JP2005046194A - 超音波ドプラ診断装置及び画像データ生成方法 - Google Patents

超音波ドプラ診断装置及び画像データ生成方法 Download PDF

Info

Publication number
JP2005046194A
JP2005046194A JP2003203088A JP2003203088A JP2005046194A JP 2005046194 A JP2005046194 A JP 2005046194A JP 2003203088 A JP2003203088 A JP 2003203088A JP 2003203088 A JP2003203088 A JP 2003203088A JP 2005046194 A JP2005046194 A JP 2005046194A
Authority
JP
Japan
Prior art keywords
spectrum
doppler
image data
average
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003203088A
Other languages
English (en)
Other versions
JP4245428B2 (ja
Inventor
Takanobu Uchibori
孝信 内堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Canon Medical Systems Corp
Original Assignee
Toshiba Corp
Toshiba Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Medical Systems Corp filed Critical Toshiba Corp
Priority to JP2003203088A priority Critical patent/JP4245428B2/ja
Priority to US10/899,036 priority patent/US7666142B2/en
Publication of JP2005046194A publication Critical patent/JP2005046194A/ja
Application granted granted Critical
Publication of JP4245428B2 publication Critical patent/JP4245428B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/488Diagnostic techniques involving Doppler signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8979Combined Doppler and pulse-echo imaging systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/5206Two-dimensional coordinated display of distance and direction; B-scan display
    • G01S7/52066Time-position or time-motion displays

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Hematology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

【課題】ドプラスペクトラム画像において、干渉ノイズによる辺縁部の不連続性を改善すると共に、高分解能な画像データの生成を可能とする超音波ドプラ診断装置及び画像データ生成方法を提供する。
【解決手段】超音波プローブ20及び送受波部40を用いて得られた所定部位からの超音波受信信号に対して、ドプラスペクトラム計測部5は、ドプラ信号の検出とドプラスペクトラムの計測を行なう。次いで、スペクトラムデータ処理部6は、時系列的に得られた複数のドプラスペクトラムにおいて、予め設定された閾値以下のスペクトラム成分に対し時間軸方向あるいは周波数軸方向の移動平均処理を行った後、閾値以上のスペクトラム成分と合成してドプラスペクトラム画像データを生成する。そして、生成されたドプラスペクトラム画像データを表示部8において表示する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、超音波のドプラ効果を利用して、生体内の血流の流速情報や組織の移動情報などの計測を行なう超音波ドプラ診断装置及び画像データ生成方法に関する。
【0002】
【従来の技術】
超音波診断装置は、超音波プローブに内蔵された圧電振動子から発生する超音波パルスを被検体内に放射し、被検体組織の音響インピーダンスの差異によって生ずる超音波反射波を上記圧電振動子によって受信してモニタ上に表示するものである。この診断方法は、超音波プローブを体表に接触させるだけの簡単な操作でリアルタイムの2次元画像が容易に観察できるため、生体の各種臓器の機能診断や形態診断に広く用いられている。生体内の組織あるいは血球からの反射波により生体情報を得る超音波診断法は、超音波パルス反射法と超音波ドプラ法の2つの大きな技術開発により急速な進歩を遂げ、上記技術を用いて得られるBモード画像とカラードプラ画像は、今日の超音波画像診断において不可欠のものとなっている。
【0003】
一方、被検体の任意の位置における血流速度を定量的且つ正確に得る方法としてドプラスペクトラム法がある。このドプラスペクトラム法では、被検体の同一部位に対して一定間隔で複数回の超音波送受波を行ない、血球などの移動反射体において反射した超音波反射波に対し、上記超音波送受波に使用した圧電振動子の共振周波数と略等しい周波数の基準信号を用いて直交位相検波してドプラ信号を検出する。そして、このドプラ信号の中から所望部位におけるドプラ信号をレンジゲートによって抽出し、更に、抽出したドプラ信号をFFT分析することによってドプラスペクトラムを算出する。
【0004】
このような手順により被検体の所望部位から得られたドプラ信号に対してドプラスペクトラムを連続的に算出し、算出した複数のドプラスペクトラムを順次配列することによって、所謂ドプラスペクトラム画像データを生成する。尚、一般には、上記レンジゲートが被検体における所望の観測部位に正確に設定されていることを確認するために、レンジゲートの設定はBモード画像観測下において行なわれ、このとき、レンジゲート位置はBモード画像上に表示される。
【0005】
ドプラスペクトラム画像の一例を図10に示す。図10左側の(a)は、FFT分析によって得られたドプラスペクトラムであり、縦軸はドプラ周波数、横軸はスペクトラムの大きさ(以下では、パワー値と呼ぶ)である。又、図10右側の(b)は、ドプラスペクトラムの時間的変化を示すものであり、縦軸はドプラ周波数、横軸は時間に設定され、スペクトラムのパワーは輝度によって表現されている。
【0006】
ところで、被検体内における移動反射体からの反射波の間でランダムな干渉が生じ、その結果、ドプラスペクトラム画像において干渉ノイズ(スペックルノイズ)が発生することが従来から知られている。即ち、図10の(a)に示すように、算出されたドプラスペクトラム151(実線)は、真のドプラスペクトラム152(破線)に対して干渉ノイズによる凹凸が生じる。このため、このドプラスペクトラムの時間的変化を示す図10の(b)においても上記干渉ノイズの影響による不連続パターンが表示され、血流速などの時間的変化を正確に測定することが困難となる。このような干渉ノイズの影響は、スペクトラム成分のパワー値、即ちS/Nが小さい場合に顕著であり、従って、スペクトラムの最大周波数成分153をトレースすることにより最大血流速を計測する場合には、正確な自動トレース、あるいはマニュアルトレースが困難となるのみならず、特にマニュアルトレースの場合には、トレースに多くの時間を要し、トレースを行なう操作者の負担が増大するなどの問題点を有していた。
【0007】
このような問題点に対して、ドプラスペクトラムの各周波数成分単位で時間方向の移動平均を行なうことによって上記干渉ノイズを低減する方法が提案されている(例えば、特許文献1参照)。
【0008】
【特許文献1】
特開平6−327672号公報(第4−6頁、第1−2図)
【0009】
【発明が解決しようとする課題】
特許文献1の方法によれば、干渉ノイズによる影響が低減するため、ドプラスペクトラムにおける最大周波数成分などの辺縁部を連続且つ平滑に表示することができ、トレースを行なう際の視認性が向上する。しかしながら、このような効果を得るためには、ドプラスペクトラムの各周波数成分における移動平均は比較的長い期間において行なう必要があるため、ドプラスペクトラム画像上の鮮明度が大幅に劣化する。特に、大きなパワー値を有する平均周波数近傍成分における微妙な時間方向の変化あるいは周波数方向の変化は、従来、診断情報として有効とされてきたが、特許文献1の方法においては、このような平均周波数近傍成分の時間的変化を鮮明に表示することが困難となる。
【0010】
本発明は、上記問題点に鑑みてなされたものであり、その目的は、ドプラスペクトラム画像において、干渉ノイズの影響を受けやすいパワー値の小さなスペクトラム成分における不連続性を改善すると共に、比較的パワー値の大きなスペクトラム成分に対しては時間方向あるいは周波数方向の微妙な変化を表示することが可能な超音波ドプラ診断装置及び画像データ生成方法を提供することにある。
【0011】
【課題を解決するための手段】
上記課題を解決するために、請求項1に係る本発明の超音波ドプラ診断装置は、被検体に対して超音波の送受波を行なう圧電振動子を備えた超音波プローブと、前記圧電振動子に対して送受信を行なう送受信手段と、この送受信手段によって得られる受信信号に対して、所望のレンジゲート位置におけるドプラ信号を検出するドプラ信号検出手段と、前記ドプラ信号に対して、時系列的に複数のドプラスペクトラムを計測するスペクトラム計測手段と、前記ドプラスペクトラムにおけるスペクトラム成分のパワー値に対して閾値を設定する閾値設定手段と、前記スペクトラム計測手段によって計測された前記ドプラスペクトラムにおけるスペクトラム成分の中から前記閾値に基づいて選択されたパワー値の小さな前記スペクトラム成分に対して平均処理を行なう平均処理手段と、この平均処理手段によって平均処理された平均スペクトラム成分と、平均処理されないパワー値の大きな前記スペクトラム成分を成分処理してドプラスペクトラム画像データを生成する画像データ生成手段と、前記ドプラスペクトラム画像データを表示する表示手段を備えたことを特徴としている。
【0012】
又、請求項2に係る本発明の超音波ドプラ診断装置は、被検体に対して超音波の送受波を行なう圧電振動子を備えた超音波プローブと、前記圧電振動子に対して送受信を行なう送受信手段と、この送受信手段によって得られる受信信号に対して、所望のレンジゲート位置におけるドプラ信号を検出するドプラ信号検出手段と、前記ドプラ信号に対して、時系列的に複数のドプラスペクトラムを計測するスペクトラム計測手段と、前記ドプラスペクトラムにおけるスペクトラム成分のパワー値に対して閾値を設定する閾値設定手段と、前記スペクトラム計測手段によって計測された前記ドプラスペクトラムにおけるスペクトラム成分に対して平均処理を行なう第1の平均処理手段と、この第1の平均処理手段によって平均処理された第1の平均スペクトラム成分を用いて、第1のドプラスペクトラム画像データを生成する第1の画像データ生成手段と、前記スペクトラム計測手段によって計測された前記ドプラスペクトラムにおけるスペクトラム成分の中から前記閾値に基づいてパワー値の大きな前記スペクトラム成分を選択し、選択した前記スペクトラム成分と、このスペクトラム成分に対応した前記第1のドプラスペクトラム画像データの前記第1の平均スペクトラム成分との成分処理により第2のドプラスペクトラム画像データを生成する第2の画像データ生成手段と、
前記第2のドプラスペクトラム画像データを表示する表示手段を備えたことを特徴としている。
【0013】
一方、請求項8に係る本発明の画像データ生成方法は、被検体に対して超音波の送受波を行なって得られる受信信号に対して、所望のレンジゲート位置におけるドプラ信号を検出するステップと、前記ドプラ信号に対して、時系列的に複数のドプラスペクトラムを計測するステップと、前記ドプラスペクトラムにおけるスペクトラム成分に対して平均処理を行なって第1のドプラスペクトラム画像データを生成するステップと、前記ドプラスペクトラムにおけるスペクトラム成分の中から予め設定された閾値に基づいてパワー値の大きな前記スペクトラム成分を選択し、選択した前記スペクトラム成分と、このスペクトラム成分に対応した前記第1の平均スペクトラム成分との成分処理により第2のドプラスペクトラム画像データを生成するステップと、前記第2のドプラスペクトラム画像データを表示するステップを有することを特徴としている。
【0014】
したがって本発明によれば、低パワー値のスペクトラム成分における不連続性が改善され、高パワー値のスペクトラム成分においては高分解能なドプラスペクトラム画像データを生成することが可能となる。
【0015】
【発明の実施の形態】
(実施の形態)
(装置の構成)
本実施の形態の特徴は、被検体から得られたドプラ信号をFFT分析して得られるドプラスペクトラム画像において、予め設定した閾値より小さなスペクトラム成分は移動平均処理を行ない、上記閾値より大きなスペクトラム成分は移動平均処理を行なわずに表示することにある。
【0016】
以下では、セクタ走査方式に本発明を適用した実施の形態における超音波ドプラ診断装置の構成につき図1乃至図5を用いて説明する。尚、図1は本実施の形態における超音波ドプラ診断装置の全体構成を示すブロック図であり、図2は、この超音波ドプラ診断装置を構成する送受信部及びデータ処理部のブロック図を示す。
【0017】
図1に示す超音波ドプラ診断装置100は、被検体に対して超音波の送受波を行なう超音波プローブ20と、この超音波プローブ20に対して電気信号の送受信を行なう送受信部40と、この送受信部40から得られた受信信号からBモードデータやドプラスペクトラムを得るための信号処理を行なうデータ処理部50と、このデータ処理部50において得られたBモードデータやドプラスペクトラムを保存すると共に、Bモード画像データ及びドプラスペクトラム画像データの生成を行なうデータ記憶部7と、これらの画像データを表示する表示部8を備えている。
【0018】
更に、超音波ドプラ診断装置100は、送受信部40あるいはデータ処理部50に対して、例えば、超音波パルスの中心周波数(fo)とほぼ等しい周波数の連続波あるいは矩形波を発生する基準信号発生部1と、操作者によって患者情報、画像表示モード、超音波データ収集条件、更には種々のコマンド信号などが入力される入力部9と、上記超音波ドプラ診断装置100の各ユニットを統括的に制御するシステム制御部10を備えている。
【0019】
超音波プローブ20は、被検体の表面に対してその前面を接触させ超音波の送受波を行なうものであり、1次元に配列された複数個(N個)の微小な圧電振動子をその先端部に有している。この圧電振動子は電気音響変換素子であり、送信時には電気パルスを超音波パルス(送信超音波)に変換し、また受信時には超音波反射波(受信超音波)を電気信号(受信信号)に変換する機能を有している。超音波画像の解像度や感度に大きな影響を与える超音波パルスの中心周波数(fo)は圧電振動子の厚みによってほぼ決定される。この超音波プローブ20は小型、軽量に構成されており、ケーブルを介して送受信部40の送信部2及び受信部3に接続されている。超音波プローブ20にはセクタ走査対応、リニア走査対応、コンベックス走査対応等があり、診断部位に応じて任意に選択されるが、以下では心臓診断を目的としたセクタ走査対応の超音波プローブ20を用いた場合について述べる。
【0020】
次に、図2に示した送受信部40は、超音波プローブ20から送信超音波を放射するための駆動信号を生成する送信部2と、被検体内から受信超音波を受信する受信部3を備えており、送信部2は、レートパルス発生器41と、送信遅延回路42と、パルサ43を備えている。そして、レートパルス発生器41は、被検体内に放射する送信超音波の繰り返し周期(Tr)を決定するレートパルスを、基準信号発生部1から供給される連続波あるいは矩形波を分周することによって生成し、このレートパルスを送信遅延回路42に供給する。
【0021】
又、送信遅延回路42は、送信に使用される圧電振動子と同数(Nチャンネル)の独立な遅延回路から構成されており、送信において細いビーム幅を得るために所定の深さに送信超音波を収束するための遅延時間と所定の方向に送信超音波を放射するための遅延時間をレートパルスに与え、このレートパルスをパルサ43に供給する。そして、パルサ43は、送信遅延回路42と同様にして、送信に使用される圧電振動子と同数(Nチャンネル)の独立な駆動回路を有しており、超音波プローブ20に内蔵された圧電振動子を駆動するための駆動パルスを生成する。
【0022】
一方、受信部3は、プリアンプ44と、受信遅延回路45と、加算器46とを備えている。プリアンプ44は、圧電振動子によって電気信号(受信信号)に変換された微小信号を増幅し十分なS/Nを確保する。又、受信遅延回路45は、細い受信ビーム幅を得るため所定の深さからの受信超音波を収束するための遅延時間と、所定方向からの受信超音波に対して強い受信指向性を設定するための遅延時間をプリアンプ44の出力に与え、次いで、所定の遅延時間が与えられた受信遅延回路45の出力は加算器46に送られ、この加算器46において加算合成される。
【0023】
次に、図2のデータ処理部50は、受信部3の加算器46から出力された受信信号に対してBモードデータを生成するためのBモードデータ処理部4と、上記受信信号に含まれるドプラ信号の周波数スペクトラムを計測するドプラスペクトラム計測部5と、計測されたドプラスペクトラムに対して移動平均等の信号処理を行なうスペクトラムデータ処理部6を備えている。
【0024】
そして、Bモードデータ処理部4は、対数変換器51と包絡線検波器52とA/D変換器53とを備えている。Bモードデータ処理部4の入力信号、即ち、受信部3の加算器46から出力された受信信号は、対数変換器51において、その振幅が対数変換されて弱い信号が相対的に強調される。次いで、包絡線検波器52は、対数変換された上記受信信号に対して包絡線検波を行ない、超音波周波数成分を除去して振幅情報のみを検出する。又、A/D変換器53は、この包絡線検波器52の出力信号をA/D変換し、Bモードデータを生成する。
【0025】
一方、ドプラスペクトラム計測部5は、π/2移相器54、ミキサ55−1及び55−2、LPF(ローパスフィルタ)56−1及び56−2、SH(サンプルホールド回路)57−1及び57−2を備えており、更に、BPF(バンドパスフィルタ)58−1及び58−2、A/D変換器59−1及び59−2、FFT(Fast−Fourier−Transform)分析器60を備えている。そして、送受信部40の受信部3から供給された受信信号に対して直交位相検波を行なってドプラ信号を検出し、得られたドプラ信号に対してFFT分析を行なう。
【0026】
次に、ドプラスペクトラム計測部5の構成と基本動作につき図3のタイムチャートをも参照して更に詳しく説明する。受信部3の加算器46から出力された受信信号(図3の(c))は、ドプラスペクトラム計測部5のミキサ55−1及び55−2の第1の入力端子に入力される。一方、この受信信号の中心周波数とほぼ等しい周波数(fo)をもった基準信号発生部1の基準信号(図3の(a))はミキサ55−1の第2の入力端子に直接供給され、π/2移相器54を介して90度位相がシフトした基準信号はミキサ55−2の第2の入力端子に送られる。そして、ミキサ55−1及び55−2による乗算出力は、LPF56−1及び56−2に送られ、ドプラスペクトラム計測部5の入力信号(受信信号)の周波数と基準信号発生部1から供給される基準信号の周波数(fo)との和の成分(2fo近傍の成分)が除去され、差の成分(零周波数近傍の成分)のみがドプラ信号として抽出される(図3の(d))。
【0027】
次に、SH57−1及び57−2には、上記LPF56−1及び56−2から出力されたドプラ信号と、システム制御部10が基準信号発生部1の基準信号を分周して生成したサンプリングパルス(レンジゲートパルス)が供給され(図3の(e))、このサンプリングパルスによって指定された距離からのドプラ信号のみがサンプルホールドされる(図3の(f))。尚、このサンプリングパルスは、送信超音波が放射されるタイミングを示すレートパルス(図3の(b))から所定時間(Ts)後に発生し、この発生タイミングは入力部9の操作者によって任意に設定される。
【0028】
即ち、操作者は、遅延時間Tsを変更することによって超音波プローブ20から所望の距離Lgにおけるドプラ信号を検出することが可能となる。尚、周期Trを有した上記レートパルスは、基準信号に同期しており、通常、この基準信号を分周することによって生成される。又、遅延時間Tsと所望距離Lgは、被検体の音速度をCとすれば、2Lg/C=Tsの関係が成立する。
【0029】
次に、SH57−1及び57−2から出力された所望距離Lgのドプラ信号に重畳した階段状のノイズ成分は、BPF58−1及び58−2によって除去され(図3の(g))、更に、平滑化された上記ドプラ信号は、A/D変換器59−1及び59−2によってデジタル信号に変換された後、FFT分析器60に供給されて周波数スペクトラム(以下ではドプラスペクトラムと呼ぶ)が計測される。
【0030】
FFT分析器60は、図示しない演算回路と記憶回路を備えており、記憶回路は、A/D変換器59−1及び59−2から出力されるドプラ信号の保存を行ない、演算回路は、記憶回路に保存された一連のドプラ信号の所定区間においてFFT分析を行なう。
【0031】
図4は、FFT分析器60におけるFFT分析方法を示したものであり、上記ドプラスペクトラム計測部5のA/D変換器59−1及び59−2から出力された離散的なドプラ信号(図4(a))のうち、例えば、q1乃至qmのm個のドプラ信号に対してFFT分析が行なわれ、最初のドプラスペクトラムB1の各スペクトラム成分p1乃至pmが計測される。次いで、時間ΔT後のm個のドプラ信号q1+j乃至qm+jがFFT分析されて新たなドプラスペクトラムB2のスペクトラム成分p1乃至pmが計測される。
【0032】
但し、図4(a)ではj=3の場合について示している。以下、同様にして、時間2ΔT後のq1+2j乃至qm+2j、時間3ΔT後のq1+3j乃至qm+3j・・・のm個のドプラ信号に対しても順次FFT分析が行なわれてドプラスペクトラムB3及びB4におけるスペクトラム成分p1乃至pmが夫々算出される(図4(b))。
【0033】
次に、データ処理部50におけるスペクトラムデータ処理部6の構成と基本動作につき図5のブロック図を用いて説明する。スペクトラムデータ処理部6は、図4(b)において既に示したΔT間隔で順次計測されるドプラ信号のドプラスペクトラムB1,B2,・・・に基づいて、各スペクトラム成分p1乃至pmの時間方向における移動平均処理を行なうための重み付け遅延加算回路61−1乃至61−mと、この重み付け遅延加算回路61−1乃至61−mにおける重み付け係数を設定する係数設定回路62と、重み付け遅延加算回路61−1乃至61−mによって移動平均処理が適用されるスペクトラムのパワー値の範囲(閾値)を設定する閾値設定回路63を備えている。
【0034】
そして、mチャンネルの重み付け遅延加算回路61−1乃至61−mは、FIRフィルタを構成しており、夫々の重み付け遅延加算回路61には、遅延時間ΔTを有した遅延素子74−1乃至74−rが直列接続された遅延回路64と、この遅延素子74−1乃至74−rの出力信号に対して増幅度K0乃至Krの重み付けを行なう増幅器75−1乃至75−(r+1)を有した重み付け回路65と、上記r+1チャンネルの増幅器75−1乃至75−(r+1)の出力を加算合成する加算回路66と、重み付け遅延加算回路61の入力信号と加算回路66の出力信号との置換あるいは合成を行なう合成回路67を備えている。
【0035】
又、係数設定回路62は、システム制御部10からの制御信号に基づいて、重み付け遅延加算回路61−1乃至61−mの重み付け回路65における増幅器75−1乃至75−(r+1)の増幅度K0乃至Krの設定を行なう。この場合、超音波の干渉に起因する干渉ノイズの程度によって遅延回路64の段数は設定され、例えば、4段の移動平均処理を行なう場合には、重み付け回路65の増幅器75−5乃至75−(r+1)における増幅度K4乃至Krは零に設定される。尚、上記システム制御部10から供給される係数設定回路62の制御信号は、使用する超音波周波数やレンジゲート距離Lgなどの超音波データ収集条件に基づいてシステム制御部10が自動的に設定してもよいが、入力部9の操作者が、FFT分析器60の計測結果に基づいて設定することも可能である。
【0036】
一方、閾値設定回路63は、FFT分析器60によって計測されたドプラスペクトラムを直接表示する場合と、移動平均処理後のドプラスペクトラムを表示する場合の閾値αを設定する。例えば、ドプラスペクトラムの各スペクトラム成分p1乃至pmのパワー値が上記閾値設定回路63が設定した閾値αより小さい場合には、重み付け遅延加算回路61を用いて移動平均処理した結果を用いてドプラスペクトラム画像データの生成を行ない、又、閾値αより大きい場合にはFFT分析器60によって算出された結果を直接用いてドプラスペクトラム画像データの生成を行なう。
【0037】
尚、この閾値設定回路63における閾値αについても係数設定回路62と同様に超音波データ収集条件に基づいてシステム制御部10が自動的に設定してもよいが、入力部9の操作者がFFT分析器60の計測結果あるいはドプラスペクトラム画像を観察しながら設定することが可能である。特に前者においては、装置のゲインや受信に使用される超音波プローブ20の圧電振動子数及び受信面積(受信口径)などに基づいた設定が好適である。
【0038】
次に図1に戻って、データ記憶部7は、画像データの生成と保存を行なう機能を有し、超音波送受波方向を順次変更して得られる受信信号に基づいて、データ処理部50のBモードデータ処理部4が生成したBモードデータを2次元的に保存してBモード画像データを生成する第1の記憶領域と、スペクトラムデータ処理部6が生成したドプラスペクトラムB1,B2,・・・を時系列的に保存してドプラスペクトラム画像データを生成する第2の記憶領域を有している。
【0039】
一方、入力部9は、操作パネル上に表示パネルやキーボード、トラックボール、マウス等の入力デバイスを備え、患者情報、画像表示モード、超音波データ収集条件、表示条件、レンジゲート位置、スペクトラムの閾値αなどの設定や、ドプラスペクトラム画像における最大周波数成分のトレース、更には、種々のコマンド信号の入力などにおいて用いられる。
【0040】
又、表示部8は、図示しない表示用画像メモリと変換回路とモニタを備えており、Bモード画像データやドプラスペクトラム画像データ、更には、入力部9から入力された超音波データ収集条件などを示す文字や数字などは上記表示用画像メモリで合成され、変換回路においてD/A変換とテレビフォーマット変換が行われた後、CRTあるいは液晶などのモニタに表示される。尚、データ記憶部7に保存されたBモード画像データやドプラスペクトラム画像データは、表示部8のモニタにおいて並列表示あるいは重畳表示される。又、このモニタでは、Bモード画像データとほぼ同時相のドプラスペクトラムを含むドプラスペクトラム画像データがリアルタイム表示され、Bモード画像上には、ドプラ信号が抽出される被検体内の所望位置、即ちレンジゲートの位置が表示される。
【0041】
そして、システム制御部10は、図示しないCPUと記憶回路を備え、操作者によって入力部9から入力される患者情報、画像表示モード、超音波データ収集条件、表示条件、レンジゲート位置、スペクトラム閾値αなどの設定値は、この記憶回路に保存され、一方、CPUは、入力部9から入力されたこれらの情報に基づいて超音波ドプラ診断装置100の上記各ユニットの制御やシステム全体の制御を統括して行なう。又、基準信号発生部1から供給される基準信号を分周してレンジゲート位置を設定するためのサンプリングパルスを生成し、SH(サンプルホールド回路)57に対して供給する。
【0042】
(画像データの生成手順)
次に、図1乃至図8を用いて本実施の形態におけるBモード画像データ及びドプラスペクトラム画像データの生成手順について説明する。尚、図7は本実施の形態におけるドプラスペクトラム画像データの生成手順を示すフローチャートである。
【0043】
超音波データの収集に先立って、操作者は、入力部9にて患者情報、画像表示モード、超音波データ収集条件、表示条件、スペクトラム閾値αなどの設定を行ない、これらの設定情報は、システム制御部10の図示しない記憶回路に送られて保存される。本実施の形態においては、画像表示モードとしてBモード画像及びドプラスペクトラム画像の表示モードの選択を行ない、更に、ドプラ信号を収集するための超音波送受信方向(θD)とレンジゲート位置Lgの初期設定を行なう(図7のステップS1)。
【0044】
これらの初期設定が終了したならば、操作者は、超音波プローブ20の先端(超音波送受信面)を被検体の体表面上の所定の位置に固定し、最初の超音波送受波方向(θ1方向)に対してBモードデータ収集用の超音波送受波を行なう。即ち、図2のレートパルス発生器41は、基準信号発生部1から供給される基準信号を分周することによって、被検体内に放射する超音波パルスの繰り返し周期Trを決定するレートパルスを生成し、このレートパルスを送信遅延回路42に供給する。
【0045】
送信遅延回路42は、送信に使用される圧電振動子とほぼ同数(Nチャンネル)の独立な遅延回路を設け、送信において細いビーム幅を得るために所定の深さに超音波を収束するための遅延時間と、所定の方向(θ1)に超音波を送信するための遅延時間をレートパルス発生器41から受信したレートパルスに与え、このレートパルスをパルサ43に供給する。
【0046】
Nチャンネルの独立な駆動回路から構成されるパルサ43は、送信遅延回路42から出力されたレートパルスの駆動によって発生する電気パルス(駆動信号)により、超音波プローブ20に内蔵されている圧電振動子を駆動して被検体内に超音波パルス(送信超音波)を放射する。
【0047】
被検体内に放射された送信超音波の一部は、音響インピーダンスの異なる臓器の境界面あるいは組織にて反射し、又、送信超音波が心臓壁や血球など動きのある反射体で反射する場合は、その超音波周波数はドプラ偏移を受ける。被検体組織にて反射した超音波反射波(受信超音波)は送信時と同じ圧電振動子によって受信されて電気信号(受信信号)に変換され、この受信信号はNチャンネルのプリアンプ44にて増幅された後、同じチャンネル数を有する受信遅延回路45に送られる。
【0048】
一方、受信遅延回路45は、受信において細いビーム幅を得るために所定の深さからの超音波を収束するための遅延時間と、超音波ビームに対して所定の方向(θ1)に強い受信指向性をもたせて受信するための遅延時間をプリアンプ44からの受信信号に与えた後、加算器46に送る。そして、加算器46は、プリアンプ44、受信遅延回路45を介して入力される複数の受信信号を加算合成し、1つの受信信号に纏めた後、Bモードデータ処理部4に供給する。
【0049】
次いで、Bモードデータ処理部4に送られた受信信号は、対数変換、包絡線検波、A/D変換がなされた後、図1のデータ記憶部7におけるBモード画像データ用の第1の記憶領域に保存される。
【0050】
上記の手順により、θ1方向に対するBモードデータ収集のための超音波送受波が終了したならば、ドプラスペクトラムデータ収集のために初期設定された方向(θD)に対して超音波送受波を行なう。この場合も、θ1方向の超音波送受波と同様の手順によってθD方向に対して超音波送受信を行ない、受信部3の加算器46から出力された受信信号は、ドプラスペクトラム計測部5に供給される。
【0051】
次に、ドプラスペクトラム計測部5は、ミキサ55及びLPF56を用いた直交位相検波によって加算器46の出力を複素信号(IQ信号)に変換し、SH57に供給する。このSH57には初期設定されたレンジゲート位置Lgに対応したサンプリングパルスがシステム制御部10より供給され、このサンプリングパルスに基づいて上記複素信号がサンプルホールドされる。そして、SH57の出力は、BPF58において平滑化された後、A/D変換器59においてデジタル信号に変換されてFFT分析器60の記憶回路に一旦保存される。
【0052】
第1回目のθD方向の超音波送受波が終了したならば同様の手順によりθ2(θ2=θ1+Δθ)方向に対するBモード用超音波送受波、θD方向に対する第2回目のドプラモード用超音波送受波、θ3(θ3=θ1+2Δθ)方向に対するBモード用超音波送受波、θD方向に対する第3回目のドプラモード用超音波送受波・・・のようにBモードデータの収集に際してはΔθずつ方向を順次変更しながら2次元的な超音波送受波を行ない、得られたBモードデータはデータ記憶部7の第1の記憶領域に保存してBモード画像データを生成する。
【0053】
一方、ドプラスペクトラムデータの収集に際しては同一方向(θD)に対して、複数回の超音波送受波を行ない、得られたドプラ信号はFFT分析器60の図示しない記憶回路に順次保存される(図7のステップS2)。そして、FFT分析器60の図示しない演算回路は、連続して収集される上記ドプラ信号に対して所定時間(ΔT)ずつシフトした区間を設定し、これらの区間におけるドプラ信号に対してFFT分析を行なってドプラスペクトラムを計測する(図7のステップS3)。
【0054】
即ち、FFT分析器60の演算回路は、図4(a)に示したレートパルス周期の2倍の周期(2Tr)で得られた離散的なドプラ信号に対して、例えばq1乃至qmのm個の信号成分を読み出してFFT分析を行ない、スペクトラム成分p1乃至pmから構成されるドプラスペクトラムB1を計測する。次いで、時間ΔT後のq1+j乃至qm+jのm個の信号成分に対してFFT分析を行ない、ドプラスペクトラムB2を算出する。同様にして、時間2ΔT後、時間3ΔT後・・・のm個の信号成分に対するFFT分析によりドプラスペクトラムB3,B4・・・の計測を行なう。
【0055】
そして、時間ΔT間隔で計測されるドプラ信号のドプラスペクトラムにおけるm個の各スペクトラム成分p1乃至pmのパワー値AP1乃至APmは、図5に示したスペクトラムデータ処理部6における重み付け遅延加算回路61−1乃至61−mの各入力端子に順次供給される。例えば、重み付け遅延加算回路61−1には時刻t=0、ΔT,2ΔT・・に対応したドプラスペクトラムB1、B2、B3・・におけるスペクトラム成分p1のパワー値AP1(0)、AP1(ΔT)、AP1(2ΔT)・・・が順次供給され、重み付け遅延加算回路61−mには時刻t=0、ΔT,2ΔT・・に対応したドプラスペクトラムB1、B2、B3・・におけるスペクトラム成分pmのパワー値APm(0)、APm(ΔT)、APm(2ΔT)・・・が順次供給される。従って、重み付け遅延加算回路61−1の加算回路66の出力信号Y(t)は、t=0においてY(0)=K0・AP1(0)、t=ΔTにおいてY(ΔT)=K1・AP1(0)+K0・AP1(ΔT)、又、t=2ΔTにおいてY(2ΔT)=K2・AP1(0)+K1・AP1(ΔT)+K0・AP1(2ΔT)・・・のようにΔT間隔で計測されるスペクトラム成分p1のパワー値AP1に対して時間方向の移動平均処理が行なわれる。
【0056】
同様にしてスペクトラム成分p2乃至pmに対しても時間方向の移動平均処理が行なわれる。そして、ドプラスペクトラムB1,B2,B3・・に基づいて移動平均処理されて生成されたドプラスペクトラム画像データ(以下では、第1のドプラスペクトラム画像データと呼ぶ)は合成回路67の入力端子に供給され記憶回路において一旦保存される。一方、合成回路67の他の入力端子には、ドプラスペクトラムB1,B2,B3・・の各スペクトラム成分のパワー値AP1乃至APmが直接供給される(図7のステップS4)。
【0057】
次いで、合成回路67は、FFT分析器60から供給されたドプラスペクトラムB1,B2,B3・・のパワー値AP1乃至APmが閾値設定回路63において予め設定された閾値αより大きな値を有する場合には、パワー値AP1乃至APmと上記第1のドプラスペクトラム画像データにおける対応スペクトラム成分のパワー値との置換処理、あるいは合成処理を行なう。
【0058】
このようにして、閾値設定回路63の閾値αに基づいて第1のドプラスペクトラム画像のパワー値と移動平均処理前のスペクトラム成分のパワー値との置換や合成を行なって新たに生成されたドプラスペクトラム画像データ(以下では、第2のドプラスペクトラム画像データと呼ぶ)は、データ記憶部7の第2の記憶領域に保存される(図7のステップS5)。
【0059】
以上述べた手順によって生成された第2のドプラスペクトラム画像データは、単独あるいは同時に生成されたBモード画像データと合成されて表示部8に表示される。即ち、システム制御部10は、データ記憶部7の第1の記憶領域に保存されているBモード画像データや第2の記憶領域に保存されている第2のドプラスペクトラム画像データを読み出し、これらの画像データに対して付帯情報である数字や文字などを重畳して表示用画像データ記憶回路61に一旦保存する。そして、これらの画像データを変換回路に供給し、D/A変換やTVフォーマット変換などを行なってモニタに表示する(図7のステップS6)。
【0060】
図6は、本実施の形態による効果を模式的に示したものであり、図6上側の(a)の曲線A1(破線)は、真のドプラスペクトラムを示しており、曲線A2(実線)は、パワー値が比較的小さな最大周波数スペクトラム成分近傍g1及び最小周波数スペクトラム成分近傍g2において干渉ノイズの影響が現れたドプラスペクトラムの実測値を示している。一方、図6下側の(b)は、ドプラスペクトラムの時間方向の変化を示したドプラスペクトラム画像の1例であり、図4(a)のドプラスペクトラムにおける各スペクトラム成分のパワー値によって輝度変調されたドプラスペクトラムB1、B2、B3,B4・・・が間隔ΔTで時間軸方向に配列されている。
【0061】
このドプラスペクトラム画像における最大スペクトラム成分(即ち最大血流速度)の計測は、心機能の定量的な診断等において極めて重要であるが、干渉ノイズの影響により凹凸が発生し、その計測を困難にしてきた。しかしながら、本実施の形態における移動平均処理によって生成された第1のドプラスペクトラム画像では、曲線h1によって示された真の最大スペクトラム成分の計測が容易となる。
【0062】
更に、閾値設定回路63が装置のゲインや圧電振動子の口径などの超音波データ収集条件によって決定されるシステムノイズレベルLnよりβだけ高く設定した閾値αに対して、移動平均処理前のスペクトル成分のパワー値が大きな場合には、このスペクトラム成分のパワー値と上記第1のドプラスペクトラム画像データのパワー値との置換を行なって第2のドプラスペクトラム画像データが生成される。この置換によって、曲線h3と曲線h4で囲まれた領域では移動平均処理前のパワー値が用いられ、従って、上記第2のドプラスペクトラム画像データによれば微妙な時間方向の変化や周波数方向の変化を鮮明に表示することが可能となる。
【0063】
図8は、スペクトラムデータ処理部6の入力端におけるドプラスペクトラム(図8(a))と、出力端におけるドプラスペクトラム(図8(b))を示したものであり、最大周波数成分近傍g1及び最小周波数成分近傍g2における閾値α以下のスペクトラム成分はスペクトラムデータ処理部6における移動平均処理により干渉ノイズが除去され、一方、閾値α以上のスペクトラム成分については上記移動平均処理が行なわれないためドプラスペクトラムの変化を鮮明に観察することができる。
【0064】
以上述べたように、本実施の形態によれば、予め設定された閾値αより小さなドプラスペクトラム成分は移動平均処理を行ない、上記閾値αより大きなドプラスペクトラム成分は移動平均処理を行なわずに表示することによって、ドプラスペクトラム画像における辺縁部の輪郭を連続的かつ滑らかに表示することが可能となる。このため、例えば最大血流速度の自動トレースあるいはマニュアルトレースを正確且つ容易に行なうことができる。一方、ドプラスペクトラム画像の中心領域(例えば、図6のh3―h4区間)では、高い空間分解能を有しているため微妙な変化を観察することが可能となる。
【0065】
(変形例)
次に本実施の形態におけるスペクトラムデータ処理部6の変形例につき図9のブロック図を用いて説明する。上記実施の形態では、被検体から得られたドプラ信号をFFT分析して得られるドプラスペクトラムにおいて、予め設定した閾値αより小さなスペクトラム成分のみに対して移動平均処理を行ったが、この変形例では、上記閾値αより大きなパワー値を有したスペクトラム成分に対しても軽度の移動平均処理を行なうことを特徴にしている。
【0066】
図9は、本変形例におけるスペクトラムデータ処理部6の重み付け遅延加算回路81−1を示したものであり、図5に示した上記実施の形態における重み付け遅延加算回路61−1と同一の機能を有するユニットは同一の符号を付け、その説明を省略する。
【0067】
図9の重み付け遅延加算回路81−1は、2つのFIRフィルタを構成しており、上記実施の形態と同様に、遅延時間ΔTを有した遅延素子74−1乃至74−rが直列接続された遅延回路64と、この遅延素子74−1乃至74−rの夫々の出力端子から出力されるスペクトラム成分に対して増幅度K0乃至Krの重み付けを行なう増幅器75−1乃至75−(r+1)を有する重み付け回路65と、上記r+1チャンネルの増幅器75−1乃至75−(r+1)の出力を加算合成する加算回路66を備えた第1のFIRフィルタを有している。
【0068】
更に、この重み付け遅延加算回路81−1は、遅延素子94−1乃至94−sが直列接続された遅延回路84と、この遅延素子94−1乃至94−sの夫々の出力端子から出力されるスペクトラム成分のパワー値に対して増幅度L0乃至Lsの重み付けを行なう増幅器95−1乃至95−(s+1)を有する重み付け回路85と、増幅器95−1乃至95−(s+1)の出力を加算合成する加算回路86を備えた第2のFIRフィルタと、この第2のFIRフィルタの出力と上記第1のFIRフィルタの出力を合成する合成回路87を有している。但し、r>sであり、第2のFIRフィルタの移動平均区間は第1のFIRの移動平均区間より小さく設定されている。
【0069】
図9に示したスペクトラムデータ処理部6の重み付け遅延加算回路81−1を構成する第1のFIRフィルタ及び第2のFIRフィルタの入力端には、時刻t=0、ΔT,2ΔT・・に対応したドプラスペクトラムB1、B2、B3・・におけるスペクトル成分p1のパワー値AP1(0)、AP1(ΔT)、AP1(2ΔT)・・・が順次供給され、移動平均処理が行なわれる。又、スペクトラム成分p2乃至pmに対しても同様な移動平均処理が行なわれる。
【0070】
そして、第1のFIRフィルタの移動平均処理によって生成された第1のドプラスペクトラム画像データと、第2のFIRフィルタの移動平均処理によって生成された第2のドプラスペクトラム画像データは、合成回路87に供給され一旦保存される。次いで、合成回路87は、上記第2のドプラスペクトラム画像データを構成する各スペクトラム成分のパワー値と、閾値設定回路63において予め設定された閾値αとを比較し、この閾値αより大きなパワー値を有するスペクトラム成分と、上記第1のドプラスペクトラム画像データの対応部位におけるスペクトラム成分との置換、あるいは合成を行なう。
【0071】
この変形例によれば、第2のFIRフィルタの移動平均区間は、第1のFIRフィルタによる移動平均区間より小さいため、閾値α以上のパワー値を有したドプラスペクトラムに混入した干渉ノイズを低減し、しかも本来のドプラスペクトラムの時間方向の変化や周波数方向の変化を鮮明に表示することが可能となる。
【0072】
尚、図9に示した本変形例では、説明を明解にするために第1のFIRフィルタと第2のFIRフィルタを並列させて設けたが、例えば、第1のフィルタのみを備え、上記処理を時系列的に行なってもよい。また、閾値設定回路63は複数の閾値を設定し、これら各々の閾値に基づいてスペクトラム成分の置き換えや合成を行なってもよい。
【0073】
以上、本発明の実施の形態について述べてきたが、本発明は上記の実施の形態に限定されるものでは無く、変形して実施することが可能である。例えば、上記実施の形態及びその変形例におけるドプラスペクトラムの移動平均処理は、各スペクトラム成分について時間軸方向において行なったが、夫々のドプラスペクトラムについて周波数軸方向において行なってもよく、又時間軸方向と周波数軸方向において移動平均処理してもよい。
【0074】
更に、上述の実施の形態では、移動加算処理後の第1のドプラスペクトラム画像データに対して、閾値以上のスペクトラム成分を置換して第2のドプラスペクトラム画像データを生成する方法について述べたが、他の合成方法であってもよい。
【0075】
又、システムノイズレベルの設定は、超音波データ収集条件に基づいて行なう方法について述べたが、操作者が、例えば表示部に表示されるBモード画像やドプラスペクトラム画像に基づいて設定してもよい。同様にして、閾値の設定についても、操作者が表示部に表示されるドプラスペクトラム画像を観察しながら設定あるいは更新することが可能である。
【0076】
そして、ドプラ信号の収集部位を決定するレンジゲートの位置も1つに限定されるものではなく、複数のレンジゲートによって得られる複数部位のドプラ信号に基づいてドプラスペクトラム画像データを生成してもよい。又、ドプラスペクトラム画像と同時表示される超音波画像は、カラードプラ画像あるいはBモード画像とカラードプラ画像を組み合わせたものであってもよい。
【0077】
【発明の効果】
本発明によれば、ドプラスペクトラム画像において、干渉ノイズの影響を受けやすい低いパワー値のスペクトラム成分における不連続性を改善すると共に、比較的パワー値の大きいスペクトラム成分においては、時間方向の変化あるいは周波数方向の変化を鮮明に表示することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態における超音波ドプラ診断装置の全体構成を示すブロック図。
【図2】同実施の形態における送受信部及びデータ処理部の構成を示すブロック図。
【図3】同実施の形態におけるドプラスペクトラム計測部の基本動作を示すタイムチャート。
【図4】同実施の形態のFFT分析器におけるFFT分析方法を示す図。
【図5】同実施の形態におけるスペクトラムデータ処理部の構成を示すブロック図。
【図6】同実施の形態によって得られるドプラスペクトラム画像を示す図。
【図7】同実施の形態におけるドプラスペクトラム画像データの生成手順を示すフローチャート。
【図8】同実施の形態によって得られるドプラスペクトラムを示す図。
【図9】同実施の形態の変形例におけるスペクトラムデータ処理部の構成を示すブロック図。
【図10】従来法によって得られたドプラスペクトラム画像の問題点を示す図。
【符号の説明】
1…基準信号発生部
2…送信部
3…受信部
4…Bモードデータ処理部
5…ドプラスペクトラム計測部
6…スペクトラムデータ処理部
7…データ記憶部
8…表示部
9…入力部
10…システム制御部
20…超音波プローブ
40…送受信部
50…データ処理部
100…超音波ドプラ診断装置

Claims (9)

  1. 被検体に対して超音波の送受波を行なう圧電振動子を備えた超音波プローブと、
    前記圧電振動子に対して送受信を行なう送受信手段と、
    この送受信手段によって得られる受信信号に対して、所望のレンジゲート位置におけるドプラ信号を検出するドプラ信号検出手段と、
    前記ドプラ信号に対して、時系列的に複数のドプラスペクトラムを計測するスペクトラム計測手段と、
    前記ドプラスペクトラムにおけるスペクトラム成分のパワー値に対して閾値を設定する閾値設定手段と、
    前記スペクトラム計測手段によって計測された前記ドプラスペクトラムにおけるスペクトラム成分の中から前記閾値に基づいて選択されたパワー値の小さな前記スペクトラム成分に対して平均処理を行なう平均処理手段と、
    この平均処理手段によって平均処理された平均スペクトラム成分と、平均処理されないパワー値の大きな前記スペクトラム成分を成分処理してドプラスペクトラム画像データを生成する画像データ生成手段と、
    前記ドプラスペクトラム画像データを表示する表示手段を
    備えたことを特徴とする超音波ドプラ診断装置。
  2. 被検体に対して超音波の送受波を行なう圧電振動子を備えた超音波プローブと、
    前記圧電振動子に対して送受信を行なう送受信手段と、
    この送受信手段によって得られる受信信号に対して、所望のレンジゲート位置におけるドプラ信号を検出するドプラ信号検出手段と、
    前記ドプラ信号に対して、時系列的に複数のドプラスペクトラムを計測するスペクトラム計測手段と、
    前記ドプラスペクトラムにおけるスペクトラム成分のパワー値に対して閾値を設定する閾値設定手段と、
    前記スペクトラム計測手段によって計測された前記ドプラスペクトラムにおけるスペクトラム成分に対して平均処理を行なう第1の平均処理手段と、
    この第1の平均処理手段によって平均処理された第1の平均スペクトラム成分を用いて、第1のドプラスペクトラム画像データを生成する第1の画像データ生成手段と、
    前記スペクトラム計測手段によって計測された前記ドプラスペクトラムにおけるスペクトラム成分の中から前記閾値に基づいてパワー値の大きな前記スペクトラム成分を選択し、選択した前記スペクトラム成分と、このスペクトラム成分に対応した前記第1のドプラスペクトラム画像データの前記第1の平均スペクトラム成分との成分処理により第2のドプラスペクトラム画像データを生成する第2の画像データ生成手段と、
    前記第2のドプラスペクトラム画像データを表示する表示手段を
    備えたことを特徴とする超音波ドプラ診断装置。
  3. 被検体に対して超音波の送受波を行なう圧電振動子を備えた超音波プローブと、
    前記圧電振動子に対して送受信を行なう送受信手段と、
    この送受信手段によって得られる受信信号に対して、所望のレンジゲート位置におけるドプラ信号を検出するドプラ信号検出手段と、
    前記ドプラ信号に対して、時系列的に複数のドプラスペクトラムを計測するスペクトラム計測手段と、
    前記ドプラスペクトラムにおけるスペクトラム成分のパワー値に対して閾値を設定する閾値設定手段と、
    前記スペクトラム計測手段によって計測された前記ドプラスペクトラムにおけるスペクトラム成分に対して平均処理を行なう第1の平均処理手段と、
    この第1の平均処理手段によって平均処理された第1の平均スペクトル成分を用いて第1のドプラスペクトラム画像データを生成する第1の画像データ生成手段と、
    前記スペクトラム計測手段によって計測された前記ドプラスペクトラムにおけるスペクトラム成分に対して、前記第1の平均処理手段より平均区間が短い平均処理を行なう第2の平均処理手段と、
    この第2の平均処理手段によって平均処理された第2の平均スペクトラム成分の中から前記閾値に基づいてパワー値の大きな前記第2の平均スペクトラム成分を選択し、選択した前記第2の平均スペクトラム成分と、この第2の平均スペクトラム成分に対応した前記第1のドプラスペクトラム画像データの前記第1の平均スペクトラム成分との成分処理により第2のドプラスペクトラム画像データを生成する第2の画像データ生成手段と、
    前記第2のドプラスペクトラム画像データを表示する表示手段を
    備えたことを特徴とする超音波ドプラ診断装置。
  4. 前記第2の画像データ生成手段における成分処理が置換処理又は合成処理のいずれか一方であることを特徴とする請求項2又は請求項3に記載の超音波ドプラ診断装置。
  5. 前記第1の平均処理手段あるいは前記第2の平均処理手段は、前記スペクトラム成分に対して時間軸方向又は周波数軸方向の少なくとも何れか一方において移動平均処理を行うものであることを特徴とする請求項2又は請求項3に記載の超音波ドプラ診断装置。
  6. 前記閾値設定手段は、超音波データ収集条件に基づいて設定されることを特徴とする請求項1乃至請求項3のいずれか1項に記載の超音波ドプラ診断装置。
  7. 前記閾値設定手段は、装置ゲイン又は前記超音波プローブの実効口径の少なくとも何れか一方に基づく前記閾値の設定であることを特徴とする請求項6記載の超音波ドプラ診断装置。
  8. 被検体に対して超音波の送受波を行なって得られる受信信号に対して、所望のレンジゲート位置におけるドプラ信号を検出するステップと、
    前記ドプラ信号に対して、時系列的に複数のドプラスペクトラムを計測するステップと、
    前記ドプラスペクトラムにおけるスペクトラム成分に対して平均処理を行なって第1のドプラスペクトラム画像データを生成するステップと、
    前記ドプラスペクトラムにおけるスペクトラム成分の中から予め設定された閾値に基づいてパワー値の大きな前記スペクトラム成分を選択し、選択した前記スペクトラム成分と、このスペクトラム成分に対応した前記第1の平均スペクトラム成分との成分処理により第2のドプラスペクトラム画像データを生成するステップと、
    前記第2のドプラスペクトラム画像データを表示するステップを
    有することを特徴とする画像データ生成方法。
  9. 被検体に対して超音波の送受波を行なって得られる受信信号に対して、所望のレンジゲート位置におけるドプラ信号を検出するステップと、
    前記ドプラ信号に対して、時系列的に複数のドプラスペクトラムを計測するステップと、
    前記ドプラスペクトラムにおけるスペクトラム成分に対して第1の平均処理と、この第1の平均処理より平均区間が短い第2の平均処理を行なって第1の平均スペクトラム成分及び第2の平均スペクトラム成分を生成するステップと、
    前記第1の平均スペクトラム成分に基づいて第1のドプラスペクトラム画像データを生成するステップと、
    前記第2の平均スペクトラム成分の中から予め設定された閾値に基づいてパワー値の大きな前記第2の平均スペクトラム成分を選択し、選択した前記第2の平均スペクトラム成分と、この第2の平均スペクトラム成分に対応した前記第1の平均スペクトラム成分との成分処理により第2のドプラスペクトラム画像データを生成するステップと、
    前記第2のドプラスペクトラム画像データを表示するステップを
    有することを特徴とする画像データ生成方法。
JP2003203088A 2003-07-29 2003-07-29 超音波ドプラ診断装置及び画像データ生成方法 Expired - Fee Related JP4245428B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003203088A JP4245428B2 (ja) 2003-07-29 2003-07-29 超音波ドプラ診断装置及び画像データ生成方法
US10/899,036 US7666142B2 (en) 2003-07-29 2004-07-27 Ultrasound doppler diagnostic apparatus and image data generating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003203088A JP4245428B2 (ja) 2003-07-29 2003-07-29 超音波ドプラ診断装置及び画像データ生成方法

Publications (2)

Publication Number Publication Date
JP2005046194A true JP2005046194A (ja) 2005-02-24
JP4245428B2 JP4245428B2 (ja) 2009-03-25

Family

ID=34262582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003203088A Expired - Fee Related JP4245428B2 (ja) 2003-07-29 2003-07-29 超音波ドプラ診断装置及び画像データ生成方法

Country Status (2)

Country Link
US (1) US7666142B2 (ja)
JP (1) JP4245428B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005305129A (ja) * 2004-03-24 2005-11-04 Toshiba Corp 超音波診断装置
US7611467B2 (en) 2005-06-10 2009-11-03 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Method and apparatus for extracting an envelope curve of a spectrogram
JP2013526890A (ja) * 2009-10-27 2013-06-27 パルティ、ヨーラム 経胸壁肺ドップラー超音波
JP2013543740A (ja) * 2010-10-21 2013-12-09 パルティ、ヨーラム 経胸郭肺ドップラー超音波を使用した肺血圧測定
JP2017038630A (ja) * 2015-08-17 2017-02-23 富士フイルム株式会社 超音波診断装置およびドプラ波形画像生成方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7513872B2 (en) * 2004-10-18 2009-04-07 Kabushiki Kaisha Toshiba Ultrasonic doppler measuring apparatus and control method therefor
CN100496409C (zh) * 2005-08-02 2009-06-10 深圳迈瑞生物医疗电子股份有限公司 频谱多普勒血流速度的自动检测方法
WO2008038301A1 (en) * 2006-09-26 2008-04-03 Morepen Laboratories Limited A process for the preparation of carvedilol
JP4956210B2 (ja) * 2007-02-05 2012-06-20 株式会社東芝 超音波診断装置
KR100961854B1 (ko) * 2007-03-16 2010-06-09 주식회사 메디슨 도플러 스펙트럼 영상을 디스플레이하기 위한 초음파 진단시스템 및 방법
EP1974672B9 (en) * 2007-03-28 2014-04-16 Kabushiki Kaisha Toshiba Ultrasonic imaging apparatus and ultrasonic velocity optimization method
JP4960162B2 (ja) * 2007-07-17 2012-06-27 株式会社東芝 超音波診断装置
CN102421372B (zh) 2009-05-13 2014-10-29 皇家飞利浦电子股份有限公司 具有音高偏移的超声血流多普勒音频
US8900148B2 (en) * 2011-03-09 2014-12-02 Fujifilm Corporation Ultrasound diagnostic apparatus
JP5972561B2 (ja) * 2011-12-08 2016-08-17 東芝メディカルシステムズ株式会社 超音波診断装置、画像処理装置及び画像処理プログラム
JP5684295B2 (ja) * 2013-01-08 2015-03-11 日立アロカメディカル株式会社 超音波診断装置
KR20160009259A (ko) * 2014-07-16 2016-01-26 삼성전자주식회사 빔 포밍 장치, 빔 포밍 방법, 및 초음파 영상 장치
KR102263282B1 (ko) * 2014-10-28 2021-06-15 수퍼소닉 이매진 이미지 이득을 조정하는 방법 및 시스템
KR102346128B1 (ko) * 2014-12-31 2022-01-03 삼성메디슨 주식회사 초음파 진단 장치, 웨어러블 장치, 그에 따른 초음파 진단 장치 제어방법, 그에 따른 웨어러블 장치 제어방법 및 그를 기록한 기록 매체
US9700285B2 (en) * 2015-06-30 2017-07-11 Siemens Medical Solutions US, Inc. Spectral doppler imaging with interruption avoidance
JP7337806B2 (ja) * 2018-01-03 2023-09-04 コーニンクレッカ フィリップス エヌ ヴェ 診断検査のための組織固有のプリセットを備える超音波撮像システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5287753A (en) * 1992-05-02 1994-02-22 Advanced Technology Laboratories, Inc. Continuous display of peak and mean blood flow velocities
JPH06327672A (ja) * 1993-05-18 1994-11-29 Toshiba Medical Eng Co Ltd 超音波ドプラ診断装置
US5647366A (en) * 1996-09-17 1997-07-15 Siemens Medical Systems, Inc. Method and system for automatic measurements of doppler waveforms
US5868676A (en) * 1996-10-25 1999-02-09 Acuson Corporation Interactive doppler processor and method
US6030345A (en) * 1997-05-22 2000-02-29 Acuson Corporation Method and system for ultrasound enhanced-resolution spectral Doppler
JP3892538B2 (ja) * 1997-07-18 2007-03-14 株式会社東芝 超音波ドプラ診断装置
US5935074A (en) * 1997-10-06 1999-08-10 General Electric Company Method and apparatus for automatic tracing of Doppler time-velocity waveform envelope
US6142943A (en) 1998-12-30 2000-11-07 General Electric Company Doppler ultrasound automatic spectrum optimization
US6296612B1 (en) * 1999-07-09 2001-10-02 General Electric Company Method and apparatus for adaptive wall filtering in spectral Doppler ultrasound imaging
KR100380913B1 (ko) * 2001-04-13 2003-04-18 주식회사 메디슨 가변 전력 임계값을 이용하여 잡음과 신호를 분리하는초음파 영상 형성 방법 및 장치
US6663566B2 (en) * 2002-02-19 2003-12-16 Ge Medical Systems Global Technology Company, Llc Method and apparatus for automatic control of spectral doppler imaging
US6733454B1 (en) * 2003-02-26 2004-05-11 Siemens Medical Solutions Usa, Inc. Automatic optimization methods and systems for doppler ultrasound imaging
US7513872B2 (en) 2004-10-18 2009-04-07 Kabushiki Kaisha Toshiba Ultrasonic doppler measuring apparatus and control method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005305129A (ja) * 2004-03-24 2005-11-04 Toshiba Corp 超音波診断装置
US7611467B2 (en) 2005-06-10 2009-11-03 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Method and apparatus for extracting an envelope curve of a spectrogram
JP2013526890A (ja) * 2009-10-27 2013-06-27 パルティ、ヨーラム 経胸壁肺ドップラー超音波
JP2013543740A (ja) * 2010-10-21 2013-12-09 パルティ、ヨーラム 経胸郭肺ドップラー超音波を使用した肺血圧測定
JP2017038630A (ja) * 2015-08-17 2017-02-23 富士フイルム株式会社 超音波診断装置およびドプラ波形画像生成方法
US10617395B2 (en) 2015-08-17 2020-04-14 Fujifilm Corporation Ultrasound diagnostic apparatus and doppler waveform image generating method

Also Published As

Publication number Publication date
JP4245428B2 (ja) 2009-03-25
US20050080329A1 (en) 2005-04-14
US7666142B2 (en) 2010-02-23

Similar Documents

Publication Publication Date Title
JP4245428B2 (ja) 超音波ドプラ診断装置及び画像データ生成方法
JP4801912B2 (ja) 超音波診断装置
JP4920302B2 (ja) 超音波診断装置及び超音波計測方法
JP6734079B2 (ja) 医用診断装置、および医用解析プログラム
EP1974672B1 (en) Ultrasonic imaging apparatus and ultrasonic velocity optimization method
CN103648400B (zh) 超声波诊断装置以及方法
JP4582827B2 (ja) 超音波診断装置
JP5420884B2 (ja) 超音波診断装置
WO2014013839A1 (ja) 超音波診断装置及び画像処理装置
JP4928886B2 (ja) 超音波診断装置及び超音波計測方法
JP2005087634A (ja) 超音波診断装置及び計測データ表示方法
JP4891590B2 (ja) 超音波ドプラ計測装置及びドプラ信号処理プログラム
JP2005046193A (ja) 超音波診断装置及び超音波画像データ生成方法
JP2006223736A (ja) 超音波診断装置
JP4137516B2 (ja) 超音波診断装置
JP4381028B2 (ja) 超音波診断装置
JP5455567B2 (ja) 超音波診断装置
JP2008142130A (ja) 超音波診断装置およびその制御処理プログラム
JP4772338B2 (ja) 超音波診断装置
JP5016782B2 (ja) 超音波診断装置
JP2008279110A (ja) 超音波診断装置及び血流情報観測装置
US20230404535A1 (en) Ultrasonic diagnostic apparatus, method for controlling ultrasonic diagnostic apparatus, and control program for ultrasonic diagnostic apparatus
JP2012217804A (ja) 超音波診断装置及び制御プログラム
JP2010110642A (ja) 超音波診断装置
JP4895365B2 (ja) 超音波診断装置及び超音波送信方法

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050427

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050620

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090106

R150 Certificate of patent or registration of utility model

Ref document number: 4245428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees