TWI235256B - Method for producing an optical device; elliptical and circular polarizers comprising the optical device; and liquid crystal device - Google Patents

Method for producing an optical device; elliptical and circular polarizers comprising the optical device; and liquid crystal device Download PDF

Info

Publication number
TWI235256B
TWI235256B TW93109576A TW93109576A TWI235256B TW I235256 B TWI235256 B TW I235256B TW 93109576 A TW93109576 A TW 93109576A TW 93109576 A TW93109576 A TW 93109576A TW I235256 B TWI235256 B TW I235256B
Authority
TW
Taiwan
Prior art keywords
liquid crystal
layer
crystal material
material layer
adhesive
Prior art date
Application number
TW93109576A
Other languages
Chinese (zh)
Other versions
TW200426407A (en
Inventor
Tetsuya Uesaka
Kenji Hosaki
Haruyoshi Sato
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Publication of TW200426407A publication Critical patent/TW200426407A/en
Application granted granted Critical
Publication of TWI235256B publication Critical patent/TWI235256B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid

Abstract

Disclosed is a method for producing an optical device comprising a liquid crystal substance layer with no supporting substrate film. The optical laminate is produced by the method comprising at least (1) a first step wherein a liquid crystal substance layer 1 with a fixed liquid crystal orientation, formed on an aligning substrate is adhered to an isotropic substrate via an adhesive layer and then transferred to the isotropic substrate by releasing the aligning substrate thereby obtaining a laminate (A) formed by the isotropic substrate/the adhesive layer/the liquid crystal substance layer 1; (2) a second step wherein a liquid crystal substance layer 2 with a fixed liquid crystal orientation, formed on an aligning substrate is laminated on the liquid crystal substance layer 1 via a tacky adhesive and/or adhesive layer thereby obtaining a laminate (B) formed by the isotropic layer/the adhesive layer/the liquid crystal substance layer 1/the tacky adhesive (adhesive) layer/the liquid crystal substance layer 2/the aligning substrate; and (3) a third step wherein a polarizer is laminated on the isotropic substrate or the liquid crystal substance layer 2 after releasing the aligning substrate.

Description

1235256 玖、發明說明: 【發明所屬之技術領域】 本發明為關於可用於各種光學元件之光學積層體的製造 方法。又,本發明為關於以此類製造方法所得之光學積層 體所構成的橢圓偏光板或圓偏光板,並且關於具備該橢圓 偏光板或圓偏光板的液晶顯示裝置。 【先前技術】 液晶化合物之配向層所構成的薄膜,尤其是固定化成向 列構造、扭轉向列構造、或混合向列構造之液晶物質所構 成的薄膜,具有作為液晶顯示元件用之色補償和視野角補 償用元件、或旋光性光學元件等優良之性能,且有助於各 種顯示元件之高性能化、輕量化。此些薄膜之製造法已提 案將配向性基板上所形成之液晶物質所構成的層,轉印至 兼具支撐基板的透光性基板上的方法(例如,參照專利文獻 1、專利文獻 2)。更且,為了更加薄型化、輕量化,亦已 提案未使用支撐基板薄膜之液晶物質所構成之光學元件的 製造方法(例如,參照專利文獻 3 )。若根據此類製造法, 將配向性基板上配向形成之液晶物質所構成之層,透過接 黏劑暫時轉印至再剝離性基板後,將該再剝離性基板予以 剝離,則可製造無支撐基板薄膜之液晶物質層所構成的光 學元件。 另一方面,近年,對於液晶顯示裝置為首之各種顯示裝 置所用的光學薄膜,要求更高機能的光學性能,僅使用一 片光學薄膜並無法滿足要求,且多予以積層使用。可列舉 6 312/發明說明書(補件)/93-07/93109576 1235256 例如STN液晶顯示裝置之色補償用位相差薄膜中之聚碳酸 酯所代表之高分子延拉薄膜的積層、半穿透反射型液晶顯 示裝置用圓偏光板中之1/4波長板與1/2波長板之積層所 得之寬帶域1/4波長波,或,將具有不同選擇波長區域之 膽固醇薄膜予以積層所得之寬帶域圓偏光板等。此類光學 薄膜積層所造成之高機能化的另一方面,如近年所大幅普 及之行動電話和攜帶型資料終端機器所代表般,對於薄型 化、輕量化的要求亦非常高。伴隨著,對於顯示裝置所使 用的光學薄膜亦切望令其薄型化、輕量化。因此,嘗試製 造更薄的高分子延拉薄膜,但由於光學特性和製造步驟上 的限制,故在高分子延拉薄膜的變薄上有界限,於積層使 用之情形中具有厚度為厚之問題。 為了解決此類問題,雖認為如前述之專利文獻3般使用 未利用支撐基板薄膜之液晶物質所構成的光學元件為有 效,但於將該光學元件積層時,無支撐基板薄膜之積層體 為操作性、耐久性等不穩定。另一方面,若於一個支撐基 板薄膜上可將二層以上之液晶物質所構成的光學元件予以 積層,則可達成耐久性等非常優良的薄膜,但對於將該光 學元件積層的工業性製造方法並未確立。 [專利文獻1 ] 曰本專利特開平4 _ 5 7 0 1 7號公報 [專利文獻2 ] 曰本專利特開平4 - 1 7 7 2 1 6號公報 [專利文獻3 ] 7 312/發明說明書(補件)/93-07/93109576 1235256 曰本專利特開平8 - 2 7 8 4 9 1號公報 【發明内容】 (發明所欲解決之問題) 本發明為在於實現昔知僅有高分子延拉薄膜而顯困難之 光學特性面的高機能化和高耐久性、大幅薄身化可兩相成 立為其目的。即,著眼於更加薄身且可表現優良光學機能 之液晶物質層所構成的光學薄膜,且對於一個支撐基板薄 膜上積層至少二層以上之液晶物質層所構成之光學元件的 製造方法致力檢討,結果進而完成本發明。 (解決問題之手段) 即,本發明之第一為關於光學積層體之製造方法,其特 徵為至少經過(1)令配向基板上所形成之液晶配向被固定 化的液晶物質層 1,透過接合劑層與向同性基板接合後, 將配向基板剝離且液晶物質層1轉印至向同性基板,取得 由向同性基板/接合劑層/液晶物質層1所構成之積層體(A) 的第一步驟、(2)令配向基板上所形成之液晶配向被固定化 的液晶物質層2,透過黏·接合劑與前述液晶物質層1貼 合,取得由向同性基板/接合劑層/液晶物質層1 /黏合劑(接 合劑)層/液晶物質層 2/配向基板所構成之積層體(B)的第 二步驟、及(3)剝離前述積層體(B)之配向基板,且對向同 性基板或液晶物質層2貼合偏光板的第三步驟之各步驟。 本發明之第二為關於光學積層體之製造方法,其特徵為 於前述記載之光學積層體之製造方法中,前述液晶物質層 1與液晶物質層2為具有相同或不同的光學參數。 8 312/發明說明書(補件)/93-07/93109576 1235256 本發明之第三為關於光學積層體之製造方法,其特徵為 於前述記載之光學積層體之製造方法中,前述液晶物質層 1與液晶物質層 2中之至少一者,為光學上顯示正之單軸 性液晶物質為由液晶狀態中所形成之向列配向被固定化之 液晶物質層所構成。 本發明之第四為關於光學積層體之製造方法,其特徵為 於前述記載之光學積層體之製造方法中,前述液晶物質層 1與液晶物質層 2中之至少一者,為光學上顯示正之單軸 性液晶物質為由液晶狀態中所形成之混合向列配向被固定 化之液晶物質層所構成, 本發明之第五為關於光學積層體之製造方法,其特徵為 於前述記載之光學積層體之製造方法中,前述液晶物質層 1與液晶物質層 2中之至少一者,為光學上顯示正之單軸 性液晶物質為由液晶狀態中所形成之扭轉向列配向被固定 化之液晶物質層所構成。 本發明之第六為關於橢圓偏光板,其特徵為以前述記載 之製造方法所得之光學積層體所構成。 本發明之第七為關於圓偏光板,其特徵為以前述記載之 製造方法所得之光學積層體所構成。 本發明之第八為關於液晶顯示裝置,其特徵為至少具備 前述記載之橢圓偏光板或圓偏光板。 還有,於上述記載中,「/」為表示各層之界面,以下同 樣標記。 【實施方式】 9 312/發明說明書(補件)/93-07/93109576 1235256 以下,詳細說明本發明。 本發明所用之液晶S己向被固定化的液晶物質層,為經由 將配向狀態之液晶物質使用固定化手段予以固定化之層, 固定化手段於高分子液晶物質之情況可列舉由配向狀態急 冷成為玻璃化狀態且固定之方法,於具有反應性官能基之 低分子或高分子液晶物質配向後,令該官能基反應(硬化、 交聯等)固定化之方法等。 前述反應性官能基可列舉乙烯基、(甲基)丙烯醯基、乙 烯氧基、環氧基、氧雜環丁基、羧基、羥基、胺基、異氰 酸酯基、酸酐等,且以適合各個基之方法進行反應。 可使用於液晶物質層的液晶物質可根據液晶薄膜之目的 用途和製造方法,由廣泛範圍中選定低分子液晶物質、高 分子液晶物質,但以高分子液晶物質為佳。更且,液晶物 質之分子形狀可為棒狀或圓盤狀。例如顯示出圓盤型 (d i s c 〇 t i c )向列液晶性的圓盤液晶化合物亦可使用。 固定化前之液晶物質層的液晶相可列舉向列相、扭轉向 列相、膽固醇相、混合向列相、混合扭轉向列相、圓盤向 列相、近晶狀液晶相%·。 前述高分子液晶物質可使用各種主鏈型高分子液晶物 質、側鏈型高分子液晶物質、或其混合物。主鏈型高分子 液晶物質可列舉聚酯系、聚醯胺系、聚碳酸酯系、聚醯亞 胺系、聚胺基曱酸乙酯系、聚苯並咪唑系、聚笨並崎唑系、 聚苯並噻唑系、聚偶氮次甲基系、聚酯醯胺系、聚酯碳酸 酯系、聚酯醯亞胺系等之高分子液晶物質、或其混合物。 312/發明說明書(補件)/93-07/93109576 10 1235256 又,側鏈型高分子液晶物質可列舉聚丙烯酸酯系、聚甲基 丙烯酸酯系、聚乙烯系、聚矽氧烷系、聚醚系、聚丙二酸 酯系、聚酯系等之具有直鏈狀或環狀構造之骨架鏈的物質 結合液晶原(m e s 〇 g e η )基做為側鏈的高分子液晶物質、或其 混合物。其中由合成和配向之容易度等而言,則以主鏈型 高分子液晶物質之聚酯系為佳。 低分子液晶物質可列舉飽和苯羧酸類、不飽和笨羧酸 類、聯苯羧酸類、芳香族羥基羧酸類、s c h i f f鹼型類、雙 偶氮次甲基化合物類、偶氮化合物類、偶氮氧基化合物類、 環己烷酯化合物類、類固醇化合物類等之於終端導入前述 反應性官能基之顯示液晶性的化合物,和於前述化合物類 中對顯示液晶性之化合物添加交聯性化合物的組成物等。 又,圓盤型液晶化合物可列舉三鄰亞苯、參抒并苯(t r u X e n e 等。 更且,將具有因熱或光等進行交聯反應之官能基或部位 的各種化合物,在不妨礙液晶性表現之範圍下配合至液晶 物質中亦可。可交聯反應之官能基可列舉前述各種反應性 官能基等。 液晶之配向被固定化的液晶物質層。為經由將含有前述 液晶物質和視需要所添加之各種化合物的組成物,於溶融 狀態下塗佈至配向基板上之方法、和將該組成物之溶液於 配向基板上塗佈之方法等則可形成,且於配向基板上所塗 佈之塗膜為經過乾燥、熱處理(液晶之配向),視需要使用 以光照射和/或加熱處理(聚合、交聯)等之前述配向固定化 11 312/發明說明書(補件)/93-07/93 ] 09576 1235256 之手段,並且將配向予以固定化則可形成。 調製前述溶液所用之溶劑,若為可溶解本發明所使用之 液晶物質和組成物,且在適當條件可蒸除之溶劑即可,並 無特別限弗彳,一般而言以丙酮、曱基乙基酮、異佛爾酮等 之酮類、丁氧基乙醇、己氧基乙醇、甲氧基-2-丙醇等之醚 醇類、乙二醇二曱醚、二甘醇二曱醚等之二元醇醚類、醋 酸乙S旨、醋酸曱氧基丙醋、乳酸乙酯等之酯系、苯酚、氣 苯酚等之酚類、N,N _二甲基曱醯胺、N,N -二曱基乙醯胺、 N -曱基咄咯烷酮等之醯胺系、氣仿、四氣乙烷、二氯苯等 之鹵化烴類等和其混合系為較佳使用。又,為了於配向基 板上形成均句之塗膜,亦可於溶液中添加界面活性劑、消 泡劑、勻塗劑等。更且,在以著色為目的且不防礙液晶性 表現之範圍内,亦可添加二色性染料和通常之染料和顏料 等。 關於塗佈方法,若為可確保塗膜均勻性之方法,則無特 別限定且可採用公知之方法。可列舉例如輥塗法、型板塗 層法、浸塗法、幕塗法、旋塗法等。塗佈後,亦可加入以 加熱器和溫風吹送等之方法之溶劑除去(乾燥)步驟。經塗 佈膜於乾燥狀態的膜厚為0 . 1 // m〜5 0 // m、較佳為0 . 2 // m 〜2 0 in、更佳為0 . 3 // η】〜1 0 # η]。此範圍夕卜,則所得之液 晶物質層的光學性能不足,且液晶物質之配向為不夠充 分,故為不佳。 接著,視需要以熱處理等形成液晶之配向後,進行配向 的固定化。熱處理為在液晶相表現溫度之範圍中加熱,藉 12 312/發明說明書(補件)/93-07/93109576 1235256 由液晶物質本來具有之自我配向能力而令液晶配向。熱處 理條件為根據所用液晶物質之液晶相舉動溫度(轉移溫度) 使得最適條件和界限值為不同,故無法一概而言,通常為 1 0〜3 0 0 °C 、較佳為3 0〜2 5 0 °C之範圍。更低溫下,則恐無 法充分進行液晶之配向。於高溫下,則液晶物質分解且恐 對配向基板造成不良影響。又,關於熱處理時間,通常為 3秒鐘〜6 0分鐘、較佳為1 0秒〜3 0分鐘之範圍。短於3 秒鐘之熱處理時間,恐無法充分完成液晶的配向,超過6 0 分鐘之熱處理時間,則生產性極端變差,任何情況均為不 佳。液晶物質經由熱處理等而完成液晶之配向後,就其原 樣之狀態下使用適於所用液晶物質之手段,將配向基板上 之液晶物質層予以固定化。 前述配向基板可例示聚醯亞胺、聚醯胺、聚醯胺亞胺、 聚苯硫、聚苯氧、聚醚酮、聚醚醚酮、聚醚砜、聚砜、聚 對酞酸乙二醇酯、聚萘酸乙二酯、聚芳酸酯、三乙醯纖維 素、環氧樹脂、苯3分樹脂等之薄膜。 此些薄膜即使根據製造方法未進行表現改變配向能力之 處理,亦可對於本發明所使用之液晶物質表現充分的配向 能力,但於配向能力不夠充分、或未顯示配向能力等之情 形中,可將此些薄膜於適度加熱下延拉、以人造纖維而將 薄膜面以一方向摩擦,進行所謂的摩擦處理,於薄膜上設 置由聚si亞胺、聚乙稀醇、石夕烧偶合劑等公知的配向劑所 構成的配向膜並且進行摩擦處理、氧化矽等之斜方沈積處 理、或將其適當組合等使得配向能力表現的薄膜亦可使用。 13 312/發明說明補件)/93-07/93109576 1235256 又,配向基板亦可使用於表面設置許多規則性微細溝之 紹、鐵、銅等之金屬板和各種玻璃板等。 此處,配向基板薄膜之配向處理方向並無特別限定,可在任意 方向上進行上述各處理。尤其是,於操作長方形之配向基板上所 形成之液晶薄膜時,期望對於此長方形之連續薄膜的〇方向選擇 指定之角度,且視需要於斜方向上進行配向處理。經由對指定之 角度方向進行配向處理,則可在液晶薄膜於發揮最適光學特性之 軸上配置積層時,具有令長方形薄膜之MD於拉齊之狀態下貼合 (所謂的輥-對-輥貼合)、或者提高製品的操作效率等方面而言極 佳之優點。 本發明中所用之接合劑為對於液晶物質層及向同性基板 具有充分的接合力,且若不損害液晶物質層之光學特性, 則無特別限制,可列舉例如丙烯酸樹脂系、曱基丙婦酸樹 脂系、環氧樹脂系、乙烯-醋酸乙烯酯共聚物系、橡膠系、 胺基甲酸乙醋系、聚乙烯醚及其混合物系、和熱硬化型和/ 或光硬化型、電子射線硬化裂等之各種反應性物質❶此些 接合劑層為亦包含兼具保護液晶物質層之透明保護層的機 能。還有,亦可使用黏合劑做為上述接合劑。 前述反應性物質的反應(硬化)條件為根據構成接合劑之 成分、黏度和反應溫度等之條件而變化,故可選擇適人各 種物質之條件進行。例如’光硬化型之情況較佳為添加各 種公知的光引發劑’由金屬鹵素燈、高壓水銀燈、低壓水 銀燈、氙燈、弧燈、雷射、同步加速器妨射忠 裔放射先源等之光源 照射光線,且進行反應即可。每單位面積(丨平方公分)之 312/發明說明書(補件)/93-07/93109576 14 1235256 照射量以積算照射量通常為以1〜2 0 0 0 m J、較佳為1〔 1 0 0 0 in J之範圍。但,於光引發劑之吸收區域與光源之 為顯著不同時、或反應性之化合物本身具有光源波長 收能力時則不限於此。於此些情形中,亦可採用適當 增感劑、或者混合使用吸收波長不同之二種以上的光 劑等之方法。電子射線硬化型情況的加速電壓通常為 〜2 0 0 k V、較佳為 5 0 k V 〜1 0 0 k V。 接合劑層之厚度雖如前述根據構成接合劑之成分、 劑之強度和使用溫度等而異,但通常為1〜5 0 // m、較 2〜3 0 # m、更佳為3〜1 0 # m。於此範圍外側接合強度 足,且由邊緣部滲出,故為不佳。 又,此些接合劑在不損害其特性之範圍中,於控制 特性或基板剝離性和侵姓性之目的下,亦可添加各種 子等和表面改質劑。 前述微粒子可例示與構成接合劑之化合物折射率不 的微粒子、不損害透明性且提高抗靜電性能的導電性 子、提高耐摩損性之微粒子等,更具體而言,可列舉 矽石、微細氧化鋁、I T 0 (氧化銦錫)微粒子、銀微粒子 種合成樹脂微粒子等。 又,前述表面改質劑只要與接合劑之相溶性佳且對 合劑之硬化性和硬化後之光學性能無影響,則無特別 定,可使用離子性、非離子性之水溶性界面活性劑、 性界面活性劑、高分子界面活性劑、氟系界面活性劑 石夕氧等之有機金屬系界面活性劑、反應性界面活性劑 312/發明說明書(補件)/93-07/93109576 光譜 之吸 的光 引發 1 OkV 接合 佳為 不 光學 微粒 同 微粒 微細 、各 於接 限 油溶 、聚 等。 15 1235256 尤其是,全氟烷基化合物、全氟聚醚化合物等之氟系界面 活性劑、或聚矽氧等之有機金屬系界面活性劑為表面改質 效果大,故為特佳。表面改質劑之添加量相對於接合劑以 0 . 0 1〜1 0質量%之範圍為佳,更佳為0. 0 5〜5質量%,再佳 為0 . 1〜3質量%。添加量若少於此範圍,則添加效果不夠 充分,另一方面若過多,則恐發生接合強度降低等之弊病。 還有,表面改質劑可單獨使用,且視需要併用數種亦可。 更且,在不損害本發明效果之範圍下,亦可配合抗氧化 劑、紫外線吸收劑等之各種添加劑。 本發明所使用的向同性基板可使用4 -甲基戊烯-1、聚甲 基丙烯酸甲酯、聚苯乙烯、聚碳酸酯、聚醚砜、聚苯硫、 聚芳酸酯、非晶質聚烯烴、降水片烯系樹脂、三乙醯纖維 素、或環氧樹脂等之各薄膜。 本發明所用之偏光板,若可達成本發明目的者則無特別 限制,可適當使用液晶顯示裝置所通常使用的偏光板,較 佳為近年開發上市的薄膜型偏光板。具體而言,可使用聚 乙烯醇(P V A )和部分乙縮醛化P V A等之P V A系偏光薄膜、乙 烯醋酸乙烯酯共聚物之部分鹼化物等所構成之親水性高分 子薄膜上吸附碘和/或二色性色素且延拉的偏光薄膜、P V A 之脫水處理物和聚氣乙稀之脫鹽酸處理物般之聚稀配向薄 膜等所構成的偏光薄膜等。又,亦可使用反射型之偏光薄 膜。 前述偏光板可單獨使用偏光薄膜,且在提高強度、提高 耐濕性、提高耐熱性等之目的下亦可於偏光薄膜的單面或 16 312/發明說明書(補件)/93-07/93109576 1235256 兩面設置透明的保護層等。透明保護層可列舉聚酯和三乙 醯纖維素等之透明塑膠薄膜直接或透過接合劑層予以積層 者、樹脂之塗佈層、丙烯系和環氧系等之光硬化型樹脂層 等。將此些透明保護層覆蓋至偏光薄膜兩面時,亦可於兩 面設置相同的透明保護層,且亦可設置不同的透明保護層。 其次,具體說明本發明之光學積層體的製造方法。 首先,說明關於製造於本發明之向同性基板上透過接合 劑層所形成之液晶物質層1構成之積層體(A)的第一步驟。 首先,於配向基板上,以適切方法形成液晶物質的塗 膜,且視需要除去溶劑等,並且經由加熱等完成液晶配向, 並且根據適於所用液晶物質之手段令液晶物質層1的配向 固定化。其次,於配向固定化之液晶物質層1上,形成接 合劑層,且透過接合劑層令液晶物質層1與向同性基板密 合後,視需要令接合劑層1反應(硬化)後,將配向基板剝 離。 如此處理,則可將配向固定化之液晶物質層1轉印至向 同性基板。如此則可取得於向同性基板上透過接合劑層接 合之液晶物質層1所構成的積層體(A)。 積層體(A)中之液晶物質層1為了保護液晶物質層的表 面,亦可對露出之液晶物質層設置透明保護層、或貼合表 面保護薄膜。此處,透明保護層之材料亦可由前述之接合 劑中選定。更且,於透明保護層上或液晶物質層1上,使 用後述之再剝離性基板形成緩衝層,其後將液晶物質層2 予以積層亦可。 17 312/發明說明書(補件)/93-07/93109576 1235256 即,於本發明之向同性基板上透過接合劑層所形成之液 晶物質層1構成之積層體(A )的層構造可列舉 ① 向同性基板/接合劑層/液晶物質層1 ② 向同性基板/接合劑層1/液晶物質層1/接合劑層2 等。還有,於上述記載中,「/」為表示各層之界面,以下 同樣標記。 其次第二步驟為將配向基板上形成液晶配向被固定化之 液晶物質層2,透過黏·接合劑層與前述積層體(A)之液晶 物質層1貼合,製造由向同性基板/接合劑層/液晶物質層 1 /黏合劑(接合劑)層/液晶物質層2 /配向基板所構成的積 層體(B )。此處於配向基板上所形成之液晶物質層2,為了 保護液晶物質層之表面,亦可使用對露出之液晶物質層設 置透明保護層,或貼合表面保護薄膜。此時之透明保護層 亦可由前述之接合劑中選定。 如此,取得如下所例示之積層體(B)。 ① 向同性基板/接合劑層/液晶物質層 1 /黏合劑(接合劑) 層/液晶物質層2 /配向基板 ② 向同性基板/接合劑層/液晶物質層1 /接合劑層/黏合 劑(接合劑)層/液晶物質層2 /配向基板 ③ 向同性基板/接合劑層/液晶物質層 1 /黏合劑(接合劑) 層/接合劑層/液晶物質層2 /配向基板 ④ 向同性基板/接合劑層/液晶物質層1 /接合劑/黏合劑 (接合劑)層/接合劑層/液晶物質層2 /配向基板 此處,液晶物質層1與液晶物質層2亦可具有相同或相 18 312/發明說明書(補件)/93-07/93109576 1235256 異之光學參數。即,可由光學特性等之觀點選擇必要之液 晶物質層的組合。光學參數可列舉液晶物質層之層厚,液 晶物質固有或表觀的複折射、光程差、配向固定化狀態、 扭轉之有無、扭轉角等。又,對於接合劑層和黏合劑層亦 可根據剝離性和要求特性而任意選擇,可為相同或相異均 無妨。 其次於第三步驟中,將第二步驟所得之積層體(B)的配向 基板剝離,且對剝離面(液晶物質層2 )或向同性基板之任 一者透過黏·接合劑(黏合劑或接合劑)層貼合偏光板,則 可取得本發明之光學積層體。此處,對向同性基板側貼合 偏光板時,可在剝離配向基板後貼合偏光板,或者於貼合 偏光板後,剝離配向基板亦可。 又,對液晶物質層2側貼合偏光板時,於剝離配向基板 後,為了於剝離面(液晶物質層2 )保護液晶物質層2表面, 可對露出之液晶物質層2形成接合劑層,且透過接合劑層 令液晶物質層2與再剝離性基板密合後,視需要令接合劑 層反應(硬化),將接合劑層設置做為透明保護層,且在剝 離再剝離性基板後,貼合偏光板亦可。 該再剝離性基板可使用聚乙烯、聚丙烯、4 -曱基戊烯-1 樹脂等之烯烴系樹脂、聚醯胺、聚醯亞胺、聚醯胺醯亞胺、 聚醚醯亞胺、聚醚酮、聚醚醚酮、聚醚砜、聚酮硫、聚砜、 聚苯乙烯、聚苯硫、聚苯氧、聚對酞酸乙二醇酯、聚對酞 酸丁二醇酯、聚芳酸酯、聚乙縮醛、單軸延拉聚酯、聚碳 酸酯、聚乙烯醇、聚甲基丙烯酸甲酯、聚芳酸酯、非晶質 19 312/發明說明書(補件)/93-07/93109576 1235256 聚烯烴、降水片烯系樹脂、三乙醯纖維素、或環氧樹脂等 之薄膜。 尤其是,以光學缺陷之檢查性優良且透明性之光學向同 性薄膜為佳,並且以向同性基板所例示之4 -甲基戊基-1、 聚曱基丙烯酸甲酯、聚苯乙烯、聚碳酸酯、聚醚砜、聚苯 硫、聚芳酸酯、非晶質聚烯烴、降水片烯系樹脂、三乙醯 纖維素、或環氧樹脂為佳。 對於此些塑膠薄膜,為了具有適度的再剝離性,可預先 在其表面塗層聚矽氧,或者形成有機薄膜或無機薄膜。又, 於同樣之目的下,亦可對塑膠薄膜之表面施以鹼化處理等 之化學處理、或者電暈處理等之物理性處理。 又,為了調整再剝離性基板的剝離性,亦可令上述塑膠 薄膜含有表面改質劑和滑劑。前述滑劑若在對光學缺陷之 檢查性和剝離性無不良影響之範圍下,則其種類、添加量 並無特別限制。滑劑的具體例可列舉微細矽石、微細氧化 鋁等,且添加量之指標為以再剝離性基板之霧值通常為 5 0 %以下、較佳為3 0 %以下。添加量若過少則無法察見添加 效果,另一方面,若過多時,則光學缺陷的檢查性惡化, 故為不佳。 又,視需要亦可含有其他公知的各種添加劑,例如,防 黏劑、抗氧化劑、抗靜電劑、熱安定劑、耐衝擊性改良劑 等。 關於再剝離性基板之剝離力,即使由同一材料所製造的 再剝離性基板,亦因製造方法、表面狀態和所使用之接合 20 312/發明說明書(補件)/93-07/93109576 1235256 劑的濕潤性等而變化,無法一概決定,但與接合劑界面的 剝離力(1 8 0 °剝離、剝離速度3 0 c m /分鐘、室溫下測定)通 常為0 . 3 8〜1 2 N / m、較佳為0 . 3 8〜8 . 0 N / m。剝離力過低則 於再剝離性基板上察見浮起且於所欲的界面無法取得良好 的剝離狀態,且於液晶物質層2與再剝離性基板之間恐無 法形成所欲的表面保護層。又,剝離力過高之情形中,將 再剝離性基板剝離時,破壞液晶物質層,或,接合劑層無 法與反應(硬化)之表面保護層的界面剝離,故為不佳。 又,再剝離性基板的厚度有時亦影響剝離性,期望為1 6 〜1 0 0 // m,特別期望為2 5〜5 0 // m為佳。厚度若過厚,貝4 剝離點不安定且恐剝離性惡化,另一方面,若過薄,則無 法保持薄膜的機械強度,故恐發生製造中拉裂等之麻煩。 雖無特別限定,但藉由經過至少前述各步驟,則例如可 取得具有如下構成的光學積層體。 1 ) 偏光板/黏合劑(接合劑)層/向同性基板/接合劑層/液 晶物質層1 /黏合劑(接合劑)層/液晶物質層2 2) 偏光板/黏合劑(接合劑)層/向同性基板/接合劑層/液 晶物質層1 /接合劑層/黏合劑(接合劑)層/液晶物質層2 3) 偏光板/黏合劑(接合劑)層/向同性基板/接合劑層/液 晶物質層1 /黏合劑(接合劑)層/接合劑層/液晶物質層2 4) 偏光板/黏合劑(接合劑)層/向同性基板/接著劑層/液 晶物質層1 /接合劑/黏合劑(接合劑)層/接合劑層/液晶物 質層2 5) 向同性基板/接著劑層/液晶物質層 1 /黏合劑(接合劑) 211235256 2. Description of the invention: [Technical field to which the invention belongs] The present invention relates to a method for manufacturing an optical multilayer body that can be used for various optical elements. The present invention also relates to an elliptically polarizing plate or a circularly polarizing plate composed of an optical laminate obtained by such a manufacturing method, and to a liquid crystal display device including the elliptically polarizing plate or a circularly polarizing plate. [Prior art] A thin film composed of an alignment layer of a liquid crystal compound, especially a thin film composed of a liquid crystal substance immobilized into a nematic structure, a twisted nematic structure, or a mixed nematic structure, has color compensation and The viewing angle compensation element and the optically active optical element have excellent performance, and contribute to the performance and weight reduction of various display elements. A manufacturing method of these films has been proposed in which a layer made of a liquid crystal substance formed on an alignment substrate is transferred to a light-transmitting substrate that also supports the substrate (for example, refer to Patent Documents 1 and 2). . Furthermore, in order to reduce thickness and weight, a method for manufacturing an optical element made of a liquid crystal material that does not use a supporting substrate film has been proposed (for example, refer to Patent Document 3). According to such a manufacturing method, if a layer composed of liquid crystal substances formed by alignment on an alignment substrate is temporarily transferred to a re-releasable substrate through an adhesive, and then the re-releasable substrate is peeled off, it can be manufactured without support. An optical element composed of a liquid crystal material layer of a substrate film. On the other hand, in recent years, optical films used in various display devices such as liquid crystal display devices have required higher-performance optical performance. The use of only one optical film cannot meet the requirements, and more layers are used. For example, 6 312 / Invention Specification (Supplement) / 93-07 / 93109576 1235256 For example, the laminated and semi-transparent reflection of the polymer stretched film represented by polycarbonate in the phase difference film for color compensation of STN liquid crystal display devices Broadband 1/4 wavelength wave obtained by laminating a 1/4 wavelength plate and a 1/2 wavelength plate in a circular polarizing plate of a liquid crystal display device, or a broadband domain obtained by laminating a cholesterol film having a different selected wavelength region Circular polarizers, etc. On the other hand, the high functionalization caused by the lamination of such optical films, as represented by mobile phones and portable data terminal devices, which have been widely popular in recent years, also requires very thin and light weight. Along with this, the optical films used in display devices are also expected to be thinner and lighter. Therefore, attempts have been made to make thinner polymer stretched films. However, due to the limitations of optical characteristics and manufacturing steps, there are limits to the thinning of polymer stretched films. In the case of lamination, there is a problem that the thickness is thick. . In order to solve such problems, although it is considered that an optical element constituted by using a liquid crystal material without a supporting substrate film as in the aforementioned Patent Document 3 is effective, when the optical element is laminated, a laminated body without a supporting substrate film is operated. Stability, durability, etc. On the other hand, if an optical element composed of two or more liquid crystal materials can be laminated on one supporting substrate film, a film having excellent durability and the like can be obtained. However, an industrial manufacturing method for laminating the optical element Not established. [Patent Document 1] Japanese Patent Laid-Open No. 4 _ 5 7 0 1 7 [Patent Literature 2] Japanese Patent Laid-Open No. 4-1 7 7 2 1 6 [Patent Literature 3] 7 312 / Invention Specification ( Supplement) / 93-07 / 93109576 1235256 Japanese Patent Laid-Open No. 8-2 7 8 4 9 1 [Summary of the Invention] (Problems to be Solved by the Invention) The present invention is to realize the formerly known only polymer extended drawing The film has two functions: high functionalization, high durability, and large thickness reduction, which are difficult for the optical characteristic surface. That is, focusing on an optical film composed of a liquid crystal material layer that is thinner and can exhibit excellent optical functions, and to review the manufacturing method of an optical element composed of at least two liquid crystal material layers laminated on a supporting substrate film, As a result, the present invention has been completed. (Means for Solving the Problem) That is, the first aspect of the present invention relates to a method for manufacturing an optical laminate, which is characterized in that at least (1) the liquid crystal material layer 1 whose liquid crystal alignment is formed on the alignment substrate is fixed, and is bonded through After the adhesive layer is bonded to the isotropic substrate, the alignment substrate is peeled off and the liquid crystal material layer 1 is transferred to the isotropic substrate to obtain the first layered body (A) composed of the isotropic substrate / adhesive layer / liquid crystal material layer 1. Step (2) The liquid crystal material layer 2 on which the liquid crystal alignment is formed on the alignment substrate is fixed, and the liquid crystal material layer 1 is bonded to the liquid crystal material layer 1 through an adhesive / bonding agent to obtain an isotropic substrate / binder layer / liquid crystal material layer 1 / adhesive (bonding agent) layer / liquid crystal material layer 2 / the second step of the multilayer body (B) composed of the alignment substrate, and (3) the alignment substrate of the multilayer body (B) is peeled off, and the isotropic substrate is opposite Or each step of the third step of bonding the liquid crystal material layer 2 to the polarizing plate. The second aspect of the present invention relates to a method for manufacturing an optical laminate, characterized in that, in the method for manufacturing an optical laminate, the liquid crystal material layer 1 and the liquid crystal material layer 2 have the same or different optical parameters. 8 312 / Invention Specification (Supplement) / 93-07 / 93109576 1235256 The third aspect of the present invention relates to a method for manufacturing an optical laminated body, which is characterized in that in the method for manufacturing an optical laminated body described above, the aforementioned liquid crystal substance layer 1 At least one of the liquid crystal material layer 2 and the liquid crystal material layer which is optically positive is a uniaxial liquid crystal material which is composed of a liquid crystal material layer in which a nematic alignment formed in a liquid crystal state is fixed. The fourth aspect of the present invention relates to a method for manufacturing an optical laminated body, characterized in that in the method for manufacturing an optical laminated body described above, at least one of the liquid crystal substance layer 1 and the liquid crystal substance layer 2 is optically positive. The uniaxial liquid crystal substance is composed of a mixed nematic alignment liquid crystal substance layer formed in a liquid crystal state. A fifth aspect of the present invention relates to a method for manufacturing an optical laminate, which is characterized in the optical laminate described in the foregoing. In the manufacturing method of the body, at least one of the liquid crystal material layer 1 and the liquid crystal material layer 2 is a uniaxial liquid crystal material that shows a positive optical property, and is a liquid crystal material that is fixed by twisted nematic alignment formed in a liquid crystal state. Made up of layers. A sixth aspect of the present invention relates to an elliptically polarizing plate, which is characterized by an optical multilayer body obtained by the manufacturing method described above. The seventh aspect of the present invention relates to a circularly polarizing plate, which is characterized by being constituted by an optical laminated body obtained by the manufacturing method described above. An eighth aspect of the present invention relates to a liquid crystal display device including at least the elliptical polarizer or the circular polarizer described above. In addition, in the above description, "/" indicates the interface of each layer, and the same applies below. [Embodiment] 9 312 / Invention Specification (Supplement) / 93-07 / 93109576 1235256 The present invention will be described in detail below. The liquid crystal S used in the present invention has been fixed to the liquid crystal material layer. The liquid crystal material in the alignment state is a layer that is immobilized by means of immobilization. When the immobilization method is applied to a polymer liquid crystal material, quenching from the alignment state can be cited. A method for immobilizing the glassy state and immobilizing the low-molecular or high-molecular liquid crystal substance having a reactive functional group, and then immobilizing the functional group by reaction (hardening, crosslinking, etc.). Examples of the reactive functional group include a vinyl group, a (meth) acrylfluorenyl group, a vinyloxy group, an epoxy group, an oxetanyl group, a carboxyl group, a hydroxyl group, an amino group, an isocyanate group, an acid anhydride, and the like, and each group is suitable for each group. Method. The liquid crystal material used for the liquid crystal material layer can be selected from a wide range of low-molecular liquid crystal materials and high-molecular liquid crystal materials according to the intended use and production method of the liquid crystal film, but high-molecular liquid crystal materials are preferred. Furthermore, the molecular shape of the liquid crystal substance may be a rod shape or a disc shape. For example, a disc liquid crystal compound exhibiting a disc type (d i s c o t i c) nematic liquid crystal property can also be used. Examples of the liquid crystal phase of the liquid crystal material layer before immobilization include a nematic phase, a twisted nematic phase, a cholesterol phase, a mixed nematic phase, a mixed twisted nematic phase, a disc nematic phase, and a smectic liquid crystal phase. As the polymer liquid crystal substance, various main chain polymer liquid crystal substances, side chain polymer liquid crystal substances, or a mixture thereof can be used. Examples of the main chain polymer liquid crystal substance include polyester-based, polyamido-based, polycarbonate-based, polyamido-based, polyaminoacetate-based, polybenzimidazole-based, and polybenzizazole-based. Polymer liquid crystal substances such as polybenzothiazole-based, polyazomethine-based, polyesteramidine-based, polyestercarbonate-based, polyesterimide-based, or a mixture thereof. 312 / Invention Manual (Supplement) / 93-07 / 93109576 10 1235256 In addition, examples of the side chain polymer liquid crystal material include polyacrylate-based, polymethacrylate-based, polyethylene-based, polysiloxane-based, polymer Polymeric liquid crystal substances having a linear or cyclic structure, such as ether-based, polymalonate-based, or polyester-based, with a mesogen (mesoge η) group as a side chain, or a mixture thereof . Among them, in terms of ease of synthesis and alignment, a polyester polymer of a main chain polymer liquid crystal substance is preferred. Examples of the low-molecular liquid crystal substance include saturated benzenecarboxylic acids, unsaturated benzenecarboxylic acids, biphenylcarboxylic acids, aromatic hydroxycarboxylic acids, schiff bases, bisazomethine compounds, azo compounds, and azooxy A compound that exhibits liquid crystallinity, such as a base compound, a cyclohexane ester compound, a steroid compound, or the like, into which a reactive functional group is introduced into the terminal, and a composition that adds a crosslinkable compound to the compound that exhibits liquid crystallinity in the aforementioned compound. Things. Examples of the discotic liquid crystal compound include tri-o-phenylene, truxene, and the like. In addition, various compounds having a functional group or site that undergoes a cross-linking reaction by heat, light, or the like are not hindered. It is also possible to mix into the liquid crystal material within the range of the liquid crystal performance. The functional groups that can be crosslinked include the aforementioned various reactive functional groups. The liquid crystal material is aligned in the alignment of the liquid crystal material layer. A composition of various compounds added as needed, a method of applying the composition to the alignment substrate in a molten state, and a method of applying a solution of the composition on the alignment substrate can be formed, and the composition can be formed on the alignment substrate. The applied coating film is dried and heat-treated (alignment of liquid crystals). If necessary, the aforementioned alignment and fixation with light irradiation and / or heat treatment (polymerization, cross-linking), etc. 11 312 / Invention Specification (Supplement) / 93 -07/93] 09576 1235256, and can be formed by immobilizing the alignment. The solvent used in the preparation of the aforementioned solution, if it can dissolve the liquid crystal substance and composition used in the present invention The solvent can be distilled off under appropriate conditions, and is not particularly limited. Generally speaking, ketones such as acetone, methyl ethyl ketone, isophorone, butoxyethanol, hexyloxyethanol, etc. , Ether alcohols such as methoxy-2-propanol, glycol ethers such as ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, ethyl acetate, ethyl acetate, ethyl acetate Esters such as esters, phenols such as phenol and aerophenol, N, N-dimethylfluorenamine, N, N-dimethylacetamidamine, N-fluorenylpyrrolidone, etc. Halogenated hydrocarbons such as chloroform, tetragas ethane, dichlorobenzene, and the like are preferably used. In addition, in order to form a uniform coating film on the alignment substrate, a surfactant may also be added to the solution. , Antifoaming agent, leveling agent, etc. In addition, dichroic dyes and ordinary dyes and pigments can also be added within the range for the purpose of coloring without hindering the liquid crystal performance. Regarding the coating method, if In order to ensure the uniformity of the coating film, there is no particular limitation and a known method can be used. Examples include a roll coating method, a stencil coating method, a dip coating method, and a curtain. Coating method, spin coating method, etc. After coating, a solvent removal (drying) step by a method such as heater and warm air blowing can also be added. The film thickness of the coated film in a dry state is 0.1 1 m ~ 5 0 // m, preferably 0. 2 // m ~ 2 0 in, more preferably 0. 3 // η] ~ 1 0 # η]. In this range, the obtained The optical properties are insufficient, and the alignment of the liquid crystal substance is not sufficient, so it is not good. Then, if necessary, the alignment of the liquid crystal is formed by heat treatment, and then the alignment is fixed. The heat treatment is heating in the range of the temperature at which the liquid crystal phase is expressed. 12 312 / Invention Manual (Supplement) / 93-07 / 93109576 1235256 The liquid crystal is aligned by the self-alignment ability of the liquid crystal substance. The heat treatment conditions are based on the liquid crystal phase behavior temperature (transition temperature) of the liquid crystal substance used, which makes the optimal conditions and limit values different, so it cannot be generalized, usually 10 ~ 3 0 0 ° C, preferably 3 0 ~ 2 5 0 ° C range. At lower temperatures, the alignment of the liquid crystal may not be sufficiently performed. At high temperatures, the liquid crystal material decomposes and may adversely affect the alignment substrate. The heat treatment time is usually in the range of 3 seconds to 60 minutes, and preferably in the range of 10 seconds to 30 minutes. If the heat treatment time is shorter than 3 seconds, the alignment of the liquid crystal may not be fully completed. If the heat treatment time is longer than 60 minutes, the productivity is extremely deteriorated, and in any case, it is not good. After the liquid crystal material is aligned with the liquid crystal by heat treatment or the like, the liquid crystal material layer on the alignment substrate is fixed by using a means suitable for the liquid crystal material used in its original state. Examples of the alignment substrate include polyimide, polyimide, polyimide, polyphenylenesulfide, polyphenoxy, polyetherketone, polyetheretherketone, polyethersulfone, polysulfone, and polyethylene terephthalate. Films of alcohol ester, polyethylene naphthalate, polyarylate, triethyl cellulose, epoxy resin, benzene three-point resin, etc. These films can exhibit sufficient alignment ability for the liquid crystal material used in the present invention even if the processing is not performed to change the alignment ability according to the manufacturing method. However, in the case where the alignment ability is insufficient or the alignment ability is not displayed, These films were stretched under moderate heating, and the film surface was rubbed in one direction with artificial fibers. The so-called rubbing treatment was performed, and a polyimide, polyvinyl alcohol, and ishibori coupling agent were provided on the film. An alignment film made of a known alignment agent, and a film subjected to rubbing treatment, orthorhombic deposition treatment such as silicon oxide, or an appropriate combination of these can be used. 13 312 / Inventory Supplement) / 93-07 / 93109576 1235256 In addition, the alignment substrate can also be used for metal plates, glass plates, etc. with many regular fine grooves on the surface. Here, the alignment processing direction of the alignment substrate film is not particularly limited, and the above-mentioned processes can be performed in any direction. In particular, when operating a liquid crystal film formed on a rectangular alignment substrate, it is desirable to select a specified angle for the 0 direction of the rectangular continuous film, and perform an alignment process in an oblique direction as necessary. By aligning the specified angular direction, when the laminated film is arranged on the axis exhibiting the optimal optical characteristics, it can be bonded with the MD of the rectangular film in a state of being aligned (the so-called roll-to-roll sticking). Combination), or to improve the operating efficiency of the product. The bonding agent used in the present invention has sufficient bonding force to the liquid crystal material layer and the isotropic substrate, and is not particularly limited as long as the optical characteristics of the liquid crystal material layer are not impaired. Examples include acrylic resins, fluorenylpropionic acid, and the like. Resin-based, epoxy-based, ethylene-vinyl acetate copolymer-based, rubber-based, urethane-based, polyvinyl ether and mixtures thereof, and heat-cured and / or light-cured, electron beam-hardened Various kinds of reactive materials such as these adhesive layers have a function of also including a transparent protective layer that also protects the liquid crystal material layer. In addition, an adhesive may be used as the bonding agent. The reaction (hardening) conditions of the above-mentioned reactive substances are changed according to the conditions of the components, viscosity, reaction temperature, etc. constituting the bonding agent. Therefore, conditions suitable for various substances can be selected. For example, in the case of the light-hardening type, it is preferable to add various known photoinitiators. The light is irradiated by a metal halide lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a xenon lamp, an arc lamp, a laser, a synchrotron, and a source of radiation. Light and react. 312 / Invention Specification (Supplement) / 93-07 / 93109576 14 1235256 per unit area (square centimeter) The total exposure is 1 ~ 2 0 0 0 0 m J, preferably 1 [1 0 0 0 in J range. However, it is not limited to the case where the absorption region of the photoinitiator is significantly different from that of the light source, or the reactive compound itself has the light source wavelength-receiving ability. In these cases, methods such as appropriate sensitizers or a mixture of two or more photosensitizers having different absorption wavelengths may be used. In the case of the electron beam hardening type, the acceleration voltage is usually ~ 200 kV, preferably 50 kV to 100 kV. Although the thickness of the adhesive layer varies depending on the components constituting the adhesive, the strength of the adhesive, the use temperature, etc., it is usually 1 to 5 0 // m, more than 2 to 3 0 # m, and more preferably 3 to 1 0 # m. Outside this range, the joint strength is sufficient, and it oozes from the edge, so it is not good. In addition, these bonding agents may be added with various additives and surface modifiers within the scope of not impairing the characteristics, and for the purpose of controlling the characteristics or substrate peelability and surrogacy. Examples of the fine particles include fine particles having a refractive index that is different from that of the compound constituting the bonding agent, conductive particles that do not impair transparency and improve antistatic properties, and fine particles that improve abrasion resistance. More specific examples include silica and fine alumina. , IT 0 (indium tin oxide) fine particles, silver fine particles, synthetic resin fine particles, and the like. The surface modifier is not particularly limited as long as it has good compatibility with the bonding agent and has no effect on the hardenability of the mixture and the optical properties after hardening. Ionic and nonionic water-soluble surfactants, Organometallic surfactants, reactive surfactants, polymer surfactants, fluorine surfactants such as Shi Xioxi, reactive surfactants 312 / Invention Manual (Supplement) / 93-07 / 93109576 The photo-induced 1 OkV bonding is preferably non-optical particles and fine particles, each of which is limited to oil solubility, aggregation, etc. 15 1235256 In particular, fluorosurfactants such as perfluoroalkyl compounds and perfluoropolyether compounds, and organometallic surfactants such as polysiloxanes are particularly effective because they have a large surface modification effect. The addition amount of the surface modifier is preferably in the range of 0.01 to 10 mass% relative to the bonding agent, more preferably 0.05 to 5 mass%, and even more preferably 0.1 to 3 mass%. If the amount added is less than this range, the effect of the addition is insufficient, while if it is too large, the disadvantages such as a decrease in bonding strength may occur. The surface modifier may be used alone, or a plurality of them may be used in combination. In addition, various additives such as an antioxidant and an ultraviolet absorber may be blended as long as the effects of the present invention are not impaired. The isotropic substrate used in the present invention can use 4-methylpentene-1, polymethyl methacrylate, polystyrene, polycarbonate, polyethersulfone, polyphenylene sulfide, polyarylate, and amorphous Films of polyolefins, precipitation resins, triethyl cellulose, or epoxy resins. The polarizing plate used in the present invention is not particularly limited as long as it can achieve the purpose of the invention, and a polarizing plate generally used in a liquid crystal display device can be appropriately used, and a film-type polarizing plate developed and marketed in recent years is preferred. Specifically, PVA-based polarizing films such as polyvinyl alcohol (PVA) and partial acetalized PVA, etc., can be used to adsorb iodine and / Or a polarizing film composed of a dichroic pigment and a stretched polarizing film, a polycrystalline thin film such as a dehydrated product of PVA and a polyhydrochloric acid dehydrochlorinated product, and the like. Alternatively, a reflective polarizing film may be used. The aforementioned polarizing plate can use a polarizing film alone, and can also be used on one side of the polarizing film or for the purpose of improving strength, moisture resistance, heat resistance, etc. 16 312 / Invention Manual (Supplement) / 93-07 / 93109576 1235256 A transparent protective layer is provided on both sides. Examples of the transparent protective layer include transparent plastic films such as polyester and triethyl cellulose, which are laminated directly or through an adhesive layer, resin coating layers, and light-curable resin layers such as acrylic and epoxy resins. When these transparent protective layers are covered on both sides of the polarizing film, the same transparent protective layer may be provided on both sides, and different transparent protective layers may also be provided. Next, the manufacturing method of the optical laminated body of this invention is demonstrated concretely. First, the first step of manufacturing a laminated body (A) composed of a liquid crystal substance layer 1 formed through a bonding agent layer on an isotropic substrate of the present invention will be described. First, a coating film of a liquid crystal substance is formed on the alignment substrate by an appropriate method, and if necessary, the solvent and the like are removed, and the liquid crystal alignment is completed by heating, etc., and the alignment of the liquid crystal substance layer 1 is fixed according to a method suitable for the liquid crystal substance used. . Next, an adhesive layer is formed on the alignment-fixed liquid crystal material layer 1. After the liquid crystal material layer 1 is brought into close contact with the isotropic substrate through the adhesive layer, the adhesive layer 1 is reacted (hardened) if necessary, and then The alignment substrate is peeled. In this way, the alignment-fixed liquid crystal substance layer 1 can be transferred to an isotropic substrate. In this way, a laminated body (A) composed of the liquid crystal substance layer 1 bonded to the isotropic substrate through the adhesive layer can be obtained. In order to protect the surface of the liquid crystal material layer, the liquid crystal material layer 1 in the multilayer body (A) may be provided with a transparent protective layer or a surface protective film attached to the exposed liquid crystal material layer. Here, the material of the transparent protective layer may be selected from the aforementioned bonding agents. Further, a buffer layer may be formed on the transparent protective layer or the liquid crystal material layer 1 by using a releasable substrate described later, and the liquid crystal material layer 2 may be laminated thereafter. 17 312 / Invention specification (Supplement) / 93-07 / 93109576 1235256 That is, the layer structure of the multilayer body (A) composed of the liquid crystal substance layer 1 formed by transmitting the adhesive layer on the isotropic substrate of the present invention can be enumerated① Isotropic substrate / adhesive layer / liquid crystal material layer 1 ② Isotropic substrate / adhesive layer 1 / liquid crystal material layer 1 / adhesive layer 2 and the like. In the above description, "/" indicates the interface of each layer, and the same applies below. The second step is to form a liquid crystal alignment layer 2 on which the liquid crystal alignment is fixed on the alignment substrate. Then, the liquid crystal alignment layer 1 is bonded to the liquid crystal alignment layer 1 of the laminated body (A) through an adhesive / bonding agent layer to produce an isotropic substrate / bonding agent. Layer / liquid crystal material layer 1 / adhesive (bonding agent) layer / liquid crystal material layer 2 / layered body (B) composed of an alignment substrate. In order to protect the surface of the liquid crystal material layer, the liquid crystal material layer 2 formed on the alignment substrate may be provided with a transparent protective layer on the exposed liquid crystal material layer, or a surface protection film may be attached. The transparent protective layer at this time may be selected from the aforementioned bonding agents. In this way, the laminated body (B) illustrated below was obtained. ① Isotropic substrate / adhesive layer / liquid crystal material layer 1 / adhesive (adhesive) layer / liquid crystal material layer 2 / alignment substrate ② Isotropic substrate / adhesive layer / liquid crystal material layer 1 / adhesive layer / adhesive ( Adhesive) layer / Liquid crystal material layer 2 / Alignment substrate ③ Isotropic substrate / Adhesive layer / Liquid crystal material layer 1 / Adhesive (adhesive) Layer / Adhesive layer / Liquid crystal material layer 2 / Alignment substrate ④ Isotropic substrate / Adhesive layer / Liquid crystal material layer 1 / Adhesive / Adhesive (bonding agent) layer / Adhesive layer / Liquid crystal material layer 2 / Alignment substrate Here, the liquid crystal material layer 1 and the liquid crystal material layer 2 may have the same or the same phase 18 312 / Invention Specification (Supplement) / 93-07 / 93109576 1235256 Different optical parameters. That is, a combination of necessary liquid crystal material layers can be selected from the viewpoint of optical characteristics and the like. Optical parameters include the layer thickness of the liquid crystal material layer, the inherent or apparent birefringence of the liquid crystal material, the difference in optical path length, the state of alignment fixation, the presence or absence of twist, and the twist angle. The adhesive layer and the adhesive layer may be arbitrarily selected depending on the peelability and required characteristics, and may be the same or different. Next, in the third step, the alignment substrate of the multilayer body (B) obtained in the second step is peeled off, and either the peeling surface (liquid crystal material layer 2) or any one of the isotropic substrates is passed through an adhesive · bonding agent (binder or A bonding agent) layer is bonded to the polarizing plate to obtain the optical laminate of the present invention. Here, when the polarizing plate is bonded on the opposite substrate side, the polarizing plate may be bonded after the alignment substrate is peeled off, or the alignment substrate may be peeled after the polarizing plate is bonded. In addition, when a polarizing plate is bonded to the liquid crystal material layer 2 side, in order to protect the surface of the liquid crystal material layer 2 on the release surface (liquid crystal material layer 2) after the alignment substrate is peeled off, an adhesive layer may be formed on the exposed liquid crystal material layer 2. After the liquid crystal material layer 2 is brought into close contact with the re-peelable substrate through the adhesive layer, the adhesive layer is reacted (hardened) as needed, and the adhesive layer is set as a transparent protective layer. After the re-peelable substrate is peeled, Laminating a polarizer is also possible. The releasable substrate may be an olefin-based resin such as polyethylene, polypropylene, 4-fluorenylpentene-1 resin, polyfluorene, polyfluorene, polyfluorene, imine, polyetherfluorine, Polyetherketone, polyetheretherketone, polyethersulfone, polyketonesulfide, polysulfone, polystyrene, polyphenylsulfide, polyphenoxy, polyethylene terephthalate, polybutylene terephthalate, Polyarylate, polyacetal, uniaxially-stretched polyester, polycarbonate, polyvinyl alcohol, polymethyl methacrylate, polyarylate, amorphous 19 312 / Invention Note (Supplement) / 93-07 / 93109576 1235256 Thin films of polyolefins, precipitation resins, triethyl cellulose, or epoxy resins. In particular, an optically isotropic film having excellent inspection of optical defects and transparency is preferred, and 4-methylpentyl-1, polymethyl methacrylate, polystyrene, poly Carbonate, polyether sulfone, polyphenylene sulfide, polyarylate, amorphous polyolefin, precipitation resin, triethyl cellulose, or epoxy resin are preferred. For these plastic films, in order to have a moderate re-peelability, a polysiloxane may be coated on the surface in advance, or an organic film or an inorganic film may be formed. For the same purpose, the surface of the plastic film may be subjected to chemical treatment such as alkali treatment or physical treatment such as corona treatment. In addition, in order to adjust the releasability of the releasable substrate, the plastic film may contain a surface modifier and a lubricant. The type and amount of the lubricant are not particularly limited as long as the lubricant does not adversely affect the inspection and peelability of optical defects. Specific examples of the lubricant include fine silica, fine alumina, and the like, and the index of the added amount is that the haze value of the re-peelable substrate is usually 50% or less, and preferably 30% or less. If the amount of addition is too small, the effect of addition will not be observed. On the other hand, if the amount of addition is too large, the inspection of optical defects will be deteriorated, which is unfavorable. Further, if necessary, various other known additives may be contained, such as an anti-sticking agent, an antioxidant, an antistatic agent, a heat stabilizer, an impact resistance improver, and the like. Regarding the peeling force of a re-releasable substrate, even a re-releasable substrate made of the same material, it depends on the manufacturing method, the surface state, and the bonding used. 20 312 / Invention Manual (Supplement) / 93-07 / 93109576 1235256 Agent The wettability and other properties of the adhesive cannot be determined uniformly, but the peeling force at the interface with the bonding agent (180 ° peeling, peeling speed 30 cm / min, measured at room temperature) is usually 0.3 to 1 2 N / m, preferably 0.3 to 8.0 N / m. If the peeling force is too low, floating is observed on the re-peelable substrate and a good peeling state cannot be obtained at the desired interface, and the desired surface protective layer may not be formed between the liquid crystal substance layer 2 and the re-peelable substrate. . When the peeling force is too high, the liquid crystal material layer is damaged when the re-peelable substrate is peeled, or the interface between the adhesive layer and the surface protective layer that is reacted (hardened) is not peeled, which is not preferable. In addition, the thickness of the re-peelable substrate may also affect the releasability, and it is preferably 16 to 1 0 0 // m, and particularly preferably 2 5 to 5 0 // m. If the thickness is too thick, the peeling point of the shell 4 may be unstable and the peelability may be deteriorated. On the other hand, if the thickness is too thin, the mechanical strength of the film cannot be maintained, which may cause problems such as tearing during manufacturing. Although not particularly limited, by going through at least the foregoing steps, for example, an optical laminate having the following configuration can be obtained. 1) Polarizer / adhesive (adhesive) layer / isotropic substrate / adhesive layer / liquid crystal material layer 1 / adhesive (adhesive) layer / liquid crystal material layer 2 2) polarizer / adhesive (adhesive) layer / Isotropic substrate / adhesive layer / liquid crystal material layer 1 / adhesive layer / adhesive (adhesive) layer / liquid crystal material layer 2 3) polarizer / adhesive (adhesive) layer / isotropic substrate / adhesive layer / Liquid crystal material layer 1 / Adhesive (adhesive) layer / Adhesive layer / Liquid crystal material layer 2 4) Polarizer / Adhesive (adhesive) layer / Isotropic substrate / Adhesive layer / Liquid crystal material layer 1 / Adhesive / Adhesive (adhesive) layer / adhesive layer / liquid crystal material layer 2 5) isotropic substrate / adhesive layer / liquid crystal material layer 1 / adhesive (adhesive) 21

312/發明說明書(補件)/93-07/93109576 1235256 層/液晶物質層2 /黏合劑(接合劑)層/偏光板 6 ) 向同性基板/接合劑層/液晶物質層1 /接 劑(接合劑)層/液晶物質層2 /黏合劑(接合劑 7 ) 向同性基板/接合劑層/液晶物質層 1/1 層/接合劑層/液晶物質層2 /黏合劑(接合劑: 8 ) 向同性基板/接合劑層/液晶物質層1 /接 (接合劑)層/接合劑層/液晶物質層2 /黏合劑 偏光板 9 ) 偏光板/黏合劑(接合劑)層/向同性基板 晶物質層1 /黏合劑(接合劑)層/液晶物質層 10) 偏光板/黏合劑(接合劑)層/向同性基相 液晶物質層1 /接合劑層/黏合劑(接合劑)層丨 2/透明保護層 11) 偏光板/黏合劑(接合劑)層/向同性基相 液晶物質層1 /黏合劑(接合劑)層/接合劑層丨 2/透明保護層 12) 偏光板/黏合劑(接合劑)層/向同性基相 液晶物層質1 /接合劑/黏合劑(接合劑)層/接 物質層2 /透明保護層 又,本發明為重複對向同性基板上轉印之 將配向基板上被固定化配向的液晶物質層或 積層後,剝離配向基板之操作,則亦可將液 片積層。 又於本發明積層體之製造步驟中,以單面 312/發明說明書(補件)/93-07/93109576 合劑層/黏合 )層/偏光板 占合劑(接合劑) )層/偏光板 合劑/黏合劑 (接合劑)層/ /接合劑層/液 2 /透明保護層 i /接合劑層/ /液晶物質層 ί /接合劑層/ '液晶物質層 L /接合劑層/ 合劑層/液晶 液晶物質層, 接合劑層予以 晶物質層以數 殘存配向性基 22 1235256 板之形態下,對該配向基板之反面貼合附有脫模 合劑,並將該配向基板予以剝離,則可將黏合劑 膜處理做為新的再剝離性支撐基板。若使用該手 黏合劑不僅可利用做為用以積層本發明的光學積 者與液晶元件和其他光學構材積層的黏合劑,且 合面任意上下反轉等之製造自由度更加寬度。 又,本發明為經由使用在再剝離性基板面上預 由該基板上剝離之脫模層的再剝離性基板,使得 質層與其他層之間亦可形成緩衝層。經由形成緩 可取得抑制製造時和環境試驗時之薄膜的液晶物 變化(例如,打浪等)的應力遮蔽效果。還有,此 雖無特別限定,但以光學性向同性之透明層為佳 舉例如丙烯酸系、曱基丙烯酸系、硝基纖維素系 化合物等之聚合物及其混合物。緩衝層之膜厚為 以上4 0 // in以下、較佳為0 . 5 " m以上1 0 # m以下 態化溫度(T g )為2 0 °C以上、較佳為5 0 °C以上之光 的透明層,且不顯著破壞液晶物質層的光學特性 質並無特別限定。膜厚及玻璃態化溫度為此範圍 效果不足,並且無法依循本發明目的之一的薄膜 故為不佳。 又,前述緩衝層亦可經由添加交聯成分的部分 塑劑之添力口 、滑劑之添加等,進行物性之控制。 更且,關於緩衝層之形成方法亦無特別限定, 如於聚乙烯、聚丙烯、聚對酞酸乙二醇酯等之再 312/發明說明書(補件)/93-07/93109576 薄膜的黏 之脫模薄 法,則該 層體、或 亦可令貼 先形成可 於液晶物 衝層,則 質層外觀 處緩衝層 ,其可列 、環氧系 0.3// in ,若玻璃 學向同性 ,則其材 外,則其 化主旨, 交聯、可 可列舉例 剝離性基 23 1235256 板薄膜上,預先以具有上述膜厚之緩衝層材料以塗佈、押 出等之方法形成,且將此層透過黏·接合劑層和透明保護 層密合,且其後將再剝離性基板薄膜予以剝離之轉印法等。 本發明之光學積層體除了偏光板及液晶物質層以外,亦 可含有一層或數層之防止反射層、防眩處理層、硬塗層、 光擴散層。與偏光板貼合或接黏所使用的接合劑等若為光 學等級,則無特別限制,例如可由上述接合劑中使用合適 物質。 如上述處理所製造之本發明之光學積層體的總厚度為 450//m以下、較佳為350//m以下、更佳為300//m以下。 於此範圍外,則無法依循本發明目的之一的薄膜化主旨, 故為不佳。 本發明之光學積層體為根據液晶物質層的光學參數,具 有做為各種液晶顯示裝置之補償構材、橢圓偏光板、圓偏 光板之機能。 即,構成光學積層體的液晶物質層,例如經向列配向、 扭轉向列配向固定化之液晶物質層為具有做為位相差板之 機能,故以該液晶物質層做為構成構材的本發明光學積層 體,可使用做為STN型、TN型、OCB型、HAN、均化型、VA 型、I PS型等之穿透或反射型液晶顯示裝置的補償板。 又,經混合向列配向固定化的液晶物質層,為利用由正 面所察見的光程差,且可利用做為位相差薄膜和波長板, 且亦可利用於活用光程差值之方向(薄膜厚度方向之分子 軸的傾斜度)所造成之非對稱性的T N型液晶顯示裝置的視 24 312/發明說明書(補件)/93-07/93109576 1235256 野角改善構材等。 又,具有1 / 4波長板機能之液晶物質層為經由組合如本 發明的偏光板,則可使用做為圓偏光板和反射型之液晶顯 示裝置和EL顯示裝置的防止反射薄膜等。尤其是,為了取 得於可見光區域之寬帶區具有機能的寬帶區1/4波長板, 一般已知其有效為將550nm之單色光下之複折射光位相差 為約1/4波長的1/4波長板、與550nm之單色光下之複折 射光位相差為約1 / 2波長的1 / 2波長板,以各遲相軸為呈 交叉之狀態下積層,且實際被廣泛使用於反射型的液晶顯 示裝置等。即,若使用如本發明製造方法般取得薄身光學 積層體的技術,則可取得習知之僅有高分子延拉薄膜而顯 困難的薄型寬帶區1 / 4波長板。此處,1 / 4波長板之光程 差值通常為50nm〜180nm、較佳為70nm〜160nm、特佳為 90nm〜150nm之範圍。又,1/2波長之光程差值通常為180nm 〜320nm、較佳為200nm〜300nm、特佳為220nm〜280nm之 範圍。1 / 4波長板與1 / 2波長板之光程差範圍超過上述時, 則恐於液晶顯示裝置上產生不必要的上色。還有,所謂光 程差值為表示複折射Δη與膜厚d之積。 更且,於本發明之光學積層體中,若構成該積層體之液 晶物質層為經膽固醇配向和近晶狀液晶配向所固定化者, 則可利用於提高亮度用之偏光反射薄膜、反射型之彩色濾 光片、活用起因於選擇反射能力之視線角所造成之反射光 之色變化的各種防偽元件和裝飾薄膜等。 [實施例] 312/發明說明書(補件)/93-07/93109576 25 1235256 以下,本發明為以圓偏光板之製造為例,根據實施 比較例更加詳細說明,但本發明並非限定於此。還有 本實施例中之光程差(複折射△ η與膜厚d之積)只要 別限定則為指波長5 5 0 n in中之值。 [調製例] 使用對酞酸5 0毫莫耳、2,6 -萘二羧酸5 0毫莫耳、 氫醌二醋酸酯4 0毫莫耳、兒茶酚二醋酸酯6 0毫莫耳 曱基咪唑6 0毫克,於氮氣環境氣體下,以2 7 0 °C進 小時縮聚。其次將所得之反應產物溶於四氯乙烷後, 醇進行再沈澱且純化,取得液晶性聚酯1 4 . 6克。此液 聚酯(聚合物1 )之對數黏度(苯酚/四氣乙烷(6 / 4質量 混合溶劑:3 0 °C )為0 . 1 6 d 1 / g,液晶相為具有向列相, 相-液晶相態化溫度為2 5 0 °C以上,以差示掃描熱量計 之玻璃態化溫度為1 1 2 °C 。 調製2 0克之聚合物1於8 0克之N -曱基-2 -吼咯烷 溶解的溶液。將此溶液,於經人造纖維布摩擦處理之 亞胺薄膜(商品名「C a p t ο η」、D u ρ ο n t公司製)上以旋 塗佈,且將溶劑乾燥除去後,以2 1 0 °C熱處理2 0分鐘 成向列配向構造。熱處理後,冷卻至室溫下令向列配 造固定化,取得於聚醯亞胺薄膜上實膜厚0 . 7 // m之均 向的液晶物質層(液晶物質層1)。實膜厚為使用觸針 厚計進行測定。 其次,以上述同樣之條件僅改變以旋塗器塗佈時之 度,取得聚醯亞胺薄膜上聚合物1之向列配向構造被 312/發明說明書(補件)/93-07/93109576 例及 ,於 無特 曱基 及N -• 12 以曱 晶性 比) 向同 (DSC) S同中 聚醯 塗器 ,形 向構 勻配 弋膜 厚 固定 26 1235256 化之實膜厚1 . 4 # m的均勻配向液晶物質層(液晶物質層 2)。 [實施例1 ] 於調製例所得之液晶物質層1上(與聚醯亞胺薄膜反側 之面)將市售之UV硬化型接合劑(UV- 3 4 0 0、東亞合成(股) 製)以5 // m之厚度塗佈做為接合劑層1,並於其上將厚度 4 0 // in之向同性基板三乙醯纖維素(T A C)薄膜1 (富士照相 軟片(股)製)予以積層,並且以約6 0 0 m J的U V照射令該接 合劑層1硬化。其後,由TAC薄膜1 /接合劑層1 /液晶物質 層1 /聚醯亞胺薄膜為成一體之積層體中剝離聚醯亞胺薄 膜,將液晶物質層1轉印至向同性基板TAC薄膜1上,取 得由TAC薄膜1/接合劑層1/液晶物質層1所構成的積層體 (A)。此處,積層體(A)之Δικί為140nm。 於所得之液晶積層體(A)之液晶物質層上(與T A C薄膜反 側之面)將市售之U V硬化型接合劑(U V - 3 4 0 0 )以5 // m之厚 度塗佈做為接合劑層2,並於其上將調製例所得之於聚醯 亞胺薄膜上被配向固定化之液晶物質層2之面予以積層, 且由T A C薄膜1側以約6 0 0 m J之U V照射令該接合劑層2 硬化。由此積層體中剝離聚醯亞胺薄膜,則可取得由TAC 薄膜1 /接合劑層1 /液晶物質層1 /接合劑層2 /液晶物質層 2所構成的積層體。 於該積層體之液晶物質層2之面,將預先於單面形成厚 度2 5 // m之黏合劑層的偏光板(厚度約1 0 5 // m ;住友化學 工業(股)製SQW- 0 6 2 )貼合後,剝離PET薄膜1,則可取得 27 312/發明說明書(補件)/93-07/93109576 1235256 由偏光板/黏合劑層/液晶物質層2 /接合劑層2 /液晶物質 層1 /接合劑層1 / T A C薄膜1所構成之本發明的圓偏光板。 該圓偏光板之總厚度為1 9 0 // m。 [實施例2 ] 將實施例1所得之圓偏光板,於市售之半穿透反射型T F T 液晶顯示裝置之液晶元件上下使用黏合劑貼合,並且評價 顯示特性時,任一種圓偏光板均以反射型式、穿透型式為 良好顯示。又,將該顯示裝置實施①6 0 °C 、9 0 % R Η下5 0 0 小時、②8 0 °C、乾燥下5 0 0小時之二種耐久性試驗時,完 全均未察見剝離、裂痕等之外觀異常。 [比較例1 ] 將市售的經單軸延拉的聚碳酸酯薄膜1 (厚度6 0 # m、△ ndl35nm)與聚碳酸酯薄膜2(厚度60// m、△ndZTOniii)使用 2 5 // m的黏合劑予以貼合,取得由聚碳酸酯薄膜1 /黏合劑 層/聚碳酸酯薄膜2所構成的積層體。 於該積層體之聚碳酸酯2面,將預先於單面形成厚度25 // m之黏合劑層的偏光板(厚度約1 0 5 // m ;住友化學工業 (股)製SQW- 0 6 2 )貼合,取得由偏光板/黏合劑層/聚碳酸酯 薄膜2 /黏合劑層/聚碳酸酯薄膜1所構成的圓偏光板。該 圓偏光板之總厚度為厚至2 7 5 // m。 [比較例2 ] 將市售的經單軸延拉的降水片烯系薄膜1 (厚度8 0 // m、 △ nd 2 7 5 nm; JSR(股)製Aton)之單面,貼合預先於聚矽氧 處理PET薄膜上形成厚度25 // m的黏合劑層。接著,於該 28 312/發明說明書(補件)/93-07/93109576 1235256 薄膜之未貼合黏合劑之面,將預先形成厚度2 5 // m之 劑層的偏光板(厚度約1 0 5 # m ;住友化學工業(股)製 S Q W - 0 6 2 )貼合,取得由偏光板/黏合劑層/降水片烯系 1/黏合劑層/聚矽氧處理PET薄膜所構成的積層體。 將該積層體之聚矽氧處理PET薄膜剝離,並且貼合 之經單軸延拉之降水片烯系薄膜2 (厚度8 0 // m、△ ndl 30nm ; JSR(股)製Aton)、取得由偏光板/黏合劑層 水片烯系薄膜1 /黏合劑層/降水片烯系薄膜2所構成 偏光板。該圓偏光板之總厚度為原至3 9 0 /z m。 (發明效果) 根據本發明,可確立於一個支撐基板薄膜上將至少 以上之液晶物質層予以積層的工業性製造方法,可實 得以往以僅有高分子延拉薄膜的層積體而顯困難之光 性面的高機能化和大幅薄身化兩相成立的新光學積層 等,其工業性價值為極高。 312/發明說明書(補件)/93-07/93109576 黏合 薄膜 市售 /降 的圓 二層 現取 學特 體 29312 / Invention Manual (Supplement) / 93-07 / 93109576 1235256 Layer / Liquid Crystal Material Layer 2 / Adhesive (Adhesive) Layer / Polarizer 6) Isotropic substrate / Adhesive Layer / Liquid Crystal Material Layer 1 / Adhesive ( Adhesive) layer / Liquid crystal material layer 2 / Adhesive (Adhesive 7) Isotropic substrate / Adhesive layer / Liquid crystal material layer 1/1 Layer / Adhesive layer / Liquid crystal material layer 2 / Adhesive (Adhesive: 8) Isotropic substrate / adhesive layer / liquid crystal material layer 1 / adhesive (adhesive) layer / adhesive layer / liquid crystal material layer 2 / adhesive polarizer 9) polarizer / adhesive (adhesive) layer / isotropic substrate crystal Substance layer 1 / adhesive (adhesive) layer / liquid crystal material layer 10) Polarizer / adhesive (adhesive) layer / isotropic base liquid crystal material layer 1 / adhesive layer / adhesive (adhesive) layer 丨 2 / Transparent protective layer 11) Polarizer / adhesive (adhesive) layer / isotropic liquid crystal material layer 1 / adhesive (adhesive) layer / adhesive layer 丨 2 / transparent protective layer 12) polarizer / adhesive (Adhesive) layer / isotropic base liquid crystal material layer 1 / adhesive / adhesive (adhesive) layer / adhesive material layer 2 / transparent protection Further, the present invention is repeated for the transfer onto the substrate with the isotropic liquid crystal material layer or the substrate is laminated to the immobilized ligand, release of the substrate with the operation, the liquid sheet may be laminated. In the manufacturing step of the laminated body of the present invention, a single-sided 312 / Invention Specification (Supplement) / 93-07 / 93109576 Mixture Layer / Adhesive) Layer / Polarizer Occupant (Adhesive)) Layer / Polarizer / Adhesive (adhesive) layer // adhesive layer / liquid 2 / transparent protective layer i / adhesive layer // liquid crystal material layer ί / adhesive layer / 'liquid crystal material layer L / adhesive layer / mixture layer / liquid crystal liquid crystal In the form of a material layer, a bonding agent layer, and a crystalline material layer, the orientation substrate 22 1235256 is left. A release agent is attached to the reverse side of the alignment substrate, and the alignment substrate is peeled off. The film is treated as a new releasable support substrate. If the hand adhesive is used, it can not only be used as an adhesive for laminating the optical builder of the present invention with a liquid crystal element and other optical structures, but also has a greater degree of freedom in manufacturing such as an arbitrary upside-down inversion of the joint surface. In addition, the present invention is a re-releasable substrate using a release layer that is previously peeled from the substrate on the surface of the re-releasable substrate, so that a buffer layer can be formed between the solid layer and other layers. The formation of a stress-suppressing effect that suppresses changes in liquid crystals (eg, waves, etc.) of the thin film during manufacturing and environmental testing can be achieved. It is to be noted that, although not particularly limited, an optically isotropic transparent layer is preferred, and polymers such as acrylic, fluorenyl acrylic, and nitrocellulose compounds and mixtures thereof are preferred. The film thickness of the buffer layer is more than 4 0 // in or less, preferably 0.5. &Quot; m or more 1 0 #m The state temperature (T g) is more than 20 ° C, preferably 50 ° C The above-mentioned light transparent layer is not particularly limited and does not significantly deteriorate the optical properties of the liquid crystal material layer. The film thickness and the glass transition temperature are insufficient in this range, and the thin film which cannot follow one of the objects of the present invention is not good. In addition, the buffer layer may also be controlled in physical properties through the addition of a plasticizer containing a part of the cross-linking component and the addition of a lubricant. Moreover, the method for forming the buffer layer is not particularly limited, such as polyethylene, polypropylene, polyethylene terephthalate, etc. 312 / Invention Specification (Supplement) / 93-07 / 93109576 Film adhesion The demolding thin method, the layer body, or the paste can be formed on the liquid crystal layer, the buffer layer at the appearance of the quality layer, which can be lined, epoxy system 0.3 // in, if the glass is isotropic In addition to the material, the main purpose is to cross-link, and can be exemplified on the peelable 23 2335256 board film, formed in advance by coating, extrusion, etc. with a buffer layer material having the above film thickness, and this layer A transfer method or the like in which an adhesive / adhesive layer and a transparent protective layer are in close contact, and thereafter the releasable substrate film is peeled off. In addition to the polarizing plate and the liquid crystal material layer, the optical laminated body of the present invention may contain one or more layers of an anti-reflection layer, an anti-glare treatment layer, a hard coat layer, and a light diffusion layer. The bonding agent used for bonding or bonding to the polarizing plate is not particularly limited as long as it is optical grade. For example, a suitable material can be used for the bonding agent. The total thickness of the optical laminated body of the present invention produced as described above is 450 // m or less, preferably 350 // m or less, and more preferably 300 // m or less. Outside this range, the purpose of thin film formation, which is one of the objects of the present invention, cannot be followed, so it is unfavorable. The optical laminated body of the present invention has functions of a compensation material, an elliptical polarizer, and a circular polarizer for various liquid crystal display devices according to the optical parameters of the liquid crystal substance layer. That is, the liquid crystal material layer constituting the optical laminated body, for example, the liquid crystal material layer fixed by warp nematic alignment and twisted nematic alignment has the function of a phase difference plate. Therefore, the liquid crystal material layer is used as the material of the structural material. The optical laminated body of the invention can be used as a compensation plate of a transmissive or reflective liquid crystal display device such as STN type, TN type, OCB type, HAN, homogenization type, VA type, and I PS type. In addition, the liquid crystal material layer immobilized by the mixed nematic alignment can use the optical path difference seen from the front side, and can be used as a phase difference film and a wavelength plate, and can also be used in the direction of utilizing the optical path difference value. (The inclination of the molecular axis in the thickness direction of the film) The asymmetry of the TN-type liquid crystal display device caused by the viewing angle 24 312 / Invention Specification (Supplement) / 93-07 / 93109576 1235256 field angle improvement materials. In addition, the liquid crystal material layer having a 1/4 wavelength plate function is a polarizing plate such as the present invention, and can be used as a circular polarizing plate, a reflective liquid crystal display device, and an anti-reflection film for an EL display device. In particular, in order to obtain a functioning broadband 1/4 wavelength plate in the broadband region of the visible light region, it is generally known to be effective to make the phase difference of the birefringent light under monochromatic light of 550 nm to about 1/4 of the wavelength A 4-wavelength plate and a 1 / 2-wavelength plate with a phase difference of about 1/2 wavelength from the monochromatic light of 550nm are laminated in a state where each late phase axis crosses, and it is actually widely used for reflection Type liquid crystal display device and the like. That is, if a thin-layer optical laminated body technology is used like the manufacturing method of the present invention, it is possible to obtain a conventional thin wide-band 1/4 wavelength plate which is difficult only with a polymer stretch film. Here, the optical path difference of the 1/4 wavelength plate is usually in a range of 50 nm to 180 nm, preferably 70 nm to 160 nm, and particularly preferably in a range of 90 nm to 150 nm. The optical path difference of 1/2 wavelength is usually in a range of 180 nm to 320 nm, preferably 200 nm to 300 nm, and particularly preferably in a range of 220 nm to 280 nm. When the range of the optical path difference between the 1/4 wavelength plate and the 1/2 wavelength plate exceeds the above range, it is feared that unnecessary coloring may occur on the liquid crystal display device. The optical path difference value indicates the product of the birefringence Δη and the film thickness d. Furthermore, in the optical multilayer body of the present invention, if the liquid crystal material layer constituting the multilayer body is immobilized by cholesterol alignment and smectic liquid crystal alignment, it can be used for improving the brightness of polarizing reflective films and reflective types. Color filters, various anti-counterfeiting elements and decorative films that make use of the color change of the reflected light caused by the angle of sight of the selected reflection ability. [Example] 312 / Invention Specification (Supplement) / 93-07 / 93109576 25 1235256 Below, the present invention takes the manufacture of a circular polarizing plate as an example, and it will be described in more detail based on the implementation comparative example, but the present invention is not limited to this. In addition, the optical path difference (the product of the birefringence Δη and the film thickness d) in this embodiment refers to a value at a wavelength of 5 50 n in as long as it is not otherwise limited. [Preparation example] 50 mol of terephthalic acid, 50 mol of 2,6-naphthalenedicarboxylic acid, 40 mol of hydroquinone diacetate, 60 mol of catechol diacetate 60 mg of fluorenimidazole was subjected to polycondensation under a nitrogen atmosphere at 270 ° C for one hour. Next, the obtained reaction product was dissolved in tetrachloroethane, and the alcohol was reprecipitated and purified to obtain 14.6 g of a liquid crystalline polyester. The liquid polyester (Polymer 1) has a logarithmic viscosity (phenol / tetragasethane (6/4 mass mixed solvent: 30 ° C)) of 0.1 6 d 1 / g. The liquid crystal phase has a nematic phase. The phase-liquid crystal transition temperature is above 250 ° C, and the glass transition temperature by differential scanning calorimeter is 112 ° C. 20 grams of polymer 1 is prepared at 80 grams of N-fluorenyl-2 -A solution in which crocodile is dissolved. This solution was spin-coated on an imine film (trade name "C apt η", Du ρ ο nt) manufactured by rubbing with artificial fiber cloth, and the solvent was applied. After drying and removing, heat treatment was performed at 210 ° C for 20 minutes to form a nematic alignment structure. After the heat treatment, the mixture was cooled to room temperature and the nematic alignment was fixed to obtain a solid film thickness of 0.7 on the polyimide film. / m uniform liquid crystal material layer (liquid crystal material layer 1). The actual film thickness was measured using a stylus thickness meter. Next, the same conditions as described above were used to change only the degree at the time of coating with a spin coater to obtain a polyfluorene. The nematic alignment structure of polymer 1 on the imine film is described in 312 / Invention Specification (Supplement) / 93-07 / 93109576, and in the case of no fluorenyl group and N-• 12 to Crystallinity ratio) Uniform (DSC) S homopolymer coating device, uniform shape distribution, uniform film thickness 26 1235256, solid film thickness 1. 4 # m uniformly aligned liquid crystal material layer (liquid crystal material layer 2 ). [Example 1] On the liquid crystal material layer 1 obtained on the preparation example (the side opposite to the polyimide film), a commercially available UV-curable adhesive (UV-3400, manufactured by Toa Kosei Co., Ltd.) was used. ) Coated with a thickness of 5 // m as the adhesive layer 1, and an isotropic substrate with a thickness of 4 0 // in. Triethyl cellulose (TAC) film 1 (made by Fuji Photographic Film (stock)) ) Are laminated, and the adhesive layer 1 is hardened with UV irradiation of about 600 m J. Thereafter, the polyimide film was peeled off from the laminated body in which the TAC film 1 / adhesive layer 1 / liquid crystal material layer 1 / polyimide film was integrated, and the liquid crystal material layer 1 was transferred to the isotropic substrate TAC film. On 1, a laminated body (A) composed of a TAC film 1 / adhesive layer 1 / liquid crystal material layer 1 was obtained. Here, Δικί of the multilayer body (A) is 140 nm. A commercially available UV-curable bonding agent (UV-3 4 0 0) is coated on the liquid crystal substance layer of the obtained liquid crystal laminate (A) (the side opposite to the TAC film) to a thickness of 5 // m Is a bonding agent layer 2 on which the surface of the polyimide film obtained by the preparation example is aligned to the immobilized liquid crystal material layer 2 and laminated on the side of the TAC film 1 at a distance of about 60 m J UV irradiation hardens the adhesive layer 2. In this way, the polyimide film is peeled from the laminated body, and a laminated body composed of TAC film 1 / adhesive agent layer 1 / liquid crystal material layer 1 / adhesive agent layer 2 / liquid crystal material layer 2 can be obtained. On the side of the liquid crystal material layer 2 of the laminated body, a polarizing plate with a thickness of 2 5 // m on one side (a thickness of about 1 0 5 // m; a SQW- made by Sumitomo Chemical Industry Co., Ltd.) is formed in advance. 0 6 2) After lamination, the PET film 1 can be peeled off to obtain 27 312 / Invention Specification (Supplement) / 93-07 / 93109576 1235256 Polarizer / Adhesive Layer / Liquid Crystal Material Layer 2 / Adhesive Layer 2 / The circular polarizing plate of the present invention composed of a liquid crystal material layer 1 / a bonding agent layer 1 / a TAC film 1. The total thickness of the circular polarizer is 1 9 0 // m. [Example 2] The circular polarizing plate obtained in Example 1 was bonded to the liquid crystal element of a commercially-available transflective TFT liquid crystal display device with an adhesive above and below, and any of the circular polarizing plates was evaluated. The reflective type and the transmissive type are good displays. In addition, when this display device was subjected to two types of durability tests: ① 60 ° C, 90% R for 500 hours, ② 80 ° C, and 500 hours for drying, peeling and cracking were not observed at all. Etc. The appearance is abnormal. [Comparative Example 1] A commercially available uniaxially stretched polycarbonate film 1 (thickness 60 #m, Δndl35nm) and a polycarbonate film 2 (thickness 60 // m, ΔndZTOniii) were used. / m adhesive was bonded to obtain a laminated body composed of polycarbonate film 1 / adhesive layer / polycarbonate film 2. A polarizing plate with a thickness of 25 // m of an adhesive layer (thickness of about 1 0 5 // m; a SQW- 0 6 manufactured by Sumitomo Chemical Industry Co., Ltd.) was formed on one side of the polycarbonate on two sides of the laminated body. 2) Bonding to obtain a circularly polarizing plate composed of a polarizing plate / adhesive layer / polycarbonate film 2 / adhesive layer / polycarbonate film 1. The total thickness of the circular polarizer is as thick as 2 7 5 // m. [Comparative Example 2] One side of a commercially available uniaxially stretched precipitation sheet olefin film 1 (thickness 8 0 // m, △ nd 2 7 5 nm; Aton made by JSR) was bonded in advance An adhesive layer with a thickness of 25 // m was formed on the silicone-treated PET film. Next, on the 28 312 / Invention Specification (Supplement) / 93-07 / 93109576 1235256 film on the side where the adhesive is not bonded, a polarizing plate with a thickness of 2 5 // m (a thickness of about 10) will be formed in advance. 5 # m; SQW-0 6 2 manufactured by Sumitomo Chemical Industry Co., Ltd.) was laminated to obtain a laminated body composed of a polarizing plate / adhesive layer / precipient olefin type 1 / adhesive layer / polysiloxane-treated PET film . Remove the polysiloxane-treated PET film of this laminate, and apply the uniaxially stretched precipitation sheet olefinic film 2 (thickness 8 0 // m, △ ndl 30nm; Aton by JSR) to obtain A polarizing plate is composed of a polarizing plate / adhesive layer waterborne olefin film 1 / an adhesive layer / precipitation olefinic film 2. The total thickness of the circular polarizing plate is from original to 390 / zm. (Effects of the Invention) According to the present invention, it is possible to establish an industrial manufacturing method of laminating at least the above liquid crystal substance layer on a supporting substrate film, and it is possible to make it difficult in the past to use a laminate having only a polymer stretched film. The high optical performance of the optical surface and the new optical laminates, which are formed by thinning and thinning, have extremely high industrial value. 312 / Instruction for Invention (Supplement) / 93-07 / 93109576 Adhesive film

Claims (1)

1235256 拾、申請專利範圍: 1. 一種光學積層體之製造方法,其特徵為至少經過 (1 ) 令配向基板上所形成之液晶配向被固定化的液晶物 質層 1,透過接合劑層與向同性基板接合後,將配向基板 剝離且液晶物質層1轉印至向同性基板,取得由向同性基 板/接合劑層/液晶物質層 1所構成之積層體(A )的第一步 驟、 (2 ) 令配向基板上所形成之液晶配向被固定化的液晶物 質層 2,透過黏·接合劑與前述液晶物質層1貼合,取得 由向同性基板/接合劑層/液晶物質層 1 /黏合劑(接合劑) 層/液晶物質層 2 /配向基板所構成之積層體(B )的第二步 驟、 及 (3 )剝離前述積層體(B )之配向基板,且對向同性基板或 液晶物質層2貼合偏光板的第三步驟, 之各步驟。 2. 如申請專利範圍第1項之光學積層體之製造方法,其 中該液晶物質層1與液晶物質層2為具有相同或相異的光 學參數。 3. 如申請專利範圍第1或 2項之光學積層體之製造方 法,其中該液晶物質層1與液晶物質層2中之至少一者, 為由光學上顯示正之單軸性的液晶物質為由液晶狀態中形 成之向列配向被固定化的液晶物質層所構成。 4. 如申請專利範圍第1或 2項之光學積層體之製造方 30 312/發明說明書(補件)/93-07/93109576 1235256 為由光學上顯示正之單軸性的液晶物質為由液晶狀態中形 成之混合向列配向被固定化的液晶物質層所構成。 5.如申請專利範圍第 1或 2項之光學積層體之製造方 法,其中該液晶物質層1與液晶物質層2中之至少一者, 為由光學上顯示正之單軸性的液晶物質為由液晶狀態中形 成之扭轉向列配合被固定化的液晶物質層所構成。1235256 Patent application scope: 1. A method for manufacturing an optical laminate, which is characterized in that at least (1) the liquid crystal alignment layer 1 on which the liquid crystal alignment formed on the alignment substrate is fixed, passes through the adhesive layer and is isotropic After the substrates are bonded, the alignment substrate is peeled off and the liquid crystal material layer 1 is transferred to the isotropic substrate to obtain a laminated body (A) composed of the isotropic substrate / adhesive layer / liquid crystal material layer 1. (2) The liquid crystal material layer 2 on which the liquid crystal alignment is formed on the alignment substrate is bonded to the liquid crystal material layer 1 through an adhesive / bonding agent to obtain an isotropic substrate / binder layer / liquid crystal material layer 1 / binder ( Bonding agent) layer / liquid crystal material layer 2 / alignment substrate, the second step of the multilayer body (B), and (3) peeling the alignment substrate of the multilayer body (B), and facing the isotropic substrate or the liquid crystal material layer 2 The third step of attaching the polarizing plate, each step. 2. The manufacturing method of the optical laminated body according to the first patent application scope, wherein the liquid crystal material layer 1 and the liquid crystal material layer 2 have the same or different optical parameters. 3. The manufacturing method of the optical laminated body according to item 1 or 2 of the patent application scope, wherein at least one of the liquid crystal material layer 1 and the liquid crystal material layer 2 is based on a liquid crystal material which shows a positive uniaxiality optically. A nematic alignment formed in a liquid crystal state is formed by a liquid crystal substance layer that is immobilized. 4. If the manufacturer of the optical laminated body of the patent application scope item 1 or 2 is 30 312 / Invention Specification (Supplement) / 93-07 / 93109576 1235256 is a liquid crystal substance which shows a positive uniaxiality optically. The mixed nematic alignment formed in the substrate is composed of a liquid crystal material layer to be immobilized. 5. The method for manufacturing an optical laminated body according to item 1 or 2 of the patent application scope, wherein at least one of the liquid crystal material layer 1 and the liquid crystal material layer 2 is based on a liquid crystal material that exhibits a positive uniaxiality optically. The twisted nematic formed in the liquid crystal state is composed of a fixed liquid crystal material layer. 6 . —種橢圓偏光板,其特徵為以如申請專利範圍第1項 之製造方法所得之光學積層體所構成。 7. —種圓偏光板,其特徵為以如申請專利範圍第1項之 製造方法所得之光學積層體所構成。 8 . —種液晶顯示裝置,其特徵為至少具備如申請專利範 圍第6或7項之橢圓偏光板或圓偏光板。6. A kind of elliptically polarizing plate, which is composed of an optical laminated body obtained by a manufacturing method such as the first item of the scope of patent application. 7. —A circular polarizing plate characterized by being constituted by an optical laminated body obtained by the manufacturing method as described in item 1 of the scope of patent application. 8. A liquid crystal display device, which is characterized by being provided with at least an elliptical polarizer or a circular polarizer as in the patent application scope item 6 or 7. 31 312/發明說明書(補件)/93-07/9310957631 312 / Invention Specification (Supplement) / 93-07 / 93109576
TW93109576A 2003-04-07 2004-04-07 Method for producing an optical device; elliptical and circular polarizers comprising the optical device; and liquid crystal device TWI235256B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003102921A JP2004309772A (en) 2003-04-07 2003-04-07 Method of manufacturing optical laminated body, elliptic polarization plate and circular polarization plate made of the laminated bodies, and liquid crystal display device

Publications (2)

Publication Number Publication Date
TW200426407A TW200426407A (en) 2004-12-01
TWI235256B true TWI235256B (en) 2005-07-01

Family

ID=33156810

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93109576A TWI235256B (en) 2003-04-07 2004-04-07 Method for producing an optical device; elliptical and circular polarizers comprising the optical device; and liquid crystal device

Country Status (3)

Country Link
JP (1) JP2004309772A (en)
TW (1) TWI235256B (en)
WO (1) WO2004090591A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI416158B (en) * 2006-03-31 2013-11-21 Dainippon Printing Co Ltd Optical laminated body and optical laminate
TWI723200B (en) * 2016-07-21 2021-04-01 日商住友化學股份有限公司 Elliptically polarizing plate

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064621A1 (en) * 2004-12-14 2006-06-22 Nitto Denko Corporation Elliptical polarization plate, manufacturing method thereof, and image display device using the elliptical polarization plate
WO2006067916A1 (en) * 2004-12-22 2006-06-29 Nitto Denko Corporation Elliptic polarizing plate and image display employing it
CN100405183C (en) * 2005-02-25 2008-07-23 日东电工株式会社 Manufacturing method of elliptical polarizing plate and image display use same
KR100840166B1 (en) * 2005-02-25 2008-06-23 닛토덴코 가부시키가이샤 Method of producing elliptically polarizing plate and image display apparatus using the elliptically polarizing plate
US20090068472A1 (en) * 2005-03-23 2009-03-12 Nitto Denko Corporation Method of producing an optical film, and image display apparatus using the optical film obtained by the production method
JP2007148097A (en) * 2005-11-29 2007-06-14 Nitto Denko Corp Method of manufacturing optical film, optical film and image display device using optical film
JP2007156234A (en) * 2005-12-07 2007-06-21 Nitto Denko Corp Manufacturing method of optical film, optical film, and image display device using the optical film
TW200839320A (en) * 2007-03-28 2008-10-01 Far Eastern Textile Ltd Polarizer and its manufacturing method, and liquid crystal display panel
JP4994309B2 (en) * 2008-06-06 2012-08-08 Jx日鉱日石エネルギー株式会社 Tilted phase difference film, method for producing tilted phase difference film, polarizing plate and liquid crystal display device
JP5365184B2 (en) * 2008-12-25 2013-12-11 大日本印刷株式会社 Liquid crystal display
JP5958731B2 (en) * 2010-03-30 2016-08-02 Dic株式会社 Optical element and liquid crystal panel using the same
JP2014013291A (en) * 2012-07-04 2014-01-23 Dainippon Printing Co Ltd Transfer body for optical film, optical film, image display device, and method of manufacturing optical film
TWI645962B (en) * 2013-08-09 2019-01-01 住友化學股份有限公司 Optically anisotropic sheet
JP6175972B2 (en) * 2013-08-20 2017-08-09 大日本印刷株式会社 Optical film, image display device, optical film transfer body, optical film manufacturing method, and optical film transfer body manufacturing method
JP6175973B2 (en) * 2013-08-20 2017-08-09 大日本印刷株式会社 Optical film, image display device, optical film transfer body, optical film manufacturing method, and optical film transfer body manufacturing method
JP2015079230A (en) 2013-09-10 2015-04-23 住友化学株式会社 Manufacturing method for laminate
JP6662992B2 (en) * 2018-05-25 2020-03-11 住友化学株式会社 Manufacturing method of circularly polarizing plate
CN110531457B (en) * 2018-05-25 2022-07-29 住友化学株式会社 Method for manufacturing circular polarizing plate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09101515A (en) * 1995-10-06 1997-04-15 Sharp Corp Liquid crystal display device
JP4208990B2 (en) * 1998-04-10 2009-01-14 新日本石油株式会社 Cholesteric liquid crystalline laminate
JP2000309195A (en) * 1999-04-27 2000-11-07 Nippon Mitsubishi Oil Corp Transferring element
JP2002182036A (en) * 2000-04-06 2002-06-26 Fujitsu Ltd Viewing angle compensation film and liquid crystal display device
JP3969637B2 (en) * 2002-02-13 2007-09-05 日東電工株式会社 Method for producing liquid crystal alignment film, liquid crystal alignment film, optical film and image display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI416158B (en) * 2006-03-31 2013-11-21 Dainippon Printing Co Ltd Optical laminated body and optical laminate
TWI723200B (en) * 2016-07-21 2021-04-01 日商住友化學股份有限公司 Elliptically polarizing plate

Also Published As

Publication number Publication date
JP2004309772A (en) 2004-11-04
TW200426407A (en) 2004-12-01
WO2004090591A1 (en) 2004-10-21

Similar Documents

Publication Publication Date Title
TWI235256B (en) Method for producing an optical device; elliptical and circular polarizers comprising the optical device; and liquid crystal device
JP2008257199A (en) Photocurable adhesive agent, polarizing plate using the photocurable adhesive agent, method for production of the polarizing plate, optical member, and liquid crystal display device
WO2020241313A1 (en) Foldable display
JP2004226752A (en) Method for manufacturing optical layered body, and elliptically polarizing plate, circularly polarizing plate and liquid crystal display comprising the layered body
TW201940324A (en) Electroluminescent display device
JP2007114270A (en) Manufacturing method of optical film
TW201447399A (en) Optical film, polarizing plate, image display device, and optical film fabrication method
JP2008183812A (en) Manufacturing process of liquid crystal film and lamination film for optical device
JP2004226753A (en) Method for manufacturing optical layered body, and elliptically polarizing plate, circularly polarizing plate comprising the layered body and liquid crystal display
TWI236552B (en) Method for producing an optical device; elliptical and circular polarizers comprising the optical device; and liquid crystal device
JP2006284736A (en) Liquid crystal film and laminated film for optical element
JP2006284735A (en) Liquid crystal film and laminated film for optical element
KR20140054785A (en) Adhesive for polarizing plate and polarizing plate manufactured using thereof
KR100746806B1 (en) Manufacturing Method Of Optical Laminate, And Oval Elliptic Polarization Plate, Circular Polarization Plate And Liquid Crystal Device Consisting Of The Optical Laminate
JP2008216782A (en) Optical laminate
WO2004029679A1 (en) Liquid crystal film and elliptical polarizing plate production method
KR100746807B1 (en) Manufacturing method of optical laminate, and elliptic polarizing plate and circular polarizing plate composed of the laminate, and liquid crystal display apparatus
JP2004226754A (en) Method for manufacturing optical layered body, and elliptically polarizing plate, circularly polarizing plate and liquid crystal display comprising the layered body
JP4335484B2 (en) Method for producing liquid crystal film and elliptically polarizing plate
JP2004226758A (en) Method for manufacturing optical layered body, and elliptically polarizing plate, circularly polarizing plate, and liquid crystal display comprising the layered body
JP2004226762A (en) Method for manufacturing optical layered body, and elliptically polarizing plate, circularly polarizing plate and liquid crystal display comprising the layered body
JP2004226763A (en) Method for manufacturing optical layered body, and elliptically polarizing plate, circularly polarizing plate and liquid crystal display comprising the layered body
JP2004226757A (en) Method for manufacturing optical layered body, elliptically polarizing plate and circularly polarizing plate comprising the layered body, and liquid crystal display
KR100746808B1 (en) Manufacturing method of optical laminate, and elliptic polarizing plate and circular polarizing plate composed of the laminate, and liquid crystal display apparatus
JP2004226765A (en) Method for manufacturing optical layered body, and elliptically polarizing plate, circularly polarizing plate and liquid crystal display device comprising the layered body

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees