 1 1st support material 2 Alignment layer 3 Liquid crystal monomer layer / liquid crystal polymer layer 4 Adhesive layer / adhesion layer 5 Second support material

Claims (9)

第一支持材に、偏光を照射することで分子が所定の配向をする高分子層から成る配向層を設け、続いて、この配向層に偏光を照射して該配向層の配向パターンが、隣接領域において、遅相軸方向が異なる配向パターン若しくは進相軸方向が異なる配向パターンとし、続いて、この配向層に光重合性の液晶モノマー層を設け、続いて、該液晶モノマー層を所定の温度に加熱して該液晶モノマー層の液晶を前記配向層の分子配向に対応した配向とし、続いて、この液晶モノマー層に光を照射して該液晶モノマー層を重合せしめると共に、液晶の配向を固定させて液晶ポリマー層とし、続いて、この液晶ポリマー層に接着層若しくは粘着層を介してフィルム状若しくはシート状の第二支持材を設け、続いて、前記第一支持材を前記配向層から剥離せしめることを特徴とする光学位相差素子の製造方法。   The first support material is provided with an alignment layer composed of a polymer layer in which molecules are oriented in a predetermined direction by irradiating polarized light. Subsequently, the alignment layer is irradiated with polarized light so that the alignment pattern of the alignment layer is adjacent. In the region, an alignment pattern having a different slow axis direction or an alignment pattern having a different fast axis direction is provided, and subsequently, a photopolymerizable liquid crystal monomer layer is provided on the alignment layer, and then the liquid crystal monomer layer is provided at a predetermined temperature. And the liquid crystal monomer layer is aligned with the liquid crystal in the alignment layer, and the liquid crystal monomer layer is irradiated with light to polymerize the liquid crystal monomer layer and fix the liquid crystal alignment. Then, a liquid crystal polymer layer is formed, and then a second support material in the form of a film or a sheet is provided on the liquid crystal polymer layer via an adhesive layer or an adhesive layer, and then the first support material is peeled from the alignment layer. Set The method for manufacturing an optical retardation element characterized by Mel. 請求項1記載の光学位相差素子の製造方法において、第二支持材を設けた後、第一支持材及び配向層を液晶ポリマー層から剥離せしめることを特徴とする光学位相差素子の製造方法。   2. The method of manufacturing an optical phase difference element according to claim 1, wherein after providing the second support material, the first support material and the alignment layer are peeled off from the liquid crystal polymer layer. 請求項1,2いずれか1項に記載の光学位相差素子の製造方法において、第一支持材として、平板状の基材を採用したことを特徴とする光学位相差素子の製造方法。   The method for manufacturing an optical phase difference element according to claim 1, wherein a flat substrate is employed as the first support material. 請求項1〜3いずれか1項に記載の光学位相差素子の製造方法において、第二支持材として、複屈折が30nm以下のプラスチック製のフィルムが採用されていることを特徴とする光学位相差素子の製造方法。   In the manufacturing method of the optical phase difference element of any one of Claims 1-3, the film made from a plastics whose birefringence is 30 nm or less is employ | adopted as a 2nd support material. Device manufacturing method. 請求項1〜4いずれか1項に記載の光学位相差素子の製造方法において、液晶モノマー層として、光重合架橋型の液晶モノマー層が採用されていることを特徴とする光学位相差素子の製造方法。   5. The method for producing an optical retardation element according to claim 1, wherein a photopolymerization crosslinking type liquid crystal monomer layer is employed as the liquid crystal monomer layer. 6. Method. 請求項5記載の光学位相差素子の製造方法において、液晶モノマー層に紫外線が照射されることで架橋した液晶ポリマー層の配向パターンが、隣接領域において、遅相軸方向が異なる配向パターン若しくは進相軸方向が異なる配向パターンに設定されていることを特徴とする光学位相差素子の製造方法。   6. The method of manufacturing an optical retardation element according to claim 5, wherein the alignment pattern of the liquid crystal polymer layer crosslinked by irradiating the liquid crystal monomer layer with ultraviolet rays is an alignment pattern or a phase advance in which the slow axis direction is different in the adjacent region. A method for manufacturing an optical phase difference element, wherein the alignment directions are set in different axial directions. 請求項1〜6いずれか1項に記載の光学位相差素子の製造方法において、アクリル系若しくはゴム系の粘着材から成る粘着層、又は、アクリル系若しくはウレタン系の接着材から成る接着層が採用されていることを特徴とする光学位相差素子の製造方法。   In the manufacturing method of the optical phase difference element according to any one of claims 1 to 6, an adhesive layer made of an acrylic or rubber adhesive material, or an adhesive layer made of an acrylic or urethane adhesive material is adopted. A method of manufacturing an optical phase difference element. 第一支持材に、偏光を照射することで分子が所定の配向をする高分子層から成る配向層を設け、続いて、この配向層に偏光を照射して該配向層の配向パターンが、隣接領域において、遅相軸方向が異なる配向パターン若しくは進相軸方向が異なる配向パターンとし、続いて、この配向層に光重合性の液晶モノマー層を設け、続いて、該液晶モノマー層を所定の温度に加熱して該液晶モノマー層の液晶を前記配向層の分子配向に対応した配向とし、続いて、この液晶モノマー層に光を照射して該液晶モノマー層を重合せしめると共に、液晶の配向を固定させて液晶ポリマー層とし、続いて、この液晶ポリマー層に接着層若しくは粘着層を介してフィルム状若しくはシート状の第二支持材を設け、続いて、前記第一支持材を前記配向層から剥離した後、この配向層の表面に、該配向層の保護層若しくは反射防止層を設けることを特徴とする光学位相差素子の製造方法。   The first support material is provided with an alignment layer composed of a polymer layer in which molecules are oriented in a predetermined direction by irradiating polarized light. Subsequently, the alignment layer is irradiated with polarized light so that the alignment pattern of the alignment layer is adjacent. In the region, an alignment pattern having a different slow axis direction or an alignment pattern having a different fast axis direction is provided, and subsequently, a photopolymerizable liquid crystal monomer layer is provided on the alignment layer, and then the liquid crystal monomer layer is provided at a predetermined temperature. And the liquid crystal monomer layer is aligned with the liquid crystal in the alignment layer, and the liquid crystal monomer layer is irradiated with light to polymerize the liquid crystal monomer layer and fix the liquid crystal alignment. Then, a liquid crystal polymer layer is formed, and then a second support material in the form of a film or a sheet is provided on the liquid crystal polymer layer via an adhesive layer or an adhesive layer, and then the first support material is peeled from the alignment layer. Shi After the surface of the alignment layer, the manufacturing method of the optical retardation element, characterized in that a protective layer or the antireflection layer of the orientation layer. 第一支持材に、偏光を照射することで分子が所定の配向をする高分子層から成る配向層を設け、続いて、この配向層に偏光を照射して該配向層の配向パターンが、隣接領域において、遅相軸方向が異なる配向パターン若しくは進相軸方向が異なる配向パターンとし、続いて、この配向層に光を照射して該配向層の分子を所定配向とし、続いて、この配向層に光重合性の液晶モノマー層を設け、続いて、該液晶モノマー層を所定の温度に加熱して該液晶モノマー層の液晶を前記配向層の分子配向に対応した配向とし、続いて、この液晶モノマー層に光を照射して該液晶モノマー層を重合せしめると共に、液晶の配向を固定させて液晶ポリマー層とし、続いて、この液晶ポリマー層に接着層若しくは粘着層を介してフィルム状若しくはシート状の第二支持材を設け、続いて、第一支持材及び配向層を液晶ポリマー層から剥離した後、この液晶ポリマー層の表面に、該液晶ポリマー層の保護層若しくは反射防止層を設けることを特徴とする光学位相差素子の製造方法。
The first support material is provided with an alignment layer composed of a polymer layer in which molecules are oriented in a predetermined direction by irradiating polarized light. Subsequently, the alignment layer is irradiated with polarized light so that the alignment pattern of the alignment layer is adjacent. In the region, the orientation pattern is different in the slow axis direction or the orientation pattern is different in the fast axis direction. Subsequently, the alignment layer is irradiated with light to bring the molecules of the alignment layer into a predetermined orientation. A photopolymerizable liquid crystal monomer layer is provided on the liquid crystal monomer layer, and then the liquid crystal monomer layer is heated to a predetermined temperature so that the liquid crystal of the liquid crystal monomer layer has an orientation corresponding to the molecular orientation of the orientation layer. The monomer layer is irradiated with light to polymerize the liquid crystal monomer layer, and the alignment of the liquid crystal is fixed to form a liquid crystal polymer layer. Subsequently, the liquid crystal polymer layer is formed into a film or sheet via an adhesive layer or an adhesive layer. of (2) providing a second support material, and subsequently separating the first support material and the alignment layer from the liquid crystal polymer layer, and then providing a protective layer or an antireflection layer for the liquid crystal polymer layer on the surface of the liquid crystal polymer layer. A method for manufacturing an optical retardation element.
JP2004210653A 2003-07-17 2004-07-16 Manufacturing method of optical phase difference element Pending JP2005049865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004210653A JP2005049865A (en) 2003-07-17 2004-07-16 Manufacturing method of optical phase difference element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003198672 2003-07-17
JP2004210653A JP2005049865A (en) 2003-07-17 2004-07-16 Manufacturing method of optical phase difference element

Publications (1)

Publication Number Publication Date
JP2005049865A true JP2005049865A (en) 2005-02-24

Family

ID=34277366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004210653A Pending JP2005049865A (en) 2003-07-17 2004-07-16 Manufacturing method of optical phase difference element

Country Status (1)

Country Link
JP (1) JP2005049865A (en)

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071932A (en) * 2005-09-05 2007-03-22 Nitto Denko Corp Manufacturing method of optical element and optical element
JP2007128042A (en) * 2005-10-31 2007-05-24 Samsung Electronics Co Ltd Polarizing liquid crystal film and method for manufacturing the same, light guide plate integrated with polarizing liquid crystal film and backlight unit including the same
FR2897695A1 (en) * 2006-02-23 2007-08-24 Essilor Int Polarizing optical element e.g. polarizing afocal ophthalmic lens, forming method for preventing stray reflection, involves applying polarizing layer structure, removed from temporary support, on surface of base optical element
JP2009223001A (en) * 2008-03-17 2009-10-01 Fujifilm Corp Optical material patterned with optical axis direction and phase difference amount
EP2237087A1 (en) 2008-10-15 2010-10-06 Sony Corporation Phase difference element and display device
CN101937114A (en) * 2009-06-26 2011-01-05 住友化学株式会社 Phase difference board, display device containing the phase difference board and method for producing the phase difference board
JP2011248328A (en) * 2010-04-27 2011-12-08 Jsr Corp Liquid crystal aligning agent
JP2012118115A (en) * 2010-11-29 2012-06-21 Sumitomo Chemical Co Ltd Method for manufacturing display device
JP2012517024A (en) * 2009-02-03 2012-07-26 エルジー・ケム・リミテッド Manufacturing method of optical filter for stereoscopic image display device
KR20120087086A (en) * 2011-01-27 2012-08-06 스미또모 가가꾸 가부시키가이샤 Process for producing optical anisotropic layer
CN102654599A (en) * 2011-03-03 2012-09-05 索尼公司 Optical laminated body, method of manufacturing the same, and display unit
JP2012198522A (en) * 2011-03-04 2012-10-18 Dainippon Printing Co Ltd Method for manufacturing pattern alignment film, method for manufacturing pattern phase difference film using the same, and manufacturing device thereof
JP2013003344A (en) * 2011-06-16 2013-01-07 Dainippon Printing Co Ltd Production method of patterned retardation film, mask used for the method, and patterned retardation film using the method
JP2013041078A (en) * 2011-08-15 2013-02-28 Dainippon Printing Co Ltd Manufacturing method of pattern retardation film, and manufacturing method of optical film
WO2013038932A1 (en) * 2011-09-12 2013-03-21 株式会社林技術研究所 Optical phase shift element and manufacturing method therefor
WO2013054784A1 (en) 2011-10-11 2013-04-18 日産化学工業株式会社 Cured film formation composition, orientation material, and phase difference material
WO2013054673A1 (en) * 2011-10-14 2013-04-18 大日本印刷株式会社 Pattern phase difference film and method for manufacturing same
WO2013102981A1 (en) * 2012-01-06 2013-07-11 株式会社有沢製作所 Optical-film-manufacturing apparatus, optical-film-manufacturing method, and optical film
KR20130098238A (en) 2012-02-27 2013-09-04 주식회사 엘지화학 Optical filter
WO2013128692A1 (en) * 2011-03-04 2013-09-06 大日本印刷株式会社 Long pattern alignment film and long pattern phase difference film using same
KR101323072B1 (en) * 2009-05-04 2013-10-29 엘지디스플레이 주식회사 Polarizing plate assembly having patterned retard and fabricating method thereof and image display device using it
JP2014059552A (en) * 2012-08-20 2014-04-03 Jnc Corp Stereo image display device
WO2014084690A1 (en) 2012-11-29 2014-06-05 주식회사 엘지화학 Fpr having periodic micropattern
KR20140067979A (en) 2011-08-31 2014-06-05 다이니폰 인사츠 가부시키가이샤 Method for producing pattern phase difference film, pattern phase difference film, and image display device
KR20140142257A (en) 2012-03-28 2014-12-11 닛산 가가쿠 고교 가부시키 가이샤 Composition for forming cured film, orientation material, and phase difference material
TWI468815B (en) * 2012-06-07 2015-01-11 Benq Materials Corp Three-dimensional display and manufacturing method thereof
WO2015012347A1 (en) * 2013-07-24 2015-01-29 大日本印刷株式会社 Phase difference film, method for manufacturing phase difference film, polarizing plate and image display device which use phase difference film, and 3d image display system using image display device
KR20150023557A (en) 2012-06-20 2015-03-05 닛산 가가쿠 고교 가부시키 가이샤 Cured film-forming composition, oriented material, and phase difference material
US8982197B2 (en) 2009-02-03 2015-03-17 Lg Chem, Ltd. Optical filter
KR20150036174A (en) 2012-07-12 2015-04-07 닛산 가가쿠 고교 가부시키 가이샤 Composition for forming cured film, alignment material, and phase difference material
KR20150054898A (en) 2012-09-12 2015-05-20 닛산 가가쿠 고교 가부시키 가이샤 Method for producing alignment material, alignment material, method for producing retardation material, and retardation material
KR20150082402A (en) 2012-11-08 2015-07-15 닛산 가가쿠 고교 가부시키 가이샤 Film having cured film formed thereon, aligning material, and retardation material
JPWO2013128692A1 (en) * 2012-03-01 2015-07-30 大日本印刷株式会社 Long pattern alignment film and long pattern retardation film using the same
KR20150103057A (en) 2012-12-27 2015-09-09 닛산 가가쿠 고교 가부시키 가이샤 Composition for forming cured film, orientation material, and phase difference material
JP2015171788A (en) * 2014-03-12 2015-10-01 大日本印刷株式会社 Transfer laminate for optical film
KR20150126829A (en) 2013-03-08 2015-11-13 닛산 가가쿠 고교 가부시키 가이샤 Cured-film forming composition, alignment material, and retardation material
KR20150143540A (en) 2013-04-16 2015-12-23 닛산 가가쿠 고교 가부시키 가이샤 Cured film-forming composition, alignment material, and phase difference material
KR20160026427A (en) 2014-09-01 2016-03-09 주식회사 엘지화학 Liquid crystal lens
KR20160048793A (en) 2013-08-27 2016-05-04 닛산 가가쿠 고교 가부시키 가이샤 Cured film-forming composition, alignment material, and phase difference material
KR20160075515A (en) 2013-10-17 2016-06-29 닛산 가가쿠 고교 가부시키 가이샤 Composition for forming cured film, alignment material, and retardation material
JP2016170315A (en) * 2015-03-13 2016-09-23 日本電信電話株式会社 Region dividing wavelength plate and manufacturing method for the same
KR20160127725A (en) 2014-02-28 2016-11-04 닛산 가가쿠 고교 가부시키 가이샤 Cured-film-forming composition, alignment material, and phase difference material
KR20160127724A (en) 2014-02-28 2016-11-04 닛산 가가쿠 고교 가부시키 가이샤 Phase difference material-forming resin composition, orientation material, and phase difference material
KR20170023840A (en) 2014-06-30 2017-03-06 닛산 가가쿠 고교 가부시키 가이샤 Alignment material, phase-difference material, and cured film-forming composition
JP2017529649A (en) * 2014-07-31 2017-10-05 ロリク アーゲーRolic Ag Sealing structure for OLED display incorporating anti-reflection
KR20170126968A (en) 2015-03-11 2017-11-20 닛산 가가쿠 고교 가부시키 가이샤 A cured film-forming composition, an alignment material and a retardation material
KR20170126931A (en) 2015-03-11 2017-11-20 닛산 가가쿠 고교 가부시키 가이샤 A cured film-forming composition, an alignment material and a retardation material
KR20180014695A (en) 2015-06-02 2018-02-09 닛산 가가쿠 고교 가부시키 가이샤 A liquid crystal aligning agent for optical alignment, an alignment agent and a retardation agent
CN108369760A (en) * 2015-10-08 2018-08-03 马德里理工大学 The optical element and manufacturing method with multiple sub-images for file security
KR20190127787A (en) 2017-03-27 2019-11-13 닛산 가가쿠 가부시키가이샤 Cured film formation composition, orientation material, and phase difference material
KR20190130599A (en) 2017-03-27 2019-11-22 닛산 가가쿠 가부시키가이샤 Cured film formation composition, orientation material, and phase difference material
KR20190130583A (en) 2017-03-27 2019-11-22 닛산 가가쿠 가부시키가이샤 Cured film formation composition, orientation material, and phase difference material
US10570248B2 (en) 2015-03-13 2020-02-25 Nissan Chemical Industries, Ltd. Cured film formation composition, orientation material, and retardation material
KR20200037278A (en) 2017-08-03 2020-04-08 닛산 가가쿠 가부시키가이샤 Cured film forming composition, alignment material and retardation material
KR20200062259A (en) 2017-10-16 2020-06-03 닛산 가가쿠 가부시키가이샤 Cured film forming composition, alignment material and retardation material
KR20200093068A (en) 2017-12-18 2020-08-04 닛산 가가쿠 가부시키가이샤 Cured film forming composition, alignment material and retardation material
JP2020140212A (en) * 2012-08-31 2020-09-03 住友化学株式会社 Circularly polarizing plate and display device
KR20200116553A (en) 2012-10-24 2020-10-12 닛산 가가쿠 가부시키가이샤 Cured-film-forming composition, alignment material, and phase-difference material
CN112020663A (en) * 2018-03-27 2020-12-01 日产化学株式会社 Composition for forming cured film, alignment material, and phase difference material
KR20200135967A (en) 2018-03-27 2020-12-04 닛산 가가쿠 가부시키가이샤 Cured film forming composition, alignment material, and retardation material
KR20210030345A (en) 2018-07-10 2021-03-17 닛산 가가쿠 가부시키가이샤 Cured film, alignment material and retardation material
CN113467126A (en) * 2021-06-25 2021-10-01 云谷(固安)科技有限公司 Polaroid and electronic equipment
KR20220012859A (en) 2019-05-27 2022-02-04 닛산 가가쿠 가부시키가이샤 Cured film forming composition, alignment material and retardation material
KR20220108097A (en) 2019-11-25 2022-08-02 닛산 가가쿠 가부시키가이샤 Cured film forming composition, orientation material and retardation material

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100171A (en) * 1983-11-07 1985-06-04 株式会社日立製作所 Liquid crystal display unit
JPH06289374A (en) * 1993-02-17 1994-10-18 F Hoffmann La Roche Ag Optical element and its manufacture
JPH0990333A (en) * 1995-09-26 1997-04-04 Fuji Photo Film Co Ltd Liquid crystal display device
JPH10153707A (en) * 1996-11-22 1998-06-09 Sharp Corp Phase difference sheet, manufacture thereof, and stereoscopic display device using the phase difference sheet
JPH11326638A (en) * 1998-05-11 1999-11-26 Agency Of Ind Science & Technol Liquid crystal alignment layer, production of the liquid crystal alignment layer and optical element using the same
JP2002156526A (en) * 2000-11-21 2002-05-31 Konica Corp Optically anisotropic film, method for manufacturing the same and method for manufacturing polarizing plate
JP2002207125A (en) * 2000-04-03 2002-07-26 Konica Corp Optical compensation sheet and liquid crystal display device
JP2002277637A (en) * 2001-03-22 2002-09-25 Konica Corp Method for manufacturing optical compensation film, optical compensation film, polarizing plate and liquid crystal display using the same
JP2002303722A (en) * 2001-04-04 2002-10-18 Fuji Photo Film Co Ltd Optical compensation sheet

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100171A (en) * 1983-11-07 1985-06-04 株式会社日立製作所 Liquid crystal display unit
JPH06289374A (en) * 1993-02-17 1994-10-18 F Hoffmann La Roche Ag Optical element and its manufacture
JPH0990333A (en) * 1995-09-26 1997-04-04 Fuji Photo Film Co Ltd Liquid crystal display device
JPH10153707A (en) * 1996-11-22 1998-06-09 Sharp Corp Phase difference sheet, manufacture thereof, and stereoscopic display device using the phase difference sheet
JPH11326638A (en) * 1998-05-11 1999-11-26 Agency Of Ind Science & Technol Liquid crystal alignment layer, production of the liquid crystal alignment layer and optical element using the same
JP2002207125A (en) * 2000-04-03 2002-07-26 Konica Corp Optical compensation sheet and liquid crystal display device
JP2002156526A (en) * 2000-11-21 2002-05-31 Konica Corp Optically anisotropic film, method for manufacturing the same and method for manufacturing polarizing plate
JP2002277637A (en) * 2001-03-22 2002-09-25 Konica Corp Method for manufacturing optical compensation film, optical compensation film, polarizing plate and liquid crystal display using the same
JP2002303722A (en) * 2001-04-04 2002-10-18 Fuji Photo Film Co Ltd Optical compensation sheet

Cited By (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4666614B2 (en) * 2005-09-05 2011-04-06 日東電工株式会社 Optical element manufacturing method
JP2007071932A (en) * 2005-09-05 2007-03-22 Nitto Denko Corp Manufacturing method of optical element and optical element
JP2007128042A (en) * 2005-10-31 2007-05-24 Samsung Electronics Co Ltd Polarizing liquid crystal film and method for manufacturing the same, light guide plate integrated with polarizing liquid crystal film and backlight unit including the same
FR2897695A1 (en) * 2006-02-23 2007-08-24 Essilor Int Polarizing optical element e.g. polarizing afocal ophthalmic lens, forming method for preventing stray reflection, involves applying polarizing layer structure, removed from temporary support, on surface of base optical element
EP1826595A1 (en) * 2006-02-23 2007-08-29 Essilor International (Compagnie Generale D'optique) Method of manufacturing a polarising optical element.
US7632552B2 (en) 2006-02-23 2009-12-15 Essilor International (Compagnie Generale D'optique) Method for producing a polarizing optical element
JP2009223001A (en) * 2008-03-17 2009-10-01 Fujifilm Corp Optical material patterned with optical axis direction and phase difference amount
EP2237087A1 (en) 2008-10-15 2010-10-06 Sony Corporation Phase difference element and display device
JP2012517024A (en) * 2009-02-03 2012-07-26 エルジー・ケム・リミテッド Manufacturing method of optical filter for stereoscopic image display device
US8982197B2 (en) 2009-02-03 2015-03-17 Lg Chem, Ltd. Optical filter
KR101323072B1 (en) * 2009-05-04 2013-10-29 엘지디스플레이 주식회사 Polarizing plate assembly having patterned retard and fabricating method thereof and image display device using it
CN101937114A (en) * 2009-06-26 2011-01-05 住友化学株式会社 Phase difference board, display device containing the phase difference board and method for producing the phase difference board
JP2011248328A (en) * 2010-04-27 2011-12-08 Jsr Corp Liquid crystal aligning agent
JP2012118115A (en) * 2010-11-29 2012-06-21 Sumitomo Chemical Co Ltd Method for manufacturing display device
JP2012168514A (en) * 2011-01-27 2012-09-06 Sumitomo Chemical Co Ltd Production method of optical anisotropic layer
KR101917883B1 (en) * 2011-01-27 2018-11-13 스미또모 가가꾸 가부시키가이샤 Process for producing optical anisotropic layer
KR20120087086A (en) * 2011-01-27 2012-08-06 스미또모 가가꾸 가부시키가이샤 Process for producing optical anisotropic layer
CN102654599A (en) * 2011-03-03 2012-09-05 索尼公司 Optical laminated body, method of manufacturing the same, and display unit
JP2012179878A (en) * 2011-03-03 2012-09-20 Sony Corp Optical laminated body, method for manufacturing the same, and display unit
US9259906B2 (en) 2011-03-03 2016-02-16 Sony Corporation Optical laminated body, method of manufacturing the same, and display unit
WO2013128692A1 (en) * 2011-03-04 2013-09-06 大日本印刷株式会社 Long pattern alignment film and long pattern phase difference film using same
JP2012198522A (en) * 2011-03-04 2012-10-18 Dainippon Printing Co Ltd Method for manufacturing pattern alignment film, method for manufacturing pattern phase difference film using the same, and manufacturing device thereof
CN103842858A (en) * 2011-03-04 2014-06-04 大日本印刷株式会社 Long pattern alignment film and long pattern phase difference film using same
JP2013003344A (en) * 2011-06-16 2013-01-07 Dainippon Printing Co Ltd Production method of patterned retardation film, mask used for the method, and patterned retardation film using the method
JP2013041078A (en) * 2011-08-15 2013-02-28 Dainippon Printing Co Ltd Manufacturing method of pattern retardation film, and manufacturing method of optical film
US9217925B2 (en) 2011-08-31 2015-12-22 Dai Nippon Printing Co., Ltd. Method for producing pattern phase difference film, pattern phase difference film, and image display device
KR20140067979A (en) 2011-08-31 2014-06-05 다이니폰 인사츠 가부시키가이샤 Method for producing pattern phase difference film, pattern phase difference film, and image display device
WO2013038932A1 (en) * 2011-09-12 2013-03-21 株式会社林技術研究所 Optical phase shift element and manufacturing method therefor
JPWO2013038932A1 (en) * 2011-09-12 2015-03-26 株式会社林技術研究所 Optical retardation element and manufacturing method thereof
US9823400B2 (en) 2011-10-11 2017-11-21 Nissan Chemical Industries, Ltd. Cured film formation composition, orientation material, and retardation material
WO2013054784A1 (en) 2011-10-11 2013-04-18 日産化学工業株式会社 Cured film formation composition, orientation material, and phase difference material
KR20140074963A (en) 2011-10-11 2014-06-18 닛산 가가쿠 고교 가부시키 가이샤 Cured film formation composition, orientation material, and phase difference material
US9244199B2 (en) 2011-10-11 2016-01-26 Nissan Chemical Industries, Ltd. Cured film formation composition, orientation material, and retardation material
WO2013054673A1 (en) * 2011-10-14 2013-04-18 大日本印刷株式会社 Pattern phase difference film and method for manufacturing same
US9720154B2 (en) 2011-10-14 2017-08-01 Dai Nippon Printing Co., Ltd. Patterned phase difference film and method for manufacturing same
JPWO2013054673A1 (en) * 2011-10-14 2015-03-30 大日本印刷株式会社 Pattern retardation film and method for producing the same
US9638848B2 (en) 2011-10-14 2017-05-02 Dai Nippon Printing Co., Ltd. Patterned phase difference film and method for manufacturing same
WO2013102981A1 (en) * 2012-01-06 2013-07-11 株式会社有沢製作所 Optical-film-manufacturing apparatus, optical-film-manufacturing method, and optical film
KR20130098238A (en) 2012-02-27 2013-09-04 주식회사 엘지화학 Optical filter
JPWO2013128692A1 (en) * 2012-03-01 2015-07-30 大日本印刷株式会社 Long pattern alignment film and long pattern retardation film using the same
KR20140142257A (en) 2012-03-28 2014-12-11 닛산 가가쿠 고교 가부시키 가이샤 Composition for forming cured film, orientation material, and phase difference material
US9201256B2 (en) 2012-06-07 2015-12-01 Benq Materials Corporation Three-dimensional display and method for manufacturing the same
TWI468815B (en) * 2012-06-07 2015-01-11 Benq Materials Corp Three-dimensional display and manufacturing method thereof
US10000701B2 (en) 2012-06-20 2018-06-19 Nissan Chemical Industries, Ltd. Cured-film formation composition, orientation material, and retardation material
KR20150023557A (en) 2012-06-20 2015-03-05 닛산 가가쿠 고교 가부시키 가이샤 Cured film-forming composition, oriented material, and phase difference material
US9255191B2 (en) 2012-07-12 2016-02-09 Nissan Chemical Industries, Ltd. Cured-film formation composition, orientation material, and retardation material
KR20190096458A (en) 2012-07-12 2019-08-19 닛산 가가쿠 가부시키가이샤 Composition for forming cured film, alignment material, and phase difference material
KR20150036174A (en) 2012-07-12 2015-04-07 닛산 가가쿠 고교 가부시키 가이샤 Composition for forming cured film, alignment material, and phase difference material
US9598547B2 (en) 2012-07-12 2017-03-21 Nissan Chemical Industries, Ltd. Cured-film formation composition, orientation material, and retardation material
JP2014059552A (en) * 2012-08-20 2014-04-03 Jnc Corp Stereo image display device
JP2020140212A (en) * 2012-08-31 2020-09-03 住友化学株式会社 Circularly polarizing plate and display device
US9405154B2 (en) 2012-09-12 2016-08-02 Nissan Chemical Industries, Ltd. Method for manufacturing orientation material, orientation material, method for manufacturing retardation material, and retardation material
KR20150054898A (en) 2012-09-12 2015-05-20 닛산 가가쿠 고교 가부시키 가이샤 Method for producing alignment material, alignment material, method for producing retardation material, and retardation material
JPWO2014042216A1 (en) * 2012-09-12 2016-08-18 日産化学工業株式会社 Alignment material manufacturing method, alignment material, retardation material manufacturing method, and retardation material
KR20200116553A (en) 2012-10-24 2020-10-12 닛산 가가쿠 가부시키가이샤 Cured-film-forming composition, alignment material, and phase-difference material
KR20150082402A (en) 2012-11-08 2015-07-15 닛산 가가쿠 고교 가부시키 가이샤 Film having cured film formed thereon, aligning material, and retardation material
KR101493173B1 (en) 2012-11-29 2015-02-13 주식회사 엘지화학 Film Patterned Retard with periodically micro patterned structure
US9915835B2 (en) 2012-11-29 2018-03-13 Lg Chem, Ltd. FPR having periodic micropattern
WO2014084690A1 (en) 2012-11-29 2014-06-05 주식회사 엘지화학 Fpr having periodic micropattern
KR20150103057A (en) 2012-12-27 2015-09-09 닛산 가가쿠 고교 가부시키 가이샤 Composition for forming cured film, orientation material, and phase difference material
US9823401B2 (en) 2013-03-08 2017-11-21 Nissan Chemical Industries, Ltd. Cured film formation composition, orientation material, and retardation material
KR20150126829A (en) 2013-03-08 2015-11-13 닛산 가가쿠 고교 가부시키 가이샤 Cured-film forming composition, alignment material, and retardation material
US9529132B2 (en) 2013-03-08 2016-12-27 Nissan Chemical Industries, Ltd. Cured film formation composition, orientation material, and retardation material
KR20150143540A (en) 2013-04-16 2015-12-23 닛산 가가쿠 고교 가부시키 가이샤 Cured film-forming composition, alignment material, and phase difference material
CN105264408B (en) * 2013-07-24 2019-11-05 大日本印刷株式会社 Phase-contrast film and its manufacturing method, using its polarizing film and image display device, use the 3D rendering display system of the device
CN105264408A (en) * 2013-07-24 2016-01-20 大日本印刷株式会社 Phase difference film, method for manufacturing phase difference film, polarizing plate and image display device which use phase difference film, and 3d image display system using image display device
JPWO2015012347A1 (en) * 2013-07-24 2017-03-02 大日本印刷株式会社 Retardation film, method for producing retardation film, polarizing plate and image display device using this retardation film, and 3D image display system using this image display device
WO2015012347A1 (en) * 2013-07-24 2015-01-29 大日本印刷株式会社 Phase difference film, method for manufacturing phase difference film, polarizing plate and image display device which use phase difference film, and 3d image display system using image display device
KR20160048793A (en) 2013-08-27 2016-05-04 닛산 가가쿠 고교 가부시키 가이샤 Cured film-forming composition, alignment material, and phase difference material
KR20210049950A (en) 2013-10-17 2021-05-06 닛산 가가쿠 가부시키가이샤 Composition for forming cured film, alignment material, and retardation material
KR20160075515A (en) 2013-10-17 2016-06-29 닛산 가가쿠 고교 가부시키 가이샤 Composition for forming cured film, alignment material, and retardation material
KR20160127725A (en) 2014-02-28 2016-11-04 닛산 가가쿠 고교 가부시키 가이샤 Cured-film-forming composition, alignment material, and phase difference material
KR20160127724A (en) 2014-02-28 2016-11-04 닛산 가가쿠 고교 가부시키 가이샤 Phase difference material-forming resin composition, orientation material, and phase difference material
KR20210107177A (en) 2014-02-28 2021-08-31 닛산 가가쿠 가부시키가이샤 Phase difference material-forming resin composition, orientation material, and phase difference material
US10590219B2 (en) 2014-02-28 2020-03-17 Nissan Chemical Industries, Ltd. Retardation material-forming resin composition, orientation material, and retardation material
US10081693B2 (en) 2014-02-28 2018-09-25 Nissan Chemical Industries, Ltd. Retardation material-forming resin composition, orientation material, and retardation material
US10100201B2 (en) 2014-02-28 2018-10-16 Nissan Chemical Industries, Ltd. Cured film formation composition, orientation material and retardation material
JP2015171788A (en) * 2014-03-12 2015-10-01 大日本印刷株式会社 Transfer laminate for optical film
KR20170023840A (en) 2014-06-30 2017-03-06 닛산 가가쿠 고교 가부시키 가이샤 Alignment material, phase-difference material, and cured film-forming composition
JP2017529649A (en) * 2014-07-31 2017-10-05 ロリク アーゲーRolic Ag Sealing structure for OLED display incorporating anti-reflection
KR20160026427A (en) 2014-09-01 2016-03-09 주식회사 엘지화학 Liquid crystal lens
KR20170126968A (en) 2015-03-11 2017-11-20 닛산 가가쿠 고교 가부시키 가이샤 A cured film-forming composition, an alignment material and a retardation material
KR20170126931A (en) 2015-03-11 2017-11-20 닛산 가가쿠 고교 가부시키 가이샤 A cured film-forming composition, an alignment material and a retardation material
KR20230120675A (en) 2015-03-13 2023-08-17 닛산 가가쿠 가부시키가이샤 Cured-film-forming composition, alignment material, and phase difference material
US10570248B2 (en) 2015-03-13 2020-02-25 Nissan Chemical Industries, Ltd. Cured film formation composition, orientation material, and retardation material
JP2016170315A (en) * 2015-03-13 2016-09-23 日本電信電話株式会社 Region dividing wavelength plate and manufacturing method for the same
KR20180014695A (en) 2015-06-02 2018-02-09 닛산 가가쿠 고교 가부시키 가이샤 A liquid crystal aligning agent for optical alignment, an alignment agent and a retardation agent
US10428274B2 (en) 2015-06-02 2019-10-01 Nissan Chemical Industries, Ltd. Liquid crystal alignment agent for photo-alignment, aligning member, and retardation member
CN108369760A (en) * 2015-10-08 2018-08-03 马德里理工大学 The optical element and manufacturing method with multiple sub-images for file security
KR20190127787A (en) 2017-03-27 2019-11-13 닛산 가가쿠 가부시키가이샤 Cured film formation composition, orientation material, and phase difference material
KR20190130583A (en) 2017-03-27 2019-11-22 닛산 가가쿠 가부시키가이샤 Cured film formation composition, orientation material, and phase difference material
KR20190130599A (en) 2017-03-27 2019-11-22 닛산 가가쿠 가부시키가이샤 Cured film formation composition, orientation material, and phase difference material
KR20200037278A (en) 2017-08-03 2020-04-08 닛산 가가쿠 가부시키가이샤 Cured film forming composition, alignment material and retardation material
KR20200062259A (en) 2017-10-16 2020-06-03 닛산 가가쿠 가부시키가이샤 Cured film forming composition, alignment material and retardation material
KR20200093068A (en) 2017-12-18 2020-08-04 닛산 가가쿠 가부시키가이샤 Cured film forming composition, alignment material and retardation material
KR20200135967A (en) 2018-03-27 2020-12-04 닛산 가가쿠 가부시키가이샤 Cured film forming composition, alignment material, and retardation material
KR20200135968A (en) 2018-03-27 2020-12-04 닛산 가가쿠 가부시키가이샤 Cured film forming composition, alignment material, and retardation material
CN112020663A (en) * 2018-03-27 2020-12-01 日产化学株式会社 Composition for forming cured film, alignment material, and phase difference material
KR20210030345A (en) 2018-07-10 2021-03-17 닛산 가가쿠 가부시키가이샤 Cured film, alignment material and retardation material
KR20220012859A (en) 2019-05-27 2022-02-04 닛산 가가쿠 가부시키가이샤 Cured film forming composition, alignment material and retardation material
KR20220108097A (en) 2019-11-25 2022-08-02 닛산 가가쿠 가부시키가이샤 Cured film forming composition, orientation material and retardation material
CN113467126A (en) * 2021-06-25 2021-10-01 云谷(固安)科技有限公司 Polaroid and electronic equipment

Similar Documents

Publication Publication Date Title
JP2005049865A (en) Manufacturing method of optical phase difference element
JP4891355B2 (en) Array device for optical dyes
TWI715691B (en) Circular polarizing plate and flexible image display device using the same
JP5227596B2 (en) Method for producing article having birefringence pattern
JP6662992B2 (en) Manufacturing method of circularly polarizing plate
JP2012042980A (en) Alignment device for optical dye
JP2009069793A (en) Process of producing patterned birefringent product
US20160124131A1 (en) Optically anisotropic film and method for producing optically anisotropic film
JP2006085128A (en) Negative c-plate and optical compensation film provided with the same
US20160146995A1 (en) Optical film
TWI235256B (en) Method for producing an optical device; elliptical and circular polarizers comprising the optical device; and liquid crystal device
US7274427B2 (en) Method of producing optical element by patterning liquid crystal films
JP2020024421A (en) Circularly polarizing plate and display device
TW201943562A (en) Polarizing plate and display device
CN112639552A (en) Circularly polarizing plate and image display device using the same
WO2017098970A1 (en) Circular polarizing plate and flexible image display device using same
JP2020024422A (en) Circularly polarizing plate and display device
JP7422048B2 (en) optical laminate
JP2007519013A (en) Array device for optical dyes
TW201616199A (en) Method for fabricating optically anisotropic film
TWI236552B (en) Method for producing an optical device; elliptical and circular polarizers comprising the optical device; and liquid crystal device
TW202005792A (en) Optical laminate
JP2008216782A (en) Optical laminate
JP2006084510A (en) Retardation plate
TW202117368A (en) Circular polarizing plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110316

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110325

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110415