JP2005033483A - アナログ/デジタル変換回路およびそのテスト方法 - Google Patents
アナログ/デジタル変換回路およびそのテスト方法 Download PDFInfo
- Publication number
- JP2005033483A JP2005033483A JP2003195975A JP2003195975A JP2005033483A JP 2005033483 A JP2005033483 A JP 2005033483A JP 2003195975 A JP2003195975 A JP 2003195975A JP 2003195975 A JP2003195975 A JP 2003195975A JP 2005033483 A JP2005033483 A JP 2005033483A
- Authority
- JP
- Japan
- Prior art keywords
- comparator
- conversion
- analog
- potential
- comparison
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Analogue/Digital Conversion (AREA)
Abstract
【課題】直前に入力されたアナログ入力の電位の干渉を抑制しつつも、高速なAD変換を行い得るアナログ/デジタル変換回路を提供すること。
【解決手段】基準電位とアナログ入力とを比較し、比較結果を出力する比較器(1)と、比較器(1)の比較入力線(8)に、アナログ入力を伝える第1スイッチ(SW4)と、比較器(1)の比較入力線(8)に、初期化電位(Vss)を伝える第2スイッチ(SW5)と、AD変換期間中かつ比較器(1)の動作期間外に、第2スイッチ(SW5)をオンさせて比較器(1)の比較入力線(8)の電位を初期化電位(Vss)に初期化する入力制御回路(5)とを具備する。
【選択図】 図1
【解決手段】基準電位とアナログ入力とを比較し、比較結果を出力する比較器(1)と、比較器(1)の比較入力線(8)に、アナログ入力を伝える第1スイッチ(SW4)と、比較器(1)の比較入力線(8)に、初期化電位(Vss)を伝える第2スイッチ(SW5)と、AD変換期間中かつ比較器(1)の動作期間外に、第2スイッチ(SW5)をオンさせて比較器(1)の比較入力線(8)の電位を初期化電位(Vss)に初期化する入力制御回路(5)とを具備する。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
この発明は、アナログ/デジタル変換回路およびそのテスト方法に関する。
【0002】
【従来の技術】
アナログ/デジタル変換回路(以下ADC回路)の測定精度は、8ビット、10ビットと向上、さらに入力数も増加している。この傾向は、例えば、1チップマイクロコンピュータに内蔵されたADC回路において顕著である。1チップマイクロコンピュータに内蔵されたADC回路は、通常、1変換回路である。1変換回路の場合、多数のアナログ入力(以下Ain入力)の中から、AD変換するAin入力を順次選択し、切換えながら一つずつAD変換を行う。このAD変換方式では、Ain入力の電位に大きな差があると、直前に測定したAin入力の電荷がADC回路中に残り、次に測定するAin入力の電位に干渉することがある。この干渉を解消するために、AD変換(ノーマルAD変換)後に、ダミーAD変換を1回行い、ADC回路中に残った電荷を放電した上で、次のAD変換を行うようにしている。
【0003】
また、特許文献1には、1変換回路のADC回路が記載されている。このADC回路は、多チャンネルのAin入力をマルチプレクサにより順次選択し、切換えながら一つずつAD変換を行う。特許文献1では、ADC回路中のオペアンプの入力に放電回路を設け、AD変換後に、ADC回路中の浮遊容量に蓄積された電荷を放電した上で、次のAD変換を行うようにしている。
【0004】
【特許文献1】
特開2001−111424公報
【0005】
【発明が解決しようとする課題】
しかし、AD変換後にダミーAD変換を行う方式では、AD変換と次のAD変換との間にダミーAD変換が入るので、1回のAD変換期間が見かけ上、2倍以上となり、AD変換時間が長くなる。
【0006】
同様にAD変換後に放電を行う方式においても、AD変換と次のAD変換との間に放電動作が入るので、1回のAD変換期間が見かけ上長くなる。
【0007】
この発明は、上記の事情に鑑み為されたもので、その目的は、直前に入力されたアナログ入力の電位の干渉を抑制しつつも、高速なAD変換を行い得るアナログ/デジタル変換回路を提供することにある。
【0008】
また、比較器の比較入力線に蓄積された電荷の量を測定することが可能なアナログ/デジタル変換回路のテスト方法を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために、この発明の第1態様に係るアナログ/デジタル変換回路は、基準電位とアナログ入力とを比較し、比較結果を出力する比較器と、前記比較器の比較入力線に、アナログ入力を伝える第1スイッチと、前記比較器の比較入力線に、初期化電位を伝える第2スイッチと、AD変換期間中、かつ前記比較器の比較開始から比較終了までの期間外に、前記第2スイッチをオンさせて前記比較器の比較入力線の電位を前記初期化電位に初期化する入力制御回路とを具備する。
【0010】
また、この発明の第2態様に係るアナログ/デジタル変換回路は、基準電位とアナログ入力とを比較し、比較結果を出力する比較器と、前記比較器の比較入力線に、アナログ入力を伝える第1スイッチと、前記比較器の比較入力線に、初期化電位を伝える第2スイッチと、ノーマルAD変換に続くダミーAD変換で、前記第2スイッチをオンさせて前記比較器の比較入力線の電位を前記初期化電位に初期化する入力制御回路と、前記ダミーAD変換を前記ノーマルAD変換よりも高速化する制御、もしくは前記ダミー変換を途中で中止する制御のいずれかを行うAD変換制御回路とを具備する。
【0011】
また、この発明のアナログ/デジタル変換回路のテスト方法は、基準電位とアナログ入力とを比較し、比較結果を出力する比較器と、前記比較器の比較入力線に、アナログ入力を伝える第1スイッチと、前記比較器の比較入力線に、初期化電位を伝える第2スイッチとを具備し、前記第1、第2スイッチをオフさせた状態で、前記比較器の比較動作を実行し、前記比較入力線に蓄積された電荷量を測定する。
【0012】
【発明の実施の形態】
以下、この発明の実施形態を、図面を参照して説明する。この説明に際し、全図にわたり、共通する部分には共通する参照符号を付す。
【0013】
(第1実施形態)
図1はこの発明の第1実施形態に係るADC回路(アナログ/デジタル変換回路)の一例を示す回路図である。本例は、逐次比較型ADC回路に関している。
【0014】
図1に示すように、アナログ入力は入力端子Ainに入力される。入力されたアナログ入力は、スイッチSW4を介してサンプルホールド回路SHに供給され、ホールドされる。ホールドされたアナログ入力は、比較器1のマイナス入力(−)に入力される。比較器1は、ホールドされたアナログ入力の電位と基準電位とを比較し、アナログ入力をデジタル出力に変換する。本例では基準電位として3つの電位Vref1〜Vref3が用意されている。アナログ入力の電位は、電位Vref1〜Vref3の一つと比較され、例えば、2ビットのデジタル出力に変換される。比較器1の出力は、データバッファ2に入力されるとともに、Vref制御回路3に入力される。Vref制御回路3は、比較器1の出力を受け、この出力に基づき、次に選択する基準電位を選択する。
【0015】
クロック発生器4には、クロックが入力される。本例に係るADC回路が1チップマイクロコンピュータに内蔵されている場合、上記クロックは、例えば、システムクロックとなる。クロック発生器4は、入力されたクロックから二相クロックφa、φbを発生させる。二相クロックφa、φbは、ADC回路の動作を制御するクロックであり、Vref制御回路3及び入力制御回路5に供給される。
【0016】
次に、その動作の一例を説明する。
【0017】
図2はこの発明の第1実施形態に係るADC回路の動作の一例を示す動作波形図である。
【0018】
図2に示すように、制御信号のうち、AD変換開始信号がVref制御回路3及び入力制御回路5に取り込まれると、AD変換(アナログ/デジタル変換)が開始される。入力制御回路5はAD変換開始信号を受け、例えば、クロックφaの立ち上がりに同期してSW4aON信号を“HIGH”レベルとする。SW4aON信号が“HIGH”レベルの間、スイッチSW4がオンし、入力端子Ainが比較器1のマイナス入力及びサンプルホールド回路SHに接続される。入力端子Ainに入力されたアナログ入力はスイッチSW4を介してサンプルホールド回路SHに供給され、ホールドされる。ホールドされたアナログ入力は、比較器1の、例えば、マイナス入力(−)に供給される。
【0019】
次に、Vref制御回路3が、例えば、クロックφbの立ち上がりに同期してSW2aON信号を“HIGH”レベルとする。SW2aON信号が“HIGH”レベルの間、スイッチSW2がオンし、抵抗Bと抵抗Cとの接続点が比較器1のプラス入力(+)に接続され、抵抗Bと抵抗Cとの接続点の電位Vref2が、スイッチSW2を介して比較器1のプラス入力に供給される。比較器1は、電位Vref2とアナログ入力の電位とを比較し、1回目の比較器出力を出力する。1回目の比較器出力は、アナログ入力の電位が電位Vref2より高いか低いかを示す出力で、2ビットのデジタル出力の、例えば、上位ビットに対応する。Vref制御回路3は1回目の比較器出力を受け、クロックφaの立ち上がりに同期してデータ取込み信号を出力するとともに、SW1a又はSW3a選択信号を発生させる。データ取込み信号はデータバッファ2に供給され、データバッファ2はデータ取込み信号に基づいて1回目の比較器出力を取り込み、上位ビットとして保持する。SW1a又はSW3a選択信号は、上位ビットが“0”なのか“1”なのかに応じ、スイッチSW1、SW3のいずれをオンさせるかを選択する信号であり、Vref制御回路3中で発生される。比較の結果、“アナログ入力の電位が電位Vref2より高い”、と判断された場合(これを仮に上位ビットが“1”である、とする)にはSW1a選択信号が発生され、スイッチSW1が選択される。反対に“アナログ入力の電位が電位Vref2より低い”、と判断された場合(これを仮に上位ビットが“0”である、とする)にはSW3a選択信号が発生され、スイッチSW3が選択される。
【0020】
次に、Vref制御回路3は、クロックφbの立ち上がりに同期してSW2aON信号を“LOW”レベルとしてスイッチSW2をオフさせる。さらに、Vref制御回路3はクロックφbの立ち上がりに同期し、SW1a選択信号が発生されたのかSW3a選択信号が発生されたのかに基づき、SW1a又はSW3aON信号を“HIGH”レベルとする。SW1aON信号を“HIGH”レベルとした場合には、スイッチSW1がオンする。スイッチSW1は、抵抗Aと抵抗Bとの接続点を比較器1のプラス入力(+)に接続し、抵抗Aと抵抗Bとの接続点の電位Vref1が、スイッチSW1を介して比較器1のプラス入力に供給される。電位Vref1は電位Vref2より高い電位である。反対にSW3aON信号を“HIGH”レベルとした場合には、スイッチSW3がオンする。スイッチSW3は、抵抗Cと抵抗Dとの接続点を比較器1のプラス入力(+)に接続し、抵抗Cと抵抗Dとの接続点の電位Vref3が、スイッチSW3を介して比較器1のプラス入力に供給される。電位Vref3は電位Vref2より低い電位である。
【0021】
次に、比較器1は、電位Vref1又はVref3とアナログ入力の電位とを比較し、2回目の比較器出力を出力する。2回目の比較器出力は、2ビットのデジタル出力の、例えば、下位ビットに対応する。Vref制御回路3は2回目の比較器出力を受け、クロックφaの立ち上がりに同期してデータ取込み信号を出力する。データ取込み信号はデータバッファ2に供給され、データバッファ2はデータ取込み信号に基づいて2回目の比較器出力を取り込み、下位ビットとして保持する。
【0022】
次に、Vref制御回路3は、クロックφbの立ち上がりに同期してSW1a又はSW3aON信号を“LOW”レベルとし、スイッチSW1又はSW3をオフさせる。
【0023】
次に、Vref制御回路3は、クロックφbの立ち上がりに同期して制御信号のうち、終了信号を“HIGH”レベルとする。終了信号は、例えば、比較器1の比較動作が終了したことを示す信号で、例えば、比較器1を非活性化させる役目も持つ。終了信号が“HIGH”レベルになると入力制御回路5はデータ書込み信号を出力する。データ書込み信号は書込み回路6に供給される。書込み回路6はデータ書込み信号に基づいてデータバッファ2が保持している2ビットのデジタル出力をデータレジスタ7に転送する。これにより、2ビットのデジタル出力がデータレジスタ7に書き込まれる。書き込まれた2ビットのデジタル出力は、データ読出し信号に基づきバスに読み出される。
【0024】
データレジスタ7に2ビットのデジタル出力が書き込まれた後、例えば、入力制御回路5はクロックφaの立ち上がりに同期して終了フラグを発生させる。終了フラグが発生されると入力制御回路5は、SW4aON信号を“LOW”レベルとしてスイッチSW4をオフさせるとともに、SW5aON信号を“HIGH”レベルとしてスイッチSW5をオンさせる。SW5aON信号が“HIGH”レベルの間、スイッチSW5はオンし、スイッチSW4から比較器1のマイナス入力までの配線及びサンプルホールド回路SH(以下比較入力線8という)が接地電位Vssに接続される。これにより、比較入力線8に蓄積された電荷が、接地電位Vssに放電される。放電時間は、本例では、終了フラグの立ち上がりから立ち下がりまでの時間と同じとしている。AD変換は、終了フラグが立下がることで終了する。この後、終了信号が“LOW”レベルとなり、例えば、比較器1が活性状態に戻り、ADC回路は、次回のAD変換の開始を待つことになる。
【0025】
本第1実施形態に係るADC回路によれば、AD変換の終了を示す終了フラグが発生されたところで、スイッチSW4がオフし、スイッチSW5がオンするので、比較入力線8中に蓄積されていた電荷が放電される。このため、次回のAD変換に際し、蓄積電荷による干渉を抑制することができる。
【0026】
また、本例の放電は、終了フラグの立ち下がりと同時に終了する。例えば、SW5aON信号は、終了フラグと同時に立ち上がり、終了フラグと同時に立下がる。1回のAD変換期間を、“AD変換開始信号の立ち上がりから終了フラグの立ち下がりまで”と考えると、本例の放電は1回のAD変換期間中に終わる。
【0027】
このように本第1実施形態に係るADC回路は、図3に示すように、“AD変換期間中に放電する”ので、“AD変換期間が終了した後に放電する”というADC回路に比較してAD変換時間を短縮できる、という利点を得ることができる。
【0028】
なお、本例において、SW5aON信号は終了フラグの立ち上がりにて発生させたが、終了信号の立ち上がりにて発生させるようにしても良い。この場合には、終了フラグの立ち上がりにてSW4aON信号を“LOW”レベルとしてスイッチSW4をオフさせるとともに、SW5aON信号を“HIGH”レベルとしてスイッチSW5をオンさせる。このようにした場合には、終了フラグの立ち上がりにてスイッチSW4をオフ、スイッチSW5をオンさせる場合に比較して、比較入力線8の放電時間を長くでき、比較入力線8を十分に放電できる利点がある。
【0029】
また、本例において、SW5aON信号は終了フラグと別の信号として発生させたが、SW5aON信号は終了フラグと同じ信号としても良い。例えば、終了フラグを用いてスイッチSW5をオンさせるようにしても良い。この場合には、SW5aON信号が終了フラグとシェアされるので、SW5aON信号を発生させる回路を別途設ける必要が無く、回路数を削減できる利点がある。
【0030】
また、本例では、入力端子Ainと比較入力線8との間にスイッチSW4を有し、接地電位Vssと比較入力線8との間にスイッチSW5を有する。これらスイッチSW4、SW5を有するADC回路によれば、例えば、比較入力線8に蓄積される電荷量を測定するテストが可能となる。即ち、スイッチSW4、SW5をオフさせた状態で、比較器1の比較動作を実行すれば、比較入力線に蓄積された電荷の量を測定することができる。
【0031】
(第2実施形態)
図4はこの発明の第2実施形態に係るADC回路の一例を示す回路図、図5はその動作の一例を示す動作波形図である。
【0032】
第2実施形態は、入力制御回路5−2の構成が第1実施形態と異なり、特にSW4aON信号、及びSW5aON信号の発生方式が異なる。
【0033】
第1実施形態の入力制御回路5は、図2に示したように、AD変換開始信号が“HIGH”レベルになると同時にSW4aON信号を“HIGH”レベルとしてスイッチSW4をオンさせた。比較終了後、終了フラグが“HIGH”レベルとなると同時にSW4aON信号を“LOW”レベルとしてスイッチSW4をオフさせるとともに、SW5aON信号を“HIGH”レベルとしてスイッチSW5をオンさせ、終了フラグが“LOW”レベルとなると同時にSW5aON信号を“LOW”レベルとしてスイッチSW5をオフさせた。
【0034】
対して、第2実施形態の入力制御回路5−2は、図4及び図5に示すように、AD変換開始信号が“HIGH”レベルとなると同時にSW5aON信号を“HIGH”レベルとしてスイッチSW5をオンさせ、AD変換開始信号が“LOW”レベルとなると同時にSW5aON信号を“LOW”レベルとしてスイッチ5Wをオフさせる。この後、例えば、SW2aON信号が“HIGH”レベルとなると同時にSW4aON信号を“HIGH”レベルとしてスイッチSW4をオンさせ、比較を開始する。比較終了後、終了信号が“LOW”レベルとなると同時にSW4aON信号を“LOW”としてスイッチSW4をオフさせる。
【0035】
蓄積電荷の放電は、アナログ入力と基準電位との比較前に行うようにしても良い。このような第2実施形態においても、比較前に、比較入力線8中に蓄積されていた電荷を放電できるので、第1実施形態と同様に、蓄積電荷による干渉を抑制することができる。
【0036】
また、放電はAD変換開始信号の立ち上がりと同時に開始され、その立ち下がりと同時に終了する。AD変換期間を、“AD変換開始信号の立ち上がりから終了フラグの立ち下がりまで”と考えると、本例の放電もAD変換期間中に開始され、AD変換期間中に終わることになる。このため、図3を参照して説明した、第1実施形態と同様な利点を得ることができる。
【0037】
なお、本例において、SW5aON信号はAD変換開始信号と別の信号として発生させたが、SW5aON信号はAD変換開始信号と同じ信号としても良い。例えば、AD変換開始信号を用いてスイッチSW5をオンさせるようにしても良い。この場合には、SW5aON信号がAD変換開始信号とシェアされるので、SW5aON信号を発生させる回路を別途設ける必要が無く、回路数を削減できる利点がある。
【0038】
(第3実施形態)
図6はこの発明の第3実施形態に係るADC回路の一例を示す回路図、図7はその動作の一例を示す動作波形図である。
【0039】
第3実施形態が第1実施形態と異なるところは、接地電位Vss以外の電位を比較入力線8に供給できるようにしたことである。これにより、比較入力線8の電位を接地電位Vssにするばかりでなく、比較入力線8の電位を、比較前に、放電又は充電によって所定の電位にすることが可能となる。以下、本明細書では、比較入力線8の電位を、比較前に、放電によって接地電位Vssにする、あるいは放電又は充電によって所定の電位にすることを総称して、電位の初期化と呼ぶことにする。接地電位Vss及び接地電位Vss以外への電位の初期化は、例えば、様々な方式のアナログ入力に対応しつつ、蓄積電荷の干渉を抑制できる、という利点がある。
【0040】
アナログ入力の方式、例えば、変換方式には、第1、第2実施形態とは反対に、比較入力線8を所定の電位に充電し、アナログ入力により放電する方式もある。このような方式の場合、初期化電位は、例えば、電源電位Vddとされる。初期化電位として、接地電位Vssに加えて電源電位Vddを用意しておけば、一つのチップで、比較入力線8を予め放電しておきアナログ入力で充電する方式、及び比較入力線8を予め充電しておきアナログ入力で放電する方式の双方に対応できる。
【0041】
さらに、本例では、初期化電位として、接地電位Vss及び電源電位Vddに加え、接地電位Vssと電源電位Vddとの間の電位が用意されている。これによる利点は、アナログ入力による充電又は放電を高速に行えることである。
【0042】
アナログ入力の入力方式には、アナログ入力が0V(=Vss)〜5V(=Vdd)の範囲で入力されるものばかりでなく、アナログ入力の最低電位が接地電位Vssよりも高いものがある。この方式の場合、比較入力線8の電位を、比較前に、接地電位Vssで初期化してしまうと、比較入力線8の充電に時間がかかることになる。そこで、比較入力線8の電位を、接地電位Vssよりも高い電位で初期化する。初期化電位の一例は、アナログ入力の最低電位もしくは最低電位に近い電位である。初期化電位を、アナログ入力の最低電位もしくは最低電位に近い電位とすれば、比較入力線8を高速に充電でき、AD変換時間を短縮できる。
【0043】
上記入力方式は、アナログ入力によって放電する変換方式においても同様に存在する。アナログ入力の最大電位が、電源電位Vddよりも低い場合である。この方式においては、比較入力線8を、アナログ入力の最大電位に応じて電源電位Vddよりも低い電位で初期化すれば良い。これによって、比較器1のマイナス入力をアナログ入力の電位に高速に放電でき、AD変換時間を短縮できる。
【0044】
アナログ入力には、多様な変換方式及び入力方式が考えられ、最低電位や最大電位は一概には決まらない。そこで、初期化電位として、接地電位Vss及び電源電位Vddを含め、何段階かの電位を用意しておくのが良い。何段階かの電位を用意しておくことで、一つのチップで、多様な変換方式及び入力方式に対応することができる。本第3実施形態では、図6に示すように、初期化電位として、接地電位Vss及び電源電位Vddを含め、電位Vref1〜Vref3の、合計5つの電位が用意されている。初期化電位は、5つの電位から選ばれ、選ばれた電位が比較入力線8に供給される。
【0045】
複数の初期化電位は、電位発生回路を用いてそれぞれ個別に発生させるようにしても良いが、比較用の基準電位を発生させる基準電位発生回路を利用しても良い。本第3実施形態では後者を採用している。後者の利点は、元々チップ中に存在している基準電位発生回路を利用するので電位発生回路を別に設ける必要が無く、チップ面積増加を抑制できることにある。本第3実施形態では、比較入力線8に、スイッチSW0V〜SW4Vを介して、接地電位Vssの供給端、電位Vref3〜Vref1の供給端、及び電源電位Vddの供給端が接続される。スイッチSW0V〜SW4Vは、例えば、入力制御回路5−3から出力されたSW0Va〜SW4VaON信号によって一つが選ばれ、選ばれた一つがオンする。
【0046】
次に、その動作の一例を説明する。
【0047】
図7に示すように、本第3実施形態の動作は、第1実施形態の動作と略同じである。異なるところは、終了信号が“HIGH”レベルとなると同時に、例えば、入力制御回路5−3中で発生されるSW0Va〜SW4Va選択信号の一つが“HIGH”レベルとなる。次いで、終了フラグが“HIGH”レベルとなると同時に、SW4aON信号が“LOW”レベル、SW0Va〜SW4VaON信号の一つが“HIGH”レベルとなり、スイッチSW4aがオフ、スイッチSW0V〜SW4Vのいずれか一つがオンする。この結果、接地電位Vssの供給端、電位Vref3〜Vref1の供給端、及び電源電位Vddの供給端のいずれか一つが比較入力線8に接続され、比較入力線8が選ばれた電位に初期化される。次いで、終了フラグが“LOW”レベルとなると同時にSW0Va〜SW4VaON信号の一つが“HIGH”レベルから“LOW”レベルとなり、オンしていたスイッチSW0V〜SW4Vがオフする。次いで、終了信号が“LOW”レベルとなると同時に、SW0Va〜SW4Va選択信号の一つが“HIGH”レベルから“LOW”レベルとなる。これにより、ADC回路は、例えば、待機状態に戻り、次回のAD変換の開始を待つ。
【0048】
本第3実施形態においても、第1実施形態と同様の動作をするので、第1実施形態と同様の利点を得ることができる。
【0049】
さらに、第3実施形態によれば、比較入力線8を、予め用意された複数の初期化電位のいずれか一つの電位に初期化するので、多様なアナログ入力に対応しつつ、次回のAD変換に際し、蓄積電荷の干渉を抑制できる、という利点を得ることができる。また、AD変換を高速化できる、という利点を得ることができる。
【0050】
なお、本例において、SW0Va〜SW4VaON信号は終了フラグと別の信号として発生させたが、SW0Va〜SW4VaON信号は終了フラグと同じ信号としても良い。例えば、SW0Va〜SW4Va選択信号を利用して、終了フラグをスイッチSW0V〜SW4Vの一つに転送するようにしても良い。
【0051】
SW0Va〜SW4Va選択信号はハード的にいずれか一つを固定し、固定された一つを常に発生するようにしても良いし、アナログ入力に応じてSW0Va〜SW4Va選択信号の一つを選択し、発生するようにしても良い。
【0052】
(第4実施形態)
図8はこの発明の第4実施形態に係るADC回路の一例を示す回路図、図9はその動作の一例を示す動作波形図である。
【0053】
第4実施形態が第1実施形態と異なるところは、比較入力線8の初期化電位を、AD変換の結果に基づいて選択することである。本第4実施形態では、図8に示すように、比較器出力を参照し、入力制御回路5−4がSW5a又はSW5bON信号を出力し、スイッチSW5a又はスイッチSW5bのいずれかをオンさせる。スイッチSW5aがオンした場合、初期化電位は、例えば、電源電位Vddとなり、スイッチSW5bがオンした場合には、例えば接地電位Vssとなる。初期化電位を、電源電位Vdd及び接地電位Vssのいずれにするかは、例えば、アナログ入力の入力値に基づき決定される。その一例は、次回の比較前に、比較入力線8を、アナログ入力の入力値と逆極性の電位に初期化することである。アナログ入力が、例えば、0V(=Vss)〜5V(=Vdd)の範囲で入力される、と仮定する。1回目の比較ではアナログ入力の入力値が2.5Vより高いか低いかが判定され、その判定結果が1回目の比較器出力として出力される。入力制御回路5−4は、1回目の比較器出力に基づき、入力値が2.5Vより高い場合には、次回の比較前に、比較入力線8を接地電位Vssに放電させ、反対に低い場合には電源電位Vddに充電するように制御する。アナログ入力の入力値と逆極性の電位に初期化することの利点は、有効なAD変換であるか否かを判断できることにある。初期化電位を接地電位Vss又は電源電位Vddのいずれかに固定した場合には、比較器1が比較したアナログ入力の電位が、アナログ入力自体の電位に基づくものなのか、初期化電位に基づくものなのかを判断できない。そこで、アナログ入力の入力値と逆極性の電位に初期化しておく。次回の比較の際、比較器1のアナログ入力の電位が、初期化電位から逆極性の方向へ変動すれば、“比較器1が比較した電位はアナログ入力の電位に基づくものである”と判断できる。この結果、“有効なAD変換である”と判断できる。アナログ入力は連続値であるから、入力値0Vの次に入力値5Vとなることはない。また、短期間、例えば比較入力線8の初期化中に、アナログ入力が0Vから5Vに変動する可能性も極めて低い。よって、比較器1の入力電位が反転する方向に動けば、入力されたアナログ入力は有効である、と判断できる。
【0054】
次に、その動作の一例を説明する。
【0055】
図9に示すように、本第4実施形態の動作は、第1実施形態の動作と略同じである。異なるところは、(上位)データ取り込み信号が“HIGH”レベルとなると同時に、1回目の比較器出力に基づきSW5a又はSW5b選択信号が“HIGH”レベルとなり、スイッチSW5aをオンさせるかSW5bをオンさせるかが決定される。この後、終了フラグが“HIGH”レベルとなると同時に、SW4a信号が“LOW”レベル、SW5a又はSW5bON信号のいずれかが“HIGH”レベルとなり、スイッチSW4がオフ、スイッチSW5a、SW5bのいずれかがオンし、電源電位Vddの供給端、接地電位Vssの供給端のいずれかが比較入力線8に接続され、比較入力線8が電源電位Vdd又は接地電位Vssのいずれかの電位に初期化される。次いで、終了フラグが“LOW”レベルとなると同時にSW5a〜SW5bON信号のいずれかが“HIGH”レベルから“LOW”レベルとなり、オンしていたスイッチSW5a又はSW5bがオフする。次いで、終了信号が“LOW”レベルとなると同時に、SW5a又はSW5b選択信号のいずれかが“HIGH”レベルから“LOW”レベルとなる。これにより、ADC回路は、例えば、待機状態に戻り、次回のAD変換の開始を待つ。
【0056】
本第4実施形態においても、第1実施形態と同様の動作をするので、第1実施形態と同様の利点を得ることができる。
【0057】
さらに、本第4実施形態によれば、アナログ入力の入力値に基づき、比較入力線8を、次回の比較前に、アナログ入力の入力値と逆極性の電位に初期化する。このため、有効なAD変換であるか否かを判断でき、誤AD変換を抑制できる、という利点を得ることができる。
【0058】
なお、本例において、SW5a又はSW5bON信号は終了フラグと別の信号として発生させたが、SW5a又はSW5bON信号は終了フラグと同じ信号としても良い。例えば、SW5a又はSW5b選択信号を利用して、終了フラグをスイッチSW5a又はSW5bのいずれかに転送するようにしても良い。
【0059】
(第5実施形態)
図10はこの発明の第5実施形態に係るADC回路の一例を示す回路図、図11はその動作の一例を示す動作波形図である。
【0060】
第5実施形態が第1実施形態と異なるところは、図10及び図11に示すように、比較入力線8の電位の初期化を、ノーマルAD変換に続くダミーAD変換で行うことにある。さらに、本例では、ダミーAD変換をノーマルAD変換よりも高速化して行う。ダミーAD変換は、比較入力線8の電位を初期化することが目的であり、ノーマルAD変換のような測定精度は要求されない。この点に鑑み、ダミーAD変換をノーマルAD変換よりも高速化する。これにより、AD変換後にダミーAD変換を行う方式を踏襲しつつも、従来のAD変換後にダミーAD変換を行う方式に比較し、見かけ上、1回のAD変換期間を短縮できる。ダミーAD変換を高速化する一例は、ダミーAD変換期間中のクロックの周波数を、ノーマルAD変換期間中よりも高めることである。本例では、図10に示すように、クロック発生器4−2に、制御信号としてクロック変更信号を入力し、クロック変更信号に基づき二相クロックφa、φbの周波数を高周波化する。
【0061】
さらに、本例では第1実施形態と同様のスイッチSW5を設け、比較入力線8に初期化電位を供給できるようにした。
【0062】
さらに、本例では初期化電位を固定せず、入力端子Ain1を設け、初期化電位をユーザー自身が自由に選べられるようにした。ユーザーは、初期化電位として接地電位Vssを希望するのであれば、入力端子Ain1に接地電位Vssを与えれば良い。もちろん、初期化電位は、電源電位Vddとすることもでき、電源電位Vddと接地電位Vssとの間のいかなる電位とすることも自由である。このような入力端子Ain1は、本例に限って利用されるものではなく、上述した実施形態に利用することも可能である。
【0063】
次に、その動作の一例を説明する。
【0064】
図11に示すように、本第5実施形態の動作は、例えば、ノーマルAD変換の終了を示す終了フラグが立上がるまで、第1実施形態の動作と略同じである。異なるところは、終了フラグが立ち上がった後の動作である。本例では、終了フラグが“HIGH”レベルとなると、入力制御回路5−5は、SW4aON信号が“LOW”レベル、SW5aON信号が“HIGH”レベルとし、スイッチSW4をオフ、SW5をオンさせる。これにより比較入力線8が入力端子Ain1に接続される。入力端子Ain1には初期化電位が供給されている。本例では、終了フラグが“HIGH”レベルとなると同時にAD変換開始信号が“HIGH”レベルとなる。これにより、ノーマルAD変換に続いてダミーAD変換が開始される。さらに、終了フラグが“HIGH”レベルとなると、クロック変更信号が“HIGH”レベルとなる。クロック変更信号は、入力制御回路5−5が発生するようにしても良いし、制御信号を出力する制御回路(図示せず)が終了フラグを受けて発生するようにしても良い。クロック変更信号は、クロック発生器4−2に供給される。クロック発生器4−2は、クロック変更信号に基づき二相クロックφa、φbの周波数を高周波化する。Vref制御回路3−2、入力制御回路5−5は、高周波化された二相クロックφa、φbを受け、ダミーAD変換の動作をノーマルAD変換の動作に比較して高速化させる。ダミーAD変換の動作はノーマルAD変換の動作と、“動作が高速化されること”、及び“比較入力線8の電位がアナログ入力(Ain0)から初期化電位(Ain1)となること”で特に異なり、その余の点は略同じ動作である。ダミーAD変換の終了を示す終了フラグが“HIGH”レベルとなると、クロック変更信号は“LOW”レベルとなり、クロック発生器4−2は、二相クロックの周波数を、ノーマルAD変換時の周波数に戻す。さらに、本例では、終了フラグが“HIGH”レベルとなると、SW5aON信号が“LOW”レベルとなり、スイッチSW5がオフする。この後、終了信号が“HIGH”レベルから“LOW”レベルとなり、ADC回路は、次回のAD変換の開始を待つ。
【0065】
本第5実施形態に係るADC回路によれば、ノーマルAD変換に続くダミーAD変換を、ノーマルAD変換よりも高速化するので、AD変換後にダミーAD変換を行う方式を踏襲しつつも、従来のAD変換後にダミーAD変換を行う方式に比較し、見かけ上、1回のAD変換期間を短縮できる、という利点を得ることができる。
【0066】
また、本例では、ノーマルAD変換からダミーAD変換に移行する際、ノーマルAD変換の終了を示す終了フラグを“HIGH”レベルとすると同時に、ダミーAD変換の開始を示すAD変換開始信号を“HIGH”レベルとする。これにより、ノーマルAD変換期間に、ダミーAD変換期間の一部をオーバーラップさせることができる。ノーマルAD変換期間に、ダミーAD変換期間の一部をオーバーラップさせることによる利点は、例えば、ノーマルAD変換からダミーAD変換への移行を、オーバーラップさせずにシリースに行う場合に比較して、ダミーAD変換期間を短縮できることにある。
【0067】
なお、本例において、SW5aON信号及びクロック変更信号は別の信号として発生させたが、SW5aON信号をクロック変更信号と同じ信号としても良い。例えば、SW5aON信号をクロック発生器4−2に入力し、クロック発生器4−2がSW5aON信号に基づき二相クロックφa、φbの周波数を高めるようにしても良い。反対にクロック変更信号を用いてスイッチSW5をオンさせるようにしても良い。これらの場合には、SW5aON信号及びクロック変更信号が互いにシェアされるので、SW5aON信号を発生させる回路、もしくはクロック変更信号を発生する回路を別途設ける必要が無く、回路数を削減できる利点がある。
【0068】
(第6実施形態)
図12はこの発明の第6実施形態に係るADC回路の一例を示す回路図、図13はその動作の一例を示す動作波形図である。
【0069】
本第6実施形態は、第5実施形態と同様に比較入力線8の電位の初期化を、ノーマルAD変換に続くダミーAD変換で行う。本第6実施形態が、第5実施形態と異なるところは、クロックの周波数を変更しないことであり、代わりにダミーAD変換を途中で中止し、ダミーAD変換期間を短縮したことにある。第5実施形態でも説明したように、ダミーAD変換は、比較入力線8の電位を初期化することが目的であり、AD変換を目的とするものではない。この点に鑑み、ダミーAD変換を途中で中止することも可能である。ダミーAD変換の一例は、図12に示すように、AD変換を中止する中止信号を、ダミーAD変換途中にVref制御回路3−3及び入力制御回路5−6に入力することである。Vref制御回路3−3及び入力制御回路5−6は、中止信号に基づき、ダミーAD変換を途中で中止する。
【0070】
次に、その動作の一例を説明する。
【0071】
図13に示すように、本第6実施形態の動作は、第5の実施形態の動作と、例えば、クロック変更信号を発生させないこと、及びダミーAD変換の途中で中止信号を発生させ、ダミーAD変換を途中で終了させることが相違し、その余の点はほぼ同様である。具体的には、ノーマルAD変換の終了示す終了フラグが“HIGH”レベルとなるとともに、SW4aON信号を“LOW”レベル、SW5aON信号を“HIGH”レベルとし、スイッチSW4をオフ、SW5をオンさせる。また、ダミーAD変換の開始を示すAD変換開始信号を“HIGH”レベルとし、ダミーAD変換を開始させる。次に、AD変換開始信号が“HIGH”レベルとなったときから、例えば、クロックφaの次に立ち上がりエッジにて、AD変換を中止する中止信号を“HIGH”レベルとする。中止信号は、例えば、制御信号を発生させる制御回路(図示せず)にて発生されても良く、入力制御回路5−6にて発生されても良い。中止信号は、Vref制御回路3−3及び入力制御回路5−6に入力される。Vref制御回路3−3及び入力制御回路5−6は、中止信号が入力されると、そのAD変換動作を中止し、終了させる。また、入力制御回路5−6は、中止信号が“HIGH”レベルとなると同時にSW5aON信号を“LOW”レベルとし、スイッチSW5をオフさせる。
【0072】
本第6実施形態に係るADC回路によれば、ノーマルAD変換に続くダミーAD変換を、その途中で中止するので、第5実施形態と同様に、AD変換後にダミーAD変換を行う方式を踏襲しつつも、従来のAD変換後にダミーAD変換を行う方式に比較し、見かけ上、1回のAD変換期間を短縮できる、という利点を得ることができる。
【0073】
また、本例においても、第5実施形態同様に、ノーマルAD変換の終了を示す終了フラグを“HIGH”レベルとすると同時に、ダミーAD変換の開始を示すAD変換開始信号を“HIGH”レベルとする。このため、例えば、ノーマルAD変換からダミーAD変換への移行を、オーバーラップさせずにシリースに行う場合に比較して、ダミーAD変換期間を短縮できる、という利点を得ることができる。
【0074】
(第7実施形態)
図14はこの発明の第7実施形態に係るADC回路の一例を示す回路図、図15はその動作の一例を示す動作波形図である。
【0075】
本第7実施形態は、第5実施形態によるダミーAD変換を高速化する、という技術と、第6実施形態によるダミーAD変換を途中で中止する、という技術とを併せ持たせたものである。本第7実施形態は、図14及び図15に示すように、クロック発生器4−3は、クロック変更信号に基づき、二相クロックφa、φbの周波数を高周波化する。(なお、本例の図15に示す動作では、ダミーAD変換が途中で中止されるために、クロックφbの周波数については高周波化される前に、高周波化が中止されている。)Vref制御回路3−4及び入力制御回路5−7は、高周波化された二相クロックφa、φbを受け、ダミーAD変換の動作をノーマルAD変換の動作に比較して高速化させる。これとともに、中止信号が入力されると、AD変換を途中で中止する。
【0076】
本第7実施形態によれば、ダミーAD変換を、ノーマルAD変換よりも高速化するので、第5実施形態と同様に、見かけ上、1回のAD変換期間を短縮できる、という利点を得ることができる。
【0077】
さらに、高速化されたダミーAD変換を途中で中止するので、第5実施形態に比較し、ダミーAD変換期間をさらに短縮できる、という利点を得ることができる。
【0078】
(第8実施形態)
図16はこの発明の第8実施形態に係るADC回路の一例を示す回路図、図17はその動作の一例を示す動作波形図である。
【0079】
図16及び図17に示すように、第8実施形態は、入力制御回路5−8の構成が第1実施形態と異なり、特に放電期間(初期化期間)においてスイッチSW4及びSW5の双方をオンさせることが異なる。本例では、終了フラグが“HIGH”レベルとなると、SW5aON信号を“HIGH”レベルとする。このとき、SW4a信号は“HIGH”レベルのままとし、スイッチSW4及びSW5の双方をオンさせる期間を作り出している。終了フラグが“LOW”レベルとなると、SW4aON信号及びSW5aON信号の双方を“LOW”レベルとし、スイッチSW4及びSW5をオフさせる。
【0080】
本第8実施形態に係るADC回路によれば、放電期間(初期化期間)においてスイッチSW4及びSW5の双方をオンさせる。これによる利点は、比較入力線8だけでなく、スイッチSW4及び入力端子Ainを放電できることにある。これにより、次回のAD変換に際し、スイッチSW4及び入力端子Ainに蓄積された電荷による干渉を抑制することができ、AD変換自体の精度を向上させることが可能となる。
【0081】
本第8実施形態は、第1実施形態に限って適用されるものではなく、第2〜第8実施形態のいずれにも適用することが可能である。
【0082】
以上、この発明を第1〜第8実施形態により説明したが、この発明は、これら実施形態それぞれに限定されるものではなく、その実施にあたっては、発明の要旨を逸脱しない範囲で種々に変形することが可能である。
【0083】
例えば、Vref制御回路3及び入力制御回路5を、二相クロックφa、φbで制御したが、二相クロックφa、φb以外のクロックでも制御することが可能である。さらに、比較入力線8にはサンプルホールド回路SHが接続されたが、サンプルホールド回路SHは無くても良い。
【0084】
上記第1〜第8実施形態はそれぞれ、単独で実施することが可能であるが、適宜組み合わせて実施することも、もちろん可能である。
【0085】
上記第1〜第8実施形態には、種々の段階の発明が含まれており、各実施形態において開示した複数の構成要件の適宜な組み合わせにより、種々の段階の発明を抽出することも可能である。
【0086】
また、上記第1〜第8実施形態では、この発明をアナログ/デジタル変換回路に適用した例に基づき説明したが、上述したアナログ/デジタル変換回路を内蔵した半導体集積回路装置、例えば、1チップマイクロコンピュータ等もまた、この発明の範疇である。
【0087】
【発明の効果】
以上説明したように、この発明によれば、直前に入力されたアナログ入力の電位の干渉を抑制しつつも、高速なAD変換を行い得るアナログ/デジタル変換回路を提供できる。
【0088】
また、比較器の比較入力線に蓄積された電荷の量を測定することが可能なアナログ/デジタル変換回路のテスト方法を提供できる。
【図面の簡単な説明】
【図1】図1はこの発明の第1実施形態に係るADC回路の一例を示す回路図
【図2】図2はこの発明の第1実施形態に係るADC回路の動作の一例を示す動作波形図
【図3】図3はこの発明の第1実施形態に係るADC回路から得られる効果を示す図
【図4】図4はこの発明の第2実施形態に係るADC回路の一例を示す回路図
【図5】図5はこの発明の第2実施形態に係るADC回路の動作の一例を示す動作波形図
【図6】図6はこの発明の第3実施形態に係るADC回路の一例を示す回路図
【図7】図7はこの発明の第3実施形態に係るADC回路の動作の一例を示す動作波形図
【図8】図8はこの発明の第4実施形態に係るADC回路の一例を示す回路図
【図9】図9はこの発明の第4実施形態に係るADC回路の動作の一例を示す動作波形図
【図10】図10はこの発明の第5実施形態に係るADC回路の一例を示す回路図
【図11】図11はこの発明の第5実施形態に係るADC回路の動作の一例を示す動作波形図
【図12】図12はこの発明の第6実施形態に係るADC回路の一例を示す回路図
【図13】図13はこの発明の第6実施形態に係るADC回路の動作の一例を示す動作波形図
【図14】図14はこの発明の第7実施形態に係るADC回路の一例を示す回路図
【図15】図13はこの発明の第7実施形態に係るADC回路の動作の一例を示す動作波形図
【図16】図16はこの発明の第8実施形態に係るADC回路の一例を示す回路図
【図17】図17はこの発明の第8実施形態に係るADC回路の動作の一例を示す動作波形図
【符号の説明】1…比較器、2…データバッファ、3…Vref制御回路、4…クロック発生器、5…入力制御回路、6…書込み回路、7…データレジスタ、8…比較入力線
【発明の属する技術分野】
この発明は、アナログ/デジタル変換回路およびそのテスト方法に関する。
【0002】
【従来の技術】
アナログ/デジタル変換回路(以下ADC回路)の測定精度は、8ビット、10ビットと向上、さらに入力数も増加している。この傾向は、例えば、1チップマイクロコンピュータに内蔵されたADC回路において顕著である。1チップマイクロコンピュータに内蔵されたADC回路は、通常、1変換回路である。1変換回路の場合、多数のアナログ入力(以下Ain入力)の中から、AD変換するAin入力を順次選択し、切換えながら一つずつAD変換を行う。このAD変換方式では、Ain入力の電位に大きな差があると、直前に測定したAin入力の電荷がADC回路中に残り、次に測定するAin入力の電位に干渉することがある。この干渉を解消するために、AD変換(ノーマルAD変換)後に、ダミーAD変換を1回行い、ADC回路中に残った電荷を放電した上で、次のAD変換を行うようにしている。
【0003】
また、特許文献1には、1変換回路のADC回路が記載されている。このADC回路は、多チャンネルのAin入力をマルチプレクサにより順次選択し、切換えながら一つずつAD変換を行う。特許文献1では、ADC回路中のオペアンプの入力に放電回路を設け、AD変換後に、ADC回路中の浮遊容量に蓄積された電荷を放電した上で、次のAD変換を行うようにしている。
【0004】
【特許文献1】
特開2001−111424公報
【0005】
【発明が解決しようとする課題】
しかし、AD変換後にダミーAD変換を行う方式では、AD変換と次のAD変換との間にダミーAD変換が入るので、1回のAD変換期間が見かけ上、2倍以上となり、AD変換時間が長くなる。
【0006】
同様にAD変換後に放電を行う方式においても、AD変換と次のAD変換との間に放電動作が入るので、1回のAD変換期間が見かけ上長くなる。
【0007】
この発明は、上記の事情に鑑み為されたもので、その目的は、直前に入力されたアナログ入力の電位の干渉を抑制しつつも、高速なAD変換を行い得るアナログ/デジタル変換回路を提供することにある。
【0008】
また、比較器の比較入力線に蓄積された電荷の量を測定することが可能なアナログ/デジタル変換回路のテスト方法を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために、この発明の第1態様に係るアナログ/デジタル変換回路は、基準電位とアナログ入力とを比較し、比較結果を出力する比較器と、前記比較器の比較入力線に、アナログ入力を伝える第1スイッチと、前記比較器の比較入力線に、初期化電位を伝える第2スイッチと、AD変換期間中、かつ前記比較器の比較開始から比較終了までの期間外に、前記第2スイッチをオンさせて前記比較器の比較入力線の電位を前記初期化電位に初期化する入力制御回路とを具備する。
【0010】
また、この発明の第2態様に係るアナログ/デジタル変換回路は、基準電位とアナログ入力とを比較し、比較結果を出力する比較器と、前記比較器の比較入力線に、アナログ入力を伝える第1スイッチと、前記比較器の比較入力線に、初期化電位を伝える第2スイッチと、ノーマルAD変換に続くダミーAD変換で、前記第2スイッチをオンさせて前記比較器の比較入力線の電位を前記初期化電位に初期化する入力制御回路と、前記ダミーAD変換を前記ノーマルAD変換よりも高速化する制御、もしくは前記ダミー変換を途中で中止する制御のいずれかを行うAD変換制御回路とを具備する。
【0011】
また、この発明のアナログ/デジタル変換回路のテスト方法は、基準電位とアナログ入力とを比較し、比較結果を出力する比較器と、前記比較器の比較入力線に、アナログ入力を伝える第1スイッチと、前記比較器の比較入力線に、初期化電位を伝える第2スイッチとを具備し、前記第1、第2スイッチをオフさせた状態で、前記比較器の比較動作を実行し、前記比較入力線に蓄積された電荷量を測定する。
【0012】
【発明の実施の形態】
以下、この発明の実施形態を、図面を参照して説明する。この説明に際し、全図にわたり、共通する部分には共通する参照符号を付す。
【0013】
(第1実施形態)
図1はこの発明の第1実施形態に係るADC回路(アナログ/デジタル変換回路)の一例を示す回路図である。本例は、逐次比較型ADC回路に関している。
【0014】
図1に示すように、アナログ入力は入力端子Ainに入力される。入力されたアナログ入力は、スイッチSW4を介してサンプルホールド回路SHに供給され、ホールドされる。ホールドされたアナログ入力は、比較器1のマイナス入力(−)に入力される。比較器1は、ホールドされたアナログ入力の電位と基準電位とを比較し、アナログ入力をデジタル出力に変換する。本例では基準電位として3つの電位Vref1〜Vref3が用意されている。アナログ入力の電位は、電位Vref1〜Vref3の一つと比較され、例えば、2ビットのデジタル出力に変換される。比較器1の出力は、データバッファ2に入力されるとともに、Vref制御回路3に入力される。Vref制御回路3は、比較器1の出力を受け、この出力に基づき、次に選択する基準電位を選択する。
【0015】
クロック発生器4には、クロックが入力される。本例に係るADC回路が1チップマイクロコンピュータに内蔵されている場合、上記クロックは、例えば、システムクロックとなる。クロック発生器4は、入力されたクロックから二相クロックφa、φbを発生させる。二相クロックφa、φbは、ADC回路の動作を制御するクロックであり、Vref制御回路3及び入力制御回路5に供給される。
【0016】
次に、その動作の一例を説明する。
【0017】
図2はこの発明の第1実施形態に係るADC回路の動作の一例を示す動作波形図である。
【0018】
図2に示すように、制御信号のうち、AD変換開始信号がVref制御回路3及び入力制御回路5に取り込まれると、AD変換(アナログ/デジタル変換)が開始される。入力制御回路5はAD変換開始信号を受け、例えば、クロックφaの立ち上がりに同期してSW4aON信号を“HIGH”レベルとする。SW4aON信号が“HIGH”レベルの間、スイッチSW4がオンし、入力端子Ainが比較器1のマイナス入力及びサンプルホールド回路SHに接続される。入力端子Ainに入力されたアナログ入力はスイッチSW4を介してサンプルホールド回路SHに供給され、ホールドされる。ホールドされたアナログ入力は、比較器1の、例えば、マイナス入力(−)に供給される。
【0019】
次に、Vref制御回路3が、例えば、クロックφbの立ち上がりに同期してSW2aON信号を“HIGH”レベルとする。SW2aON信号が“HIGH”レベルの間、スイッチSW2がオンし、抵抗Bと抵抗Cとの接続点が比較器1のプラス入力(+)に接続され、抵抗Bと抵抗Cとの接続点の電位Vref2が、スイッチSW2を介して比較器1のプラス入力に供給される。比較器1は、電位Vref2とアナログ入力の電位とを比較し、1回目の比較器出力を出力する。1回目の比較器出力は、アナログ入力の電位が電位Vref2より高いか低いかを示す出力で、2ビットのデジタル出力の、例えば、上位ビットに対応する。Vref制御回路3は1回目の比較器出力を受け、クロックφaの立ち上がりに同期してデータ取込み信号を出力するとともに、SW1a又はSW3a選択信号を発生させる。データ取込み信号はデータバッファ2に供給され、データバッファ2はデータ取込み信号に基づいて1回目の比較器出力を取り込み、上位ビットとして保持する。SW1a又はSW3a選択信号は、上位ビットが“0”なのか“1”なのかに応じ、スイッチSW1、SW3のいずれをオンさせるかを選択する信号であり、Vref制御回路3中で発生される。比較の結果、“アナログ入力の電位が電位Vref2より高い”、と判断された場合(これを仮に上位ビットが“1”である、とする)にはSW1a選択信号が発生され、スイッチSW1が選択される。反対に“アナログ入力の電位が電位Vref2より低い”、と判断された場合(これを仮に上位ビットが“0”である、とする)にはSW3a選択信号が発生され、スイッチSW3が選択される。
【0020】
次に、Vref制御回路3は、クロックφbの立ち上がりに同期してSW2aON信号を“LOW”レベルとしてスイッチSW2をオフさせる。さらに、Vref制御回路3はクロックφbの立ち上がりに同期し、SW1a選択信号が発生されたのかSW3a選択信号が発生されたのかに基づき、SW1a又はSW3aON信号を“HIGH”レベルとする。SW1aON信号を“HIGH”レベルとした場合には、スイッチSW1がオンする。スイッチSW1は、抵抗Aと抵抗Bとの接続点を比較器1のプラス入力(+)に接続し、抵抗Aと抵抗Bとの接続点の電位Vref1が、スイッチSW1を介して比較器1のプラス入力に供給される。電位Vref1は電位Vref2より高い電位である。反対にSW3aON信号を“HIGH”レベルとした場合には、スイッチSW3がオンする。スイッチSW3は、抵抗Cと抵抗Dとの接続点を比較器1のプラス入力(+)に接続し、抵抗Cと抵抗Dとの接続点の電位Vref3が、スイッチSW3を介して比較器1のプラス入力に供給される。電位Vref3は電位Vref2より低い電位である。
【0021】
次に、比較器1は、電位Vref1又はVref3とアナログ入力の電位とを比較し、2回目の比較器出力を出力する。2回目の比較器出力は、2ビットのデジタル出力の、例えば、下位ビットに対応する。Vref制御回路3は2回目の比較器出力を受け、クロックφaの立ち上がりに同期してデータ取込み信号を出力する。データ取込み信号はデータバッファ2に供給され、データバッファ2はデータ取込み信号に基づいて2回目の比較器出力を取り込み、下位ビットとして保持する。
【0022】
次に、Vref制御回路3は、クロックφbの立ち上がりに同期してSW1a又はSW3aON信号を“LOW”レベルとし、スイッチSW1又はSW3をオフさせる。
【0023】
次に、Vref制御回路3は、クロックφbの立ち上がりに同期して制御信号のうち、終了信号を“HIGH”レベルとする。終了信号は、例えば、比較器1の比較動作が終了したことを示す信号で、例えば、比較器1を非活性化させる役目も持つ。終了信号が“HIGH”レベルになると入力制御回路5はデータ書込み信号を出力する。データ書込み信号は書込み回路6に供給される。書込み回路6はデータ書込み信号に基づいてデータバッファ2が保持している2ビットのデジタル出力をデータレジスタ7に転送する。これにより、2ビットのデジタル出力がデータレジスタ7に書き込まれる。書き込まれた2ビットのデジタル出力は、データ読出し信号に基づきバスに読み出される。
【0024】
データレジスタ7に2ビットのデジタル出力が書き込まれた後、例えば、入力制御回路5はクロックφaの立ち上がりに同期して終了フラグを発生させる。終了フラグが発生されると入力制御回路5は、SW4aON信号を“LOW”レベルとしてスイッチSW4をオフさせるとともに、SW5aON信号を“HIGH”レベルとしてスイッチSW5をオンさせる。SW5aON信号が“HIGH”レベルの間、スイッチSW5はオンし、スイッチSW4から比較器1のマイナス入力までの配線及びサンプルホールド回路SH(以下比較入力線8という)が接地電位Vssに接続される。これにより、比較入力線8に蓄積された電荷が、接地電位Vssに放電される。放電時間は、本例では、終了フラグの立ち上がりから立ち下がりまでの時間と同じとしている。AD変換は、終了フラグが立下がることで終了する。この後、終了信号が“LOW”レベルとなり、例えば、比較器1が活性状態に戻り、ADC回路は、次回のAD変換の開始を待つことになる。
【0025】
本第1実施形態に係るADC回路によれば、AD変換の終了を示す終了フラグが発生されたところで、スイッチSW4がオフし、スイッチSW5がオンするので、比較入力線8中に蓄積されていた電荷が放電される。このため、次回のAD変換に際し、蓄積電荷による干渉を抑制することができる。
【0026】
また、本例の放電は、終了フラグの立ち下がりと同時に終了する。例えば、SW5aON信号は、終了フラグと同時に立ち上がり、終了フラグと同時に立下がる。1回のAD変換期間を、“AD変換開始信号の立ち上がりから終了フラグの立ち下がりまで”と考えると、本例の放電は1回のAD変換期間中に終わる。
【0027】
このように本第1実施形態に係るADC回路は、図3に示すように、“AD変換期間中に放電する”ので、“AD変換期間が終了した後に放電する”というADC回路に比較してAD変換時間を短縮できる、という利点を得ることができる。
【0028】
なお、本例において、SW5aON信号は終了フラグの立ち上がりにて発生させたが、終了信号の立ち上がりにて発生させるようにしても良い。この場合には、終了フラグの立ち上がりにてSW4aON信号を“LOW”レベルとしてスイッチSW4をオフさせるとともに、SW5aON信号を“HIGH”レベルとしてスイッチSW5をオンさせる。このようにした場合には、終了フラグの立ち上がりにてスイッチSW4をオフ、スイッチSW5をオンさせる場合に比較して、比較入力線8の放電時間を長くでき、比較入力線8を十分に放電できる利点がある。
【0029】
また、本例において、SW5aON信号は終了フラグと別の信号として発生させたが、SW5aON信号は終了フラグと同じ信号としても良い。例えば、終了フラグを用いてスイッチSW5をオンさせるようにしても良い。この場合には、SW5aON信号が終了フラグとシェアされるので、SW5aON信号を発生させる回路を別途設ける必要が無く、回路数を削減できる利点がある。
【0030】
また、本例では、入力端子Ainと比較入力線8との間にスイッチSW4を有し、接地電位Vssと比較入力線8との間にスイッチSW5を有する。これらスイッチSW4、SW5を有するADC回路によれば、例えば、比較入力線8に蓄積される電荷量を測定するテストが可能となる。即ち、スイッチSW4、SW5をオフさせた状態で、比較器1の比較動作を実行すれば、比較入力線に蓄積された電荷の量を測定することができる。
【0031】
(第2実施形態)
図4はこの発明の第2実施形態に係るADC回路の一例を示す回路図、図5はその動作の一例を示す動作波形図である。
【0032】
第2実施形態は、入力制御回路5−2の構成が第1実施形態と異なり、特にSW4aON信号、及びSW5aON信号の発生方式が異なる。
【0033】
第1実施形態の入力制御回路5は、図2に示したように、AD変換開始信号が“HIGH”レベルになると同時にSW4aON信号を“HIGH”レベルとしてスイッチSW4をオンさせた。比較終了後、終了フラグが“HIGH”レベルとなると同時にSW4aON信号を“LOW”レベルとしてスイッチSW4をオフさせるとともに、SW5aON信号を“HIGH”レベルとしてスイッチSW5をオンさせ、終了フラグが“LOW”レベルとなると同時にSW5aON信号を“LOW”レベルとしてスイッチSW5をオフさせた。
【0034】
対して、第2実施形態の入力制御回路5−2は、図4及び図5に示すように、AD変換開始信号が“HIGH”レベルとなると同時にSW5aON信号を“HIGH”レベルとしてスイッチSW5をオンさせ、AD変換開始信号が“LOW”レベルとなると同時にSW5aON信号を“LOW”レベルとしてスイッチ5Wをオフさせる。この後、例えば、SW2aON信号が“HIGH”レベルとなると同時にSW4aON信号を“HIGH”レベルとしてスイッチSW4をオンさせ、比較を開始する。比較終了後、終了信号が“LOW”レベルとなると同時にSW4aON信号を“LOW”としてスイッチSW4をオフさせる。
【0035】
蓄積電荷の放電は、アナログ入力と基準電位との比較前に行うようにしても良い。このような第2実施形態においても、比較前に、比較入力線8中に蓄積されていた電荷を放電できるので、第1実施形態と同様に、蓄積電荷による干渉を抑制することができる。
【0036】
また、放電はAD変換開始信号の立ち上がりと同時に開始され、その立ち下がりと同時に終了する。AD変換期間を、“AD変換開始信号の立ち上がりから終了フラグの立ち下がりまで”と考えると、本例の放電もAD変換期間中に開始され、AD変換期間中に終わることになる。このため、図3を参照して説明した、第1実施形態と同様な利点を得ることができる。
【0037】
なお、本例において、SW5aON信号はAD変換開始信号と別の信号として発生させたが、SW5aON信号はAD変換開始信号と同じ信号としても良い。例えば、AD変換開始信号を用いてスイッチSW5をオンさせるようにしても良い。この場合には、SW5aON信号がAD変換開始信号とシェアされるので、SW5aON信号を発生させる回路を別途設ける必要が無く、回路数を削減できる利点がある。
【0038】
(第3実施形態)
図6はこの発明の第3実施形態に係るADC回路の一例を示す回路図、図7はその動作の一例を示す動作波形図である。
【0039】
第3実施形態が第1実施形態と異なるところは、接地電位Vss以外の電位を比較入力線8に供給できるようにしたことである。これにより、比較入力線8の電位を接地電位Vssにするばかりでなく、比較入力線8の電位を、比較前に、放電又は充電によって所定の電位にすることが可能となる。以下、本明細書では、比較入力線8の電位を、比較前に、放電によって接地電位Vssにする、あるいは放電又は充電によって所定の電位にすることを総称して、電位の初期化と呼ぶことにする。接地電位Vss及び接地電位Vss以外への電位の初期化は、例えば、様々な方式のアナログ入力に対応しつつ、蓄積電荷の干渉を抑制できる、という利点がある。
【0040】
アナログ入力の方式、例えば、変換方式には、第1、第2実施形態とは反対に、比較入力線8を所定の電位に充電し、アナログ入力により放電する方式もある。このような方式の場合、初期化電位は、例えば、電源電位Vddとされる。初期化電位として、接地電位Vssに加えて電源電位Vddを用意しておけば、一つのチップで、比較入力線8を予め放電しておきアナログ入力で充電する方式、及び比較入力線8を予め充電しておきアナログ入力で放電する方式の双方に対応できる。
【0041】
さらに、本例では、初期化電位として、接地電位Vss及び電源電位Vddに加え、接地電位Vssと電源電位Vddとの間の電位が用意されている。これによる利点は、アナログ入力による充電又は放電を高速に行えることである。
【0042】
アナログ入力の入力方式には、アナログ入力が0V(=Vss)〜5V(=Vdd)の範囲で入力されるものばかりでなく、アナログ入力の最低電位が接地電位Vssよりも高いものがある。この方式の場合、比較入力線8の電位を、比較前に、接地電位Vssで初期化してしまうと、比較入力線8の充電に時間がかかることになる。そこで、比較入力線8の電位を、接地電位Vssよりも高い電位で初期化する。初期化電位の一例は、アナログ入力の最低電位もしくは最低電位に近い電位である。初期化電位を、アナログ入力の最低電位もしくは最低電位に近い電位とすれば、比較入力線8を高速に充電でき、AD変換時間を短縮できる。
【0043】
上記入力方式は、アナログ入力によって放電する変換方式においても同様に存在する。アナログ入力の最大電位が、電源電位Vddよりも低い場合である。この方式においては、比較入力線8を、アナログ入力の最大電位に応じて電源電位Vddよりも低い電位で初期化すれば良い。これによって、比較器1のマイナス入力をアナログ入力の電位に高速に放電でき、AD変換時間を短縮できる。
【0044】
アナログ入力には、多様な変換方式及び入力方式が考えられ、最低電位や最大電位は一概には決まらない。そこで、初期化電位として、接地電位Vss及び電源電位Vddを含め、何段階かの電位を用意しておくのが良い。何段階かの電位を用意しておくことで、一つのチップで、多様な変換方式及び入力方式に対応することができる。本第3実施形態では、図6に示すように、初期化電位として、接地電位Vss及び電源電位Vddを含め、電位Vref1〜Vref3の、合計5つの電位が用意されている。初期化電位は、5つの電位から選ばれ、選ばれた電位が比較入力線8に供給される。
【0045】
複数の初期化電位は、電位発生回路を用いてそれぞれ個別に発生させるようにしても良いが、比較用の基準電位を発生させる基準電位発生回路を利用しても良い。本第3実施形態では後者を採用している。後者の利点は、元々チップ中に存在している基準電位発生回路を利用するので電位発生回路を別に設ける必要が無く、チップ面積増加を抑制できることにある。本第3実施形態では、比較入力線8に、スイッチSW0V〜SW4Vを介して、接地電位Vssの供給端、電位Vref3〜Vref1の供給端、及び電源電位Vddの供給端が接続される。スイッチSW0V〜SW4Vは、例えば、入力制御回路5−3から出力されたSW0Va〜SW4VaON信号によって一つが選ばれ、選ばれた一つがオンする。
【0046】
次に、その動作の一例を説明する。
【0047】
図7に示すように、本第3実施形態の動作は、第1実施形態の動作と略同じである。異なるところは、終了信号が“HIGH”レベルとなると同時に、例えば、入力制御回路5−3中で発生されるSW0Va〜SW4Va選択信号の一つが“HIGH”レベルとなる。次いで、終了フラグが“HIGH”レベルとなると同時に、SW4aON信号が“LOW”レベル、SW0Va〜SW4VaON信号の一つが“HIGH”レベルとなり、スイッチSW4aがオフ、スイッチSW0V〜SW4Vのいずれか一つがオンする。この結果、接地電位Vssの供給端、電位Vref3〜Vref1の供給端、及び電源電位Vddの供給端のいずれか一つが比較入力線8に接続され、比較入力線8が選ばれた電位に初期化される。次いで、終了フラグが“LOW”レベルとなると同時にSW0Va〜SW4VaON信号の一つが“HIGH”レベルから“LOW”レベルとなり、オンしていたスイッチSW0V〜SW4Vがオフする。次いで、終了信号が“LOW”レベルとなると同時に、SW0Va〜SW4Va選択信号の一つが“HIGH”レベルから“LOW”レベルとなる。これにより、ADC回路は、例えば、待機状態に戻り、次回のAD変換の開始を待つ。
【0048】
本第3実施形態においても、第1実施形態と同様の動作をするので、第1実施形態と同様の利点を得ることができる。
【0049】
さらに、第3実施形態によれば、比較入力線8を、予め用意された複数の初期化電位のいずれか一つの電位に初期化するので、多様なアナログ入力に対応しつつ、次回のAD変換に際し、蓄積電荷の干渉を抑制できる、という利点を得ることができる。また、AD変換を高速化できる、という利点を得ることができる。
【0050】
なお、本例において、SW0Va〜SW4VaON信号は終了フラグと別の信号として発生させたが、SW0Va〜SW4VaON信号は終了フラグと同じ信号としても良い。例えば、SW0Va〜SW4Va選択信号を利用して、終了フラグをスイッチSW0V〜SW4Vの一つに転送するようにしても良い。
【0051】
SW0Va〜SW4Va選択信号はハード的にいずれか一つを固定し、固定された一つを常に発生するようにしても良いし、アナログ入力に応じてSW0Va〜SW4Va選択信号の一つを選択し、発生するようにしても良い。
【0052】
(第4実施形態)
図8はこの発明の第4実施形態に係るADC回路の一例を示す回路図、図9はその動作の一例を示す動作波形図である。
【0053】
第4実施形態が第1実施形態と異なるところは、比較入力線8の初期化電位を、AD変換の結果に基づいて選択することである。本第4実施形態では、図8に示すように、比較器出力を参照し、入力制御回路5−4がSW5a又はSW5bON信号を出力し、スイッチSW5a又はスイッチSW5bのいずれかをオンさせる。スイッチSW5aがオンした場合、初期化電位は、例えば、電源電位Vddとなり、スイッチSW5bがオンした場合には、例えば接地電位Vssとなる。初期化電位を、電源電位Vdd及び接地電位Vssのいずれにするかは、例えば、アナログ入力の入力値に基づき決定される。その一例は、次回の比較前に、比較入力線8を、アナログ入力の入力値と逆極性の電位に初期化することである。アナログ入力が、例えば、0V(=Vss)〜5V(=Vdd)の範囲で入力される、と仮定する。1回目の比較ではアナログ入力の入力値が2.5Vより高いか低いかが判定され、その判定結果が1回目の比較器出力として出力される。入力制御回路5−4は、1回目の比較器出力に基づき、入力値が2.5Vより高い場合には、次回の比較前に、比較入力線8を接地電位Vssに放電させ、反対に低い場合には電源電位Vddに充電するように制御する。アナログ入力の入力値と逆極性の電位に初期化することの利点は、有効なAD変換であるか否かを判断できることにある。初期化電位を接地電位Vss又は電源電位Vddのいずれかに固定した場合には、比較器1が比較したアナログ入力の電位が、アナログ入力自体の電位に基づくものなのか、初期化電位に基づくものなのかを判断できない。そこで、アナログ入力の入力値と逆極性の電位に初期化しておく。次回の比較の際、比較器1のアナログ入力の電位が、初期化電位から逆極性の方向へ変動すれば、“比較器1が比較した電位はアナログ入力の電位に基づくものである”と判断できる。この結果、“有効なAD変換である”と判断できる。アナログ入力は連続値であるから、入力値0Vの次に入力値5Vとなることはない。また、短期間、例えば比較入力線8の初期化中に、アナログ入力が0Vから5Vに変動する可能性も極めて低い。よって、比較器1の入力電位が反転する方向に動けば、入力されたアナログ入力は有効である、と判断できる。
【0054】
次に、その動作の一例を説明する。
【0055】
図9に示すように、本第4実施形態の動作は、第1実施形態の動作と略同じである。異なるところは、(上位)データ取り込み信号が“HIGH”レベルとなると同時に、1回目の比較器出力に基づきSW5a又はSW5b選択信号が“HIGH”レベルとなり、スイッチSW5aをオンさせるかSW5bをオンさせるかが決定される。この後、終了フラグが“HIGH”レベルとなると同時に、SW4a信号が“LOW”レベル、SW5a又はSW5bON信号のいずれかが“HIGH”レベルとなり、スイッチSW4がオフ、スイッチSW5a、SW5bのいずれかがオンし、電源電位Vddの供給端、接地電位Vssの供給端のいずれかが比較入力線8に接続され、比較入力線8が電源電位Vdd又は接地電位Vssのいずれかの電位に初期化される。次いで、終了フラグが“LOW”レベルとなると同時にSW5a〜SW5bON信号のいずれかが“HIGH”レベルから“LOW”レベルとなり、オンしていたスイッチSW5a又はSW5bがオフする。次いで、終了信号が“LOW”レベルとなると同時に、SW5a又はSW5b選択信号のいずれかが“HIGH”レベルから“LOW”レベルとなる。これにより、ADC回路は、例えば、待機状態に戻り、次回のAD変換の開始を待つ。
【0056】
本第4実施形態においても、第1実施形態と同様の動作をするので、第1実施形態と同様の利点を得ることができる。
【0057】
さらに、本第4実施形態によれば、アナログ入力の入力値に基づき、比較入力線8を、次回の比較前に、アナログ入力の入力値と逆極性の電位に初期化する。このため、有効なAD変換であるか否かを判断でき、誤AD変換を抑制できる、という利点を得ることができる。
【0058】
なお、本例において、SW5a又はSW5bON信号は終了フラグと別の信号として発生させたが、SW5a又はSW5bON信号は終了フラグと同じ信号としても良い。例えば、SW5a又はSW5b選択信号を利用して、終了フラグをスイッチSW5a又はSW5bのいずれかに転送するようにしても良い。
【0059】
(第5実施形態)
図10はこの発明の第5実施形態に係るADC回路の一例を示す回路図、図11はその動作の一例を示す動作波形図である。
【0060】
第5実施形態が第1実施形態と異なるところは、図10及び図11に示すように、比較入力線8の電位の初期化を、ノーマルAD変換に続くダミーAD変換で行うことにある。さらに、本例では、ダミーAD変換をノーマルAD変換よりも高速化して行う。ダミーAD変換は、比較入力線8の電位を初期化することが目的であり、ノーマルAD変換のような測定精度は要求されない。この点に鑑み、ダミーAD変換をノーマルAD変換よりも高速化する。これにより、AD変換後にダミーAD変換を行う方式を踏襲しつつも、従来のAD変換後にダミーAD変換を行う方式に比較し、見かけ上、1回のAD変換期間を短縮できる。ダミーAD変換を高速化する一例は、ダミーAD変換期間中のクロックの周波数を、ノーマルAD変換期間中よりも高めることである。本例では、図10に示すように、クロック発生器4−2に、制御信号としてクロック変更信号を入力し、クロック変更信号に基づき二相クロックφa、φbの周波数を高周波化する。
【0061】
さらに、本例では第1実施形態と同様のスイッチSW5を設け、比較入力線8に初期化電位を供給できるようにした。
【0062】
さらに、本例では初期化電位を固定せず、入力端子Ain1を設け、初期化電位をユーザー自身が自由に選べられるようにした。ユーザーは、初期化電位として接地電位Vssを希望するのであれば、入力端子Ain1に接地電位Vssを与えれば良い。もちろん、初期化電位は、電源電位Vddとすることもでき、電源電位Vddと接地電位Vssとの間のいかなる電位とすることも自由である。このような入力端子Ain1は、本例に限って利用されるものではなく、上述した実施形態に利用することも可能である。
【0063】
次に、その動作の一例を説明する。
【0064】
図11に示すように、本第5実施形態の動作は、例えば、ノーマルAD変換の終了を示す終了フラグが立上がるまで、第1実施形態の動作と略同じである。異なるところは、終了フラグが立ち上がった後の動作である。本例では、終了フラグが“HIGH”レベルとなると、入力制御回路5−5は、SW4aON信号が“LOW”レベル、SW5aON信号が“HIGH”レベルとし、スイッチSW4をオフ、SW5をオンさせる。これにより比較入力線8が入力端子Ain1に接続される。入力端子Ain1には初期化電位が供給されている。本例では、終了フラグが“HIGH”レベルとなると同時にAD変換開始信号が“HIGH”レベルとなる。これにより、ノーマルAD変換に続いてダミーAD変換が開始される。さらに、終了フラグが“HIGH”レベルとなると、クロック変更信号が“HIGH”レベルとなる。クロック変更信号は、入力制御回路5−5が発生するようにしても良いし、制御信号を出力する制御回路(図示せず)が終了フラグを受けて発生するようにしても良い。クロック変更信号は、クロック発生器4−2に供給される。クロック発生器4−2は、クロック変更信号に基づき二相クロックφa、φbの周波数を高周波化する。Vref制御回路3−2、入力制御回路5−5は、高周波化された二相クロックφa、φbを受け、ダミーAD変換の動作をノーマルAD変換の動作に比較して高速化させる。ダミーAD変換の動作はノーマルAD変換の動作と、“動作が高速化されること”、及び“比較入力線8の電位がアナログ入力(Ain0)から初期化電位(Ain1)となること”で特に異なり、その余の点は略同じ動作である。ダミーAD変換の終了を示す終了フラグが“HIGH”レベルとなると、クロック変更信号は“LOW”レベルとなり、クロック発生器4−2は、二相クロックの周波数を、ノーマルAD変換時の周波数に戻す。さらに、本例では、終了フラグが“HIGH”レベルとなると、SW5aON信号が“LOW”レベルとなり、スイッチSW5がオフする。この後、終了信号が“HIGH”レベルから“LOW”レベルとなり、ADC回路は、次回のAD変換の開始を待つ。
【0065】
本第5実施形態に係るADC回路によれば、ノーマルAD変換に続くダミーAD変換を、ノーマルAD変換よりも高速化するので、AD変換後にダミーAD変換を行う方式を踏襲しつつも、従来のAD変換後にダミーAD変換を行う方式に比較し、見かけ上、1回のAD変換期間を短縮できる、という利点を得ることができる。
【0066】
また、本例では、ノーマルAD変換からダミーAD変換に移行する際、ノーマルAD変換の終了を示す終了フラグを“HIGH”レベルとすると同時に、ダミーAD変換の開始を示すAD変換開始信号を“HIGH”レベルとする。これにより、ノーマルAD変換期間に、ダミーAD変換期間の一部をオーバーラップさせることができる。ノーマルAD変換期間に、ダミーAD変換期間の一部をオーバーラップさせることによる利点は、例えば、ノーマルAD変換からダミーAD変換への移行を、オーバーラップさせずにシリースに行う場合に比較して、ダミーAD変換期間を短縮できることにある。
【0067】
なお、本例において、SW5aON信号及びクロック変更信号は別の信号として発生させたが、SW5aON信号をクロック変更信号と同じ信号としても良い。例えば、SW5aON信号をクロック発生器4−2に入力し、クロック発生器4−2がSW5aON信号に基づき二相クロックφa、φbの周波数を高めるようにしても良い。反対にクロック変更信号を用いてスイッチSW5をオンさせるようにしても良い。これらの場合には、SW5aON信号及びクロック変更信号が互いにシェアされるので、SW5aON信号を発生させる回路、もしくはクロック変更信号を発生する回路を別途設ける必要が無く、回路数を削減できる利点がある。
【0068】
(第6実施形態)
図12はこの発明の第6実施形態に係るADC回路の一例を示す回路図、図13はその動作の一例を示す動作波形図である。
【0069】
本第6実施形態は、第5実施形態と同様に比較入力線8の電位の初期化を、ノーマルAD変換に続くダミーAD変換で行う。本第6実施形態が、第5実施形態と異なるところは、クロックの周波数を変更しないことであり、代わりにダミーAD変換を途中で中止し、ダミーAD変換期間を短縮したことにある。第5実施形態でも説明したように、ダミーAD変換は、比較入力線8の電位を初期化することが目的であり、AD変換を目的とするものではない。この点に鑑み、ダミーAD変換を途中で中止することも可能である。ダミーAD変換の一例は、図12に示すように、AD変換を中止する中止信号を、ダミーAD変換途中にVref制御回路3−3及び入力制御回路5−6に入力することである。Vref制御回路3−3及び入力制御回路5−6は、中止信号に基づき、ダミーAD変換を途中で中止する。
【0070】
次に、その動作の一例を説明する。
【0071】
図13に示すように、本第6実施形態の動作は、第5の実施形態の動作と、例えば、クロック変更信号を発生させないこと、及びダミーAD変換の途中で中止信号を発生させ、ダミーAD変換を途中で終了させることが相違し、その余の点はほぼ同様である。具体的には、ノーマルAD変換の終了示す終了フラグが“HIGH”レベルとなるとともに、SW4aON信号を“LOW”レベル、SW5aON信号を“HIGH”レベルとし、スイッチSW4をオフ、SW5をオンさせる。また、ダミーAD変換の開始を示すAD変換開始信号を“HIGH”レベルとし、ダミーAD変換を開始させる。次に、AD変換開始信号が“HIGH”レベルとなったときから、例えば、クロックφaの次に立ち上がりエッジにて、AD変換を中止する中止信号を“HIGH”レベルとする。中止信号は、例えば、制御信号を発生させる制御回路(図示せず)にて発生されても良く、入力制御回路5−6にて発生されても良い。中止信号は、Vref制御回路3−3及び入力制御回路5−6に入力される。Vref制御回路3−3及び入力制御回路5−6は、中止信号が入力されると、そのAD変換動作を中止し、終了させる。また、入力制御回路5−6は、中止信号が“HIGH”レベルとなると同時にSW5aON信号を“LOW”レベルとし、スイッチSW5をオフさせる。
【0072】
本第6実施形態に係るADC回路によれば、ノーマルAD変換に続くダミーAD変換を、その途中で中止するので、第5実施形態と同様に、AD変換後にダミーAD変換を行う方式を踏襲しつつも、従来のAD変換後にダミーAD変換を行う方式に比較し、見かけ上、1回のAD変換期間を短縮できる、という利点を得ることができる。
【0073】
また、本例においても、第5実施形態同様に、ノーマルAD変換の終了を示す終了フラグを“HIGH”レベルとすると同時に、ダミーAD変換の開始を示すAD変換開始信号を“HIGH”レベルとする。このため、例えば、ノーマルAD変換からダミーAD変換への移行を、オーバーラップさせずにシリースに行う場合に比較して、ダミーAD変換期間を短縮できる、という利点を得ることができる。
【0074】
(第7実施形態)
図14はこの発明の第7実施形態に係るADC回路の一例を示す回路図、図15はその動作の一例を示す動作波形図である。
【0075】
本第7実施形態は、第5実施形態によるダミーAD変換を高速化する、という技術と、第6実施形態によるダミーAD変換を途中で中止する、という技術とを併せ持たせたものである。本第7実施形態は、図14及び図15に示すように、クロック発生器4−3は、クロック変更信号に基づき、二相クロックφa、φbの周波数を高周波化する。(なお、本例の図15に示す動作では、ダミーAD変換が途中で中止されるために、クロックφbの周波数については高周波化される前に、高周波化が中止されている。)Vref制御回路3−4及び入力制御回路5−7は、高周波化された二相クロックφa、φbを受け、ダミーAD変換の動作をノーマルAD変換の動作に比較して高速化させる。これとともに、中止信号が入力されると、AD変換を途中で中止する。
【0076】
本第7実施形態によれば、ダミーAD変換を、ノーマルAD変換よりも高速化するので、第5実施形態と同様に、見かけ上、1回のAD変換期間を短縮できる、という利点を得ることができる。
【0077】
さらに、高速化されたダミーAD変換を途中で中止するので、第5実施形態に比較し、ダミーAD変換期間をさらに短縮できる、という利点を得ることができる。
【0078】
(第8実施形態)
図16はこの発明の第8実施形態に係るADC回路の一例を示す回路図、図17はその動作の一例を示す動作波形図である。
【0079】
図16及び図17に示すように、第8実施形態は、入力制御回路5−8の構成が第1実施形態と異なり、特に放電期間(初期化期間)においてスイッチSW4及びSW5の双方をオンさせることが異なる。本例では、終了フラグが“HIGH”レベルとなると、SW5aON信号を“HIGH”レベルとする。このとき、SW4a信号は“HIGH”レベルのままとし、スイッチSW4及びSW5の双方をオンさせる期間を作り出している。終了フラグが“LOW”レベルとなると、SW4aON信号及びSW5aON信号の双方を“LOW”レベルとし、スイッチSW4及びSW5をオフさせる。
【0080】
本第8実施形態に係るADC回路によれば、放電期間(初期化期間)においてスイッチSW4及びSW5の双方をオンさせる。これによる利点は、比較入力線8だけでなく、スイッチSW4及び入力端子Ainを放電できることにある。これにより、次回のAD変換に際し、スイッチSW4及び入力端子Ainに蓄積された電荷による干渉を抑制することができ、AD変換自体の精度を向上させることが可能となる。
【0081】
本第8実施形態は、第1実施形態に限って適用されるものではなく、第2〜第8実施形態のいずれにも適用することが可能である。
【0082】
以上、この発明を第1〜第8実施形態により説明したが、この発明は、これら実施形態それぞれに限定されるものではなく、その実施にあたっては、発明の要旨を逸脱しない範囲で種々に変形することが可能である。
【0083】
例えば、Vref制御回路3及び入力制御回路5を、二相クロックφa、φbで制御したが、二相クロックφa、φb以外のクロックでも制御することが可能である。さらに、比較入力線8にはサンプルホールド回路SHが接続されたが、サンプルホールド回路SHは無くても良い。
【0084】
上記第1〜第8実施形態はそれぞれ、単独で実施することが可能であるが、適宜組み合わせて実施することも、もちろん可能である。
【0085】
上記第1〜第8実施形態には、種々の段階の発明が含まれており、各実施形態において開示した複数の構成要件の適宜な組み合わせにより、種々の段階の発明を抽出することも可能である。
【0086】
また、上記第1〜第8実施形態では、この発明をアナログ/デジタル変換回路に適用した例に基づき説明したが、上述したアナログ/デジタル変換回路を内蔵した半導体集積回路装置、例えば、1チップマイクロコンピュータ等もまた、この発明の範疇である。
【0087】
【発明の効果】
以上説明したように、この発明によれば、直前に入力されたアナログ入力の電位の干渉を抑制しつつも、高速なAD変換を行い得るアナログ/デジタル変換回路を提供できる。
【0088】
また、比較器の比較入力線に蓄積された電荷の量を測定することが可能なアナログ/デジタル変換回路のテスト方法を提供できる。
【図面の簡単な説明】
【図1】図1はこの発明の第1実施形態に係るADC回路の一例を示す回路図
【図2】図2はこの発明の第1実施形態に係るADC回路の動作の一例を示す動作波形図
【図3】図3はこの発明の第1実施形態に係るADC回路から得られる効果を示す図
【図4】図4はこの発明の第2実施形態に係るADC回路の一例を示す回路図
【図5】図5はこの発明の第2実施形態に係るADC回路の動作の一例を示す動作波形図
【図6】図6はこの発明の第3実施形態に係るADC回路の一例を示す回路図
【図7】図7はこの発明の第3実施形態に係るADC回路の動作の一例を示す動作波形図
【図8】図8はこの発明の第4実施形態に係るADC回路の一例を示す回路図
【図9】図9はこの発明の第4実施形態に係るADC回路の動作の一例を示す動作波形図
【図10】図10はこの発明の第5実施形態に係るADC回路の一例を示す回路図
【図11】図11はこの発明の第5実施形態に係るADC回路の動作の一例を示す動作波形図
【図12】図12はこの発明の第6実施形態に係るADC回路の一例を示す回路図
【図13】図13はこの発明の第6実施形態に係るADC回路の動作の一例を示す動作波形図
【図14】図14はこの発明の第7実施形態に係るADC回路の一例を示す回路図
【図15】図13はこの発明の第7実施形態に係るADC回路の動作の一例を示す動作波形図
【図16】図16はこの発明の第8実施形態に係るADC回路の一例を示す回路図
【図17】図17はこの発明の第8実施形態に係るADC回路の動作の一例を示す動作波形図
【符号の説明】1…比較器、2…データバッファ、3…Vref制御回路、4…クロック発生器、5…入力制御回路、6…書込み回路、7…データレジスタ、8…比較入力線
Claims (13)
- 基準電位とアナログ入力とを比較し、比較結果を出力する比較器と、
前記比較器の比較入力線に、アナログ入力を伝える第1スイッチと、
前記比較器の比較入力線に、初期化電位を伝える第2スイッチと、
AD変換期間中、かつ前記比較器の動作期間外に、前記第2スイッチをオンさせて前記比較器の比較入力線の電位を前記初期化電位に初期化する入力制御回路と
を具備することを特徴とするアナログ/デジタル変換回路。 - 前記比較器の比較入力線は、前記比較器の比較終了から前記AD変換期間終了までの期間に初期化されることを特徴とする請求項1に記載のアナログ/デジタル変換回路。
- 前記比較器の比較入力線は、前記AD変換期間開始から前記比較器の比較開始までの期間に初期化されることを特徴とする請求項1に記載のアナログ/デジタル変換回路。
- 基準電位とアナログ入力とを比較し、比較結果を出力する比較器と、
前記比較器の比較入力線に、アナログ入力を伝える第1スイッチと、
前記比較器の比較入力線に、初期化電位を伝える第2スイッチと、
ノーマルAD変換に続くダミーAD変換で、前記第2スイッチをオンさせて前記比較器の比較入力線の電位を前記初期化電位に初期化するとともに、前記ダミーAD変換を前記ノーマルAD変換よりも高速化する制御を行う制御回路と
を具備することを特徴とするアナログ/デジタル変換回路。 - 基準電位とアナログ入力とを比較し、比較結果を出力する比較器と、
前記比較器の比較入力線に、アナログ入力を伝える第1スイッチと、
前記比較器の比較入力線に、初期化電位を伝える第2スイッチと、
ノーマルAD変換に続くダミーAD変換で、前記第2スイッチをオンさせて前記比較器の比較入力線の電位を前記初期化電位に初期化するとともに、前記ダミーAD変換を途中で中止する制御を行う制御回路と
を具備することを特徴とするアナログ/デジタル変換回路。 - 基準電位とアナログ入力とを比較し、比較結果を出力する比較器と、
前記比較器の比較入力線に、アナログ入力を伝える第1スイッチと、
前記比較器の比較入力線に、初期化電位を伝える第2スイッチと、
ノーマルAD変換に続くダミーAD変換で、前記第2スイッチをオンさせて前記比較器の比較入力線の電位を前記初期化電位に初期化するとともに、前記ダミーAD変換を前記ノーマルAD変換よりも高速化させ、かつ前記ダミーAD変換を途中で中止する制御を行うAD変換制御回路と
を具備することを特徴とするアナログ/デジタル変換回路。 - 前記比較器の比較入力線が初期化されている間、前記第1スイッチはオフされることを特徴とする請求項1乃至請求項6いずれか一項に記載のアナログ/デジタル変換回路。
- 前記比較器の比較入力線が初期化されている間、前記第1スイッチはオンされることを特徴とする請求項1乃至請求項6いずれか一項に記載のアナログ/デジタル変換回路。
- 前記基準電位を発生する基準電位発生回路をさらに具備し、
前記初期化電位は前記基準電位発生回路から得ることを特徴とする請求項1乃至請求項8いずれか一項に記載のアナログ/デジタル変換回路。 - 前記初期化電位を入力する入力端子をさらに具備することを特徴とする請求項1乃至請求項8いずれか一項に記載のアナログ/デジタル変換回路。
- 前記初期化電位は複数有り、前記入力制御回路は前記アナログ入力の方式に応じて、前記複数の初期化電位からいずれか一つを選択することを特徴とする請求項1乃至請求項9いずれか一項に記載のアナログ/デジタル変換回路。
- 前記初期化電位は複数有り、前記入力制御回路は、前記比較器の比較結果に応じて前記アナログ入力の入力値と逆極性となるように、前記複数の初期化電位からいずれか一つを選択することを特徴とする請求項1及び請求項10いずれかに記載のアナログ/デジタル変換回路。
- 基準電位とアナログ入力とを比較し、比較結果を出力する比較器と、
前記比較器の比較入力線に、アナログ入力を伝える第1スイッチと、
前記比較器の比較入力線に、初期化電位を伝える第2スイッチとを具備し、
前記第1、第2スイッチをオフさせた状態で、前記比較器の比較動作を実行し、前記比較入力線に蓄積された電荷の量を測定することを特徴とするアナログ/デジタル変換回路のテスト方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003195975A JP2005033483A (ja) | 2003-07-11 | 2003-07-11 | アナログ/デジタル変換回路およびそのテスト方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003195975A JP2005033483A (ja) | 2003-07-11 | 2003-07-11 | アナログ/デジタル変換回路およびそのテスト方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005033483A true JP2005033483A (ja) | 2005-02-03 |
Family
ID=34206653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003195975A Pending JP2005033483A (ja) | 2003-07-11 | 2003-07-11 | アナログ/デジタル変換回路およびそのテスト方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005033483A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8054302B2 (en) | 2006-08-02 | 2011-11-08 | Samsung Electronics Co., Ltd. | Digital to analog converter with minimum area and source driver having the same |
-
2003
- 2003-07-11 JP JP2003195975A patent/JP2005033483A/ja active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8054302B2 (en) | 2006-08-02 | 2011-11-08 | Samsung Electronics Co., Ltd. | Digital to analog converter with minimum area and source driver having the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8587466B2 (en) | System and method for a successive approximation analog to digital converter | |
US7265707B2 (en) | Successive approximation type A/D converter | |
US7474239B2 (en) | Self-calibrating high-speed analog-to-digital converter | |
WO2001047123A1 (fr) | Convertisseur n/a de haute precision | |
WO2012144375A1 (ja) | データ処理システム | |
EP1875611A1 (en) | Selectable real time sample triggering for a plurality of inputs of an analog-to-digital converter | |
US7969204B1 (en) | Sample hold circuit and method thereof for eliminating offset voltage of analog signal | |
JP2007306555A (ja) | デジタル信号のデューティ・サイクルを補正するための方法および装置 | |
US20050184894A1 (en) | Analog-to-digital converter and microcomputer in which the same is installed | |
JP2009005139A (ja) | 逐次型ad変換器 | |
JP2015092755A (ja) | 半導体集積回路装置およびアナログ・ディジタル変換装置 | |
JP2010045579A (ja) | コンパレータ回路及びそれを有するアナログデジタルコンバータ | |
US20190265278A1 (en) | Low overhead on chip scope | |
JP2003258639A (ja) | アナログ−ディジタル変換器 | |
JP6970597B2 (ja) | ラッチドコンパレータ | |
JP2003198372A (ja) | アナログデジタル変換装置 | |
JP4773549B2 (ja) | タイミング信号発生回路 | |
KR100884166B1 (ko) | Ad/da 변환 겸용 장치 | |
JP2010124405A (ja) | アナログ/デジタル変換回路 | |
US7477179B2 (en) | Successive approximation A/D converter comparing analog input voltage to reference voltages | |
US7982520B2 (en) | Signal generating apparatus and test apparatus | |
JP2005033483A (ja) | アナログ/デジタル変換回路およびそのテスト方法 | |
US6873557B2 (en) | Integrated circuit device with a built-in detecting circuit for detecting maximum memory access time of an embedded memory | |
KR20150072972A (ko) | 타이밍 켈리브레이션을 이용한 인터폴레이션을 위한 아날로그 디지털 변환기 | |
US20130154860A1 (en) | Use of logic circuit embedded into comparator for foreground offset cancellation |