JP2005032941A - Insulated gate type semiconductor device - Google Patents

Insulated gate type semiconductor device Download PDF

Info

Publication number
JP2005032941A
JP2005032941A JP2003195535A JP2003195535A JP2005032941A JP 2005032941 A JP2005032941 A JP 2005032941A JP 2003195535 A JP2003195535 A JP 2003195535A JP 2003195535 A JP2003195535 A JP 2003195535A JP 2005032941 A JP2005032941 A JP 2005032941A
Authority
JP
Japan
Prior art keywords
region
gate
emitter
trench
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003195535A
Other languages
Japanese (ja)
Other versions
JP4626131B2 (en
Inventor
Naoki Kumagai
直樹 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2003195535A priority Critical patent/JP4626131B2/en
Publication of JP2005032941A publication Critical patent/JP2005032941A/en
Application granted granted Critical
Publication of JP4626131B2 publication Critical patent/JP4626131B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulated gate type semiconductor device which reduces gate-collector capacitance without hindering an on-voltage caused by an injection enhancement effect. <P>SOLUTION: An insulation film 31 with a thickness equal to or larger than that of a gate-insulated film 13 and thinner than an interlayer insulation film covering a gate electrode 14 is formed on the surface of a floating p-region 7, and an emitter potential region 32 with emitter potential applied is formed on it, thereby forming a relatively large capacitor between the region 7 and an emitter electrode 11. This capacitor converts a major part of the gate-collector capacitance into collector-emitter capacitance and gate-emitter capacitance, thereby reducing effective gate-collector capacitance. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体スイッチングデバイス等に用いられるIGBT(絶縁ゲート型バイポーラトランジスタ)などの絶縁ゲート型半導体装置に関する。
【0002】
【従来の技術】
図9は、従来のトレンチゲート構造を有するIGBTの構成を示す断面図である。図9に示すように、p層5が、ドリフト層となるn層4の表面に形成されている。p層5は、その表面からn層4に達する複数のトレンチ8,9により、pベース領域6と浮遊p領域7に分割されている。
【0003】
pベース領域6は、p層5のうち、隣り合う第1のトレンチ8の間に挟まれた領域である。nエミッタ領域10は、pベース領域6において第1のトレンチ8の側面に設けられている。エミッタ電極11は、nエミッタ領域10およびpベース領域6に電気的に接続している。実際のチャネル形成に寄与するポリシリコンよりなるゲート領域12は、第1のトレンチ8内にゲート絶縁膜13を介して設けられており、ゲート電極14に電気的に接続されている。
【0004】
浮遊p領域7は、p層5のうち、隣り合う第2のトレンチ9の間に挟まれた領域、または第1のトレンチ8の、nエミッタ領域10のない側の側面と第2のトレンチ9との間に挟まれた領域である。浮遊p領域7は、n層4とはpn接合により絶縁されており、かつゲート絶縁膜13によりゲート領域12から絶縁されている。つまり、浮遊p領域7は、いわゆるフローティング状態となっている。
【0005】
実際のチャネル形成に寄与しないポリシリコンよりなるダミーゲート領域15は、第2のトレンチ9内に絶縁膜16を介して設けられており、電極17に電気的に接続されている。この電極17は、ゲート電極14に電気的に接続されている。一方、nバッファ層3およびpコレクタ層2は、n層4の裏面側に設けられている。コレクタ電極1は、コレクタ層2に電気的に接続している。
【0006】
図9に示す構成のIGBTにおいて、エミッタ電極11に対して正の電圧がコレクタ電極1に印加されている状態で、エミッタ電極11に対してゲート絶縁膜13近傍のpベース領域6に反転層が生成されるような正の電圧がゲート電極14に印加されると、電子がnエミッタ領域10から反転層を介してn層4に注入される。nエミッタ領域10に注入された電子はnバッファ層3に到達し、pコレクタ層2からの正孔の注入を引き起こす。このような、いわゆる伝導度変調によって、オン電圧が低くなる。
【0007】
nバッファ層3を介してn層4に注入された正孔は、フローティング状態の浮遊p領域7を通ることができず、pベース領域6を通ってエミッタ電極11に流出する。そのため、n層4においてpベース領域6の近傍の正孔密度が上昇し、これに伴って電子の注入が増加する。このような、いわゆるIE(インジェクション・エンハンスメント)効果により、さらにオン電圧が低くなる。このような浮遊p領域を備えたIGBTは、IEGT(インジェクション・エンハンスト・インシュレイテッド・ゲート・バイポーラトランジスタ)と呼ばれることがある(たとえば、特許文献1参照。)。
【0008】
しかし、上述したIEGTでは、チャネル形成に寄与しないダミーゲートが多く存在するため、ゲート−コレクタ間容量が大きくなり、スイッチング損失が大きいという欠点や、ゲート駆動エネルギーが大きいという欠点や、ゲート欠陥に起因する不良率が高いなどの欠点がある。図10に示すように、ダミーゲート領域15にエミッタ電位が印加される構成(たとえば、特許文献2、特許文献3参照。)にすれば、ゲート−コレクタ間容量が小さくなるので、スイッチング損失やゲート駆動エネルギーが小さくなる。
【0009】
しかし、図10に示す構成のIGBTでも、ダミーゲート数が多いという点では図9に示す構成のIGBTと同じであるため、ゲート欠陥に起因する欠点を解消することはできない。ゲート欠陥を減らすには、図11に示すように、ダミーゲートを持たない構造とするのが有効である(たとえば、特許文献1参照。)。
【0010】
図12は、図11示す構成のIGBTの容量を模式的に示す要部断面図である。図12において、Cgeはゲート−エミッタ間容量であり、Cgcはゲート−コレクタ間容量である。また、Cgfはゲート−浮遊p領域間容量であり、Ccfはコレクタ−浮遊p領域間容量である。これらの各容量には、各半導体領域に広がる空乏層容量も考慮されている。
【0011】
図12に示すように、ゲート−浮遊p領域間容量Cgfとコレクタ−浮遊p領域間容量Ccfを直列接続した容量が、ゲート−コレクタ間容量Cgcに並列に加わる。したがって、実効的なゲート−コレクタ間容量Cはつぎの(1)式で表される。
【0012】
C=Cgc+Cgf・Ccf/(Cgf+Ccf) ・・・(1)
【0013】
一般的に、良好な耐圧を得るためにトレンチ8がp層5内に突出する量は、p層5の深さに比較して小さい。また、トレンチ8の幅も小さいので、ゲート−コレクタ間容量Cgcはゲート−浮遊p領域間容量Cgfよりも小さい。これに対してIE効果を高めるために浮遊p領域7の幅は大きいので、コレクタ−浮遊p領域間容量Ccfは非常に大きくなる。
【0014】
したがって、ダミーゲートを持たない構成では、実効的なゲート−コレクタ間容量Cが非常に大きくなってしまう。そのため、ゲート−コレクタ間帰還容量によりスイッチング損失が増大したり、インバータ等の応用回路においてIGBTに並列接続されたFWD(還流用ダイオード)の逆回復時に、ゲート−コレクタ間帰還容量を介したフィードバックにより発振現象が発生するなどの不具合がある。
【0015】
そこで、図13に示すように、浮遊p領域7に電極18を介してエミッタ電位を印加する構成のIGBTが公知である。このようにすると、図12に示すゲート−浮遊p領域間容量Cgfおよびコレクタ−浮遊p領域間容量Ccfは、それぞれゲート−エミッタ間容量およびコレクタ−エミッタ間容量に変換される。それによって、実効的なゲート−コレクタ間容量は、図12に示すCgcのみとなり、低い値に抑えられる。
【0016】
図11に示す構成のIGBT(IE効果あり)と、図13に示す構成のIGBT(IE効果なし)とで、出力特性を比較した結果を図14に模式的に示す。図14において、実線は図11に示すIGBTの出力特性であり、破線は図13に示すIGBTの出力特性である。
【0017】
【特許文献1】
特開2001−332728号公報
【特許文献2】
特開平11−330466号公報
【特許文献3】
特開2001−308327号公報
【0018】
【発明が解決しようとする課題】
しかしながら、図13に示す構成のIGBTのように、浮遊p領域7をエミッタ電極11に接続すると、pコレクタ層2から正孔が引き抜かれるため、図14にも示すように上述したIE効果が得られなくなってしまう。そのため、オン電圧が増加するという問題点がある。
【0019】
本発明は、上記問題点に鑑みてなされたものであって、IE効果による低オン電圧化を妨げることなく、ゲート−コレクタ間容量を低減させることができる絶縁ゲート型半導体装置を提供することを目的とする。
【0020】
【課題を解決するための手段】
上記目的を達成するため、本発明は、トレンチの一方の側面にのみエミッタ領域が設けられたトレンチ構造を有する絶縁ゲート型半導体装置において、前記トレンチの他方の側面側の半導体領域の表面上に、ゲート絶縁膜と同じかそれよりも厚く、かつゲート電極を覆う層間絶縁膜よりも薄い絶縁膜を介してエミッタ電位の領域が設けられているか、または前記トレンチの他方の側面側の半導体領域内に、前記トレンチよりも浅く、かつ内側に絶縁膜を介してエミッタ電位の領域を有する第2のトレンチが設けられているか、または前記トレンチの他方の側面側の半導体領域内に、該半導体領域よりも浅く、かつ内側に絶縁膜を介してエミッタ電位の領域を有する第2のトレンチが設けられていることを特徴とする。
【0021】
この発明によれば、トレンチ側面にエミッタ領域が設けられていない側の半導体領域とエミッタ電極との間に比較的大きなキャパシタが形成されるので、ゲート−コレクタ間容量の大部分がコレクタ−エミッタ間容量およびゲート−エミッタ間容量に変換される。また、トレンチ側面にエミッタ領域が設けられていない側の半導体領域は、直流的にはフローティング状態となっているので、IE効果による低オン電圧化は有効である。したがって、IE効果による低オン電圧化を妨げることなく、実効的なゲート−コレクタ間容量を低減させることができる。
【0022】
また、上記目的を達成するため、本発明は、トレンチの間隔が狭い部分と広い部分を有する絶縁ゲート型半導体装置において、前記トレンチの間隔が広い部分の表面上に、ゲート絶縁膜と同じかそれよりも厚く、かつゲート電極を覆う層間絶縁膜よりも薄い絶縁膜を介してエミッタ電位の領域が設けられているか、または前記トレンチの間隔が広い部分に、前記トレンチよりも浅く、かつ内側に絶縁膜を介してエミッタ電位の領域を有する第2のトレンチが設けられているか、または前記トレンチの間隔が広い部分の半導体領域内に、該半導体領域よりも浅く、かつ内側に絶縁膜を介してエミッタ電位の領域を有する第2のトレンチが設けられていることを特徴とする。
【0023】
この発明によれば、トレンチの間隔が広い部分の半導体領域とエミッタ電極との間に比較的大きなキャパシタが形成されるので、ゲート−コレクタ間容量の大部分がコレクタ−エミッタ間容量およびゲート−エミッタ間容量に変換される。また、トレンチの間隔が広い部分の半導体領域は、直流的にはフローティング状態となっているので、IE効果による低オン電圧化は有効である。したがって、IE効果による低オン電圧化を妨げることなく、実効的なゲート−コレクタ間容量を低減させることができる。
【0024】
【発明の実施の形態】
以下に、本発明の実施の形態について図面を参照しつつ詳細に説明する。なお、すべての図面において同様の構成には同一の符号を付し、重複する説明を省略して、異なる構成についてのみ説明する。
【0025】
実施の形態1.
図1は、本発明の実施の形態1にかかる絶縁ゲート型半導体装置の構成を示す断面図である。図1に示すように、実施の形態1のIGBTでは、p層5は、その表面からn層4に達する複数のトレンチ8により、pベース領域6と浮遊p領域7に分割されている。なお、図1において、一点鎖線で仕切られた領域は、1セル領域を表す(他の図においても同じ)。
【0026】
pベース領域6は、p層5のうち、隣り合うトレンチ8の、nエミッタ領域10が設けられた側の側面の間に挟まれた領域である。浮遊p領域7は、p層5のうち、隣り合うトレンチ8の、nエミッタ領域10が存在しない側の側面の間に挟まれた領域である。通常、トレンチ8の間隔が狭い部分がpベース領域6となり、トレンチ8の間隔が広い部分が浮遊p領域7となる。
【0027】
浮遊p領域7の表面の一部または全部は、酸化膜等の絶縁膜31により被われている。この絶縁膜31の上には、たとえばポリシリコンよりなる領域32が設けられている。このポリシリコン領域32は、電極33を介してエミッタ電極11に電気的に接続されており、常にエミッタ電位となる。以下、この領域32をエミッタ電位領域と呼ぶ。エミッタ電位領域32、浮遊p領域7および絶縁膜31は、エミッタ電位領域32と浮遊p領域7との間に絶縁膜31を挟むキャパシタを構成している。
【0028】
ここで、キャパシタを構成する絶縁膜31の厚さは、ゲート絶縁膜13の厚さと同じかそれよりも厚い。その理由は、ゲート絶縁膜より薄い場合は必要な酸化膜の信頼性を確保できない可能性が高いためである。また、絶縁膜31は、ゲート電極14を覆う図示しない層間絶縁膜よりも薄くなっている。その理由は、層間絶縁膜と同じ場合は浮遊p領域7−ポリシリコン領域32間の容量と図示しない層間絶縁膜上のエミッタ電極−浮遊p領域7間の容量差がほとんどなく、本構造の特徴が表れないからである。なお、絶縁膜31の厚さはゲート絶縁膜と同じにすることにより特別な工程を追加することなく本構造を形成できるため都合がよい。
【0029】
図2は、図1示す構成のIGBTの容量を模式的に示す要部断面図である。図2において、Cge、Cgc、CgfおよびCcfは、それぞれゲート−エミッタ間容量、ゲート−コレクタ間容量、ゲート−浮遊p領域間容量およびコレクタ−浮遊p領域間容量である。また、Cfeは浮遊p領域−エミッタ間容量である。これらの各容量には、各半導体領域に広がる空乏層容量も考慮されている。
【0030】
図2に示すように、ゲート−浮遊p領域間容量Cgfとコレクタ−浮遊p領域間容量Ccfとの接続ノードとエミッタ電極11との間に浮遊p領域−エミッタ間容量Cfeを接続した等価回路となる。したがって、実効的なゲート−コレクタ間容量Cはつぎの(2)式で表される。
【0031】
C=Cgc+Cgf・Ccf/(Cgf+Ccf+Cfe) ・・・(2)
【0032】
ここで、浮遊p領域−エミッタ間容量Cfeは、ゲート−浮遊p領域間容量Cgfとコレクタ−浮遊p領域間容量Ccfとの和(Cgf+Ccf)に比較して大きい値となっている。そのため、[Cgf・Ccf/(Cgf+Ccf+Cfe)]はゼロに近い値となり、実効的なゲート−コレクタ間容量CはCgc程度となるので、実効的なゲート−コレクタ間容量が大幅に削減される。
【0033】
一方、浮遊p領域7は直流的にはフローティング状態であるので、IE効果による低オン電圧化に対しては何ら悪影響がない。したがって、図1に示す構成のIGBTのオン電圧については、図11に示す従来構成のIGBTと同等の低い値となる。また、ダミーゲートがないため、良品率の向上が期待される。万一、浮遊p領域7とエミッタ電位領域32とが短絡しても、その短絡箇所の抵抗値が十分大きければ特性的な影響は殆んどない。短絡箇所の抵抗が低い場合には、図11に示す従来構成と等価な構成となるので、オン電圧が従来の素子と同じになるだけである。
【0034】
つぎに、実施の形態1の素子の製造プロセスについて図3〜図5を参照しながら簡潔に説明する。図3〜図5は、製造途中の素子表面部分の断面構成(1セル分)を工程順に示す図である。
【0035】
まず、周知の方法によりn層4の上にp層5を形成する(図3(a))。ついで、周知のフォトプロセスおよびトレンチエッチングをおこなって、複数のトレンチ8をp層5の表面からn層4に達するように形成する。これによって、p層5は、pベース領域6と浮遊p領域7とに分割される(図3(b))。
【0036】
ついで、トレンチ8の側面および底面、並びにp層5の表面に酸化膜を形成する。この酸化膜は、トレンチ8内ではゲート絶縁膜13となり、一方、浮遊p領域7の表面上ではキャパシタを構成する絶縁膜31となる(図3(c))。ついで、ポリシリコン膜41を積層し、トレンチ8をポリシリコンで埋める。そして、レジスト42を塗布し、パターニングしてエミッタ電位領域32の形成領域上にのみレジスト42を残す(図4(d))。
【0037】
残留したレジスト42をマスクとして、ポリシリコン膜41をエッチングし、トレンチゲート構造のゲート領域12を形成するとともに、エミッタ電位領域32を形成する。そして、レジスト42を除去する(図4(e))。再びレジスト43を塗布し、パターニングしてエミッタ領域10の形成領域を開口させる。そして、たとえばイオン注入法により、pベース領域6の、エミッタ領域10の形成領域にn型半導体を形成する不純物を導入する。(図4(f))。
【0038】
レジスト43を除去した後、熱処理をおこなってnエミッタ領域10を形成する(図5(g))。ついで、層間絶縁膜44を積層し、この層間絶縁膜44の、pベース領域6およびnエミッタ領域10とのコンタクト領域、並びにエミッタ電位領域32とのコンタクト領域をエッチングにより除去する(図5(h))。ついで、メタル45を積層し、エミッタ電極11および電極33を形成する(図5(i))。
【0039】
なお、図5(i)では、ゲート領域12とゲート電極14とのコンタクト部については示されていない。また、素子の裏面側構造の作製については従来通りであるので、説明および図示を省略する。ところで、上述した製造プロセスにおいて、ゲート絶縁膜13と浮遊p領域7上の絶縁膜31を別々に形成するようにしてもよい。その場合には、たとえば絶縁膜31をゲート絶縁膜13よりも厚く形成することによって、浮遊p領域−エミッタ間容量Cfeを調整することができる。さらに、ゲート領域12とエミッタ電位領域32を別々に形成するようにしてもよい。
【0040】
上述した実施の形態1によれば、ゲート−コレクタ間容量の大部分がコレクタ−エミッタ間容量およびゲート−エミッタ間容量に変換されるので、実効的なゲート−コレクタ間容量を低減させることができる。したがって、ゲート−コレクタ間帰還容量を介して、コレクタ電位がゲートにフィードバックされるのを低減させることができるので、ターンオン時の発振現象を防止することができる。また、IE効果により低オン電圧化が図れる。
【0041】
実施の形態2.
図6は、本発明の実施の形態2にかかる絶縁ゲート型半導体装置の構成を示す断面図である。図6に示すように、実施の形態2は、浮遊p領域7上に、絶縁膜31、エミッタ電位領域32および電極33をそれぞれ各ゲート領域12ごとに、各ゲート領域12の近くに設けたものである。すなわち、実施の形態2では、実施の形態1の絶縁膜31、エミッタ電位領域32および電極33がゲート領域12ごとに分割された構成となっている。その他の構成は実施の形態1と同じである。
【0042】
実施の形態2によれば、実施の形態1と同様に、実効的なゲート−コレクタ間容量の低減効果、およびIE効果によるオン電圧の低減効果が得られる。また、実施の形態1と比べて、浮遊p領域7の抵抗によるコレクタ−エミッタ間容量の増大を抑制することができるので、ターンオン時の損失の増大を抑制することができる。
【0043】
実施の形態3.
図7は、本発明の実施の形態3にかかる絶縁ゲート型半導体装置の構成を示す断面図である。実施の形態3は、浮遊p領域7に、浮遊p領域7よりも浅い第2のトレンチ19を形成し、その第2のトレンチ19の内面に絶縁膜26を設け、さらにその絶縁膜26の内側をポリシリコンで埋めてエミッタ電位領域25とすることにより、浮遊p領域−エミッタ間容量Cfeとなるトレンチ構造のキャパシタを設けたものである。エミッタ電位領域25は電極27を介してエミッタ電極11に電気的に接続される。その他の構成は実施の形態1と同じである。
【0044】
実施の形態3によれば、実施の形態1と同様に、実効的なゲート−コレクタ間容量の低減効果、およびIE効果によるオン電圧の低減効果が得られる。また、浮遊p領域7が比較的狭い領域であっても、大きなキャパシタンスを得ることができる。また、望ましくは、第2のトレンチ19をゲート領域12の近くに形成するのがよい。そうすれば、実施の形態2と同様に、ターンオン時の損失の増大を抑制することができる。
【0045】
実施の形態4.
図8は、本発明の実施の形態4にかかる絶縁ゲート型半導体装置の構成を示す断面図である。実施の形態4は、実施の形態3において、第2のトレンチ19をトレンチ8と同じ深さとし、浮遊p領域7の深さを第2のトレンチ19よりも深くしたものである。その他の構成は実施の形態3または実施の形態1と同じである。
【0046】
実施の形態4では、pベース領域6と浮遊p領域7とでは深さが異なっており、浮遊p領域7の方が深い。この様な深さの違うp領域6,7を形成するには、ゲート領域12となるトレンチ8の表面近傍にp型不純物が導入されないように、トレンチ8およびその近傍領域をレジストで被覆してp型不純物のイオン注入をおこなえばよい。なお、本工程を、周辺耐圧構造に必要なp領域を形成する工程と共通化すれば、製造工程が増加することはない。
【0047】
実施の形態4によれば、実施の形態1と同様に、実効的なゲート−コレクタ間容量の低減効果、およびIE効果によるオン電圧の低減効果が得られる。また、異なる深さのトレンチを形成する必要がないので、実施の形態3と比べて、プロセスを簡略化することができる。さらに、pベース領域6および浮遊p領域7から伸びる空乏層が平面接合の場合と近くなるので、耐圧を高くすることができる。
【0048】
以上において本発明は、上述した各実施の形態に限らず、種々変更可能である。また、本発明は、上述した各実施の形態と逆の導電型でも同様に成り立つ。
【0049】
【発明の効果】
本発明によれば、ゲート−コレクタ間容量の大部分がコレクタ−エミッタ間容量およびゲート−エミッタ間容量に変換され、またIE効果による低オン電圧化は有効なままであるので、IE効果による低オン電圧化を妨げることなく、実効的なゲート−コレクタ間容量を低減させることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1にかかる絶縁ゲート型半導体装置の構成を示す断面図である。
【図2】図1示す構成の絶縁ゲート型半導体装置の容量を模式的に示す要部断面図である。
【図3】図1示す構成の絶縁ゲート型半導体装置の製造工程の一部を順に示す断面図である。
【図4】図1示す構成の絶縁ゲート型半導体装置の製造工程の一部を順に示す断面図である。
【図5】図1示す構成の絶縁ゲート型半導体装置の製造工程の一部を順に示す断面図である。
【図6】本発明の実施の形態2にかかる絶縁ゲート型半導体装置の構成を示す断面図である。
【図7】本発明の実施の形態3にかかる絶縁ゲート型半導体装置の構成を示す断面図である。
【図8】本発明の実施の形態4にかかる絶縁ゲート型半導体装置の構成を示す断面図である。
【図9】従来のトレンチゲート型IGBTの構成を示す断面図である。
【図10】従来のトレンチゲート型IGBTの構成を示す断面図である。
【図11】従来のトレンチゲート型IGBTの構成を示す断面図である。
【図12】図11示す構成のIGBTの容量を模式的に示す要部断面図である。
【図13】従来のトレンチゲート型IGBTの構成を示す断面図である。
【図14】IE効果のあるIGBTと、IE効果のないIGBTとで出力特性を比較した結果を模式的に示す特性図である。
【符号の説明】
7 トレンチのエミッタ領域のない側面側またはトレンチの間隔が広い部分の半導体領域(浮遊p領域)
8 トレンチ
10 nエミッタ領域
13 ゲート絶縁膜
19 第2のトレンチ
25,32 エミッタ電位領域
26,31 絶縁膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an insulated gate semiconductor device such as an IGBT (insulated gate bipolar transistor) used for a semiconductor switching device or the like.
[0002]
[Prior art]
FIG. 9 is a cross-sectional view showing a configuration of an IGBT having a conventional trench gate structure. As shown in FIG. 9, the p layer 5 is formed on the surface of the n layer 4 serving as a drift layer. The p layer 5 is divided into a p base region 6 and a floating p region 7 by a plurality of trenches 8 and 9 reaching the n layer 4 from the surface thereof.
[0003]
The p base region 6 is a region sandwiched between adjacent first trenches 8 in the p layer 5. The n + emitter region 10 is provided on the side surface of the first trench 8 in the p base region 6. The emitter electrode 11 is electrically connected to the n + emitter region 10 and the p base region 6. The gate region 12 made of polysilicon that contributes to actual channel formation is provided in the first trench 8 via the gate insulating film 13 and is electrically connected to the gate electrode 14.
[0004]
The floating p region 7 includes a region sandwiched between adjacent second trenches 9 in the p layer 5 or a side surface of the first trench 8 on the side where the n + emitter region 10 is not present and the second trench. 9 is an area sandwiched between the two. The floating p region 7 is insulated from the n layer 4 by a pn junction, and is insulated from the gate region 12 by the gate insulating film 13. That is, the floating p region 7 is in a so-called floating state.
[0005]
The dummy gate region 15 made of polysilicon that does not contribute to actual channel formation is provided in the second trench 9 via the insulating film 16 and is electrically connected to the electrode 17. This electrode 17 is electrically connected to the gate electrode 14. On the other hand, n buffer layer 3 and p collector layer 2 are provided on the back side of n layer 4. The collector electrode 1 is electrically connected to the collector layer 2.
[0006]
In the IGBT having the configuration shown in FIG. 9, an inversion layer is formed in the p base region 6 near the gate insulating film 13 with respect to the emitter electrode 11 in a state where a positive voltage is applied to the collector electrode 1 with respect to the emitter electrode 11. When a positive voltage as generated is applied to the gate electrode 14, electrons are injected from the n + emitter region 10 into the n layer 4 through the inversion layer. The electrons injected into the n + emitter region 10 reach the n buffer layer 3 and cause injection of holes from the p collector layer 2. Such a so-called conductivity modulation reduces the on-voltage.
[0007]
Holes injected into the n layer 4 through the n buffer layer 3 cannot pass through the floating p region 7 in the floating state, and flow out to the emitter electrode 11 through the p base region 6. Therefore, in the n layer 4, the hole density in the vicinity of the p base region 6 is increased, and electron injection is increased accordingly. Such a so-called IE (injection enhancement) effect further reduces the on-voltage. An IGBT having such a floating p region is sometimes called an IEGT (Injection Enhanced Insulated Gate Bipolar Transistor) (see, for example, Patent Document 1).
[0008]
However, in the above-described IEGT, since there are many dummy gates that do not contribute to channel formation, the gate-collector capacitance is increased, the switching loss is large, the gate driving energy is large, and the gate defect is caused. There are drawbacks such as a high defect rate. As shown in FIG. 10, if the emitter potential is applied to the dummy gate region 15 (see, for example, Patent Document 2 and Patent Document 3), the gate-collector capacitance is reduced, so that switching loss and gate Driving energy is reduced.
[0009]
However, the IGBT having the configuration shown in FIG. 10 is the same as the IGBT having the configuration shown in FIG. 9 in that the number of dummy gates is large, so that the defect due to the gate defect cannot be solved. In order to reduce gate defects, it is effective to use a structure without a dummy gate as shown in FIG. 11 (see, for example, Patent Document 1).
[0010]
FIG. 12 is a cross-sectional view of an essential part schematically showing the capacitance of the IGBT having the configuration shown in FIG. In FIG. 12, Cge is a gate-emitter capacitance, and Cgc is a gate-collector capacitance. Cgf is a gate-floating p region capacitance, and Ccf is a collector-floating p region capacitance. In each of these capacitors, a depletion layer capacitor extending in each semiconductor region is also considered.
[0011]
As shown in FIG. 12, a capacitance in which a gate-floating p region capacitance Cgf and a collector-floating p region capacitance Ccf are connected in series is added in parallel to the gate-collector capacitance Cgc. Therefore, the effective gate-collector capacitance C is expressed by the following equation (1).
[0012]
C = Cgc + Cgf · Ccf / (Cgf + Ccf) (1)
[0013]
In general, the amount by which the trench 8 protrudes into the p layer 5 in order to obtain a good breakdown voltage is smaller than the depth of the p layer 5. Further, since the width of the trench 8 is also small, the gate-collector capacitance Cgc is smaller than the gate-floating p region capacitance Cgf. On the other hand, since the width of the floating p region 7 is large in order to enhance the IE effect, the collector-floating p region capacitance Ccf becomes very large.
[0014]
Therefore, in the configuration without the dummy gate, the effective gate-collector capacitance C becomes very large. Therefore, the switching loss increases due to the feedback capacitance between the gate and the collector, or the feedback via the feedback capacitance between the gate and the collector at the time of reverse recovery of the FWD (freewheeling diode) connected in parallel with the IGBT in the application circuit such as an inverter. There are problems such as oscillation phenomenon.
[0015]
Therefore, as shown in FIG. 13, an IGBT having a configuration in which an emitter potential is applied to the floating p region 7 via an electrode 18 is known. In this way, the gate-floating p region capacitance Cgf and the collector-floating p region capacitance Ccf shown in FIG. 12 are converted into a gate-emitter capacitance and a collector-emitter capacitance, respectively. As a result, the effective gate-collector capacitance is only Cgc shown in FIG. 12, and is suppressed to a low value.
[0016]
FIG. 14 schematically shows a result of comparison of output characteristics between the IGBT having the configuration shown in FIG. 11 (with the IE effect) and the IGBT having the configuration shown in FIG. 13 (without the IE effect). In FIG. 14, the solid line is the output characteristic of the IGBT shown in FIG. 11, and the broken line is the output characteristic of the IGBT shown in FIG.
[0017]
[Patent Document 1]
JP 2001-332728 A [Patent Document 2]
Japanese Patent Laid-Open No. 11-330466 [Patent Document 3]
Japanese Patent Laid-Open No. 2001-308327
[Problems to be solved by the invention]
However, when the floating p region 7 is connected to the emitter electrode 11 as in the IGBT having the configuration shown in FIG. 13, holes are extracted from the p collector layer 2, so that the IE effect described above is obtained as shown in FIG. 14. It will not be possible. Therefore, there is a problem that the on-voltage increases.
[0019]
The present invention has been made in view of the above problems, and provides an insulated gate semiconductor device capable of reducing the gate-collector capacitance without hindering the low on-voltage due to the IE effect. Objective.
[0020]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides an insulated gate semiconductor device having a trench structure in which an emitter region is provided only on one side surface of a trench, on the surface of the semiconductor region on the other side surface of the trench, An emitter potential region is provided through an insulating film that is the same as or thicker than the gate insulating film and thinner than the interlayer insulating film covering the gate electrode, or in the semiconductor region on the other side of the trench A second trench that is shallower than the trench and has an emitter potential region on the inner side through an insulating film, or in the semiconductor region on the other side surface of the trench than the semiconductor region. A second trench is provided which is shallow and has an emitter potential region inside through an insulating film.
[0021]
According to the present invention, since a relatively large capacitor is formed between the semiconductor region on the side of the trench where the emitter region is not provided and the emitter electrode, most of the gate-collector capacitance is between the collector and the emitter. Capacitance and gate-emitter capacitance are converted. Moreover, since the semiconductor region on the side where the emitter region is not provided on the side surface of the trench is in a floating state in terms of direct current, it is effective to reduce the on-state voltage by the IE effect. Therefore, the effective gate-collector capacitance can be reduced without hindering the low on-voltage due to the IE effect.
[0022]
In order to achieve the above object, according to the present invention, in an insulated gate semiconductor device having a portion having a narrow interval between trenches and a portion having a wide interval, the surface of the portion having a wide interval between trenches is the same as or equal to the gate insulating film. The emitter potential region is provided through an insulating film that is thicker than the interlayer insulating film that covers the gate electrode, or is shallower than the trench and insulates in a portion where the interval between the trenches is wide A second trench having a region of emitter potential is provided through the film, or the emitter is shallower than the semiconductor region in the part of the semiconductor region where the interval between the trenches is wide and through the insulating film inside A second trench having a potential region is provided.
[0023]
According to the present invention, since a relatively large capacitor is formed between the semiconductor region and the emitter electrode in a portion where the trench interval is wide, most of the gate-collector capacitance is the collector-emitter capacitance and the gate-emitter. It is converted into capacity. In addition, since the semiconductor region in a portion where the interval between the trenches is wide is in a floating state in terms of direct current, it is effective to reduce the on-state voltage by the IE effect. Therefore, the effective gate-collector capacitance can be reduced without hindering the low on-voltage due to the IE effect.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In all the drawings, the same components are denoted by the same reference numerals, and redundant description will be omitted, and only different components will be described.
[0025]
Embodiment 1 FIG.
1 is a cross-sectional view showing a configuration of an insulated gate semiconductor device according to a first embodiment of the present invention. As shown in FIG. 1, in the IGBT according to the first embodiment, the p layer 5 is divided into a p base region 6 and a floating p region 7 by a plurality of trenches 8 reaching the n layer 4 from the surface thereof. In FIG. 1, a region partitioned by a one-dot chain line represents one cell region (the same applies to other drawings).
[0026]
The p base region 6 is a region sandwiched between the side surfaces of the adjacent trenches 8 on the side where the n + emitter region 10 is provided in the p layer 5. The floating p region 7 is a region sandwiched between the side surfaces of the adjacent trenches 8 on the side where the n + emitter region 10 does not exist in the p layer 5. Usually, the portion where the interval between the trenches 8 is narrow becomes the p base region 6, and the portion where the interval between the trenches 8 is wide becomes the floating p region 7.
[0027]
Part or all of the surface of the floating p region 7 is covered with an insulating film 31 such as an oxide film. A region 32 made of, for example, polysilicon is provided on the insulating film 31. The polysilicon region 32 is electrically connected to the emitter electrode 11 via the electrode 33, and always has an emitter potential. Hereinafter, this region 32 is referred to as an emitter potential region. The emitter potential region 32, the floating p region 7, and the insulating film 31 constitute a capacitor that sandwiches the insulating film 31 between the emitter potential region 32 and the floating p region 7.
[0028]
Here, the thickness of the insulating film 31 constituting the capacitor is equal to or greater than the thickness of the gate insulating film 13. The reason is that when the thickness is smaller than that of the gate insulating film, there is a high possibility that the required reliability of the oxide film cannot be ensured. The insulating film 31 is thinner than an interlayer insulating film (not shown) that covers the gate electrode 14. The reason is that there is almost no difference in capacitance between the floating p region 7 and the polysilicon region 32 and the emitter electrode on the interlayer insulating film (not shown) and the floating p region 7 in the case of the same as the interlayer insulating film. This is because does not appear. In addition, since the thickness of the insulating film 31 is the same as that of the gate insulating film, this structure can be conveniently formed without adding a special process.
[0029]
FIG. 2 is a main part sectional view schematically showing the capacitance of the IGBT having the configuration shown in FIG. In FIG. 2, Cge, Cgc, Cgf, and Ccf are a gate-emitter capacitance, a gate-collector capacitance, a gate-floating p region capacitance, and a collector-floating p region capacitance, respectively. Cfe is a floating p region-emitter capacitance. In each of these capacitors, a depletion layer capacitor extending in each semiconductor region is also considered.
[0030]
As shown in FIG. 2, an equivalent circuit in which a floating p region-emitter capacitance Cfe is connected between a connection node between a gate-floating p region capacitance Cgf and a collector-floating p region capacitance Ccf and the emitter electrode 11 is shown. Become. Therefore, the effective gate-collector capacitance C is expressed by the following equation (2).
[0031]
C = Cgc + Cgf · Ccf / (Cgf + Ccf + Cfe) (2)
[0032]
Here, the floating p region-emitter capacitance Cfe is larger than the sum (Cgf + Ccf) of the gate-floating p region capacitance Cgf and the collector-floating p region capacitance Ccf. Therefore, [Cgf · Ccf / (Cgf + Ccf + Cfe)] is a value close to zero and the effective gate-collector capacitance C is about Cgc, so that the effective gate-collector capacitance is greatly reduced.
[0033]
On the other hand, since the floating p region 7 is in a floating state in terms of direct current, there is no adverse effect on the low on-voltage due to the IE effect. Therefore, the on-voltage of the IGBT having the configuration shown in FIG. 1 has a low value equivalent to that of the IGBT having the conventional configuration shown in FIG. In addition, since there is no dummy gate, an improvement in the yield rate is expected. Even if the floating p region 7 and the emitter potential region 32 are short-circuited, there is almost no characteristic influence as long as the resistance value of the short-circuited portion is sufficiently large. When the resistance at the short-circuited portion is low, the configuration is equivalent to the conventional configuration shown in FIG. 11, and the on-voltage is only the same as that of the conventional device.
[0034]
Next, the manufacturing process of the element of the first embodiment will be briefly described with reference to FIGS. 3-5 is a figure which shows the cross-sectional structure (for 1 cell) of the element surface part in the middle of manufacture in order of a process.
[0035]
First, the p layer 5 is formed on the n layer 4 by a known method (FIG. 3A). Then, a well-known photo process and trench etching are performed to form a plurality of trenches 8 so as to reach the n layer 4 from the surface of the p layer 5. As a result, the p layer 5 is divided into the p base region 6 and the floating p region 7 (FIG. 3B).
[0036]
Next, an oxide film is formed on the side and bottom surfaces of the trench 8 and the surface of the p layer 5. This oxide film becomes the gate insulating film 13 in the trench 8, while it becomes the insulating film 31 constituting the capacitor on the surface of the floating p region 7 (FIG. 3C). Next, a polysilicon film 41 is stacked, and the trench 8 is filled with polysilicon. Then, a resist 42 is applied and patterned to leave the resist 42 only on the formation region of the emitter potential region 32 (FIG. 4D).
[0037]
Using the remaining resist 42 as a mask, the polysilicon film 41 is etched to form a gate region 12 having a trench gate structure and an emitter potential region 32. Then, the resist 42 is removed (FIG. 4E). The resist 43 is applied again and patterned to open the formation region of the emitter region 10. Then, for example, an impurity for forming an n-type semiconductor is introduced into the formation region of the emitter region 10 in the p base region 6 by ion implantation. (FIG. 4 (f)).
[0038]
After removing the resist 43, heat treatment is performed to form the n + emitter region 10 (FIG. 5G). Next, an interlayer insulating film 44 is laminated, and a contact region with the p base region 6 and the n + emitter region 10 and a contact region with the emitter potential region 32 of the interlayer insulating film 44 are removed by etching (FIG. 5 ( h)). Subsequently, the metal 45 is laminated | stacked and the emitter electrode 11 and the electrode 33 are formed (FIG.5 (i)).
[0039]
In FIG. 5I, the contact portion between the gate region 12 and the gate electrode 14 is not shown. Also, since the fabrication of the back side structure of the element is conventional, description and illustration are omitted. By the way, in the manufacturing process described above, the gate insulating film 13 and the insulating film 31 on the floating p region 7 may be formed separately. In that case, the floating p region-emitter capacitance Cfe can be adjusted by forming the insulating film 31 thicker than the gate insulating film 13, for example. Further, the gate region 12 and the emitter potential region 32 may be formed separately.
[0040]
According to the first embodiment described above, since most of the gate-collector capacitance is converted into the collector-emitter capacitance and the gate-emitter capacitance, the effective gate-collector capacitance can be reduced. . Therefore, since the collector potential can be reduced from being fed back to the gate via the gate-collector feedback capacitor, the oscillation phenomenon at the time of turn-on can be prevented. Further, the on-state voltage can be reduced by the IE effect.
[0041]
Embodiment 2. FIG.
FIG. 6 is a cross-sectional view showing a configuration of an insulated gate semiconductor device according to the second embodiment of the present invention. As shown in FIG. 6, in the second embodiment, an insulating film 31, an emitter potential region 32, and an electrode 33 are provided on each floating region 7 near each gate region 12. It is. That is, the second embodiment has a configuration in which the insulating film 31, the emitter potential region 32, and the electrode 33 of the first embodiment are divided for each gate region 12. Other configurations are the same as those of the first embodiment.
[0042]
According to the second embodiment, as in the first embodiment, an effective gate-collector capacitance reduction effect and an on-voltage reduction effect due to the IE effect can be obtained. Further, compared to the first embodiment, an increase in the collector-emitter capacitance due to the resistance of the floating p region 7 can be suppressed, so that an increase in loss at turn-on can be suppressed.
[0043]
Embodiment 3 FIG.
FIG. 7 is a cross-sectional view showing a configuration of an insulated gate semiconductor device according to the third embodiment of the present invention. In the third embodiment, a second trench 19 shallower than the floating p region 7 is formed in the floating p region 7, an insulating film 26 is provided on the inner surface of the second trench 19, and the inner side of the insulating film 26 is further provided. Is buried with polysilicon to form an emitter potential region 25, thereby providing a trench-structure capacitor serving as a floating p region-emitter capacitance Cfe. The emitter potential region 25 is electrically connected to the emitter electrode 11 through the electrode 27. Other configurations are the same as those of the first embodiment.
[0044]
According to the third embodiment, as in the first embodiment, an effective gate-collector capacitance reduction effect and an on-voltage reduction effect due to the IE effect can be obtained. Even if the floating p region 7 is a relatively narrow region, a large capacitance can be obtained. Desirably, the second trench 19 is formed near the gate region 12. Then, as in the second embodiment, an increase in loss at turn-on can be suppressed.
[0045]
Embodiment 4 FIG.
FIG. 8 is a sectional view showing a configuration of an insulated gate semiconductor device according to the fourth embodiment of the present invention. In the fourth embodiment, the second trench 19 has the same depth as the trench 8 and the depth of the floating p region 7 is deeper than the second trench 19 in the third embodiment. Other configurations are the same as those in the third embodiment or the first embodiment.
[0046]
In the fourth embodiment, the p base region 6 and the floating p region 7 have different depths, and the floating p region 7 is deeper. In order to form such p regions 6 and 7 having different depths, the trench 8 and its neighboring regions are covered with a resist so that p-type impurities are not introduced near the surface of the trench 8 to be the gate region 12. A p-type impurity may be ion-implanted. If this step is shared with the step of forming the p region necessary for the peripheral breakdown voltage structure, the number of manufacturing steps will not increase.
[0047]
According to the fourth embodiment, as in the first embodiment, an effective gate-collector capacitance reduction effect and an on-voltage reduction effect due to the IE effect can be obtained. Further, since it is not necessary to form trenches having different depths, the process can be simplified as compared with the third embodiment. Furthermore, since the depletion layer extending from the p base region 6 and the floating p region 7 is close to that of the planar junction, the breakdown voltage can be increased.
[0048]
In the above, this invention is not restricted to each embodiment mentioned above, A various change is possible. In addition, the present invention is similarly established even with a conductivity type opposite to that of the above-described embodiments.
[0049]
【The invention's effect】
According to the present invention, most of the gate-collector capacitance is converted into the collector-emitter capacitance and the gate-emitter capacitance, and the low on-voltage due to the IE effect remains effective. The effective gate-collector capacitance can be reduced without hindering the on-voltage.
[Brief description of the drawings]
1 is a cross-sectional view showing a configuration of an insulated gate semiconductor device according to a first embodiment of the present invention;
2 is a cross-sectional view of the principal part schematically showing the capacitance of the insulated gate semiconductor device having the configuration shown in FIG. 1;
3 is a cross-sectional view sequentially illustrating a part of the manufacturing process of the insulated gate semiconductor device having the configuration shown in FIG. 1;
4 is a cross-sectional view sequentially illustrating a part of the manufacturing process of the insulated gate semiconductor device having the configuration shown in FIG. 1;
5 is a cross-sectional view sequentially showing a part of the manufacturing process of the insulated gate semiconductor device having the configuration shown in FIG. 1; FIG.
FIG. 6 is a cross-sectional view showing a configuration of an insulated gate semiconductor device according to a second embodiment of the present invention;
FIG. 7 is a cross-sectional view showing a configuration of an insulated gate semiconductor device according to a third embodiment of the present invention;
FIG. 8 is a cross-sectional view showing a configuration of an insulated gate semiconductor device according to a fourth embodiment of the present invention;
FIG. 9 is a cross-sectional view showing a configuration of a conventional trench gate type IGBT.
FIG. 10 is a cross-sectional view showing a configuration of a conventional trench gate type IGBT.
FIG. 11 is a cross-sectional view showing a configuration of a conventional trench gate type IGBT.
12 is a cross-sectional view of a principal part schematically showing the capacitance of the IGBT having the configuration shown in FIG.
FIG. 13 is a cross-sectional view showing a configuration of a conventional trench gate type IGBT.
FIG. 14 is a characteristic diagram schematically showing a result of comparing output characteristics of an IGBT having an IE effect and an IGBT having no IE effect.
[Explanation of symbols]
7 Semiconductor region (floating p region) on the side surface without the emitter region of the trench or where the trench spacing is wide
8 Trench 10 n + Emitter region 13 Gate insulating film 19 Second trench 25, 32 Emitter potential region 26, 31 Insulating film

Claims (6)

トレンチの一方の側面にのみエミッタ領域が設けられたトレンチ構造を有する絶縁ゲート型半導体装置において、
前記トレンチの他方の側面側の半導体領域の表面上に、ゲート絶縁膜と同じかそれよりも厚く、かつゲート電極を覆う層間絶縁膜よりも薄い絶縁膜を介してエミッタ電位の領域が設けられていることを特徴とする絶縁ゲート型半導体装置。
In an insulated gate semiconductor device having a trench structure in which an emitter region is provided only on one side surface of the trench,
On the surface of the semiconductor region on the other side of the trench, an emitter potential region is provided via an insulating film that is the same as or thicker than the gate insulating film and thinner than the interlayer insulating film covering the gate electrode. An insulated gate semiconductor device comprising:
トレンチの一方の側面にのみエミッタ領域が設けられたトレンチ構造を有する絶縁ゲート型半導体装置において、
前記トレンチの他方の側面側の半導体領域内に、前記トレンチよりも浅く、かつ内側に絶縁膜を介してエミッタ電位の領域を有する第2のトレンチが設けられていることを特徴とする絶縁ゲート型半導体装置。
In an insulated gate semiconductor device having a trench structure in which an emitter region is provided only on one side surface of the trench,
An insulated gate type characterized in that a second trench having a region of an emitter potential is provided inside the semiconductor region on the other side surface of the trench, which is shallower than the trench and is disposed inside through an insulating film. Semiconductor device.
トレンチの一方の側面にのみエミッタ領域が設けられたトレンチ構造を有する絶縁ゲート型半導体装置において、
前記トレンチの他方の側面側の半導体領域内に、該半導体領域よりも浅く、かつ内側に絶縁膜を介してエミッタ電位の領域を有する第2のトレンチが設けられていることを特徴とする絶縁ゲート型半導体装置。
In an insulated gate semiconductor device having a trench structure in which an emitter region is provided only on one side surface of the trench,
An insulated gate, characterized in that a second trench having a region of an emitter potential is provided inside the semiconductor region on the other side surface of the trench, which is shallower than the semiconductor region and has an emitter potential region inside through an insulating film. Type semiconductor device.
トレンチの間隔が狭い部分と広い部分を有する絶縁ゲート型半導体装置において、
前記トレンチの間隔が広い部分の表面上に、ゲート絶縁膜と同じかそれよりも厚く、かつゲート電極を覆う層間絶縁膜よりも薄い絶縁膜を介してエミッタ電位の領域が設けられていることを特徴とする絶縁ゲート型半導体装置。
In an insulated gate semiconductor device having a narrow portion and a wide portion between trenches,
An emitter potential region is provided on the surface of the portion where the interval between the trenches is wide via an insulating film which is the same as or thicker than the gate insulating film and thinner than the interlayer insulating film covering the gate electrode. A feature of an insulated gate semiconductor device.
トレンチの間隔が狭い部分と広い部分を有する絶縁ゲート型半導体装置において、
前記トレンチの間隔が広い部分に、前記トレンチよりも浅く、かつ内側に絶縁膜を介してエミッタ電位の領域を有する第2のトレンチが設けられていることを特徴とする絶縁ゲート型半導体装置。
In an insulated gate semiconductor device having a narrow portion and a wide portion between trenches,
2. An insulated gate semiconductor device, wherein a second trench having a region of an emitter potential that is shallower than the trench and has an insulating film inside is provided in a portion where the interval between the trenches is wide.
トレンチの間隔が狭い部分と広い部分を有する絶縁ゲート型半導体装置において、
前記トレンチの間隔が広い部分の半導体領域内に、該半導体領域よりも浅く、かつ内側に絶縁膜を介してエミッタ電位の領域を有する第2のトレンチが設けられていることを特徴とする絶縁ゲート型半導体装置。
In an insulated gate semiconductor device having a narrow portion and a wide portion between trenches,
An insulated gate comprising a second trench having a region of an emitter potential shallower than the semiconductor region and having an emitter potential inside through an insulating film in the semiconductor region in a portion where the interval between the trenches is wide. Type semiconductor device.
JP2003195535A 2003-07-11 2003-07-11 Insulated gate semiconductor device Expired - Fee Related JP4626131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003195535A JP4626131B2 (en) 2003-07-11 2003-07-11 Insulated gate semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003195535A JP4626131B2 (en) 2003-07-11 2003-07-11 Insulated gate semiconductor device

Publications (2)

Publication Number Publication Date
JP2005032941A true JP2005032941A (en) 2005-02-03
JP4626131B2 JP4626131B2 (en) 2011-02-02

Family

ID=34206322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003195535A Expired - Fee Related JP4626131B2 (en) 2003-07-11 2003-07-11 Insulated gate semiconductor device

Country Status (1)

Country Link
JP (1) JP4626131B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266570A (en) * 2006-03-02 2007-10-11 Denso Corp Insulated gate bipolar transistor
WO2009013967A1 (en) * 2007-07-24 2009-01-29 Sanken Electric Co., Ltd. Semiconductor device
JP2009194044A (en) * 2008-02-13 2009-08-27 Hitachi Ltd Trench gate semiconductor device
DE102008052422A1 (en) 2008-05-13 2009-12-03 Mitsubishi Electric Corp. Semiconductor device with reduced capacity
JP2011040586A (en) * 2009-08-12 2011-02-24 Hitachi Ltd Trench gate type semiconductor device
JP2011119416A (en) * 2009-12-03 2011-06-16 Hitachi Ltd Semiconductor device and power converter using the same
WO2011080928A1 (en) * 2010-01-04 2011-07-07 株式会社日立製作所 Semiconductor device and electric power conversion device using same
JP2011176244A (en) * 2010-02-25 2011-09-08 Fuji Electric Co Ltd Semiconductor device
JP2011204803A (en) * 2010-03-24 2011-10-13 Toshiba Corp Semiconductor device
JP2012064641A (en) * 2010-09-14 2012-03-29 Toshiba Corp Semiconductor device
CN103199108A (en) * 2012-01-05 2013-07-10 瑞萨电子株式会社 IE type trench gate IGBT
JP2014060387A (en) * 2012-08-21 2014-04-03 Rohm Co Ltd Semiconductor device
JP2014518017A (en) * 2011-05-18 2014-07-24 ビシャイ‐シリコニックス Semiconductor device
US9419129B2 (en) 2009-10-21 2016-08-16 Vishay-Siliconix Split gate semiconductor device with curved gate oxide profile
US9425305B2 (en) 2009-10-20 2016-08-23 Vishay-Siliconix Structures of and methods of fabricating split gate MIS devices
JP2016181728A (en) * 2016-07-15 2016-10-13 ルネサスエレクトロニクス株式会社 Trench gate IGBT
US9577089B2 (en) 2010-03-02 2017-02-21 Vishay-Siliconix Structures and methods of fabricating dual gate devices
JPWO2016027721A1 (en) * 2014-08-20 2017-04-27 富士電機株式会社 Semiconductor device and manufacturing method of semiconductor device
CN106920840A (en) * 2015-12-28 2017-07-04 电子科技大学 The method for eliminating landscape insulation bar double-pole-type transistor tail currents
KR20180065767A (en) * 2016-12-08 2018-06-18 현대오트론 주식회사 Power semiconductor device and method of fabricating the same
CN108417622A (en) * 2018-02-07 2018-08-17 上海华虹宏力半导体制造有限公司 IGBT device
US10192977B2 (en) 2014-04-21 2019-01-29 Mitsubishi Electric Corporation Power semiconductor device
JP2019024133A (en) * 2012-08-21 2019-02-14 ローム株式会社 Semiconductor device
US10234486B2 (en) 2014-08-19 2019-03-19 Vishay/Siliconix Vertical sense devices in vertical trench MOSFET
KR102042833B1 (en) * 2018-06-27 2019-11-08 현대오트론 주식회사 Power semiconductor device and method of fabricating the same
US11217541B2 (en) 2019-05-08 2022-01-04 Vishay-Siliconix, LLC Transistors with electrically active chip seal ring and methods of manufacture
US11218144B2 (en) 2019-09-12 2022-01-04 Vishay-Siliconix, LLC Semiconductor device with multiple independent gates

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09331063A (en) * 1996-04-11 1997-12-22 Mitsubishi Electric Corp High breakdown strength semiconductor device and its manufacturing method
JPH11330466A (en) * 1998-05-19 1999-11-30 Toshiba Corp Insulating-gate-type semiconductor device
JP2000307116A (en) * 1999-02-17 2000-11-02 Hitachi Ltd Semiconductor device and power conversion device
JP2003101020A (en) * 2001-09-20 2003-04-04 Fuji Electric Co Ltd Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09331063A (en) * 1996-04-11 1997-12-22 Mitsubishi Electric Corp High breakdown strength semiconductor device and its manufacturing method
JPH11330466A (en) * 1998-05-19 1999-11-30 Toshiba Corp Insulating-gate-type semiconductor device
JP2000307116A (en) * 1999-02-17 2000-11-02 Hitachi Ltd Semiconductor device and power conversion device
JP2003101020A (en) * 2001-09-20 2003-04-04 Fuji Electric Co Ltd Semiconductor device

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266570A (en) * 2006-03-02 2007-10-11 Denso Corp Insulated gate bipolar transistor
US8212313B2 (en) 2007-07-24 2012-07-03 Sanken Electric Co., Ltd. Semiconductor device
WO2009013967A1 (en) * 2007-07-24 2009-01-29 Sanken Electric Co., Ltd. Semiconductor device
JP2009032728A (en) * 2007-07-24 2009-02-12 Sanken Electric Co Ltd Semiconductor device
JP2009194044A (en) * 2008-02-13 2009-08-27 Hitachi Ltd Trench gate semiconductor device
DE102009008714B4 (en) * 2008-02-13 2013-07-11 Hitachi, Ltd. Semiconductor device of the trench gate type
DE102008052422A1 (en) 2008-05-13 2009-12-03 Mitsubishi Electric Corp. Semiconductor device with reduced capacity
US8178947B2 (en) 2008-05-13 2012-05-15 Mitsubishi Electric Corporation Semiconductor device
JP2011040586A (en) * 2009-08-12 2011-02-24 Hitachi Ltd Trench gate type semiconductor device
US9425305B2 (en) 2009-10-20 2016-08-23 Vishay-Siliconix Structures of and methods of fabricating split gate MIS devices
US9419129B2 (en) 2009-10-21 2016-08-16 Vishay-Siliconix Split gate semiconductor device with curved gate oxide profile
US9893168B2 (en) 2009-10-21 2018-02-13 Vishay-Siliconix Split gate semiconductor device with curved gate oxide profile
JP2011119416A (en) * 2009-12-03 2011-06-16 Hitachi Ltd Semiconductor device and power converter using the same
EP2523217A4 (en) * 2010-01-04 2014-06-25 Hitachi Ltd Semiconductor device and electric power conversion device using same
EP2523217A1 (en) * 2010-01-04 2012-11-14 Hitachi, Ltd. Semiconductor device and electric power conversion device using same
WO2011080928A1 (en) * 2010-01-04 2011-07-07 株式会社日立製作所 Semiconductor device and electric power conversion device using same
CN102714217A (en) * 2010-01-04 2012-10-03 株式会社日立制作所 Semiconductor device and electric power conversion device using same
JP2011176244A (en) * 2010-02-25 2011-09-08 Fuji Electric Co Ltd Semiconductor device
US9577089B2 (en) 2010-03-02 2017-02-21 Vishay-Siliconix Structures and methods of fabricating dual gate devices
US10453953B2 (en) 2010-03-02 2019-10-22 Vishay-Siliconix Structures and methods of fabricating dual gate devices
US9299695B2 (en) 2010-03-24 2016-03-29 Kabushiki Kaisha Toshiba Semiconductor device
JP2011204803A (en) * 2010-03-24 2011-10-13 Toshiba Corp Semiconductor device
US8604544B2 (en) 2010-03-24 2013-12-10 Kabushiki Kaisha Toshiba Semiconductor device
JP2012064641A (en) * 2010-09-14 2012-03-29 Toshiba Corp Semiconductor device
JP2014518017A (en) * 2011-05-18 2014-07-24 ビシャイ‐シリコニックス Semiconductor device
KR101619580B1 (en) 2011-05-18 2016-05-10 비쉐이-실리코닉스 Semiconductor device
US11114559B2 (en) 2011-05-18 2021-09-07 Vishay-Siliconix, LLC Semiconductor device having reduced gate charges and superior figure of merit
US9653587B2 (en) 2012-01-05 2017-05-16 Renesas Electronics Corporation IE type trench gate IGBT
CN103199108A (en) * 2012-01-05 2013-07-10 瑞萨电子株式会社 IE type trench gate IGBT
JP2013140885A (en) * 2012-01-05 2013-07-18 Renesas Electronics Corp Ie type trench gate igbt
CN107731896A (en) * 2012-01-05 2018-02-23 瑞萨电子株式会社 IE type trench-gates IGBT
US9997622B2 (en) 2012-01-05 2018-06-12 Renesas Electronics Corporation IE type trench gate IGBT
US10304951B2 (en) 2012-01-05 2019-05-28 Renesas Electronics Corporation IE type trench gate IGBT
US10062774B2 (en) 2012-08-21 2018-08-28 Rohm Co., Ltd. Trench-type insulated gate semiconductor device including an emitter trench and an overlapped floating region
JP2020038986A (en) * 2012-08-21 2020-03-12 ローム株式会社 Semiconductor device
JP2014060387A (en) * 2012-08-21 2014-04-03 Rohm Co Ltd Semiconductor device
US10923582B2 (en) 2012-08-21 2021-02-16 Rohm Co., Ltd. Trench-type insulated gate semiconductor device including an emitter trench and an overlapped floating region
JP2019024133A (en) * 2012-08-21 2019-02-14 ローム株式会社 Semiconductor device
US10892352B2 (en) 2014-04-21 2021-01-12 Mitsubishi Electric Corporation Power semiconductor device
US10192977B2 (en) 2014-04-21 2019-01-29 Mitsubishi Electric Corporation Power semiconductor device
DE112014006606B4 (en) 2014-04-21 2021-11-18 Mitsubishi Electric Corporation Power semiconductor unit
US10234486B2 (en) 2014-08-19 2019-03-19 Vishay/Siliconix Vertical sense devices in vertical trench MOSFET
US10527654B2 (en) 2014-08-19 2020-01-07 Vishay SIliconix, LLC Vertical sense devices in vertical trench MOSFET
US10444262B2 (en) 2014-08-19 2019-10-15 Vishay-Siliconix Vertical sense devices in vertical trench MOSFET
JPWO2016027721A1 (en) * 2014-08-20 2017-04-27 富士電機株式会社 Semiconductor device and manufacturing method of semiconductor device
US10297683B2 (en) 2014-08-20 2019-05-21 Fuji Electric Co., Ltd. Method of manufacturing a semiconductor device having two types of gate electrodes
US9899503B2 (en) 2014-08-20 2018-02-20 Fuji Electric Co., Ltd. Semiconductor device having first and second gate electrodes
CN106920840B (en) * 2015-12-28 2020-10-16 电子科技大学 Method for eliminating tailing current of transverse insulated gate bipolar transistor
CN106920840A (en) * 2015-12-28 2017-07-04 电子科技大学 The method for eliminating landscape insulation bar double-pole-type transistor tail currents
JP2016181728A (en) * 2016-07-15 2016-10-13 ルネサスエレクトロニクス株式会社 Trench gate IGBT
KR101870826B1 (en) * 2016-12-08 2018-06-27 현대오트론 주식회사 Power semiconductor device and method of fabricating the same
KR20180065767A (en) * 2016-12-08 2018-06-18 현대오트론 주식회사 Power semiconductor device and method of fabricating the same
CN108417622A (en) * 2018-02-07 2018-08-17 上海华虹宏力半导体制造有限公司 IGBT device
KR102042833B1 (en) * 2018-06-27 2019-11-08 현대오트론 주식회사 Power semiconductor device and method of fabricating the same
US11217541B2 (en) 2019-05-08 2022-01-04 Vishay-Siliconix, LLC Transistors with electrically active chip seal ring and methods of manufacture
US11218144B2 (en) 2019-09-12 2022-01-04 Vishay-Siliconix, LLC Semiconductor device with multiple independent gates

Also Published As

Publication number Publication date
JP4626131B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
JP4626131B2 (en) Insulated gate semiconductor device
US10777548B2 (en) Method for manufacturing semiconductor device
CN107924942B (en) Semiconductor device with a plurality of semiconductor chips
JP4688901B2 (en) Semiconductor device
US6815769B2 (en) Power semiconductor component, IGBT and field-effect transistor
JP5985624B2 (en) Insulated gate transistor and method of manufacturing the same
JP6055498B2 (en) Semiconductor device
KR100714857B1 (en) Insulated gate semiconductor device
US20050218472A1 (en) Semiconductor device manufacturing method thereof
JP3417013B2 (en) Insulated gate bipolar transistor
JP6666671B2 (en) Semiconductor device
JPWO2002061845A1 (en) Semiconductor device and manufacturing method thereof
JP2009033036A (en) Semiconductor device, and electric circuit device using same
JP2002353456A (en) Semiconductor device and manufacturing method therefor
JP2007134625A (en) Semiconductor device and its process for fabrication
JP2006245477A (en) Semiconductor device
JP2001168333A (en) Semiconductor device equipped with trench gate
JP6164372B2 (en) Semiconductor device and manufacturing method of semiconductor device
JPH0613621A (en) Semiconductor device and its manufacture
JP2018152426A (en) Semiconductor device
US20060237786A1 (en) Power semiconductor device
JP2011176027A (en) Semiconductor element and method of manufacturing the same
JP2009043782A (en) Semiconductor device and manufacturing method thereof
JP6353804B2 (en) Semiconductor device and power conversion device using the same
JP2021052078A (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees