JP2005049652A - 光学素子及びそれを用いた複合光学素子並びにそれらの製造方法 - Google Patents

光学素子及びそれを用いた複合光学素子並びにそれらの製造方法 Download PDF

Info

Publication number
JP2005049652A
JP2005049652A JP2003282073A JP2003282073A JP2005049652A JP 2005049652 A JP2005049652 A JP 2005049652A JP 2003282073 A JP2003282073 A JP 2003282073A JP 2003282073 A JP2003282073 A JP 2003282073A JP 2005049652 A JP2005049652 A JP 2005049652A
Authority
JP
Japan
Prior art keywords
optical element
optical
bonded
quartz
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003282073A
Other languages
English (en)
Inventor
Kenjiro Hata
健次郎 秦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2003282073A priority Critical patent/JP2005049652A/ja
Publication of JP2005049652A publication Critical patent/JP2005049652A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

【課題】本発明は、光通信、光計測等で用いられる光アイソレータや光サーキュレータ等に使用できる光学素子及びそれを用いた複合光学素子並びにそれらの製造方法に関し、製造が容易で光学特性に優れた光学素子及びそれを用いた複合光学素子並びにそれらの製造方法を提供することにある。
【解決手段】
光学素子の製造方法は、研磨された接着面を有する第1及び第2の複屈折板の光学軸の方向を異ならせて、前記第1及び第2の複屈折板の前記接着面同士を光学接着剤で接着する接着工程と、前記接着面を横切って、接着された前記第1及び第2の複屈折板を切断する切断工程とを有するようにする。
【選択図】図2

Description

本発明は、光通信、光計測等で用いられる光アイソレータや光サーキュレータ等に使用できる光学素子及びそれを用いた複合光学素子並びにそれらの製造方法に関する。
光通信等で利用されている埋込型光学部品は、基板又はフェルール等に保持された光ファイバ又は光導波路を有している。さらに埋込型光学部品には、光ファイバ又は光導波路を横切る溝がスライサ等で形成され、この溝に種々の光学機能を奏する光学素子や複合光学素子が挿入されて固定されている。埋込型光学部品は、従来の偏波無依存光アイソレータ等の光学部品のように波面整形用の高価なレンズや素子固定用のステンレス部材が不要になるので低価格化を実現できる。さらに埋込型光学部品は、面倒な光軸合わせが不要で精密光軸調芯固定装置等を準備する必要がなく作製が容易であるため製造コストの低減を図ることができる。
埋込型光学部品において、光射出端から溝内に射出される光は、溝に配置された光学素子や複合光学素子を透過する際に回折を生じる。このため、溝内の光学素子や複合光学素子の素子厚が厚いほど挿入損失が増大してしまうという問題を有している。この問題を解決するために、溝近傍の光ファイバを局所加熱して溝部の光射出端のコアを拡大したTEC(Thermally−diffused Expanded Core)ファイバが用いられている。TECファイバを用いると回折能が低減されて挿入損失の改善を図ることができる。
また、従来の偏波無依存型光アイソレータは、偏光分離用複屈折素子、波長板及びファラデー回転子等の複数の光学素子が配置されているため全体の光学素子厚が厚くなり、上記のようなTECファイバを用いた光学系においても挿入損失が増大してしまうという問題を抱えている。これに対し埋込型の光アイソレータは、複屈折素子を1/4波長板として用いてモード干渉を利用した非相反位相形のモード干渉回折型光学素子を溝内に配置するだけでよいので光学素子厚を薄くすることができる。光ファイバやプレーナ型光導波路の途中に設けた溝にモード干渉回折型光学素子を埋め込むことで、光アイソレータ、光アッテネータ、光サーキュレータ、あるいは光スイッチ等の埋込型光学部品の小型化、低価格化を実現できる。
特開2003−57599号公報
モード干渉回折型光学素子として、面内で光学軸が直交する2枚の水晶板を隣接して貼り合わせた光学素子(以下、水晶光学素子という)をファラデー回転子の光入射面と光射出面のそれぞれに接着した水晶複合素子が知られている(特許文献1参照)。当該水晶複合素子において、ファラデー回転子を介して対面する一対の水晶板の光学軸のなす角は、光入出射面の法線方向に見て45°に設定されている。ファラデー回転子の厚さは使用する光の波長において45°のファラデー回転角が得られるように形成されている。
水晶光学素子の2枚の水晶板の貼り合わせ面(接着面)には光学接着剤が塗布され固化されている。光ファイバから射出する光は、水晶光学素子の2枚の水晶板の境界領域(接着領域)に光束の中心を合わせて水晶板面にほぼ垂直に入射する。水晶光学素子に入射した光のうち、接着領域に入射した光は、2枚の水晶板を通り所定の位相差を生じることなく散乱して水晶光学素子の光学特性を劣化させる主な要因となる。従って、接着領域に入射する光を極力減少させるために接着層を十分に薄くする必要がある。
上記水晶複合素子を製造する際の、ファラデー回転子に水晶光学素子を接着する工程では、まず、基準位置に対し所望角度の光学軸を有する水晶薄板を水晶板ウエハから切り出す。次いで、切り出した4枚の水晶板を別々にファラデー回転子に接着する。ところが、ファラデー回転子表面上で隣接する2枚の水晶板同士の接着面は、微細な長方形状の薄板側面であるため取り扱いが不便であると共に、水晶板ウエハから切り出す際の切断面であるため表面荒れやうねりが生じている。このため、2枚の水晶板同士の接着領域の接着層厚を管理するのが困難であるという問題が生じている。また、水晶板の厚さが0.1mm以下と薄いため、接着面に研磨を施すのは難しく、たとえ研磨処理を施しても表面荒れやうねりを十分に除去することは困難である。このため、水晶光学素子の接着層を十分に薄くすることが難しく、水晶光学素子及びそれを用いた水晶複合素子の光学特性を十分に向上させることができないという問題が生じている。
また、2枚の水晶薄板の側面を突き合わせて接着する作業は熟練を要するため、高い製造歩留まりを得ることが難しく、光学素子及びそれを用いた光学部品の低コスト化を実現するのが困難であるという問題を生じている。
本発明の目的は、製造が容易で光学特性に優れた光学素子及びそれを用いた複合光学素子並びにそれらの製造方法を提供することにある。
上記目的は、接着面を有する第1及び第2の複屈折板を光学接着剤で接着する接着工程と、前記接着面を横切って、接着された前記第1及び第2の複屈折板を切断する切断工程とを有することを特徴とする光学素子の製造方法によって達成される。
上記本発明の光学素子の製造方法において、前記接着工程の前に、前記第1及び第2の複屈折板の前記接着面を研磨することを特徴とする。
上記本発明の光学素子の製造方法において、前記接着工程は、前記第1及び第2の複屈折板の光学軸の方向を異ならせて接着することを特徴とする。
上記本発明の光学素子の製造方法において、前記接着工程は、前記接着面にプラズマ照射を行うことを特徴とする。
上記本発明の光学素子の製造方法において、前記切断工程は、前記接着面に直交して、接着された前記第1及び第2の複屈折板を切断することを特徴とする。
上記本発明の光学素子の製造方法において、前記切断工程は、接着された前記第1及び第2の複屈折板を複数個同時に切断することを特徴とする。
上記目的は、同一面内で光学軸の方向が異なる2枚の複屈折板を隣接して貼り合わせた光学素子を非相反光学素子の光入射面と光射出面のそれぞれに接着する複合光学素子の製造方法において、前記光学素子は、上記本発明の光学素子の製造方法のいずれかを用いて製造されることを特徴とする複合光学素子の製造方法によって達成される。
上記目的は、同一面内で光学軸の方向が異なる2枚の複屈折板を隣接して接着面同士を光学接着剤で接着した光学素子において、前記接着面は研磨されていることを特徴とする光学素子によって達成される。
上記本発明の光学素子において、前記接着面同士で形成される接着層は、層厚が1μm以下であることを特徴とする。
上記目的は、非相反光学素子の光入射出面に光学素子を備えた複合光学素子において、前記光学素子は、上記本発明の光学素子であることを特徴とする複合光学素子によって達成される。
上記目的は、光導波路部又は光ファイバ部の光軸方向に対して横断する方向に形成された溝部と、前記溝部に挿入された上記本発明の複合光学素子とを有することを特徴とする埋込型光学部品によって達成される。
本発明によれば、低価格で光学特性に優れた光学素子及び複合光学素子を容易に製造できる。
本発明の第1の実施の形態による光学素子及びそれを用いた複合光学素子並びにそれらの製造方法について図1乃至図10を用いて説明する。本実施の形態では、同一面内で光学軸が直交する2枚の複屈折板を隣接して貼り合わせた光学素子を非相反光学素子の光入射面と光射出面のそれぞれに接着した複合光学素子を例にとって説明する。
図1は、本実施の形態による複合光学素子1の概略の構成を示している。図1に示すように、複合光学素子1は、使用する光の波長において45°のファラデー回転角が得られる厚さに形成されたファラデー回転子(非相反光学素子)11を有している。ファラデー回転子11の光入射面と光射出面とはほぼ平行に形成されている。本例では、光入射面の法線に沿って光射出面を見て、ファラデー回転角が時計回りに45°となるように、ファラデー回転子11に所定の磁界が印加されるようになっている。
ファラデー回転子11の光入射面には第1の光学素子2が光学接着剤17で接着され、光射出面には第2の光学素子4が光学接着剤19で接着されている。第1の光学素子2は、第1の水晶1/4波長板3及び第2の水晶1/4波長板5を有している。第1の水晶1/4波長板3及び第2の水晶1/4波長板5は、ファラデー回転子11の光入射面に平行な面内で互いの光学軸を直交させて隣接し、光学接着剤13で接着されている。第2の光学素子4は、第3の水晶1/4波長板7及び第4の水晶1/4波長板9を有している。第3の水晶1/4波長板7及び第4の水晶1/4波長板9は、ファラデー回転子11の光射出面に平行な面内で互いの光学軸を直交させて隣接し、光学接着剤15で接着されている。
また、第1の水晶1/4波長板3と第3の水晶1/4波長板7とはファラデー回転子11を介して対を成して対面している。第3の水晶1/4波長板7の光学軸は、ファラデー回転子11の光入射面の法線に沿って光射出面を見て、第1の水晶1/4波長板3の光学軸に対して反時計回りに45°回転して設定されている。同様に、第2の水晶1/4波長板5と第4の水晶1/4波長板9とはファラデー回転子11を介して対を成して対面している。第4の水晶1/4波長板9の光学軸は、ファラデー回転子11の光入射面の法線に沿って光射出面を見て、第2の水晶1/4波長板5の光学軸に対して反時計回りに45°回転して設定されている。
第1乃至第4の水晶1/4波長板3、5、7、9は同一材料で形成されており、常光に対する屈折率はno、異常光に対する屈折率はneである。第1乃至第4の水晶1/4波長板3、5、7、9は略同一の板厚dを有しており、当該板厚dは、2(no−ne)d=(M+1/2)λを満たしている。ここで、λは光の波長であり、Mは任意の整数である。
次に、複合光学素子1を光アイソレータとして機能させる場合の動作について簡単に説明する。不図示の入力用光ファイバからの射出光は、光学接着剤13、15の中心を結ぶ仮想直線を光軸として、第1及び第3の水晶1/4波長板3、7を透過する光と、第2及び第4の水晶1/4波長板5、9を透過する光と、さらに、光学接着剤13、15を透過する光とに分けられる。図1の左から右に向う方向を順方向とすると、入力用光ファイバからの射出光のうち、第1の水晶1/4波長板3の光学軸に平行な直線偏光の光は、第1の水晶1/4波長板3を異常光(屈折率ne)として透過し、ファラデー回転子11で偏光面が45°回転し、第3の水晶1/4波長板7を常光(屈折率no)として透過する。第1及び第3の水晶1/4波長板3、7を透過した光の光路長は、(ne+no)×dとなる。一方、第2の水晶1/4波長板5に入射した光のうち、第1の水晶1/4波長板3の光学軸に平行な直線偏光の光は、第2の水晶1/4波長板5を常光として透過し、ファラデー回転子11で偏光面が45°回転し、第4の水晶1/4波長板9を異常光として透過する。第2及び第4の水晶1/4波長板5、9を透過した光の光路長は、(no+ne)×dとなる。
また、第1の水晶1/4波長板3の光学軸に垂直な直線偏光の光は、第1の水晶1/4波長板3を常光として透過し、ファラデー回転子11で偏光面が45°回転し、第3の水晶1/4波長板7を異常光として透過する。第1及び第3の水晶1/4波長板3、7を透過した光の光路長は、(no+ne)×dとなる。一方、第2の水晶1/4波長板5に入射した光のうち、第1の水晶1/4波長板3の光学軸に垂直な直線偏光の光は、第2の水晶1/4波長板5を異常光として透過し、ファラデー回転子11で偏光面が45°回転し、第4の水晶1/4波長板9を常光として透過する。第2及び第4の水晶1/4波長板5、9を透過した光の光路長は、(ne+no)×dとなる。従って、第1及び第3の水晶1/4波長板3、7を透過する光の光路長と、第2及び第4の水晶1/4波長板5、9を透過する光の光路長とは等しく位相差を生じないため、光は回折せずに直進して不図示の出力用光ファイバの光入力端に結合する。
一方、不図示の出力用光ファイバの光入力端から逆方向に射出する光のうち、第3の水晶1/4波長板7の光学軸に平行な直線偏光の光は、第3の水晶1/4波長板7を異常光として透過し、ファラデー回転子11で偏光面が45°回転し、第1の水晶1/4波長板3を異常光として透過する。第3及び第1の水晶1/4波長板7、3を透過した光の光路長は、(ne+ne)×dとなる。一方、第4の水晶1/4波長板9に入射した光のうち、第3の水晶1/4波長板7の光学軸に平行な直線偏光の光は、第4の水晶1/4波長板9を常光として透過し、ファラデー回転子11で偏光面が45°回転し、第2の水晶1/4波長板5を常光として透過する。第4及び第2の水晶1/4波長板9、5を透過した光の光路長は、(no+no)×dとなる。
第3及び第1の水晶1/4波長板7、3をこの順に異常光として透過した光の光路長と、第4及び第2の水晶1/4波長板9、5をこの順に常光として透過した光の光路差は、2(no−ne)×dとなる。第1乃至第4の水晶1/4波長板3、5、7、9の厚さdは、2(no−ne)d=(M+1/2)λを満たすように形成されているので、光は回折して不図示の入力用光ファイバの光出力端に結合しない。
逆方向から入射される光のうち、第3の水晶1/4波長板7の光学軸に垂直な直線偏光の光は、第3の水晶1/4波長板7を常光として透過し、ファラデー回転子11で偏光面が45°回転し、第1の水晶1/4波長板3を常光として透過する。第3及び第1の水晶1/4波長板7、3を透過した光の光路長は、(no+no)×dとなる。一方、第4の水晶1/4波長板9に入射した光のうち、第3の水晶1/4波長板7の光学軸に垂直な直線偏光の光は、第4の水晶1/4波長板9を異常光として透過し、ファラデー回転子11で偏光面が45°回転し、第3の水晶1/4波長板5を異常光として透過する。第4及び第2の水晶1/4波長板9、5を透過した光の光路長は、(ne+ne)×dとなる。
第3及び第1の水晶1/4波長板7、3をこの順に常光として透過した光の光路長と、第4及び第2の水晶1/4波長板9、5をこの順に異常光として透過した光の光路差は、2(no−ne)×dとなる。第1乃至第4の水晶1/4波長板3、5、7、9の厚さdは、2(no−ne)d=(M+1/2)λを満たすように形成されているので、光は回折して不図示の入力用光ファイバの光出力端に結合しない。
以上の動作により、複合光学素子1を光アイソレータとして機能させることができる。
次に、第1及び第2の光学素子2、4の構成について説明する。
上述のように、第1の光学素子2の第1の水晶1/4波長板3と第2の水晶1/4波長板5のそれぞれの貼り合わせ面(接着面)には光学接着剤13が塗布され固化されている。第1の水晶1/4波長板3と第2の水晶1/4波長板5の接着面は共に研磨されている。また、光学接着剤13は、第1及び第2の水晶1/4波長板3、5の常光の屈折率no及び異常光の屈折率neより小さい屈折率を有する材料で形成されている。従って、第1及び第2の水晶1/4波長板3、5にほぼ垂直入射した光のうち、第1及び第2の水晶1/4波長板3、5の各接着面に進んだ光は、偏光方向によらずに各接着面と光学接着剤13との界面で全反射するので、偏波依存性が改善する。又は、光学接着剤13の屈折率をnoとneのほぼ中間の値とすることにより、2枚の波長板を通過した光と位相のずれた、接着層を通過した光の影響を小さくすることができる。さらに、第1及び第2の水晶1/4波長板3、5の接着面は研磨されて表面荒れやうねりがほとんどなく、しかも接着層厚は1μm以下に調整されているので、光学接着剤13との界面における光の散乱を十分低減させることができる。
第2の光学素子4も同様に形成されている。すなわち、第3の水晶1/4波長板7と第4の水晶1/4波長板9のそれぞれの接着面には光学接着剤15が塗布され固化されている。第3の水晶1/4波長板7と第4の水晶1/4波長板9の接着面は共に研磨されている。また、光学接着剤15は、第3及び第4の水晶1/4波長板7、9の常光の屈折率no及び異常光の屈折率neより小さい屈折率を有する材料で形成されている。従って、第3及び第4の水晶1/4波長板7、9にほぼ垂直入射した光のうち、第3及び第4の水晶1/4波長板7、9の各接着面に進んだ光は、偏光方向によらずに各接着面と光学接着剤15との界面で全反射ので、偏波依存性が改善する。又は、光学接着剤15の屈折率をnoとneのほぼ中間の値とすることにより、2枚の波長板を通過した光と位相のずれた、接着層を通過した光の影響を小さくすることができる。さらに、第3及び第4の水晶1/4波長板7、9の接着面は研磨されて表面荒れやうねりがほとんどなく、しかも接着層厚は1μm以下に調整されているので、光学接着剤15との界面における光の散乱を十分低減させることができる。
このように、本実施の形態による第1及び第2の光学素子2、4は、隣接する水晶1/4波長板間での光の進入を防止し、光学接着剤13、15における光の散乱を十分減らすことができるので、偏光による透過光モードが均一となって、光学特性の劣化を防止することができる。従って、本実施の形態による複合光学素子1を光ファイバの途中に設けた溝に固定すれば、光学特性の優れた埋込型光アイソレータを構成することができる。
次に、本実施の形態による第1及び第2の光学素子2、4及びそれを用いた複合光学素子1の製造方法について説明する。図2は、第1及び第2の光学素子2、4及びそれを用いた複合光学素子1の製造方法のフローチャートを示している。図2に示すように、本実施の形態の製造方法は、第1及び第2の光学素子2、4を製造する工程(ステップS1からステップS5)と、第1及び第2の光学素子2、4とファラデー回転子とを接着して複合光学素子1を製造する工程(ステップS6からステップS9)との2つの工程に大別することができる。以下、各ステップについて図3乃至図10を参照しつつ詳細に説明する。
まず、第1の研磨工程(図2のステップS1)について図3を用いて説明する。図3は、第1の研磨工程で研磨される2種類の水晶板21、23の形状を示している。水晶板21、23は薄い直方体状に形成されている。図3(a)は、水晶板21の左側面21cの形状を示し、図3(b)は、水晶板21の正面21aの形状を示している。図3(a)、(b)に示すように、水晶板21の正面21a及び背面21bの寸法は、長辺の長さがl1=35mm、短辺の幅がw1=11mmである。また、正面21a及び背面21b間の厚さはt1=1.9mmである。水晶板21の上面21eと右側面21dとの交差部には、水晶板21と水晶板23とを重ね合わせた際の位置合わせに用いる位置合わせ用面取り部21gが形成されている。水晶板21の底面21fと右側面21dとの交差部には水晶板識別用面取り部は形成されていない。
水晶板21の光学軸は、図3(a)に示すように左側面21cから見て、正面21aの短辺にほぼ平行で正面21aに直交する面内で、正面21aに対して時計回りに22.5°±0.25°に配置されている。
図3(c)は、水晶板23の左側面23cの形状を示し、図3(d)は、水晶板23の正面23aの形状を示している。図3(c)、(d)に示すように、水晶板23の正面23a及び背面23bの寸法は、長辺の長さがl1=35mm、短辺の幅がw1=11mmである。また、正面23a及び背面23b間の厚さはt1=1.9mmである。このように水晶板23の外形は全体的には水晶板21の外形と同様になっている。水晶板23の上面23eと右側面23dとの交差部には、位置合わせ用面取り部21gとほぼ同形状の位置合わせ用面取り部23gが形成されている。水晶板23の底面23fと右側面23dとの交差部には、位置合わせ用面取り部23gより大きく面取りされた水晶板21と水晶板23とを区別するための水晶板識別用面取り部23hが形成されている。
水晶板23の光学軸は、図3(c)に示すように左側面23cから見て、正面23aの短辺にほぼ平行に正面23aに直交する面内で、正面23aに対して反時計回りに67.5°±0.25°に配置されている。
第1の研磨工程では、少なくとも最終的に接着面となる水晶板21の正面21aと、最終的に接着面となる水晶板23の背面23bをラップ研磨し、次いでポリッシング研磨を行い鏡面加工仕上げをする。本実施の形態では、水晶板21の正面21aと水晶板23の背面23bとを研磨しているが、水晶板21の背面23bと水晶板23の正面23aを研磨してももちろんよい。
次に、第1の接着工程(図2のステップS2)について図4を用いて説明する。第1の接着工程では、まず、接着面となる水晶板21の正面21aに光学接着剤25を塗布し、次いで水晶板21、23の位置合わせ用面取り部21g、23gが同一平面になるようにして正面21aの上に、接着面となる水晶板23の背面23bを対向させて載置する。次いで水晶板21aと水晶板23bの間の接着層厚が均一になるように加圧して、水晶板21の背面21bまたは水晶板23の正面23a側から接着層に紫外線を照射すると共に熱処理して、水晶板21、23を固定する。第1の接着工程を通して、水晶板21、23間の接着層の厚さは1μm以下に調整される。
図4は、第1の接着工程で接着された水晶板21、23(以下、接着済み水晶板20という)の斜視図である。図4では、水晶板23を上側に示し水晶板21を下側に示している。また、図面手前側に水晶板識別用面取り部23hを表示している。
水晶板21、23を接着する光学接着剤25は、ガラス転移温度Tgが高く、さらに屈折率nが水晶板21、23の常光の屈折率及び異常光の屈折率より小さくなるように調整されている(Tg=140℃、n=1.532)。接着済み水晶板20が使用される周囲温度(室温〜100℃)より高いガラス転移温度Tgの光学接着剤25を用いるのは、ガラス転移温度Tgを高く設定しておくと部品の使用温度範囲(一般的には−40℃〜+85℃)における熱変形を抑えることができるからである。
また、光学接着剤25の屈折率nを調整しているのは、水晶板21、23に入射した光を光学接着剤25の界面で全反射させるためである。
次に、第1の切断工程(図2のステップS3)について図5を用いて説明する。図5は、第1の切断工程において接着済み水晶板20の右側面21d、23d近傍を接着面を横切ってダイヤモンドブレード31で切断している状態の概略を示す斜視図である。第1の切断工程では、まず切断位置の位置決め精度を十分確保できるように、接着済み水晶板20を構成する水晶板23の正面23aに熱可塑性樹脂であるホットメルトタイプワックス(不図示)を塗布し、基盤27上に仮止めする。次に、接着済み水晶板20を切断した後の水晶板21、23の光学軸の向きを区別できるように、ダイヤモンドブレード31の切削方向を接着済み水晶板20の上面21e、23eにほぼ平行に調整して水晶板21の背面21bを切削して水晶板識別用溝部29を形成する。
次に、接着済み水晶板20の端面は不揃いで、接着済み水晶板20の接着層を視認し難い場合があるので、接着済み水晶板20の上面21e、23e及び底面21f、23fを各平面に平行にダイヤモンドブレード31で切断する。切断後に接着層を十分視認できない場合は、切断面をさらに研磨してもよい。なお、上面21e、23e側は上面21e、23eと水晶板識別用溝部29との間を切断する。次に、接着済み水晶板20の右側面21d、23dとほぼ平行にダイヤモンドブレード31で接着済み水晶板20を1.0mm間隔に切断する。なお、接着済み水晶板20の切断を確実にするために、基盤27の表面も接着済み水晶板20と共に切断される。図5には、基盤27上に切断線24が示されている。
次に、剥離・洗浄工程(図2のステップS4)について図6を用いて説明する。剥離・洗浄工程では、複数に切断された接着済み水晶板20をアルカリ洗剤や有機溶剤等で基盤27から剥離し、次いで、接着済み水晶板20の正面23aに付着したホットメルトタイプワックスを洗浄して除去する。次に、表面活性剤入り中性洗剤で接着済み水晶板20表面に付着した各種汚れを除去した後、純水でリンスし、次いで乾燥を行う。図6は、剥離・洗浄工程で複数に分割された接着済み水晶板20のうち、1つの接着済み水晶板20(以下、異方位水晶接着切断素子22という)の概略の形状を示す斜視図である。異方位水晶接着切断素子22は薄い直方体状に形成されている。異方位水晶接着切断素子22の正面22a及び背面22bの寸法は、長辺の長さがl2=9.0mm、短辺の幅がw2=3.9mmである。また、正面22a及び背面22b間の厚さはt2=0.6mmである。異方位水晶接着切断素子22の上面22eには、正面22aから背面22bに向かって右側面22d近傍にその面に平行に水晶板識別用溝部29が形成されている。
また、異方位水晶接着切断素子22の水晶板21の光学軸は、正面22aに向かって見て水晶板21の接着面αに対して反時計回りに22.5°の角度を有している。また、異方位水晶接着切断素子22の水晶板23の光学軸は、正面22aに向かって見て水晶板23の接着面βに対して時計回りに67.5°の角度を有している。
図6において、異方位水晶接着切断素子22の正面22a及び背面22bは、図5に示した第1の切断工程において右側面21d、23dとほぼ平行に接着済み水晶板20を切断した切断面である。また、異方位水晶接着切断素子22の右側面22dは、第1の切断工程において底面21f、23fにほぼ平行に接着済み水晶板20を切断した切断面である。また、異方位水晶接着切断素子22の左側面22cは、第1の切断工程において上面21e、23eにほぼ平行に接着済み水晶板20を切断した切断面である。またさらに、異方位水晶接着切断素子22の上面22e及び底面22fはそれぞれ接着済み水晶板20の背面21b及び正面23aである。
次に、第2の研磨工程(図2のステップS5)について再び図6を用いて説明する。異方位水晶接着切断素子22は、最終的にはその正面22aは例えば光入射面又は光射出面になり、背面22bはファラデー回転子に接着される。そこで第2の研磨工程では、異方位水晶接着切断素子22の正面22a及び背面22bを平面研磨して、ファラデー回転子の接着面出しと異方位水晶接着切断素子22の光入射出面の平行度を向上させる。研磨後の異方位水晶接着切断素子22の正面22a及び背面22bの寸法は、長辺の長さがl2=9.0mm、短辺の幅がw2=3.8mmになる。また、正面22a及び背面22b間の厚さはt2=0.4mmになる。また、研磨面の平行度は3分以下に調整される。
以上説明した第1の研磨工程(ステップS1)から第2の研磨工程(ステップS5)を経て、第1及び第2の光学素子2、4を複数個含んだ基本構造となる異方位水晶接着切断素子22が製造される。次に、第1及び第2の光学素子2、4を用いた複合光学素子1の製造工程をステップS6からステップS9に沿って説明する。
まず、ファラデー回転子切断工程(図2のステップS6)について図7を用いて説明する。図7は、LPE(Liquid Phase Epitaxy)法で育成されたBi置換ガーネット単結晶膜から切り出されたファラデー回転子32、34の概略の形状を示す斜視図である。図7(a)は、切り出されたファラデー回転子32を示し、図7(b)は、ファラデー回転子32をさらに2分したファラデー回転子34を示している。ファラデー回転子32の正面32a及び背面32bの寸法は、長辺の長さがl3=11.0mm、短辺の幅がw3=10.0mmである。また、正面32a及び背面32b間の厚さはt3=0.35mmである。ファラデー回転子32の厚さt3は、使用する光の波長において45°のファラデー回転角が得られるように形成されている。ファラデー回転子34の正面34a及び背面34bの寸法は、長辺の長さがl4=9.0mm、短辺の幅がw4=3.9mmである。また、正面34a及び背面34b間の厚さはt4=0.35mmである。
次に、第2の接着工程(図2のステップS7)について図8を用いて説明する。図8は、第1及び第2の異方位水晶接着切断素子22、22’間にファラデー回転子34を配置した状態の斜視図である。第2の接着工程では、まず、ファラデー回転子34の正面34aに光学接着剤(不図示)を塗布する。次いで、正面34aに第1の異方位水晶接着切断素子22の背面22bを接着する。次に、ファラデー回転子34の背面34bに光学接着剤(不図示)を塗布する。次いで、第1の異方位水晶接着切断素子22に対して天地を逆転させた状態の第2の異方位水晶接着切断素子22’の背面22b’を背面34bに接着する。
接着段階で内部応力が生じないように配慮しつつ、光学接着剤25、25’が満たされている接着層の中心のずれが±1μm以下になるように第1及び第2の異方位水晶接着切断素子22、22’の位置調整を顕微鏡下で行う。こうして第1及び第2の異方位水晶接着切断素子22、22’とファラデー回転子34とが一体となった複合光学素子基板33が形成される。
こうすることにより、第1の異方位水晶接着切断素子22の水晶板21と第2の異方位水晶接着切断素子22’の水晶板23’とはファラデー回転子34を介して対を成して対面する。第2の異方位水晶接着切断素子22’の水晶板23’の光学軸は、ファラデー回転子34の正面34aの法線に沿って背面34bを見て、第1の異方位水晶接着切断素子22の水晶板21の光学軸に対して反時計回りに45°回転して設定される。同様に、第1の異方位水晶接着切断素子22の水晶板23と第2の異方位水晶接着切断素子22’の水晶板21’とはファラデー回転子34を介して対を成して対面する。第2の異方位水晶接着切断素子22’の水晶板21’の光学軸は、ファラデー回転子34の正面34aの法線に沿って背面34bを見て、第1の異方位水晶接着切断素子22の水晶板23の光学軸に対して反時計回りに45°回転して設定される。
次に、第3の研磨工程(図2のステップS8)について図9を用いて説明する。図9は、複合光学素子基板33の概略の形状を示す斜視図である。第3の研磨工程では、複合光学素子基板33の正面33a及び背面33bをラップ研磨し、次いでポリッシング研磨による精密研磨を行って、第1及び第2の異方位水晶接着切断素子22、22’の厚さt2をそれぞれ46.4μmにする。これにより、第1及び第2の異方位水晶接着切断素子22、22’は水晶1/4波長板の機能を発揮できる厚さになる。
なお、この加工は片面ずつ加工していく従来方法以外に、両面加工機により両面同時に研磨加工する方法がある。この両面加工を実施する場合、加工面の上面と下面で加工レートが異なると、上面の水晶板と下面の水晶板の仕上がり厚さが異なり、仕上がった光学素子の特性が劣化してしまう。従って、両面研磨機の上定盤と下定盤の加工を行う為の研磨量を同じにするために、それぞれ異なる回転数で加工できる3ウェイタイプを用いる必要がある。
最後に、第2の切断工程(図2のステップS9)について図10を用いて説明する。図10は、複合光学素子基板33の切断箇所の概略を示した斜視図である。切断箇所は、複合光学素子基板33の右側面33dに平行に例えば7箇所(破線A−A’)と、上面33eに平行に例えば2箇所(破線B−B’)であって、複合光学素子基板33は、矢印の方向に向かって切断される。第2の切断工程では、複合光学素子基板33を所定の大きさに精密ダイシング切断し、第1及び第2の光学素子2、4の光入射出面が1mm×1mm□の複数の複合光学素子1を切り出す。次に、切り出された複合光学素子1を洗浄し、複合光学素子1の製造が終了する。
こうして製造された複合光学素子1の第1及び第2の水晶1/4波長板3、5の接着層厚と、第3及び第4の水晶1/4波長板7、9の接着層厚は0.5〜0.85μmに形成される。また、第1の光学素子2の接着層の中心と第2の光学素子4の接着層の中心との位置ずれは1μm以下に形成される。さらに、第1及び第2の光学素子2、4の厚さが44.4〜48.4μmに形成される。また、複合光学素子1は光の挿入損失が0.3dB以下で、アイソレーションが25dB以上の優れた光学特性を達成できる。従って、埋込型光学部品の光学素子として複合光学素子1を用いれば、小型で光学特性の優れた埋込型光部品を製造することができる。
以上説明したように、本実施の形態の第1及び第2の光学素子2、4及びそれを用いた複合光学素子1の製造方法によれば、第1及び第2の水晶1/4波長板3、5の接着面及び第3及び第4の水晶1/4波長板7、9の接着面は、水晶板21の正面21a及び水晶板23の背面23bに相当し、当該接着面の研磨や接着層厚の管理を容易に行うことができる。これにより、光学特性の優れた複合光学素子1を安定して供給することができる。さらに、水晶1/4波長板の側面同士を突き合わせて接着する必要がなくなるので、作業性及び歩留まりが向上して、複合光学素子1の低コスト化を図ることができる。
次に本発明の第2の実施の形態による第1及び第2の光学素子2、4及びそれを用いた複合光学素子1の製造方法を図1乃至図14を用いて説明する。第1の実施の形態による第1及び第2の光学素子2、4及びそれを用いた複合光学素子1の製造方法では、水晶板21の正面21a及び水晶板23の背面23bを平面研磨(鏡面加工)した後に、紫外線硬化型樹脂(光学接着剤)を塗布し、加圧と紫外線照射及び熱処理して水晶板21と水晶板23とを接着し、さらに接着済み水晶板20をダイヤモンドブレード31で切断している。これに対して本実施の形態では、水晶板21の正面21a及び背面21bと水晶板23の正面23a及び背面23bをラップ研磨とポリッシング研磨で鏡面加工する。次に、水晶板23の背面23bに溝加工を施し、水晶板21、23の接着面をプラズマ照射した後に加圧して紫外線照射し、次いで熱処理して水晶板21、23を接着する。さらに、接着済み水晶板20を複数個同時にワイヤーソーで切断する点に特徴を有している。なお、図1乃至図10に示した第1の実施の形態の第1及び第2の光学素子2、4及びそれを用いた複合光学素子1の製造方法の構成要素と同一の作用・機能を奏する構成要素には同一の符号を付してその説明は省略する。
本実施の形態による第1及び第2の光学素子2、4及びそれを用いた複合光学素子1の構成及び動作は、第1の実施の形態の第1及び第2の光学素子2、4及びそれを用いた複合光学素子1と全く同じなので説明は省略する。以下、第1及び第2の光学素子2、4及び複合光学素子1の製造方法について説明する。
図11は、第1及び第2の光学素子2、4及びそれを用いた複合光学素子1の製造方法のフローチャートを示している。本実施の形態の第1及び第2の光学素子2、4及びそれを用いた複合光学素子1の製造方法は、第1及び第2の光学素子2、4を形成する工程(ステップS11からステップS16)と、複合光学素子1を形成する工程(ステップS17からステップS19)の2つの工程に大別することができる。以下、各ステップを図1乃至図14を参照しながら詳細に説明する。
まず、第1の研磨工程(図11のステップS11)について説明する。第1の研磨工程(ステップS11)で研磨される水晶板21は、第1の実施の形態の図3(a)、(b)に示した水晶板21と寸法が異なるだけで光学軸の方向や位置合わせ用面取り部21gは同様である。本実施の形態における水晶板21の正面21a及び背面21bの寸法は、長辺の長さがl1=35mm、短辺の幅がw1=12mmである。また、正面21a及び背面21b間の厚さはt1=0.75mmである。
一方、本実施の形態による水晶板23も、第1の実施の形態の図3(c)、(d)に示した水晶板23と寸法が異なるだけで光学軸の方向や位置合わせ用面取り部23g及び水晶板識別用面取り部23hは同様である。本実施の形態における水晶板23の正面23a及び背面23bの寸法は、長辺の長さがl1=35mm、短辺の幅がw1=12mmである。また、正面23a及び背面23b間の厚さはt1=0.75mmである。
第1の研磨工程では、水晶板21の正面21a及び背面21bと、水晶板23の正面23a及び背面23bをラップ研磨し、次いでポリッシング研磨を行い鏡面加工仕上げをする。
次に、溝形成工程(図11のステップS12)について図12を用いて説明する。溝形成工程では、この後の工程で水晶板21、23を切断した際に水晶板21、23の光学軸の向きを識別できるように、水晶板21の背面21bに水晶板識別用溝部29を底面21fにほぼ平行且つ近傍に形成する。次いで、水晶板23の背面23bに光学接着剤25を流通させる複数の流通用溝部37を左側面23cにほぼ平行且つ0.7mm間隔で形成する。図12は、水晶板識別用溝部29が形成された水晶板21と複数の流通用溝部37が形成された水晶板23を示している。図12(a)は、水晶板識別用溝29が形成された水晶板21の背面21bを示し、図12(b)は、流通用溝部37が形成された水晶板23の背面23bを示している。
次に、第1の接着工程(図11のステップS13)について説明する。第1の接着工程では、まず、光学接着剤25の濡れ性改善のため、接着面になる水晶板21の正面21a及び水晶板23の背面23bにプラズマ照射処理を行う。次に、水晶板21の正面21aに第1の実施の形態で用いた光学接着剤25を塗布し、次いで水晶板21、23の位置合わせ用面取り部21g、23gがほぼ同一平面になるようにして正面21aの上に水晶板23の背面23bを対向させて載置する。次いで水晶板21の背面21bと水晶板23の正面23aに紫外線を照射すると共に加圧して、水晶板21、23を固定する。光学接着剤25の粘度が高くて薄くし難い場合には、加圧時に熱を加えてもよい。次に、120℃で1時間熱処理する。第1の接着工程を通して、水晶板21、23間の接着層の厚さは1μm以下に調整される。なお、第1の接着工程で接着された水晶板21、23(以下、接着済み水晶板20という)は、第1の実施の形態の接着済み水晶板20と同様の外観になる(図4参照)。
第1の接着工程において、水晶板21、23が加圧されると、光学接着剤25は複数の流通用溝部37を通って上面23e及び底面23fからはみ出す。接着層厚を1μm以下にするために、水晶板21の正面21aに光学接着剤25を必要量より余分に塗布しても、光学接着剤25は容易に接着面外部に押し出されるので、接着層厚の調整・管理が容易になる。
次に、第2の研磨工程(図11のステップS14)について説明する。第2の研磨工程では、接着済み水晶板20の上面21e、23e及び底面21f、23fを研磨する。これにより、第1の接着工程で上面21e、23e及び底面21f、23fからはみ出した光学接着剤25が取り除かれる。これにより、接着済み水晶板20の接着層が十分視認できるようになる。
次に、第1の切断工程(図11のステップS15)について図13を用いて説明する。図13は、接着済み水晶板20を複数個同時に切断している状態の概略を示す斜視図である。第1の切断工程では、まず、接着済み水晶板20の位置合わせ用面取り部21g、23gが同一平面になるようにして、複数の接着済み水晶板20をホットメルトタイプワックス(不図示)で接着する。図13では、6枚の接着済み水晶板20が接着されている。次に、6枚の接着済み水晶板20の底面21f、23fを基盤(不図示)にホットメルトタイプワックスで接着する。
次に、6枚の接着済み水晶板20の背面21bにほぼ直交し流通用溝部37で形成される複数の仮想平面上に、ワイヤーソー35の切断部35aに張り渡された各ワイヤを一致させ、上面21e、23eに対向して配置する。ワイヤーソー35の切断部35aに張り渡されたワイヤの間隔は流通用溝37の間隔よりやや長めに設定されている。次に、基盤27をワイヤーソー35に向けて移動させ、流通用溝部37に合わせて6枚の接着済み水晶板20をワイヤーソー35で同時に切断する。
次に、複数に切断された接着済み水晶板20をアルカリ洗剤や有機溶剤等で基盤から剥離し、次いで、接着済み水晶板20の正面23a、背面21b、底面21f、23fに付着したホットメルトタイプワックスを洗浄して除去する。次に、表面活性剤入り中性洗剤で接着済み水晶板20表面に付着した各種汚れを除去した後、純水でリンスし、次いで乾燥を行う。剥離・洗浄で複数に分割された接着済み水晶板20のうち、1つの接着済み水晶板20(以下、異方位水晶接着切断素子22という)は薄い直方体状に形成されている。異方位水晶接着切断素子22の正面22a及び背面22bの寸法は、長辺の長さがl2=11.0mm、短辺の幅がw2=1.5mmである。また、正面22a及び背面22b間の厚さはt2=0.2mmである(図6参照)。
次に、第3の研磨工程(図11のステップS16)について再び図6を用いて説明する。異方位水晶接着切断素子22は、最終的にはその正面22aは例えば光入射面又は光射出面になり、背面22bはファラデー回転子に接着される。そこで第3の研磨工程では、異方位水晶接着切断素子22の正面22a及び背面22bをラップ研磨及びポリッシング研磨して、ファラデー回転子の接着面出しと異方位水晶接着切断素子22の光入射出面の平行度を向上させると共に、水晶1/4波長板の機能を発揮する形状に形成する。研磨後の異方位水晶接着切断素子22の正面22a及び背面22bの寸法は、長辺の長さがl2=11.0mm、短辺の幅がw2=1.5mmになる。また、正面22a及び背面22b間の厚さはt2=46.4μmになる。また、研磨面の平行度は3分以下に調整される。
以上説明した第1の研磨工程(ステップS11)から第3の研磨工程(ステップS16)を経て、第1及び第2の光学素子2、4を複数個含んだ基本構造となる異方位水晶接着切断素子22が製造される。次に、第1及び第2の光学素子2、4を用いた複合光学素子1の製造工程をステップS17からステップS19に沿って説明する。
まず、ファラデー回転子切断工程(図11のステップS17)について再び図7を用いて説明する。第1の実施の形態と同様に、本実施の形態においても、LPE法で育成されたBi置換ガーネット単結晶膜から切り出されたファラデー回転子32から所定の寸法のファラデー回転子34が切り出される。ファラデー回転子32の正面32a及び背面32bの寸法は、長辺の長さがl3=11.0mm、短辺の幅がw3=11.0mmである。また、正面32a及び背面32b間の厚さはt3=0.35mmである。ファラデー回転子32の厚さt3は、使用する光の波長において45°のファラデー回転角が得られるように形成されている。ファラデー回転子34の正面34a及び背面34bの寸法は、長辺の長さがl4=11.0mm、短辺の幅がw4=1.5mmである。また、正面34a及び背面34b間の厚さはt4=0.35mmである。
次に、第2の接着工程(図11のステップS18)について説明する。第2の接着工程では、第1及び第2の異方位水晶接着切断素子22、22’間にファラデー回転子34が接着固定される(図8参照)。当該接着固定の方法は第1の実施の形態の第2の接着工程(ステップS7)と同様であるため、説明は省略する。
また、第3の研磨工程で第1及び第2の異方位水晶接着切断素子22、22’は、既に水晶1/4波長板の機能を発揮する形状に形成されているため、複合光学素子基板33は複合光学素子1と同様の作用・機能を発揮する。
最後に、第2の切断工程(図11のステップS19)について図14を用いて説明する。図14は、複合光学素子基板33の切断箇所の概略を示した斜視図である。切断箇所は、複合光学素子基板33の右側面33dに平行に複数箇所(破線A−A’)であって、例えば、複合光学素子基板33は、矢印の方向に向かって切断される。第2の切断工程では、複合光学素子基板33を所定の大きさに精密ダイシング切断し、第1及び第2の光学素子2、4の光入射出面が1.5mm×0.6mm□の複数の複合光学素子1を切り出す。次に、切り出された複合光学素子1を洗浄し、複合光学素子1の製造が終了する。
こうして製造された複合光学素子1の第1及び第2の水晶1/4波長板3、5の接着層厚と、第3及び第4の水晶1/4波長板7、9の接着層厚は0.5〜0.85μmに形成される。また、第1の光学素子2の接着層の中心と第2の光学素子4の接着層の中心との位置ずれは1μm以下に形成される。さらに、第1及び第2の光学素子2、4の厚さが44.4〜48.4μmに形成される。また、複合光学素子1は光の挿入損失が0.3dB以下で、アイソレーションが25dB以上の優れた光学特性を達成できる。従って、埋込型光学部品の光学素子として複合光学素子1を用いれば、小型で光学特性の優れた埋込型光部品を製造することができる。
以上説明したように、本実施の形態の第1及び第2の光学素子2、4及びそれを用いた複合光学素子1の製造方法によれば、第1及び第2の水晶1/4波長板3、5の接着面及び第3及び第4の水晶1/4波長板7、9の接着面は、水晶板21の正面21a及び水晶板23の背面23bに相当し、当該接着面の研磨や接着層厚の管理を容易に行うことができる。これにより、光学特性の優れた複合光学素子1を安定して供給することができる。さらに、水晶1/4波長板の側面同士を突き合わせて接着する必要がなくなるので、作業性及び歩留まりが向上して、複合光学素子1の低コスト化を図ることができる。さらに、接着済み水晶板20を複数個同時にワイヤーソー35で切断するので、生産能力が向上し製造コストを低減することができる。
本発明は、上記実施の形態に限らず種々の変形が可能である。
上記第1の実施の形態では、接着済み水晶板20はダイヤモンドブレード31で切断されているが、本発明はこれに限られない。例えば、ワイヤーソー35を用いて、接着済み水晶板20を複数個同時に切断してもよい。
また、上記第1の実施の形態では、第1の研磨工程(ステップS1)の次に、第1の接着工程(ステップS2)が行われているが、本発明はこれに限られない。例えば、第1の研磨工程と第1の接着工程との間に、溝形成工程(ステップS12)を行ってもよい。
また、上記実施の形態では、光学軸の異なる2種類の水晶板21、23を接着して光学素子2、4を形成しているが、本発明はこれに限られない。例えば、光学軸の方向が異なる2種類の水晶板21、23を交互に4枚以上接着してももちろんよい。
また、上記第2の実施の形態では、第1の切断工程(ステップS15)において複数の接着済み水晶板20は上面21e、23eにワイヤーソー35を当てて切断されているが、本発明はこれに限られない。例えば、ワイヤーソー35を接着済み水晶板20の正面23a又は背面21bから当てて切断してももちろんよい。
また、上記実施の形態では、入力用光ファイバと出力用光ファイバとの間に本発明に係る複合光学素子1を挿入した光ファイバ型の光学部品を例にとって説明したが、本発明はこれに限られない。光ファイバに代えて光導波路を用いた光導波路型の光学部品に本発明を適用することも可能である。例えば光導波路型の光サーキュレータにおいて、所定位置の光導波路間に複合光学素子1を配置することができる。光サーキュレータの場合には、第1及び第2の光学素子2、4を通過する光は導波路により予め分離されており接着層を通過しない。このため、第1及び第2の光学素子2、4の接着層厚は薄くしなくてもよいが、水晶1/4波長板の側面同士を突き合わせて接着する必要がなくなるので、作業性及び歩留まりが向上して、複合光学素子1の低コスト化を図ることができる。
本発明の実施の形態による複合光学素子1の概略の構成を示す図である。 本発明の第1の実施の形態による第1及び第2の光学素子2、4及びそれを用いた複合光学素子1の製造方法のフローチャートを示している。 本発明の実施の形態による第1の研磨工程で研磨される2種類の水晶板21、23の形状であって、図3(a)は、水晶板21の左側面21cの形状を示し、図3(b)は、水晶板21の正面21aの形状を示し、図3(c)は、水晶板23の左側面23cの形状を示し、図3(d)は、水晶板23の正面23aの形状を示す図である。 本発明の第1の実施の形態による水晶板21、23が光学接着剤25で接着された状態を示す斜視図である。 本発明の第1の実施の形態による第1の切断工程において、接着済み水晶板20の右側面21d、23d近傍が切断されている状態の概略を示す斜視図である。 本発明の第1の実施の形態による異方位水晶接着切断素子22の概略の形状を示す斜視図である。 本発明の実施の形態によるLPE法で育成されたBi置換ガーネット単結晶膜から切り出されたファラデー回転子32、34の概略の形状を示す斜視図である。図7(a)は、切り出されたファラデー回転子32を示し、図7(b)は、ファラデー回転子32をさらに分割したファラデー回転子34を示している。 本発明の実施の形態による第1及び第2の異方位水晶接着切断素子22、22’間にファラデー回転子34を配置した状態の斜視図である。 本発明の実施の形態による複合光学素子基板33の概略の形状を示す斜視図である。 本発明の第1の実施の形態による複合光学素子基板33の切断箇所の概略を示した斜視図である。 本発明の第2の実施の形態による第1及び第2の光学素子2、4及びそれを用いた複合光学素子1の製造方法のフローチャートを示している。 本発明の第2の実施の形態による溝が形成された水晶板21、23を示す図である。図12(a)は、水晶板識別用溝部29が形成された水晶板21の背面21bを示し、図12(b)は、流通用溝部37が形成された水晶板23の背面23bを示している。 本発明の第2の実施の形態による接着済み水晶板20を複数個同時に切断している状態の概略を示す斜視図である。 本発明の第2の実施の形態による複合光学素子基板33の切断箇所の概略を示した斜視図である。
符号の説明
1 複合光学素子
2、4 光学素子
3、5、7、9 水晶1/4波長板
11、32、34 ファラデー回転子
13、15、17、19、25、32、34 光学接着剤
20 接着済み水晶板
21、23 水晶板
21a、23a、22a、32a、33a、34a 正面
21b、23b、22b、32b、33b、34b 背面
21c、23c、22c、32c、33c、34c 左側面
21d、23d、22d、32d、33d、34d 右側面
21e、23e、22e、32e、33e、34e 上面
21f、23f、22f、32f、33f、34f 底面
21g、23g 位置合わせ用面取り部
23h 水晶板識別用面取り部
22、22’ 異方位水晶接着切断素子
24 切断線
27 基盤
29 水晶板識別用溝部
31 ダイヤモンドブレード
33 複合光学素子基板
35 ワイヤーソー
37 流通用溝部

Claims (11)

  1. 接着面を有する第1及び第2の複屈折板を光学接着剤で接着する接着工程と、
    前記接着面を横切って、接着された前記第1及び第2の複屈折板を切断する切断工程と
    を有することを特徴とする光学素子の製造方法。
  2. 請求項1記載の光学素子の製造方法において、
    前記接着工程の前に、前記第1及び第2の複屈折板の前記接着面を研磨すること
    を特徴とする光学素子の製造方法。
  3. 請求項1又は2に記載の光学素子の製造方法において、
    前記接着工程は、前記第1及び第2の複屈折板の光学軸の方向を異ならせて接着すること
    を特徴とする光学素子の製造方法。
  4. 請求項1乃至3のいずれか1項に記載の光学素子の製造方法において、
    前記接着工程は、前記接着面にプラズマ照射を行うこと
    を特徴とする光学素子の製造方法。
  5. 請求項1乃至4のいずれか1項に記載の光学素子の製造方法において、
    前記切断工程は、前記接着面に直交して、接着された前記第1及び第2の複屈折板を切断すること
    を特徴とする光学素子の製造方法。
  6. 請求項1乃至5のいずれか1項に記載の光学素子の製造方法において、
    前記切断工程は、接着された前記第1及び第2の複屈折板を複数個同時に切断すること
    を特徴とする光学素子の製造方法。
  7. 同一面内で光学軸の方向が異なる2枚の複屈折板を隣接して貼り合わせた光学素子を非相反光学素子の光入射面と光射出面のそれぞれに接着する複合光学素子の製造方法において、
    前記光学素子は、請求項1乃至6のいずれか1項の光学素子の製造方法で製造されること
    を特徴とする複合光学素子の製造方法。
  8. 同一面内で光学軸の方向が異なる2枚の複屈折板を隣接して接着面同士を光学接着剤で接着した光学素子において、
    前記接着面は研磨されていること
    を特徴とする光学素子。
  9. 請求項8記載の光学素子において、
    前記接着面同士で形成される接着層は、層厚が1μm以下であること
    を特徴とする光学素子。
  10. 非相反光学素子の光入射出面に光学素子を備えた複合光学素子において、
    前記光学素子は、請求項8又は9に記載の光学素子であること
    を特徴とする複合光学素子。
  11. 光導波路部又は光ファイバ部の光軸方向に対して横断する方向に形成された溝部と、
    前記溝部に挿入された請求項10記載の複合光学素子と
    を有することを特徴とする埋込型光学部品。

JP2003282073A 2003-07-29 2003-07-29 光学素子及びそれを用いた複合光学素子並びにそれらの製造方法 Pending JP2005049652A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003282073A JP2005049652A (ja) 2003-07-29 2003-07-29 光学素子及びそれを用いた複合光学素子並びにそれらの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003282073A JP2005049652A (ja) 2003-07-29 2003-07-29 光学素子及びそれを用いた複合光学素子並びにそれらの製造方法

Publications (1)

Publication Number Publication Date
JP2005049652A true JP2005049652A (ja) 2005-02-24

Family

ID=34267397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003282073A Pending JP2005049652A (ja) 2003-07-29 2003-07-29 光学素子及びそれを用いた複合光学素子並びにそれらの製造方法

Country Status (1)

Country Link
JP (1) JP2005049652A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185872A (ja) * 2007-01-31 2008-08-14 Seiko Epson Corp 光学補償板、並びにこれを備えた液晶装置及び電子機器
JP2009053418A (ja) * 2007-08-27 2009-03-12 Seiko Epson Corp 光学補償素子、並びにこれを備えた液晶装置及び電子機器
US7901081B2 (en) 2007-07-11 2011-03-08 Seiko Epson Corporation Method of manufacturing optical compensation element and projector
JP2013246346A (ja) * 2012-05-28 2013-12-09 Riki Sakurai 水晶波長板
WO2023176629A1 (ja) * 2022-03-14 2023-09-21 日東電工株式会社 光学積層体、レンズ部および表示方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185872A (ja) * 2007-01-31 2008-08-14 Seiko Epson Corp 光学補償板、並びにこれを備えた液晶装置及び電子機器
US7901081B2 (en) 2007-07-11 2011-03-08 Seiko Epson Corporation Method of manufacturing optical compensation element and projector
JP2009053418A (ja) * 2007-08-27 2009-03-12 Seiko Epson Corp 光学補償素子、並びにこれを備えた液晶装置及び電子機器
JP2013246346A (ja) * 2012-05-28 2013-12-09 Riki Sakurai 水晶波長板
WO2023176629A1 (ja) * 2022-03-14 2023-09-21 日東電工株式会社 光学積層体、レンズ部および表示方法

Similar Documents

Publication Publication Date Title
JP2001281598A (ja) 複合光学素子、光アイソレータ、光アッテネータとそれらの製造方法
US5267077A (en) Spherical multicomponent optical isolator
JPH09197345A (ja) 光アイソレータ及びその製造方法
US8467128B2 (en) Polarizing cube and method of fabricating the same
WO2018017958A2 (en) Monolithically-integrated, polarization-independent circulator
JP2001201636A (ja) 光ファイバ偏光子及びその作成方法
JP2005049652A (ja) 光学素子及びそれを用いた複合光学素子並びにそれらの製造方法
JP2004170924A (ja) 導波路埋め込み型光回路及びこれに用いる光学素子
JP2006208710A (ja) 光アイソレータ素子及びその製造方法並びに光アイソレータ付きファイバ
JP2004037812A (ja) 埋込型光非可逆回路装置
JPH0634837A (ja) 光部品
JP4287522B2 (ja) 分割光学素子及びその製造方法
CA2341258A1 (en) Optical isolator
JP4070053B2 (ja) 光サーキュレータ
JPH1020248A (ja) 光アイソレータ
JP3832827B2 (ja) 埋込型光部品及び埋込型光アイソレータ
JP3554140B2 (ja) 光アイソレータ用素子及びその製造方法
JP3459047B2 (ja) 偏光ガラスを用いた埋込型光アイソレータの製造方法
JP2002156530A (ja) 光アイソレータ付き光ファイバピグテイル
WO2002061468A1 (fr) Procédé de production de prisme de sélection optique
JP2006163050A (ja) レンズ機能付き光アイソレータ及びその製造方法
JP2003121788A (ja) 複合光学素子を用いた埋込型光アイソレータとその製造方法
JP2011048268A (ja) ファイバスタブ型光デバイス
JPH112725A (ja) 複合光学素子、光アイソレータ、光サーキュレータ、光スイッチとそれらの製造方法
JPH05188324A (ja) 偏波無依存型光アイソレータアレイ

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20060315

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071023