JP2005019883A - Multilayer substrate and manufacturing method therefor - Google Patents

Multilayer substrate and manufacturing method therefor Download PDF

Info

Publication number
JP2005019883A
JP2005019883A JP2003185678A JP2003185678A JP2005019883A JP 2005019883 A JP2005019883 A JP 2005019883A JP 2003185678 A JP2003185678 A JP 2003185678A JP 2003185678 A JP2003185678 A JP 2003185678A JP 2005019883 A JP2005019883 A JP 2005019883A
Authority
JP
Japan
Prior art keywords
substrate
conductor
transfer
multilayer substrate
multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003185678A
Other languages
Japanese (ja)
Other versions
JP4274861B2 (en
Inventor
Takashi Kajino
隆 楫野
Masami Sasaki
正美 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2003185678A priority Critical patent/JP4274861B2/en
Publication of JP2005019883A publication Critical patent/JP2005019883A/en
Application granted granted Critical
Publication of JP4274861B2 publication Critical patent/JP4274861B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayer substrate, as well as its manufacturing method, that can be made thin, excellent in mass-production, has a pattern accuracy, a lamination accuracy, and an insulating layer thickness accuracy, and is highly reliable. <P>SOLUTION: Conductor patterns 2a to 2f are formed onto transfer substrates 1a to 1f having conductivity. The conductor patterns 2a-2f formation surfaces of the transfer substrates 1a-1f are opposed, and are stuck with resinous sheets 4a-4d between the opposing surfaces. One transfer substrate of the two lamination element sheets 6a and 6b or 6c and 6d sticking the resinous sheets 4a-4d is peeled off and a new resinous sheet 4e and 4f are put between the peeled surfaces, and stuck. Such a step is repeated a required number of times to obtain a multilayer substrate. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、樹脂材料または樹脂に粉末を混合した複合材料を用いて構成される積層構造の多層基板(電子部品として構成される場合を含む)とその製造方法に関する。
【0002】
【従来の技術】
樹脂材料または樹脂にセラミック等の粉末を混合した複合材料を用いて構成される多層基板の製造方法として従来より下記の2つの製造方法が採用されている。第1の方法は、スルーホール基板の例である。これは、両面に導体パターンを形成したコア基板を複数枚準備し、これらのコア基板間にそれぞれ半硬化状態のプリプレグを介して積層し、熱プレスによりプリプレグを硬化させて複数枚のコア基板を一体化し、その後、この積層体にスルーホールを開けてそのスルーホールにメッキを施して内部導体間を接続する方法である(例えば特許文献1、図3参照。)。この場合、導体パターンの形成方法として、サブトラクティブ法、セミアディティブ法、フルアディティブ法が採用される。
【0003】
第2の方法は表層BVH(ブラインドビアホール)を用いるビルドアップ工法である(例えば特許文献2参照。)。この方法は、導体パターンを形成したコア基板の両面にプリプレグによる絶縁層と銅箔とを熱圧着し、銅箔をパターニングするという工程を繰り返し、その後、スルーホールによって異なる層の導体どうしを接続する。そして最外層の導体とその1つ内側の層の導体とをBVHにより接続する。
【0004】
【特許文献1】
特開2003−151856公報
【特許文献2】
特開2002−319764号公報。
【0005】
【発明が解決しようとする課題】
前記特許文献1に記載の多層基板の製造方法は、ハンドリングにおけるコア基板の機械的強度が必要であるため、コア基板や接着層であるプリプレグはガラスクロス等の芯材入りとする必要があり、このため各層の厚さを薄くすることができず、通常はコア基板の厚さは60μmより薄くすること困難であり、薄型化が困難であるという問題点がある。
【0006】
また、機械的強度向上のため、前記芯材を必ず入れる必要があるが、コンデンサを形成する場合には誘電率が低下し、また、コンデンサ電極間の暑さが薄くできないことから、充分な容量がとれないという問題点がある。
【0007】
また、層間のアライメントはピンアライメントが主たる手法であり、積層精度(導体パターンのずれ)が悪く、通常、最大50〜100μm程度のずれが生じるおそれがある。
【0008】
一方、前記特許文献2に記載のビルドアップ工法は、工程数が多くなり、量産性の面で劣るという問題点がある。また、前記特許文献1に記載の方法と同様に、コア基板には機械的強度が要求され、薄型化、高密度化が困難である。
【0009】
また、銅箔に代えて無電解めっき上にレジストパターンを形成し、電解めっきを施して導体パターンを形成する方法もあるが、無電解めっきをクイック(ソフト)エッチングする必要があり、また無電解めっき用の下地触媒(Pd等)の残渣等によって特に内部積層部にマイグレーションや腐食を生じやすくなり、信頼性が低下するという問題点があった。
【0010】
本発明は、上記問題点に鑑み、薄型化が可能で、量産性に優れ、パターン精度、積層精度が良好であり、かつ信頼性の高い多層基板とその製造方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
(1)本発明の多層基板の製造方法は、導電性を有する転写用基板に導体パターンを形成し、
導体パターンを形成した2枚の転写用基板の導体パターン形成面間に樹脂シートを挟んで固着して積層素体シートを構成し、
2枚の積層素体シートのそれぞれ片面の転写用基板を剥離して、剥離面間に、新たな樹脂シートを挟んで固着するという工程を必要回数繰り返して多層基板となる積層体を得ることを特徴とする。
【0012】
(2)また、本発明の多層基板の製造方法は、前記(1)において、
前記転写用基板としてステンレス板を用いることを特徴とする。
【0013】
(3)本発明の多層基板は、前記(1)または(2)に記載の多層基板の製造方法により得られる多層基板であって、前記樹脂シートにより構成される絶縁層が、機能材料粉末を含有するビニルベンジル樹脂からなることを特徴とする。
【0014】
(4)また、本発明の多層基板は、前記(1)または(2)に記載の多層基板の製造方法により得られる多層基板であって、前記樹脂シートにより構成される絶縁層が芯材を含まない材料からなることを特徴とする。
【0015】
(5)また、本発明の多層基板は、前記(3)または(4)に記載の多層基板であって、コンデンサを内蔵していることを特徴とする。
【0016】
【発明の実施の形態】
図1ないし図6は本発明の多層基板の製造方法の一実施の形態を示す図である。図1の例はフルアディティブ法により転写用基板1上に導体パターン2を形成する方法である。図1(A)において、1は転写用基板であり、該転写用基板1には導電性を有する材料が用いられ、強度、平滑性、耐腐食性、メッキ金属の剥離性を有するものが好ましい。このような転写用基板1として、ステンレス、チタン、タングステン、タンタル、鉄、アルミニウム、ニッケル等のように、表面に不動態膜(多孔質の酸化膜)が形成されやすい金属であれば使用可能である。なかでも、ステンレス板を用いることが、強度、平滑性、耐腐食性、メッキ金属の剥離性を得やすいという点で好ましい。
【0017】
図1(B)に示すように、前記転写用基板1上に印刷あるいはフォトリソグラフィ技術によりレジストパターン3を形成する。そして図1(C)に示すように、転写用基板1の表面のレジストの形成されていない部分に、電気メッキ(フルアディティブ工法)により、コイル、配線、コンデンサ電極等の導体パターン2となる導体膜を形成する。
【0018】
ここで、導体膜を形成する金属としては、銅、アルミニウム、ニッケル、金、銀、白金、錫、鉛等が用いられる。なかでも銅が抵抗率が低いことと、耐マイグレーション性が良いこと、およびコストが安い点で好ましい。導体パターン2を形成した後、図1(D)に示すように、前記レジストパターン3を除去する。
【0019】
このような工程により転写用基板1に導体パターン2を形成する際、転写用基板1は、その表面粗さRmaxが0.2〜2μmの範囲にあることが好ましい。Rmaxが0.2μm未満であるとレジストおよび導体パターンと転写用基板1との密着性が不充分となり、剥離しやすくなるために好ましくない。また、Rmaxが2μmを超えると、導体パターンの膜厚のばらつきに影響し、また、高周波用に用いる場合には、導体損失が増大するので好ましくない。導体パターン2として銅を用い、転写用基板1にステンレス板を用いる場合、ステンレス板の表面は銅との剥離性を確保するために、不動態化処理により不動態膜を形成することが好ましい。
【0020】
多層基板を作製する場合、図1に示したような導体パターン2を形成した転写用基板1を必要枚数だけ準備する。図2は本実施の形態の多層基板を作製するため、導体パターン2a〜2fをそれぞれ形成した6枚の転写用基板1a〜1fを準備する例を示す。本例では説明の簡略化のために同一の導体パターン2a〜2fを示しているが、作製する多層基板が内蔵する配線や素子(インダクタやコンデンサ等)の構成に対応して各導体パターン2a〜2fの形状で形成される。なお理解を容易にするために、図2においては、最終製品における層の上下の向きに合わせて転写用基板1a〜1fが描いてある。
【0021】
図2に示した導体パターン2a〜2fを有する転写用基板1a〜1fを用い、図3ないし図6に示す工程で多層基板を作製する。図3は前記転写用基板のうち、最上層の転写用基板1aと最下層の転写用基板1fについての樹脂シート4a(または4d)への転写工程を示す。図3(A)に示すように、4a(4d)はPETフィルム5上に所定の厚みで形成されたものであり、樹脂シート4a(4d)への転写の際には、PETシート5を上にして樹脂シート4a(4d)を転写用基板1a、(1f)の導体パターン2a(2f)形成面上に重ね、PETシート5を剥離し、図3(B)に示すように樹脂シート4a(4d)上に別の転写用基板1g(または1h)を重ねて固着する。この固着工程において、加熱状態で圧着して樹脂を硬化させる。この加熱温度はビニルベンジル樹脂の場合は好ましくは190〜210℃である。
【0022】
図4は前記転写用基板1bと1c(または1dと1e)をそれぞれ樹脂シート4b(または4c)に転写する工程を示している。この場合も、前記PETフィルム5を剥離した樹脂シート4b(4c)を導体パターン2c(2e)を形成した転写用基板1c(1e)上に重ね、その上に導体パターン2b(2d)側を下にして転写用基板1b(1d)を重ね、前記同様に熱プレスにより一体化する。前記樹脂シート4a〜4dが絶縁層となる。
【0023】
図5(A)は上記のように転写用基板と樹脂シートとを一体化した積層素体シート6a〜6dを示す。
【0024】
図5(A)のように、前記工程で得られた積層素体シート6a、6bのそれぞれ接合すべき面の転写用基板1a、1bを剥離すると、表面に導体パターンが2a、2bが、樹脂シート4a、4bの表面と同一面に形成された、すなわち導体パターン2a、2bが樹脂シート4a、4bに埋設されたものが得られる。このように転写用基板1a、1bを剥離した剥離面どうしの間に、新たに樹脂シート4eを挟んで図3、図4の場合と同様に熱圧着して図5(B)に示すように新たに積層素体シート7aを得る。
【0025】
積層素体シート6c、6dについても同様に、接合すべき面の転写用基板1e、1fを剥離し、導体パターン2e、2fが表面に露出した樹脂シート4cと4dとの間に新たに樹脂シート4fを挟んで積層素体シート6c、6dどうしを熱圧着して、図5(B)に示すように、新たに積層素体シート7bを得る。
【0026】
その後、図5(B)に示した積層素体シート7a、7bの接合すべき面の転写用基板1c、1dを剥離し、図5(C)に示すように、この積層素体シート7a、7b間に新たに樹脂シート4gを挟んで積層素体シート7a、7bどうしを熱圧着することにより、導体パターン2c、2d間に樹脂シート4gを介在させて絶縁層とした積層素体シート8を得る。
【0027】
前記樹脂シート4a〜4gは、導体パターンとしてコンデンサ電極を形成する場合、コンデンサ電極の導体層の厚さは樹脂シート4a〜4gの厚さの10倍以下、好ましくは5倍以下、さらに好ましくは3倍以下、最も好ましくは2倍以下であり、薄型化するほど静電容量の増大効果が顕著である。
【0028】
また、導体パターン2a〜2fは、表面を粗化することにより、樹脂シート4a〜4gとの接着強度を高めることが好ましい。この導体パターン2a〜2fの粗化には、例えばシプレイファーストイースト社製のプロボンド80のような黒化処理、メック社製のCZ処理(蟻酸による表面の粗化)、日本マクダーミッド社のマルチボンド処理(硫酸過水系のエッチング液による粗化)等を用いることが好ましい。なかでも塩素フリー化できる点で硫酸過水系のエッチング液による粗化が好ましい。
【0029】
また、前記転写用基板1として平滑面を有するものを用いることにより、転写により樹脂シート4a〜4dに埋設して形成された導体パターン2a〜2fの表面と樹脂シート4a〜4dとは平滑となる。ここで平滑とは、導体パターン2a〜2fを構成する導体膜の表面の段差が、導体膜の厚さの1/2以下、好ましくは1/3以下、さらに好ましくは1/4以下の値になるように形成されることをいう。
【0030】
図5(C)のように積層素体シート8について、図6(A)に示すように、前記積層素体シート8の表裏面の転写用基板1g、1hを剥離して積層素体シート9を得る。続いて図6(A)に示すように、積層素体シート9の必要個所にスルーホール10を開け、さらに図6(B)に示すように、積層素体シート9の表裏面と最も表裏面に近い層の導体パターン2a、2fの一部をビアホール11により露出させる。
【0031】
その後、図6(C)に示すように、無電解めっきにより積層素体シート9の表裏面、スルーホール10およびビアホール11に電解めっきのための下地導体層12を形成する。つづいて図6(D)に示すように、フォトリソグラフィ工法を用いて積層素体シート9の表裏面に導体パターン2g、2hを形成する。その後、図6(E)に示すように下地導体層12をクイックエッチングにより除去する。その後、個々の製品ごとに切断して製品とする。
【0032】
前記樹脂シート4a〜4gとしては、高周波特性を考慮して、1GHzにおいてQ>100の有機材料が好ましく、ビニルベンジル樹脂(Q=200〜250)の他、高周波用BTレジン(Q=150〜500)等の使用も可能である。このようなQ値の高い樹脂を用いることにより、高いQ値の多層基板を得ることができる。転写用基板1に対する剥離性が確保できれば他の熱硬化性樹脂または熱可塑性樹脂を用いることも可能である。
【0033】
なお、機械的強度を必要とする場合には、ガラスクロス、アラミド不織布、フッ素樹脂製多孔質シート等の芯材を用いることができる。しかしながら、ガラスクロス等の芯材の凹凸の影響で、樹脂シートにより形成される絶縁層の表面にも凹凸が生じるので、導体パターン2a〜2f間の厚みのばらつきが大きくなる上、芯材と樹脂との隙間から吸湿して信頼性を低下させることになるので、できれば芯材を入れない方が好ましい。
【0034】
樹脂シート4a〜4gには、目的に応じて適宜の粉末、例えば高誘電率の粉末や磁性体粉末等を混合してもよい。表1はビニルベンジル樹脂とこれに高誘電率フィラー(誘電率が約90のBa−Ti−Nb系セラミック)を混合した樹脂シートの一例の誘電率およびQ値を示す。多層基板内にコンデンサを構成する場合、高誘電率の粉末を混合することによってより高い容量のコンデンサを得ることができる。
【0035】
【表1】

Figure 2005019883
【0036】
本実施の形態によれば、下記の種々の効果をあげることができる。
(1)薄型化、高密度化が可能である。
機械的強度の大きなステンレス板等の転写用基板1を用いている上、全工程において、少なくとも片方に転写用基板があるので、樹脂シート4a〜4gからなる層間絶縁層そのものには機械的強度が要求されず、薄型化、高密度化が可能である。
【0037】
(2)下記の理由で量産性に優れている。
(a)最初に転写用基板に導体パターンを一括して形成するのでリードタイム(製造時間)が短い。
(b)積層素体シートを2枚ずつ積層していくので、ビルドアップ工法に比較して積層回数が少ない。
(c)導電性転写用基板に直接導体パターンを形成する転写工法を用いているので、プリプレグ上にまず下地導体層を形成してその上にレジストパターンの形成、電解めっきによる導体パターンの形成を行うセミアディティブ工法に比較して下地導体層形成工程、下地導体層のエッチング工程が不要である。
【0038】
(3)下記の理由でパターン精度、積層精度が良好である。
(a)転写用基板に導体パターンを直接電解めっきにより形成するフルアディティブ工法を採用できるので、パターニング精度が良好である。
(b)積層時に基板の片面に必ず機械的強度の優れる転写用基板があるので、プレス前後の積層素体シートの縮率が小さい。
(c)図7に示すように、転写用基板1にピンアライメント用の孔13および導体パターンのアライメント用の孔14またはマークを設けておき、これらの孔14やマークをレジストパターン3形成のための位置合わせに用いれば、層間のアライメントはこれらの孔13、14やマークの位置合わせを行うことで転写用基板1を基準にして行えるので、積層精度(導体パターン2の横方向のずれの精度)がよい。
【0039】
(4)下記の理由で樹脂シート4a〜4gによる相間絶縁層の厚さの精度がよい。
(a)樹脂シートへの転写のための一番最初のプレス以外は、転写用基板1の表面が平滑であるので、プレス時の樹脂の流れのむらがなく、また、プレス圧力が下げられる。
(b)一番最初のプレス時に転写用基板の厚さ精度(厚さのばらつき)を小さく(例えば±2μm)することができるので、その結果、樹脂シートのプレス後の厚みのばらつきを小さくすることができる。
【0040】
(5)少なくとも内部積層部においては、無電解めっき工程が不要になるので、エッチング液や触媒の残渣による信頼性の低下の問題を解決できる。
【0041】
実施例1
(導体パターンの形成)図7に示すように、76mm角、0.1mm厚のステンレス板(SUS304TA材)1の4隅の所定の位置に直径3mmの転写用基板積層時のピンアライメント用の穴13を設けると共に、中央部の両端の所定の位置に0.2mmの導体パターンアライメント用孔14を開けたものを転写用基板として用いた。この転写用基板上に25μm厚のドライフィルムでライン幅およびライン間隔(L&S)が20μmのレジストパターンを形成して、硫酸銅めっき液で導体パターンを形成した。その後、有機系剥離液でレジストを剥離した後、黒化処理で銅でなる導体パターンの表面のみを選択的に粗面化した。
【0042】
(絶縁層の形成)ビニルベンジル樹脂に高誘電率フィラーを40vol%混合したものをPETフィルム上に40μmの厚さに形成して樹脂シートとした。この樹脂シートの1GHzにおける誘電率は15であった。これを図3、図4に示したように、転写用基板間に挟み、200℃の加熱状態で真空プレスで一体化した。プレス後の樹脂シートからなる絶縁層の厚さは20μmであった。
【0043】
(絶縁層の形成)図5、図6で示したように、一方に転写用基板を剥離してその剥離面間に前記材質でなる樹脂シートを介在させてプレスするという工程と、表裏面の転写用基板を剥離する工程により、導体パターン2a〜2f、絶縁層4a〜4gからなる積層素体シート9を得た。
【0044】
(スルーホール、ビアホールの形成)図6(A)、(B)に示したように、前記積層素体シート9にドリルにより直径0.2mmのスルーホール10を開けた。その後、レーザによりトップ径が70μm、ボトム径が50μmのビアホール11を形成した。
【0045】
(表裏面の導体パターンの形成)無電解めっきにより、下地導体層12として銅を0.3μmの厚さに形成した。その後、レジストとして25μm厚のドライフィルムを使用してライン幅およびライン間隔が20μmのレジストパターンを形成した。そして硫酸銅めっき液を使用して導体パターン2g、2hを形成した。その後、クイックエッチングにより下地導体層12を除去した。
【0046】
(結果)実施例1の場合、リードタイム:22時間、サンプル数が1シートで、絶縁層4a〜4hの層数が8層の場合の導体厚:20μm±2μm、導体幅:20μm±2μm、絶縁層厚:20±2μm、積層精度:±20μmであった。
【0047】
比較例1(ビルドアップ工法)
(コア基板)コア基板に100μm厚のガラスクロス入りビニルベンジル樹脂を用いた。このコア基板に無電解めっきにより下地導体層を0.3μmを形成した後、レジストパターンの形成、導体パターンの形成、クイックエッチングを、前記実施例1における積層素体シートの表裏面の導体パターンの形成と同様に行った。
【0048】
(絶縁層の形成)ビニルベンジル樹脂に高誘電率フィラーを40vol%混合したものを18μm銅箔の上に40μmの厚みに形成した樹脂付き銅箔を、樹脂面をコア基板側にして熱プレスにより固着した。プレス後の絶縁層の1GHzにおける誘電率εは9.2であった。
【0049】
(導体パターンの形成)前記実施例1における積層素体シートの表裏面に対する導体パターンの形成と同様に、下地導体層の形成、レジストパターンの形成、導体パターンの形成、クイックエッチングを行った。
【0050】
(結果)リードタイム:38時間、サンプル数が1シートで、絶縁層の層数が8層の場合の導体厚:20μm±4μm、導体幅:20μm±4μm、絶縁層厚:20±3μm、積層精度:±20μmであった。
【0051】
比較例2(プリプレグによる同時プレス)
コア基板に100μm厚のガラスクロス入りビニルベンジル樹脂を用いた。このコア基板は両面に銅箔を貼り付けたものである。導体パターン形成のためのパターニングは、サブトラクティブ工法により行った。このライン幅およびライン間隔は60μmである。
【0052】
(プレス)このようにして形成した4枚のコア基板を、コア基板間にそれぞれプリプレグを介在させて積層し、熱プレスにより一体化した。
【0053】
(スルーホール、導体パターンの形成)実施例1と同様に、スルーホール形成、無電解めっき、レジストパターンの形成、硫酸銅めっき液を用いた電解めっきにより、20μmの厚みに銅でなる導体パターンを形成した。
【0054】
(結果)リードタイム:17時間、サンプル数が1シートで、絶縁層の層数が8層の場合の導体厚:18μm±2μm、導体幅:60μm±6μm、絶縁層厚:40±5μm、積層精度:±50μmであった。
【0055】
実施例2
前記実施例1における絶縁層の代わりにガラスクロス入りで厚さ60μmのプリプレグを使用した。このプリプレグの材質は実施例1と同じである。この場合、誘電率は10に低下した。
【0056】
(結果)リードタイム:22時間、サンプル数が1シートで、絶縁層の層数が8層の場合の導体厚:20μm±2μm、導体幅:20μm±2μm、絶縁層厚:40±2μm、積層精度:±20μmであった。
【0057】
これらの実施例1、2によれば、比較例1のビルドアップ工法に比較してリードタイムを約半分に短縮でき、複数枚のコア基板をプレスにより同時に一体化する場合に近い短いリードタイムに短縮できる。また、比較例2の銅箔をサブトラクティブ工法によりパターン化する場合に比較し、導体厚さおよび幅の精度を向上させることができる。また、絶縁層厚さの精度、積層精度を向上させることができる。
【0058】
本発明は、多層基板はその上に半導体素子やチップ部品を搭載したものとして構成することができ、また、多層構造を有する個々の電子部品として構成する場合にも本発明を適用することができる。本発明は、多層基板内にコンデンサが形成される場合あるいはコンデンサを含む電子部品として構成される場合、絶縁層(誘電体層)の薄型化が可能となることにより、高容量のコンデンサを実現することが可能となり、同じ取得容量であれば、電極面積を小さくすることができ、基板の小型化を図ることができる。
【0059】
【発明の効果】
本発明によれば、機械的強度の大きなステンレス板等の転写用基板を製造に用いているので、樹脂シートからなる層間絶縁層そのものには機械的強度が要求されず、薄型化が可能である。
【0060】
また、転写用基板に導体パターンを一括して形成しておくことができ、また、アディティブ工法を採用して導体パターンの形成が行え、下地電極層の形成、除去が不要になるので、製造時間を短縮でき、量産性に優れている。
【0061】
また、転写用基板に導体パターンを直接電解めっきにより形成することができ、サブトラクティブ工法のように銅箔パターンにエッチングを行なわないことで、パターニング精度を向上させることができる。また、機械的強度の優れる転写用基板の使用により、プレス前後の積層素体シートの縮率が小さいため、導体パターンのずれが少なく、さらに転写用基板に位置合わせのための孔やマークにより導体パターン位置合わせを行うこともできるので、積層精度がよい。
【0062】
また、最初のプレスを除き、転写用基板の表面を平滑にでき、プレス時の樹脂の流れのむらがなく、また、プレス圧力が下げられる上、一番最初のプレス時に積層素体シートの厚さのばらつきを小さくすることができる。その結果、樹脂シートのプレス後の厚みのばらつきを小さくすることができ、相間絶縁層の厚さの精度を向上させることができる。
【0063】
また、少なくとも内部積層部においては、無電解めっき工程が不要になるので、エッチング液や触媒の残渣がなく、信頼性を向上させることができる。
【図面の簡単な説明】
【図1】本発明による多層基板の製造方法の一実施の形態を示す導体パターンの形成工程を示す図である。
【図2】本発明の多層基板の製造方法の一実施の形態における導体パターン形成転写用基板の構成例を示す図である。
【図3】本実施の形態における転写工程の一部を示す図である。
【図4】本実施の形態における転写工程の残部を示す図である。
【図5】本実施の形態における積層工程を示す図である。
【図6】本実施の形態におけるスルーホール、ビアホールおよび積層体表裏面の導体パターン形成工程を示す図である。
【図7】本発明において用いる転写用基板の一例を示す平面図である。
【符号の説明】
1、1a〜1f:転写用基板、2、2a〜2f:導体パターン、3:レジストパターン、4a〜4g:樹脂シート(絶縁層)、5:PETフィルム、6a〜6d、7a、7b、8、9:積層素体シート、10:スルーホール、11:ビアホール、12:下地電極層、13:ピンアライメント用孔、14:導体パターンアライメント用孔[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multilayer substrate (including a case where it is configured as an electronic component) configured using a resin material or a composite material obtained by mixing powder in a resin and a method for manufacturing the same.
[0002]
[Prior art]
Conventionally, the following two manufacturing methods have been adopted as a manufacturing method of a multilayer substrate constituted by using a resin material or a composite material in which a powder such as ceramic is mixed with a resin. The first method is an example of a through-hole substrate. This is done by preparing a plurality of core substrates with conductor patterns formed on both sides, laminating each of these core substrates via a semi-cured prepreg, and curing the prepreg by hot pressing to form a plurality of core substrates. In this method, a through hole is formed in the laminate, and the through holes are plated to connect the internal conductors (see, for example, Patent Document 1 and FIG. 3). In this case, a subtractive method, a semi-additive method, and a full additive method are employed as a method for forming a conductor pattern.
[0003]
The second method is a build-up method using a surface layer BVH (blind via hole) (see, for example, Patent Document 2). This method repeats the process of thermocompression bonding of an insulating layer made of prepreg and copper foil on both sides of a core substrate on which a conductor pattern is formed, and patterning the copper foil, and then connecting conductors of different layers by through holes. . Then, the outermost conductor and the inner conductor are connected by BVH.
[0004]
[Patent Document 1]
JP 2003-151856 A [Patent Document 2]
Japanese Patent Laid-Open No. 2002-319764.
[0005]
[Problems to be solved by the invention]
Since the manufacturing method of the multilayer substrate described in Patent Document 1 requires the mechanical strength of the core substrate in handling, the core substrate and the prepreg that is the adhesive layer need to contain a core material such as a glass cloth, For this reason, the thickness of each layer cannot be reduced. Usually, it is difficult to make the thickness of the core substrate thinner than 60 μm, and it is difficult to reduce the thickness.
[0006]
In order to improve mechanical strength, it is necessary to insert the core material. However, when a capacitor is formed, the dielectric constant decreases, and the heat between capacitor electrodes cannot be reduced. There is a problem that cannot be taken.
[0007]
In addition, pin alignment is the main technique for alignment between layers, and the stacking accuracy (shift of the conductor pattern) is poor, and there is a possibility that a shift of about 50 to 100 μm at maximum is usually generated.
[0008]
On the other hand, the build-up method described in Patent Document 2 has a problem that the number of steps increases and the mass productivity is inferior. Similarly to the method described in Patent Document 1, the core substrate is required to have mechanical strength, and it is difficult to reduce the thickness and increase the density.
[0009]
There is also a method of forming a resist pattern on electroless plating instead of copper foil, and forming a conductor pattern by electroplating, but it is necessary to perform quick (soft) etching of electroless plating, and electroless In particular, there is a problem in that the residue or the like of the base catalyst for plating (Pd or the like) tends to cause migration or corrosion particularly in the inner laminated portion, and the reliability is lowered.
[0010]
In view of the above problems, an object of the present invention is to provide a multilayer substrate that can be thinned, is excellent in mass productivity, has good pattern accuracy and lamination accuracy, and has high reliability, and a method for manufacturing the same. .
[0011]
[Means for Solving the Problems]
(1) In the method for producing a multilayer substrate of the present invention, a conductive pattern is formed on a transfer substrate having conductivity,
A laminated body sheet is configured by adhering a resin sheet between the conductor pattern forming surfaces of the two transfer substrates on which the conductor patterns are formed,
It is necessary to repeat the process of peeling the transfer substrate on one side of each of the two laminated body sheets and sandwiching and fixing a new resin sheet between the peeled surfaces to obtain a laminate that becomes a multilayer substrate. Features.
[0012]
(2) Moreover, the manufacturing method of the multilayer board | substrate of this invention is the said (1),
A stainless plate is used as the transfer substrate.
[0013]
(3) The multilayer substrate of the present invention is a multilayer substrate obtained by the method for producing a multilayer substrate according to (1) or (2) above, wherein the insulating layer composed of the resin sheet is made of a functional material powder. It is characterized by comprising a vinylbenzyl resin.
[0014]
(4) Moreover, the multilayer board | substrate of this invention is a multilayer board | substrate obtained by the manufacturing method of the multilayer board | substrate as described in said (1) or (2), Comprising: The insulating layer comprised by the said resin sheet has a core material. It consists of the material which does not contain.
[0015]
(5) Moreover, the multilayer board | substrate of this invention is a multilayer board | substrate as described in said (3) or (4), Comprising: The capacitor is incorporated, It is characterized by the above-mentioned.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
1 to 6 are views showing an embodiment of a method for producing a multilayer substrate according to the present invention. The example of FIG. 1 is a method of forming a conductor pattern 2 on a transfer substrate 1 by a full additive method. In FIG. 1A, reference numeral 1 denotes a transfer substrate, and the transfer substrate 1 is made of a conductive material, and preferably has strength, smoothness, corrosion resistance, and peelability of plated metal. . As such a transfer substrate 1, any metal such as stainless steel, titanium, tungsten, tantalum, iron, aluminum, nickel, etc., on which a passive film (porous oxide film) is easily formed can be used. is there. Of these, the use of a stainless steel plate is preferable in terms of strength, smoothness, corrosion resistance, and easy removal of the plated metal.
[0017]
As shown in FIG. 1B, a resist pattern 3 is formed on the transfer substrate 1 by printing or photolithography. Then, as shown in FIG. 1C, a conductor that becomes a conductor pattern 2 such as a coil, a wiring, a capacitor electrode, etc. is formed on the surface of the transfer substrate 1 where the resist is not formed by electroplating (full additive method). A film is formed.
[0018]
Here, copper, aluminum, nickel, gold, silver, platinum, tin, lead or the like is used as the metal forming the conductor film. Of these, copper is preferable because of its low resistivity, good migration resistance, and low cost. After the conductor pattern 2 is formed, the resist pattern 3 is removed as shown in FIG.
[0019]
When the conductor pattern 2 is formed on the transfer substrate 1 by such a process, the transfer substrate 1 preferably has a surface roughness Rmax in the range of 0.2 to 2 μm. When Rmax is less than 0.2 μm, the adhesion between the resist and the conductor pattern and the transfer substrate 1 becomes insufficient, and it is not preferable because it easily peels off. On the other hand, if Rmax exceeds 2 μm, the film thickness variation of the conductor pattern is affected, and when used for high frequency, the conductor loss increases, which is not preferable. When copper is used as the conductor pattern 2 and a stainless steel plate is used for the transfer substrate 1, it is preferable to form a passive film on the surface of the stainless steel plate by a passivation treatment in order to ensure peelability from copper.
[0020]
When producing a multilayer substrate, the required number of transfer substrates 1 on which the conductor pattern 2 as shown in FIG. 1 is formed are prepared. FIG. 2 shows an example of preparing six transfer substrates 1a to 1f on which conductor patterns 2a to 2f are respectively formed in order to produce the multilayer substrate of the present embodiment. In this example, the same conductor patterns 2a to 2f are shown for simplification of explanation, but each of the conductor patterns 2a to 2f corresponds to the configuration of wirings and elements (inductors, capacitors, etc.) built in the multilayer substrate to be manufactured. It is formed in the shape of 2f. For ease of understanding, in FIG. 2, transfer substrates 1a to 1f are drawn in accordance with the vertical direction of the layers in the final product.
[0021]
Using the transfer substrates 1a to 1f having the conductor patterns 2a to 2f shown in FIG. 2, a multilayer substrate is manufactured by the steps shown in FIGS. FIG. 3 shows a transfer process to the resin sheet 4a (or 4d) for the uppermost transfer substrate 1a and the lowermost transfer substrate 1f among the transfer substrates. As shown in FIG. 3 (A), 4a (4d) is formed on the PET film 5 with a predetermined thickness. When transferring to the resin sheet 4a (4d), the PET sheet 5 is Then, the resin sheet 4a (4d) is overlaid on the surface of the transfer substrate 1a, (1f) on which the conductor pattern 2a (2f) is formed, the PET sheet 5 is peeled off, and as shown in FIG. 4d) Another transfer substrate 1g (or 1h) is stacked and fixed thereon. In this fixing step, the resin is cured by pressure bonding in a heated state. This heating temperature is preferably 190 to 210 ° C. in the case of vinylbenzyl resin.
[0022]
FIG. 4 shows a process of transferring the transfer substrates 1b and 1c (or 1d and 1e) to the resin sheet 4b (or 4c), respectively. Also in this case, the resin sheet 4b (4c) from which the PET film 5 has been peeled is overlaid on the transfer substrate 1c (1e) on which the conductor pattern 2c (2e) is formed, and the conductor pattern 2b (2d) side is placed thereon. Then, the transfer substrate 1b (1d) is stacked and integrated by hot pressing in the same manner as described above. The resin sheets 4a to 4d serve as an insulating layer.
[0023]
FIG. 5A shows laminated body sheets 6a to 6d in which the transfer substrate and the resin sheet are integrated as described above.
[0024]
As shown in FIG. 5A, when the transfer substrates 1a and 1b on the surfaces to be joined of the laminated body sheets 6a and 6b obtained in the above process are peeled off, the conductor patterns 2a and 2b are formed on the surface. A sheet formed on the same surface as the surfaces of the sheets 4a and 4b, that is, the conductor patterns 2a and 2b embedded in the resin sheets 4a and 4b is obtained. As shown in FIG. 5 (B), the resin sheet 4e is newly sandwiched between the peeled surfaces from which the transfer substrates 1a and 1b have been peeled in this manner, as in the case of FIG. 3 and FIG. A laminated body sheet 7a is newly obtained.
[0025]
Similarly, for the laminated body sheets 6c and 6d, the transfer substrates 1e and 1f on the surfaces to be joined are peeled off, and a new resin sheet is formed between the resin sheets 4c and 4d where the conductor patterns 2e and 2f are exposed on the surface. The laminated body sheets 6c and 6d are thermocompression bonded with 4f interposed therebetween to obtain a new laminated body sheet 7b as shown in FIG. 5B.
[0026]
After that, the transfer substrates 1c and 1d on the surfaces to be joined of the multilayer body sheets 7a and 7b shown in FIG. 5B are peeled off, and as shown in FIG. A laminated body sheet 8 having an insulating layer formed by interposing the resin sheet 4g between the conductor patterns 2c and 2d by thermocompression bonding the laminated body sheets 7a and 7b with a resin sheet 4g newly sandwiched between 7b. obtain.
[0027]
When the resin sheet 4a-4g forms a capacitor electrode as a conductor pattern, the thickness of the conductor layer of the capacitor electrode is 10 times or less, preferably 5 times or less, more preferably 3 times the thickness of the resin sheet 4a-4g. No more than twice, most preferably no more than 2 times, and the effect of increasing the capacitance becomes more conspicuous as the thickness is reduced.
[0028]
Moreover, it is preferable to raise the adhesive strength with the resin sheets 4a-4g by roughening the surface of the conductor patterns 2a-2f. For the roughening of the conductor patterns 2a to 2f, for example, blackening treatment such as Probond 80 manufactured by Shipley First East Co., Ltd., CZ treatment (surface roughening using formic acid) manufactured by MEC Co., Ltd., multi bond processing manufactured by Nihon McDermid Co., Ltd. It is preferable to use (roughening with a sulfuric acid / hydrogen peroxide-based etching solution) or the like. Of these, roughening with a sulfuric acid / hydrogen peroxide-based etching solution is preferable because it can be made chlorine-free.
[0029]
Further, by using the transfer substrate 1 having a smooth surface, the surfaces of the conductor patterns 2a to 2f formed by being embedded in the resin sheets 4a to 4d by transfer and the resin sheets 4a to 4d become smooth. . Here, the term “smooth” means that the step on the surface of the conductor film constituting the conductor patterns 2a to 2f has a value of 1/2 or less, preferably 1/3 or less, more preferably 1/4 or less of the thickness of the conductor film. It is formed so that it becomes.
[0030]
As shown in FIG. 6 (A), for the laminated body sheet 8 as shown in FIG. 5 (C), the transfer substrates 1g and 1h on the front and back surfaces of the laminated body sheet 8 are peeled off and the laminated body sheet 9 is peeled off. Get. Subsequently, as shown in FIG. 6 (A), through holes 10 are opened in necessary portions of the multilayer body sheet 9, and further, as shown in FIG. 6 (B), the front and back surfaces and the front and back surfaces of the multilayer body sheet 9 are the most. A portion of the conductor pattern 2 a, 2 f in the layer close to is exposed by the via hole 11.
[0031]
Thereafter, as shown in FIG. 6C, a base conductor layer 12 for electrolytic plating is formed on the front and back surfaces of the multilayer body sheet 9, the through holes 10 and the via holes 11 by electroless plating. Subsequently, as shown in FIG. 6D, conductor patterns 2g and 2h are formed on the front and back surfaces of the multilayer body sheet 9 using a photolithography method. Thereafter, as shown in FIG. 6E, the underlying conductor layer 12 is removed by quick etching. Thereafter, each product is cut into products.
[0032]
The resin sheets 4a to 4g are preferably organic materials with Q> 100 at 1 GHz in consideration of high-frequency characteristics. In addition to vinylbenzyl resin (Q = 200 to 250), high-frequency BT resin (Q = 150 to 500) ) Etc. are also possible. By using such a resin having a high Q value, a multilayer substrate having a high Q value can be obtained. It is possible to use other thermosetting resins or thermoplastic resins as long as the peelability to the transfer substrate 1 can be secured.
[0033]
In addition, when mechanical strength is required, core materials, such as a glass cloth, an aramid nonwoven fabric, and a fluororesin porous sheet, can be used. However, since the surface of the insulating layer formed by the resin sheet also has unevenness due to the unevenness of the core material such as glass cloth, the thickness variation between the conductor patterns 2a to 2f increases, and the core material and the resin Therefore, if possible, it is preferable not to insert the core material.
[0034]
Depending on the purpose, the resin sheets 4a to 4g may be mixed with an appropriate powder, such as a high dielectric constant powder or a magnetic powder. Table 1 shows an example of a dielectric constant and a Q value of a resin sheet obtained by mixing a vinylbenzyl resin and a high dielectric constant filler (Ba-Ti-Nb ceramic having a dielectric constant of about 90). When a capacitor is formed in a multilayer substrate, a capacitor having a higher capacity can be obtained by mixing high dielectric constant powder.
[0035]
[Table 1]
Figure 2005019883
[0036]
According to the present embodiment, the following various effects can be obtained.
(1) Thinning and high density are possible.
Since the transfer substrate 1 such as a stainless plate having a high mechanical strength is used and the transfer substrate is present in at least one of all the processes, the interlayer insulating layer itself composed of the resin sheets 4a to 4g has a mechanical strength. It is not required and can be reduced in thickness and density.
[0037]
(2) It is excellent in mass productivity for the following reasons.
(A) First, a conductor pattern is collectively formed on a transfer substrate, so that the lead time (manufacturing time) is short.
(B) Since the laminated body sheets are laminated two by two, the number of lamination is less than that in the build-up method.
(C) Since a transfer method in which a conductor pattern is directly formed on a conductive transfer substrate is used, a base conductor layer is first formed on a prepreg, and then a resist pattern is formed thereon, and a conductor pattern is formed by electrolytic plating. Compared to the semi-additive method to be performed, the base conductor layer forming step and the base conductor layer etching step are not required.
[0038]
(3) The pattern accuracy and stacking accuracy are good for the following reasons.
(A) Since a full additive method in which a conductor pattern is directly formed on the transfer substrate by electrolytic plating can be adopted, the patterning accuracy is good.
(B) Since there is always a transfer substrate having excellent mechanical strength on one side of the substrate during lamination, the reduction ratio of the laminated body sheet before and after pressing is small.
(C) As shown in FIG. 7, the transfer substrate 1 is provided with pin alignment holes 13 and conductor pattern alignment holes 14 or marks, and these holes 14 and marks are used for forming the resist pattern 3. Since the alignment between the layers can be performed with reference to the transfer substrate 1 by aligning the holes 13 and 14 and the marks, the stacking accuracy (accuracy of the lateral displacement of the conductor pattern 2) is used. ) Is good.
[0039]
(4) The accuracy of the thickness of the interphase insulating layer by the resin sheets 4a to 4g is good for the following reasons.
(A) Since the surface of the transfer substrate 1 is smooth except for the first press for transfer to the resin sheet, there is no uneven flow of the resin during pressing, and the press pressure is reduced.
(B) Since the thickness accuracy (thickness variation) of the transfer substrate can be reduced (for example, ± 2 μm) at the very first pressing, as a result, the thickness variation after pressing of the resin sheet is reduced. be able to.
[0040]
(5) Since the electroless plating step is not required at least in the inner laminated portion, it is possible to solve the problem of lowering reliability due to the etching solution and the residue of the catalyst.
[0041]
Example 1
(Conductor pattern formation) As shown in FIG. 7, holes for pin alignment when laminating a transfer substrate having a diameter of 3 mm at predetermined positions of four corners of a stainless steel plate (SUS304TA material) 1 of 76 mm square and 0.1 mm thickness 13 and having a 0.2 mm conductor pattern alignment hole 14 formed at a predetermined position at both ends of the central portion was used as a transfer substrate. A resist pattern having a line width and a line spacing (L & S) of 20 μm was formed on the transfer substrate with a dry film having a thickness of 25 μm, and a conductor pattern was formed with a copper sulfate plating solution. Thereafter, after removing the resist with an organic stripping solution, only the surface of the conductor pattern made of copper was selectively roughened by blackening treatment.
[0042]
(Formation of Insulating Layer) A resin sheet was prepared by mixing a vinyl benzyl resin with 40 vol% of a high dielectric constant filler on a PET film to a thickness of 40 μm. The dielectric constant of this resin sheet at 1 GHz was 15. As shown in FIGS. 3 and 4, this was sandwiched between transfer substrates and integrated by a vacuum press in a heated state at 200.degree. The thickness of the insulating layer made of the resin sheet after pressing was 20 μm.
[0043]
(Formation of Insulating Layer) As shown in FIGS. 5 and 6, the process of peeling the transfer substrate on one side and pressing the resin sheet made of the above material between the peeling surfaces, By the process of peeling the transfer substrate, a multilayer body sheet 9 composed of the conductor patterns 2a to 2f and the insulating layers 4a to 4g was obtained.
[0044]
(Formation of Through Hole and Via Hole) As shown in FIGS. 6 (A) and 6 (B), a through hole 10 having a diameter of 0.2 mm was opened in the multilayer body sheet 9 by a drill. Thereafter, via holes 11 having a top diameter of 70 μm and a bottom diameter of 50 μm were formed by laser.
[0045]
(Formation of Conductor Patterns on Front and Back Surfaces) Copper was formed to a thickness of 0.3 μm as the underlying conductor layer 12 by electroless plating. Thereafter, a resist pattern having a line width and a line interval of 20 μm was formed using a dry film having a thickness of 25 μm as a resist. And the conductor patterns 2g and 2h were formed using the copper sulfate plating solution. Thereafter, the underlying conductor layer 12 was removed by quick etching.
[0046]
(Result) In the case of Example 1, the lead time is 22 hours, the number of samples is one sheet, and the number of insulating layers 4a to 4h is eight. Conductor thickness: 20 μm ± 2 μm, Conductor width: 20 μm ± 2 μm, The insulating layer thickness was 20 ± 2 μm, and the lamination accuracy was ± 20 μm.
[0047]
Comparative example 1 (build-up method)
(Core Substrate) A vinylbenzyl resin containing glass cloth having a thickness of 100 μm was used for the core substrate. After forming a base conductor layer of 0.3 μm on the core substrate by electroless plating, resist pattern formation, conductor pattern formation, and quick etching are performed on the conductor patterns on the front and back surfaces of the multilayer body sheet in Example 1. Performed similarly to formation.
[0048]
(Formation of Insulating Layer) Resin-coated copper foil formed by mixing vinylbenzyl resin with 40 vol% of high dielectric constant filler on 18 μm copper foil to a thickness of 40 μm was subjected to hot pressing with the resin surface as the core substrate side. Stuck. The dielectric constant ε at 1 GHz of the insulating layer after pressing was 9.2.
[0049]
(Formation of Conductor Pattern) In the same manner as the formation of the conductor pattern on the front and back surfaces of the multilayer body sheet in Example 1, formation of the underlying conductor layer, formation of the resist pattern, formation of the conductor pattern, and quick etching were performed.
[0050]
(Result) Lead time: 38 hours, sample number is 1 sheet, and the number of insulating layers is 8 conductor thickness: 20 μm ± 4 μm, conductor width: 20 μm ± 4 μm, insulating layer thickness: 20 ± 3 μm, lamination Accuracy: ± 20 μm.
[0051]
Comparative Example 2 (simultaneous pressing with prepreg)
A vinyl benzyl resin containing glass cloth having a thickness of 100 μm was used for the core substrate. This core substrate has copper foil attached on both sides. Patterning for forming a conductor pattern was performed by a subtractive method. The line width and line interval are 60 μm.
[0052]
(Press) The four core substrates formed in this manner were laminated with a prepreg interposed between the core substrates, and integrated by hot pressing.
[0053]
(Formation of through-holes and conductor patterns) Similar to Example 1, through-hole formation, electroless plating, resist pattern formation, and electroplating using a copper sulfate plating solution, a conductor pattern made of copper with a thickness of 20 μm was formed. Formed.
[0054]
(Result) Lead time: 17 hours, sample number is one sheet, and the number of insulating layers is 8 conductor thickness: 18 μm ± 2 μm, conductor width: 60 μm ± 6 μm, insulating layer thickness: 40 ± 5 μm, lamination Accuracy: ± 50 μm.
[0055]
Example 2
Instead of the insulating layer in Example 1, a prepreg with a glass cloth and a thickness of 60 μm was used. The material of this prepreg is the same as that of Example 1. In this case, the dielectric constant decreased to 10.
[0056]
(Result) Lead time: 22 hours, sample number is one sheet, and the number of insulating layers is 8 conductor thickness: 20 μm ± 2 μm, conductor width: 20 μm ± 2 μm, insulating layer thickness: 40 ± 2 μm, lamination Accuracy: ± 20 μm.
[0057]
According to these Examples 1 and 2, the lead time can be shortened to about half compared to the build-up method of Comparative Example 1, and the lead time is close to the case where a plurality of core substrates are integrated simultaneously by pressing. Can be shortened. Moreover, compared with the case where the copper foil of the comparative example 2 is patterned by a subtractive construction method, the precision of a conductor thickness and a width | variety can be improved. In addition, the accuracy of the insulating layer thickness and the stacking accuracy can be improved.
[0058]
In the present invention, the multilayer substrate can be configured as a semiconductor element or chip component mounted thereon, and the present invention can also be applied to a case where the multilayer substrate is configured as an individual electronic component having a multilayer structure. . The present invention realizes a high-capacitance capacitor by enabling the insulating layer (dielectric layer) to be thin when a capacitor is formed in a multilayer substrate or as an electronic component including a capacitor. If the same acquisition capacity is obtained, the electrode area can be reduced, and the substrate can be reduced in size.
[0059]
【The invention's effect】
According to the present invention, since a transfer substrate such as a stainless plate having high mechanical strength is used for manufacturing, the interlayer insulating layer made of a resin sheet itself does not require mechanical strength and can be thinned. .
[0060]
In addition, the conductor pattern can be formed in a batch on the transfer substrate, and the conductive pattern can be formed by adopting the additive method, so that the formation and removal of the base electrode layer is not required. And is excellent in mass productivity.
[0061]
In addition, the conductor pattern can be directly formed on the transfer substrate by electrolytic plating, and the patterning accuracy can be improved by not etching the copper foil pattern unlike the subtractive method. Also, due to the use of a transfer substrate with excellent mechanical strength, the contraction rate of the laminated body sheet before and after pressing is small, so there is little displacement of the conductor pattern, and the conductor is formed by holes and marks for alignment with the transfer substrate. Since pattern alignment can also be performed, the stacking accuracy is good.
[0062]
Also, except for the first press, the surface of the transfer substrate can be smoothed, there is no uneven flow of resin during pressing, the pressing pressure can be reduced, and the thickness of the laminated body sheet during the first pressing The variation of can be reduced. As a result, variation in thickness of the resin sheet after pressing can be reduced, and the accuracy of the thickness of the interphase insulating layer can be improved.
[0063]
Further, at least in the inner laminated portion, an electroless plating step is not required, so that there is no etching solution or catalyst residue, and reliability can be improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing a process of forming a conductor pattern showing an embodiment of a method for producing a multilayer board according to the present invention.
FIG. 2 is a diagram showing a configuration example of a conductive pattern formation transfer substrate in an embodiment of the method for producing a multilayer substrate of the present invention.
FIG. 3 is a diagram showing a part of a transfer process in the present embodiment.
FIG. 4 is a diagram showing the remaining part of the transfer process in the present embodiment.
FIG. 5 is a diagram showing a stacking process in the present embodiment.
FIG. 6 is a diagram showing a conductor pattern forming process for through holes, via holes, and front and back surfaces of a laminate in the present embodiment.
FIG. 7 is a plan view showing an example of a transfer substrate used in the present invention.
[Explanation of symbols]
1, 1a-1f: transfer substrate, 2, 2a-2f: conductor pattern, 3: resist pattern, 4a-4g: resin sheet (insulating layer), 5: PET film, 6a-6d, 7a, 7b, 8, 9: laminated body sheet, 10: through hole, 11: via hole, 12: base electrode layer, 13: hole for pin alignment, 14: hole for conductor pattern alignment

Claims (5)

導電性を有する転写用基板に導体パターンを形成し、
導体パターンを形成した2枚の転写用基板の導体パターン形成面間に樹脂シートを挟んで固着して積層素体シートを構成し、
2枚の積層素体シートのそれぞれ片面の転写用基板を剥離して、剥離面間に、新たな樹脂シートを挟んで固着するという工程を必要回数繰り返して多層基板となる積層体を得ることを特徴とする多層基板の製造方法。
A conductive pattern is formed on a transfer substrate having conductivity,
A laminated body sheet is formed by fixing a resin sheet between the conductor pattern forming surfaces of the two transfer substrates on which the conductor pattern is formed,
It is necessary to repeat the process of peeling the transfer substrate on one side of each of the two laminated body sheets and sandwiching and fixing a new resin sheet between the peeled surfaces to obtain a laminate that becomes a multilayer substrate. A method for producing a multilayer substrate, which is characterized.
請求項1に記載の多層基板の製造方法において、
前記転写用基板としてステンレス板を用いることを特徴とする多層基板の製造方法。
In the manufacturing method of the multilayer substrate according to claim 1,
A method of manufacturing a multilayer substrate, wherein a stainless steel plate is used as the transfer substrate.
請求項1または2に記載の多層基板の製造方法により得られる多層基板であって、前記樹脂シートにより構成される絶縁層が、機能材料粉末を含有するビニルベンジル樹脂からなることを特徴とする多層基板。A multilayer substrate obtained by the method for producing a multilayer substrate according to claim 1 or 2, wherein the insulating layer made of the resin sheet is made of a vinylbenzyl resin containing a functional material powder. substrate. 請求項1または2に記載の多層基板の製造方法により得られる多層基板であって、前記樹脂シートにより構成される絶縁層が芯材を含まない材料からなることを特徴とする多層基板。3. The multilayer substrate obtained by the method for producing a multilayer substrate according to claim 1, wherein the insulating layer formed of the resin sheet is made of a material not including a core material. 請求項3または4に記載の多層基板であって、コンデンサを内蔵していることを特徴とする多層基板。The multilayer board according to claim 3 or 4, wherein a capacitor is built in the multilayer board.
JP2003185678A 2003-06-27 2003-06-27 Multilayer substrate and manufacturing method thereof Expired - Lifetime JP4274861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003185678A JP4274861B2 (en) 2003-06-27 2003-06-27 Multilayer substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003185678A JP4274861B2 (en) 2003-06-27 2003-06-27 Multilayer substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005019883A true JP2005019883A (en) 2005-01-20
JP4274861B2 JP4274861B2 (en) 2009-06-10

Family

ID=34185050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003185678A Expired - Lifetime JP4274861B2 (en) 2003-06-27 2003-06-27 Multilayer substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4274861B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166407A (en) * 2006-12-27 2008-07-17 Tdk Corp Electronic element and manufacturing method of electronic element
US7707715B2 (en) * 2007-08-31 2010-05-04 Samsung Electro-Mechanics, Co., Ltd. Method of fabricating multilayer printed circuit board
US11285700B2 (en) * 2016-03-10 2022-03-29 Mitsui Mining & Smelting Co., Ltd. Multilayer laminate and method for producing multilayer printed wiring board using same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61267396A (en) * 1985-05-22 1986-11-26 株式会社日立製作所 Printed circuit board, multilayer printed circuit equipped therewith and manufacture thereof
JPS63166291A (en) * 1986-12-27 1988-07-09 住友ベークライト株式会社 Manufacture of multilayer printed circuit board
JPH03270094A (en) * 1990-03-19 1991-12-02 Toppan Printing Co Ltd Printed circuit material, manufacture thereof and manufacture of multilayer printed circuit board
JPH1187870A (en) * 1997-07-16 1999-03-30 Matsushita Electric Ind Co Ltd Circuit board and its manufacture
JP2000277913A (en) * 1999-03-25 2000-10-06 Kyocera Corp Multilayer wiring substrate and manufacture of the same
JP2001015933A (en) * 1999-06-30 2001-01-19 Mitsubishi Plastics Ind Ltd Thermally fusible insulating sheet
JP2002344106A (en) * 2001-05-16 2002-11-29 Matsushita Electric Ind Co Ltd Board with built-in circuit components and its manufacturing method
JP2003078251A (en) * 2001-06-18 2003-03-14 Tdk Corp Substrate with built-in ceramic chip and manufacturing method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61267396A (en) * 1985-05-22 1986-11-26 株式会社日立製作所 Printed circuit board, multilayer printed circuit equipped therewith and manufacture thereof
JPS63166291A (en) * 1986-12-27 1988-07-09 住友ベークライト株式会社 Manufacture of multilayer printed circuit board
JPH03270094A (en) * 1990-03-19 1991-12-02 Toppan Printing Co Ltd Printed circuit material, manufacture thereof and manufacture of multilayer printed circuit board
JPH1187870A (en) * 1997-07-16 1999-03-30 Matsushita Electric Ind Co Ltd Circuit board and its manufacture
JP2000277913A (en) * 1999-03-25 2000-10-06 Kyocera Corp Multilayer wiring substrate and manufacture of the same
JP2001015933A (en) * 1999-06-30 2001-01-19 Mitsubishi Plastics Ind Ltd Thermally fusible insulating sheet
JP2002344106A (en) * 2001-05-16 2002-11-29 Matsushita Electric Ind Co Ltd Board with built-in circuit components and its manufacturing method
JP2003078251A (en) * 2001-06-18 2003-03-14 Tdk Corp Substrate with built-in ceramic chip and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166407A (en) * 2006-12-27 2008-07-17 Tdk Corp Electronic element and manufacturing method of electronic element
US7707715B2 (en) * 2007-08-31 2010-05-04 Samsung Electro-Mechanics, Co., Ltd. Method of fabricating multilayer printed circuit board
US11285700B2 (en) * 2016-03-10 2022-03-29 Mitsui Mining & Smelting Co., Ltd. Multilayer laminate and method for producing multilayer printed wiring board using same

Also Published As

Publication number Publication date
JP4274861B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
EP2157842B1 (en) Laminated wiring board and method for manufacturing the same
TWI392410B (en) Multilayer printed wiring board and manufacturing method thereof
US7375421B2 (en) High density multilayer circuit module
JP5172404B2 (en) Multilayer wiring board manufacturing method and multilayer wiring board intermediate product
JP4043115B2 (en) Multi-layer printed wiring board
TWI296492B (en) Un-symmetric circuit board and method for fabricating the same
JP3956851B2 (en) Passive element embedded substrate and manufacturing method thereof
KR100605454B1 (en) Transcription material and manufacturing method thereof, and wiring board manufactured by using transcription material
JP4691763B2 (en) Method for manufacturing printed wiring board
JP2006286724A (en) Wiring board and its manufacturing method
JP2002043752A (en) Wiring board, multilayer wiring board, and their manufacturing method
JP3037662B2 (en) Multilayer wiring board and method of manufacturing the same
JPH08139450A (en) Manufacturing method of printed-wiring board
JP4274861B2 (en) Multilayer substrate and manufacturing method thereof
JP2000133916A (en) Formation material for wiring pattern transfer, manufacture of formation material for wiring pattern transfer, wiring board using formation material for wiring pattern transfer and manufacture thereof
JP3960302B2 (en) Substrate manufacturing method
JP4947416B2 (en) Electronic device and manufacturing method thereof
JP4684454B2 (en) Printed wiring board manufacturing method and printed wiring board
JP2000277913A (en) Multilayer wiring substrate and manufacture of the same
JP4370663B2 (en) MULTILAYER CERAMIC ELECTRONIC COMPONENT, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE
JP2002124762A (en) Production method for multilayered printed wiring board
JPH08264939A (en) Manufacture of printed wiring board
JP5097006B2 (en) Printed wiring board and manufacturing method thereof
JP4841234B2 (en) Manufacturing method of wiring substrate with built-in via array capacitor
JP4453301B2 (en) Wiring board manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090303

R150 Certificate of patent or registration of utility model

Ref document number: 4274861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

EXPY Cancellation because of completion of term