JP4453301B2 - Wiring board manufacturing method - Google Patents

Wiring board manufacturing method Download PDF

Info

Publication number
JP4453301B2
JP4453301B2 JP2003298254A JP2003298254A JP4453301B2 JP 4453301 B2 JP4453301 B2 JP 4453301B2 JP 2003298254 A JP2003298254 A JP 2003298254A JP 2003298254 A JP2003298254 A JP 2003298254A JP 4453301 B2 JP4453301 B2 JP 4453301B2
Authority
JP
Japan
Prior art keywords
dielectric material
wiring board
wiring
manufacturing
metal foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003298254A
Other languages
Japanese (ja)
Other versions
JP2005072166A (en
Inventor
秀克 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2003298254A priority Critical patent/JP4453301B2/en
Publication of JP2005072166A publication Critical patent/JP2005072166A/en
Application granted granted Critical
Publication of JP4453301B2 publication Critical patent/JP4453301B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、各種電子機器の配線基板の製造方法に係わり、さらに詳しくは、内蔵されるキャパシタの膜厚精度を向上させた、且つ誘電材のあらゆる種類に対応可能な配線基板の製造方法に関するものである。尚、本願においては、インターポーザーも配線基板に含むものとする。   The present invention relates to a method of manufacturing a wiring board of various electronic devices, and more particularly to a method of manufacturing a wiring board that improves the film thickness accuracy of a built-in capacitor and is compatible with all kinds of dielectric materials. It is. In the present application, an interposer is also included in the wiring board.

従来の配線基板の製造方法について以下に説明する。   A conventional method for manufacturing a wiring board will be described below.

従来、キャパシタが内蔵される配線基板の製造方法としては、図6(a)〜(d)に示す様に、配線基板の積層途中工程における配線上に、例えば、エポキシ系樹脂等の絶縁樹脂12を形成する(図6(a))。次いで、例えば、Cu金属などのキャパシタ下部電極、いわゆる導体層となる金属16を形成する(図6(b))。   Conventionally, as a method for manufacturing a wiring board in which a capacitor is built, as shown in FIGS. Is formed (FIG. 6A). Next, a capacitor lower electrode such as a Cu metal, for example, a metal 16 serving as a so-called conductor layer is formed (FIG. 6B).

次いで、導体層となる金属16上に、例えば、エポキシ系樹脂等にセラミック粉末等を分散させた誘電材2を形成し(図6(c))、更に、例えば、Cu金属などのキャパシタ上部電極、いわゆる導体層となる金属16’を形成する(図6(d))。次いで、キャパシタ上部電極となる金属16’表面にフォトレジストを形成し、露光現像によりフォトレジストパターンとし、所望のキャパシタ上部電極となるパターンを得るべく金属を露出させ、塩化第二銅等を用いたエッチング法により、キャパシタ上部電極を形成し、且つ誘電材表面を露出させる。   Next, a dielectric material 2 in which ceramic powder or the like is dispersed in, for example, an epoxy resin or the like is formed on the metal 16 serving as a conductor layer (FIG. 6C), and further, for example, a capacitor upper electrode such as Cu metal Then, a metal 16 ′ serving as a so-called conductor layer is formed (FIG. 6D). Next, a photoresist is formed on the surface of the metal 16 'serving as the capacitor upper electrode, and a photoresist pattern is formed by exposure and development. The metal is exposed to obtain a desired pattern serving as the capacitor upper electrode, and cupric chloride or the like is used. The capacitor upper electrode is formed by an etching method, and the dielectric material surface is exposed.

次いで、キャパシタ上部電極をバリアとして、専用のアルカリエッチング液を用い、誘電材2をキャパシタ上部電極と同形状にエッチングし、且つキャパシタ下部電極となる金属16表面を露出させる。次に、キャパシタ上部電極上のフォトレジストをバリアとして、キャパシタ下部電極となる金属16をエッチングし、キャパシタ下部電極を形成し、フォトレジストを専用の剥離液で剥離しする事でキャパシタを作製するといった方法であった。   Next, using the capacitor upper electrode as a barrier, a dedicated alkaline etchant is used to etch the dielectric material 2 in the same shape as the capacitor upper electrode, and the surface of the metal 16 that becomes the capacitor lower electrode is exposed. Next, using the photoresist on the capacitor upper electrode as a barrier, the metal 16 serving as the capacitor lower electrode is etched to form the capacitor lower electrode, and the capacitor is fabricated by stripping the photoresist with a dedicated stripping solution. Was the way.

現在、配線基板の製造には、ガラスクロスを有する有機系の樹脂シートの両面にCu箔が貼り付けられた銅張り両面板がコアとして多く用いられ、その表面は2μm程度の荒れが生じている。また、キャパシタ等の受動素子を内蔵する基板は、図7に示すように、ビルドアップ法、すなわち、コアに配線10等を形成し、絶縁樹脂12を形成し、更に絶縁樹脂12上に配線10’を形成するといった工程が繰り返されられるため、その表面は配線10(一般に、10μmから20μm厚)の厚み等により、やはり2〜5μm程度の荒れが生じてしまう。   Currently, in the production of a wiring board, a copper-clad double-sided board in which Cu foil is pasted on both sides of an organic resin sheet having a glass cloth is often used as a core, and the surface is roughened by about 2 μm. . Further, as shown in FIG. 7, the substrate incorporating a passive element such as a capacitor is formed by the build-up method, that is, the wiring 10 or the like is formed in the core, the insulating resin 12 is formed, and the wiring 10 is further formed on the insulating resin 12. Since the process of forming 'is repeated, the surface of the surface is also roughened by about 2 to 5 μm due to the thickness of the wiring 10 (generally 10 μm to 20 μm).

上記したような配線基板の製造方法では、キャパシタ下部電極となる金属を形成する基板表面が荒れているため、形成した誘電材の膜厚のバラツキが大きくなり、得られるキャパシタ容量の精度が悪いといった問題があった。
また、有機系基板に直接、誘電材を形成するため、有機系基板の耐熱性の点から、誘電材の焼成温度は、通常200℃以下、高耐熱性基板でも250℃程度以下で処理する必要があり、そのため、使用可能な誘電材の比誘電率は数十程度であり、小さな面積で大きな容量を得ることができないといった問題があった。
特願2000−592842号公報
In the method for manufacturing a wiring board as described above, since the surface of the substrate on which the metal to be the capacitor lower electrode is formed is rough, the variation in the film thickness of the formed dielectric material becomes large, and the accuracy of the obtained capacitor capacity is poor. There was a problem.
In addition, since the dielectric material is directly formed on the organic substrate, the firing temperature of the dielectric material is usually 200 ° C. or lower, and even a high heat resistant substrate needs to be processed at about 250 ° C. or lower from the viewpoint of heat resistance of the organic substrate. Therefore, the dielectric constant of the usable dielectric material is about several tens, and there is a problem that a large capacity cannot be obtained with a small area.
Japanese Patent Application No. 2000-592842

本発明は、前記問題点を鑑みなされたものであり、その課題とするところは、キャパシタが内蔵される配線基板の製造方法において、誘電材の膜厚のバラツキを低減させ、キャパシタ容量の精度を向上させた、且つ、誘電材の高誘電率化を可能とするプリント配線基板の製造方法を提供することにある。   The present invention has been made in view of the above-mentioned problems, and the object of the present invention is to reduce the variation in the thickness of the dielectric material in the method for manufacturing a wiring board with a built-in capacitor, thereby increasing the accuracy of the capacitor capacity. It is an object of the present invention to provide a method for manufacturing a printed wiring board which is improved and enables a dielectric material to have a high dielectric constant.

本発明は、キャパシタが内蔵される配線基板の製造方法において、
1)誘電材の両面に金属箔を有する部材の形成について、誘電材は900〜1000℃の高温焼成の熱処理をされたものである、部材の形成の工程、
2)配線基板の積層途中工程における配線上に、半硬化性絶縁樹脂シートを介して該部材を接着する工程、
3)金属箔表面にフォトレジストを設け、露光、現像を行い、キャパシタ上部電極となる部分のフォトレジストパターンを形成する工程、
4)露出した金属箔にエッチングを行い、フォトレジストパターンを剥離し、キャパシタ上部電極を形成する工程、
5)露出した誘電材を除去し、誘電材パターンを形成する工程、
6)露出した該金属箔表面及び該キャパシタ上部電極上にフォトレジストを設け、露光、現像を行い、キャパシタ下部電極及び配線となる部分のフォトレジストパターンを形成する工程、
7)露出した該金属箔にエッチングを行い、フォトレジストパターンの剥離を行い、キャパシタ下部電極及び配線を形成する工程、
を具備することを特徴とする配線基板の製造方法である。
The present invention relates to a method for manufacturing a wiring board with a built-in capacitor,
1) Regarding the formation of a member having metal foil on both sides of the dielectric material, the dielectric material is a member subjected to a heat treatment of high-temperature firing at 900 to 1000 ° C.
2) A step of adhering the member to the wiring in the process of laminating the wiring board via a semi-curable insulating resin sheet,
3) A step of providing a photoresist on the surface of the metal foil, performing exposure and development, and forming a photoresist pattern of a portion to be a capacitor upper electrode;
4) etching the exposed metal foil, peeling the photoresist pattern, and forming the capacitor upper electrode;
5) removing the exposed dielectric material to form a dielectric material pattern;
6) A step of providing a photoresist on the exposed surface of the metal foil and the capacitor upper electrode, performing exposure and development, and forming a photoresist pattern of a portion serving as the capacitor lower electrode and wiring;
7) etching the exposed metal foil, peeling off the photoresist pattern, and forming a capacitor lower electrode and wiring;
A method for manufacturing a wiring board, comprising:

また、本発明は、上記発明による配線基板の製造方法において、前記誘電材が、有機系の絶縁樹脂にセラミック系の粉末が分散されてなることを特徴とする請求項2に記載の配線基板の製造方法である。
The wiring board manufacturing method according to claim 2, wherein the dielectric material is formed by dispersing ceramic powder in an organic insulating resin. It is a manufacturing method.

また、本発明は、上記発明による配線基板の製造方法において、前記誘電材が、金属箔上にスパッタリング、CVD等で形成される誘電体薄膜であることを特徴とする請求項1に記載の配線基板の製造方法である。
The wiring board according to claim 1, wherein the dielectric material is a dielectric thin film formed on a metal foil by sputtering, CVD, or the like. A method for manufacturing a substrate.

また、本発明は、上記発明による配線基板の製造方法において、前記部材が、金属箔と誘電材が交互に形成された多層の部材であることを特徴とする請求項1乃至3のいずれかに記載の配線基板の製造方法である。
Further, according to the present invention, in the method for manufacturing a wiring board according to the above invention, the member is a multilayer member in which metal foils and dielectric materials are alternately formed. It is a manufacturing method of the wiring board of description.

また、本発明は、上記発明による配線基板の製造方法において、前記部材が、誘電材の両面に金属箔を有する部材の片面に抵抗体となる抵抗金属が形成されている部材であることを特徴とする請求項1乃至4のいずれかに記載の配線基板の製造方法である。
In the wiring board manufacturing method according to the present invention, the member is a member in which a resistance metal serving as a resistor is formed on one side of a member having a metal foil on both sides of a dielectric material. A method for manufacturing a wiring board according to any one of claims 1 to 4.

また、本発明は、上記発明による配線基板の製造方法において、前記部材を、金属箔と誘電材シートをラミネートし、誘電材の両面に金属箔を有する部材として形成することを特徴とする請求項1乃至5のいずれかに記載の配線基板の製造方法である。   Further, the present invention provides the method for manufacturing a wiring board according to the above invention, wherein the member is formed as a member having a metal foil laminated on both sides of a dielectric material and a metal foil laminated on both sides of the dielectric material. It is a manufacturing method of the wiring board in any one of 1 thru | or 5.

本発明による配線基板の製造方法によると、基板とは別に、予め平滑な面の金属箔に膜厚の均一な誘電材をラミネートするといった方法、或いは、平滑な金属面に、スパッタで
誘電材を形成するので、基板上に接着された後でも誘電材の厚さは、基板面内で均一となり、精度の良いキャパシタ容量が得られる。
また、有機系基板上で誘電材の熱処理を行わないため、誘電材の所望の比誘電率を得るための高温焼成が可能となる。
According to the method for manufacturing a wiring board according to the present invention, a dielectric material having a uniform film thickness is laminated on a smooth metal foil in advance, or a dielectric material is sputtered on a smooth metal surface. Since it is formed, the thickness of the dielectric material becomes uniform within the substrate surface even after being bonded onto the substrate, and an accurate capacitor capacity can be obtained.
In addition, since the dielectric material is not heat-treated on the organic substrate, high-temperature firing can be performed to obtain a desired dielectric constant of the dielectric material.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図1(a)〜(h)は、本発明による配線基板の製造方法の一実施例の工程説明図である。本発明による配線基板の製造方法は、まず、誘電材2の両面に金属箔1を有する部材3を形成する(図1(a))。
この部材3は、例えば、有機系の絶縁樹脂にセラミック系粉末を分散させた樹脂シートやグリーンシートなどの誘電材シートの両面に金属箔1、例えば、Cu箔をラミネートし、所望の熱処理を行う方法や、高濃度ゾルゲル法、スパッタリング法やCVD法等により誘電体薄膜をCu箔上に設け、必要であれば所望の熱処理を行い、更にCu薄膜を形成し、必要であればCu薄膜上にCuをめっきし、厚膜化するといった方法で形成する。
1A to 1H are process explanatory views of an embodiment of a method for manufacturing a wiring board according to the present invention. In the method for manufacturing a wiring board according to the present invention, first, members 3 having metal foils 1 are formed on both surfaces of a dielectric material 2 (FIG. 1A).
For example, the member 3 is formed by laminating a metal foil 1, for example, a Cu foil, on both surfaces of a dielectric material sheet such as a resin sheet or a green sheet in which a ceramic powder is dispersed in an organic insulating resin, and performing a desired heat treatment. A dielectric thin film is provided on a Cu foil by a method, a high-concentration sol-gel method, a sputtering method, a CVD method, or the like, a desired heat treatment is performed if necessary, a Cu thin film is formed, and a Cu thin film is formed if necessary. It forms by the method of plating Cu and thickening it.

この際、誘電材2の種類等によって引き起こる問題に対応して、金属を多種金属の多層化にすることも容易に考えられる。   At this time, it is easily conceivable to make the metal multi-layered from various metals in response to problems caused by the type of dielectric material 2 and the like.

また、必要であれば、得られた部材の片面に抵抗体11、例えば、ニッケル−リン系金属を電解めっきするといった方法などで製造する。   Further, if necessary, it is manufactured by a method such as electrolytic plating of a resistor 11 such as a nickel-phosphorus metal on one side of the obtained member.

次いで、図1(b)に示すように、配線基板の積層途中工程における配線上に、半硬化性絶縁樹脂シート5を介して上記部材3を接着し、必要な熱処理を行う。
次いで、露出している金属箔1表面にフォトレジストを設け、露光、現像を行い、キャパシタ上部電極7となる所望のフォトレジストパターン6を形成し、露出した金属箔のエッチングを行い(図1(c))、フォトレジストパターン6を剥離することでキャパシタ上部電極7を形成する。
Next, as shown in FIG. 1B, the member 3 is bonded to the wiring in the process of laminating the wiring board via the semi-curable insulating resin sheet 5, and necessary heat treatment is performed.
Next, a photoresist is provided on the exposed surface of the metal foil 1, and exposure and development are performed to form a desired photoresist pattern 6 to be the capacitor upper electrode 7, and etching of the exposed metal foil is performed (FIG. 1 ( c)), the capacitor upper electrode 7 is formed by peeling the photoresist pattern 6.

次いで、露出した誘電材2を、例えば、専用のエッチング液によるエッチングといった化学的方法、或いは、ルータやサンドブラスト法により機械的、物理的に除去し、所望の誘電材パターン2aを形成する(図1(d))。
尚、フォトレジストパターン6は、誘電材2を除去した後に剥離することもできる。
Next, the exposed dielectric material 2 is mechanically and physically removed by, for example, a chemical method such as etching using a dedicated etchant, or a router or a sandblast method to form a desired dielectric material pattern 2a (FIG. 1). (D)).
The photoresist pattern 6 can also be peeled off after the dielectric material 2 is removed.

次いで、図1(e)に示すように、露出した金属箔1表面及びキャパシタ上部電極7上に、フォトレジスト8を形成し、露光、現像を行い、キャパシタ下部電極9及び配線10となる所望のフォトレジストパターン8’を形成し、露出した金属箔1のエッチングを行い(図1(f))、フォトレジストパターン8’を剥離する事でキャパシタ下部電極9及び配線10を形成する(図1(g))。   Next, as shown in FIG. 1E, a photoresist 8 is formed on the exposed surface of the metal foil 1 and the capacitor upper electrode 7, and is exposed and developed to obtain a desired capacitor lower electrode 9 and wiring 10. A photoresist pattern 8 ′ is formed, the exposed metal foil 1 is etched (FIG. 1 (f)), and the capacitor lower electrode 9 and the wiring 10 are formed by peeling the photoresist pattern 8 ′ (FIG. 1 ( g)).

また、部材3の片面に抵抗体11を設ける場合は、図1(h)に示すように、続いて、フォトレジストを形成し、露光現像を行い、専用のエッチング液にて配線の一部をエッチングし、所望の形状の抵抗体11を露出した後、フォトレジストを剥離する。
次いで、残された一連の配線基板の工程を行うといった製造方法である。尚、配線10と同時にスパイラル型インダクタ等を形成しても良い。
When the resistor 11 is provided on one side of the member 3, as shown in FIG. 1 (h), subsequently, a photoresist is formed, exposed and developed, and a part of the wiring is formed with a dedicated etching solution. After etching and exposing the resistor 11 having a desired shape, the photoresist is peeled off.
Next, the manufacturing method is such that a series of remaining wiring board steps are performed. A spiral inductor or the like may be formed simultaneously with the wiring 10.

本発明による配線基板の製造方法によると、基板とは別に、予め平滑な面の金属箔に膜厚の均一な誘電材をラミネートするといった方法、或いは、平滑な金属面に、スパッタで誘電材を形成するので、基板上に接着された後でも誘電材の厚さは、基板面内で均一とな
り、精度の良いキャパシタ容量が得られる。
また、有機系基板上で誘電材の熱処理を行わないため、誘電材の所望の比誘電率を得るための高温焼成が可能となる。
According to the method for manufacturing a wiring board according to the present invention, a dielectric material having a uniform film thickness is laminated on a smooth metal foil in advance, or a dielectric material is sputtered on a smooth metal surface. Since it is formed, the thickness of the dielectric material becomes uniform within the substrate surface even after being bonded onto the substrate, and an accurate capacitor capacity can be obtained.
In addition, since the dielectric material is not heat-treated on the organic substrate, high-temperature firing can be performed to obtain a desired dielectric constant of the dielectric material.

以下に、実施例により本発明を具体的に説明する。   Hereinafter, the present invention will be described specifically by way of examples.

図2(a)〜(c)に従って実施例1を説明する。   Example 1 will be described with reference to FIGS.

両面に所定の回路パターンが形成された不織ガラスエポキシ樹脂を含浸させた銅張り樹脂基板(図示せず)を用いた、所定のビルドアップ工程における途中工程において、絶縁樹脂12としてのエポキシ系樹脂上に専用の処理液を用い、無電解Cuめっきを行う事で、Cu薄膜を形成した。   Epoxy resin as insulating resin 12 in the middle of a predetermined build-up process using a copper-clad resin substrate (not shown) impregnated with a nonwoven glass epoxy resin having a predetermined circuit pattern formed on both sides A Cu thin film was formed by performing electroless Cu plating using a dedicated processing solution.

次いで、Cu薄膜表面に厚さ12μmのドライフィルムフォトレジストをラミネートし、露光現像を行い、所望の配線10となるCu薄膜表面を露出させた。
次に、露出しているCu薄膜表面に電解Cuめっきを行い、Cuを12μm程度析出させた。
次いで、40μm厚のドライフィルムレジストをラミネートし、UVYAGレーザーを用い、層間の電気的接続用のバンプとなる穴を形成した。
Next, a dry film photoresist having a thickness of 12 μm was laminated on the surface of the Cu thin film, exposed and developed, and the surface of the Cu thin film to be the desired wiring 10 was exposed.
Next, electrolytic Cu plating was performed on the exposed Cu thin film surface to deposit about 12 μm of Cu.
Next, a dry film resist having a thickness of 40 μm was laminated, and holes serving as bumps for electrical connection between layers were formed using a UVYAG laser.

次いで、電解Cuめっきを行い、バンプとなる穴にCuを40μm程度析出させた。
次に、表面を1、2μm程度研磨しバンプ13の高さを揃え、更にバンプ13先端に電解金めっきを行い、1μm程度の金14を形成した。
次に、ドライフィルムフォトレジストおよびドライフィルムレジストを専用の剥離液で剥離し、Cu薄膜を過硫酸アンモニウム水溶液等でソフトエッチングすることにより、配線10を形成し、所望の基板を作製した(図2(a))。
Next, electrolytic Cu plating was performed to deposit about 40 μm of Cu in the holes to be bumps.
Next, the surface was polished by about 1 μm, the bumps 13 were made to have the same height, and the gold 13 having a thickness of about 1 μm was formed by performing electrolytic gold plating on the tips of the bumps 13.
Next, the dry film photoresist and the dry film resist were stripped with a dedicated stripping solution, and the Cu thin film was soft-etched with an aqueous ammonium persulfate solution or the like, thereby forming the wiring 10 and fabricating a desired substrate (FIG. 2 ( a)).

次いで、専用のエッチング液で表面が0.5μm程度粗化された12μm厚の2枚のCu箔1a、1a’の間に、誘電材2となるエポキシ系樹脂にチタン酸バリウム等を混入させ加工された20μm厚の半硬化性の樹脂シートが位置するように、130℃、30N/cm2の条件で加熱加圧ラミネートを行い、更に200℃、1時間の熱処理を行うことで部材を作製した。 Next, barium titanate or the like is mixed into the epoxy resin used as the dielectric material 2 between two 12 μm thick Cu foils 1 a and 1 a ′ whose surface has been roughened by a dedicated etching solution by about 0.5 μm. The member was prepared by performing heat and pressure lamination under the conditions of 130 ° C. and 30 N / cm 2 so that the 20 μm-thick semi-curable resin sheet was positioned, and further performing heat treatment at 200 ° C. for 1 hour. .

次に、上記部材の片面に、抵抗体11となるニッケル−リン系金属15を1μm厚程度、電解めっきした。
次いで、50μm厚のエポキシ系の半硬化性絶縁樹脂シート5を上記部材のニッケル−リン系金属15が存在する面に、130℃、30N/cm2の条件で加熱加圧ラミネートし、続いて、上記基板の絶縁樹脂12上に、130℃、50N/cm2の条件で加熱加圧ラミネートし、更に200℃、1時間の熱処理を行うことで、エポキシ系の半硬化性絶縁樹脂シート5の硬化および層間の電気的接続を行った(図2(b))。
Next, a nickel-phosphorous metal 15 to be the resistor 11 was electrolytically plated on one side of the member to a thickness of about 1 μm.
Next, 50 μm-thick epoxy-based semi-curable insulating resin sheet 5 is heat-press laminated on the surface of the member where nickel-phosphorous metal 15 is present under the conditions of 130 ° C. and 30 N / cm 2 , Curing of the epoxy-based semi-curable insulating resin sheet 5 is performed on the insulating resin 12 of the substrate by heating and pressing under conditions of 130 ° C. and 50 N / cm 2 and further heat treatment at 200 ° C. for 1 hour. And the electrical connection between the layers was performed (FIG. 2B).

次に、Cu箔1a表面に厚さ15μmのウレタン樹脂系のドライフィルムフォトレジストをラミネートし、露光現像を行い、所望のキャパシタ上部電極7以外のCu箔表面を露出させた。ここで、ウレタン樹脂系を用いた理由として、後工程で行うサンドブラスト時において、衝撃吸収性に優れているためである。   Next, a 15 μm-thick urethane resin dry film photoresist was laminated on the surface of the Cu foil 1a, exposed and developed, and the surface of the Cu foil other than the desired capacitor upper electrode 7 was exposed. Here, the reason why the urethane resin system is used is that it has excellent impact absorbability at the time of sandblasting performed in a subsequent process.

次に、塩化第2銅液等でCu箔1aのエッチングを行い、キャパシタ上部電極7を作製した。
次に、数μmから数十μm径の微細砥粒をノズルから噴出させ、対象物の表面を削るサン
ドブラスト工法を用い、誘電材2を除去し、誘電材パターン2aを形成し、キャパシタ下部電極9および配線10となるCu箔1a’表面を露出させた。
Next, the Cu foil 1a was etched with a cupric chloride solution or the like to produce a capacitor upper electrode 7.
Next, fine abrasive grains having a diameter of several μm to several tens of μm are ejected from the nozzle, and the dielectric material 2 is removed by using a sandblasting method in which the surface of the object is shaved to form the dielectric material pattern 2a, and the capacitor lower electrode 9 And the surface of the Cu foil 1a ′ to be the wiring 10 was exposed.

次に、ドライフィルムフォトレジストを専用の剥離液で剥離した。
次に、基板表面に液状フォトレジストを塗布し、露光現像を行い、所望の配線10およびキャパシタ下部電極9のフォトレジストパターンを形成した。
次に、塩化第2鉄液等でCu箔1a’及びニッケル−リン系金属のエッチングを行い、フォトレジストパターンを専用の剥離液で剥離し、所望の配線10およびキャパシタ下部電極9を作製した。
Next, the dry film photoresist was stripped with a dedicated stripper.
Next, a liquid photoresist was applied to the substrate surface, exposure and development were performed, and a photoresist pattern of desired wiring 10 and capacitor lower electrode 9 was formed.
Next, the Cu foil 1a ′ and the nickel-phosphorus metal were etched with a ferric chloride solution or the like, and the photoresist pattern was stripped with a dedicated stripping solution to produce the desired wiring 10 and capacitor lower electrode 9.

次に、基板表面に液状フォトレジストを塗布し、露光現像を行い、所望の抵抗体11が得られる様、フォトレジストパターンを形成した。
次に、チヨ尿素水溶液等で配線10をエッチングすることで、所望の抵抗体11を作製した。
Next, a liquid photoresist was applied to the surface of the substrate, and exposure and development were performed. A photoresist pattern was formed so that a desired resistor 11 was obtained.
Next, the desired resistor 11 was produced by etching the wiring 10 with a thiourea aqueous solution or the like.

次に、フォトレジストを専用の剥離液で剥離した(図2(c))。   Next, the photoresist was stripped with a dedicated stripping solution (FIG. 2C).

次いで、50μm厚のエポキシ系の半硬化性樹脂シートを加熱加圧ラミネートし、残された一連の配線基板の製造工程を終了させる事により、本発明の製造方法による配線基板を作製した。   Next, a 50 μm-thick epoxy-based semi-curable resin sheet was laminated by heating and pressing, and the manufacturing process of the remaining series of wiring substrates was completed to prepare a wiring substrate by the manufacturing method of the present invention.

両面に所定の回路パターンが形成された不織ガラスエポキシ樹脂を含浸させた銅張り樹脂基板(図示せず)を用いた、所定のビルドアップ工程における途中工程において、絶縁樹脂12としてのエポキシ系樹脂上に専用の処理液を用い、無電解Cuめっきを行う事で、Cu薄膜を形成した。   Epoxy resin as insulating resin 12 in the middle of a predetermined build-up process using a copper-clad resin substrate (not shown) impregnated with a non-woven glass epoxy resin having a predetermined circuit pattern formed on both sides A Cu thin film was formed by performing electroless Cu plating using a dedicated processing solution.

次いで、Cu薄膜表面に厚さ12μmのドライフィルムフォトレジストをラミネートし、露光現像を行い、所望の配線10となるCu薄膜表面を露出させた。
次に、露出しているCu薄膜表面に電解Cuめっきを行い、Cuを12μm程度析出させた。
次いで、40μm厚のドライフィルムレジストをラミネートし、UVYAGレーザーを用い、層間の電気的接続用のバンプとなる穴を形成した。
Next, a dry film photoresist having a thickness of 12 μm was laminated on the surface of the Cu thin film, exposed and developed, and the surface of the Cu thin film to be the desired wiring 10 was exposed.
Next, electrolytic Cu plating was performed on the exposed Cu thin film surface to deposit about 12 μm of Cu.
Next, a dry film resist having a thickness of 40 μm was laminated, and holes serving as bumps for electrical connection between layers were formed using a UVYAG laser.

次いで、電解Cuめっきを行い、バンプとなる穴にCuを40μm程度析出させた。
次に、表面を1、2μm程度研磨しバンプ13の高さを揃え、更にバンプ13先端に電解金めっきを行い、1μm程度の金14を形成した。
次に、ドライフィルムフォトレジストおよびドライフィルムレジストを専用の剥離液で剥離し、Cu薄膜を過硫酸アンモニウム水溶液等でソフトエッチングすることにより、配線10を形成し、所望の基板を作製した(図2(a))。
Next, electrolytic Cu plating was performed to deposit about 40 μm of Cu in the holes to be bumps.
Next, the surface was polished by about 1 μm, the bumps 13 were made to have the same height, and the gold 13 having a thickness of about 1 μm was formed by performing electrolytic gold plating on the tips of the bumps 13.
Next, the dry film photoresist and the dry film resist were stripped with a dedicated stripping solution, and the Cu thin film was soft-etched with an aqueous ammonium persulfate solution or the like, thereby forming the wiring 10 and fabricating a desired substrate (FIG. 2 ( a)).

次いで、専用のエッチング液で表面が0.5μm程度粗化された12μm厚の2枚のCu箔の間に、チタン酸バリウム等のセラミック粉末を分散させた水系の溶媒にPMMA、PVBなどの高分子バインダを加えたものを混練し、シート状にした厚さ20μmのグリーンシートが位置するように、加熱加圧ラミネートを行い、更に最終温度900℃前後で熱処理を行うことで部材を作製した。   Next, a PMMA, PVB or other high solvent such as barium titanate ceramic powder is dispersed between two 12 μm thick Cu foils whose surface is roughened by about 0.5 μm with a dedicated etchant. A member was prepared by kneading the material to which the molecular binder was added, laminating it so that a 20 μm thick green sheet in a sheet shape is located, and further performing a heat treatment at a final temperature of about 900 ° C.

次いで、50μm厚のエポキシ系の半硬化性樹脂シートと部材とを130℃、30N/cm2の条件で加熱加圧ラミネートし、続いて、これを上記基板上に、130℃、50N/cm2の条件で加熱加圧ラミネートし、更に200℃、1時間の熱処理を行うことで、
エポキシ系の半硬化性絶縁樹脂シートの硬化および層間の電気的接続を行った。
Next, a 50 μm-thick epoxy-based semi-curing resin sheet and the member were laminated under heat and pressure under the conditions of 130 ° C. and 30 N / cm 2 , and then this was applied onto the substrate at 130 ° C. and 50 N / cm 2. By heat and pressure laminating under the following conditions, and further heat treatment at 200 ° C. for 1 hour,
The epoxy-based semi-curable insulating resin sheet was cured and the electrical connection between the layers was performed.

次に、Cu箔表面に厚さ15μmのウレタン樹脂系のドライフィルムフォトレジストをラミネートし、露光現像を行い、所望のキャパシタ上部電極以外のCu箔表面を露出させた。ここで、ウレタン樹脂系を用いた理由として、後工程で行うサンドブラスト時において、衝撃吸収性に優れているためである。   Next, a urethane resin-based dry film photoresist having a thickness of 15 μm was laminated on the surface of the Cu foil, exposed and developed, and the surface of the Cu foil other than the desired capacitor upper electrode was exposed. Here, the reason why the urethane resin system is used is that it has excellent impact absorbability at the time of sandblasting performed in a subsequent process.

次に、塩化第2銅液等でCu箔のエッチングを行い、キャパシタ上部電極を作製した。次に、数μmから数十μm径の微細砥粒をノズルから噴出させ、対象物の表面を削るサンドブラスト工法を用い、誘電材を除去し、誘電材パターンを形成し、キャパシタ下部電極および配線となるCu箔表面を露出させた。   Next, the Cu foil was etched with a cupric chloride solution or the like to produce a capacitor upper electrode. Next, a fine abrasive grain having a diameter of several μm to several tens of μm is ejected from the nozzle, and the dielectric material is removed by using a sandblasting method in which the surface of the object is shaved. The resulting Cu foil surface was exposed.

次に、ドライフィルムフォトレジストを専用の剥離液で剥離した。
次に、Cu箔表面に液状フォトレジストを塗布し、露光現像を行い、所望の配線およびキャパシタ下部電極のフォトレジストパターンを形成した。
次に、塩化第2銅液等でCu箔のエッチングを行い、フォトレジストパターンを専用の剥離液で剥離し、所望の配線およびキャパシタ下部電極を作製した。
次いで、50μm厚のエポキシ系の半硬化性樹脂シートを加熱加圧ラミネートし、残された一連の配線基板の製造工程を終了させる事により、本発明の製造方法による配線基板を作製した。
Next, the dry film photoresist was stripped with a dedicated stripper.
Next, a liquid photoresist was applied to the surface of the Cu foil, exposure and development were performed, and a desired wiring and a photoresist pattern of the capacitor lower electrode were formed.
Next, the Cu foil was etched with a cupric chloride solution or the like, and the photoresist pattern was stripped with a dedicated stripping solution to produce desired wirings and capacitor lower electrodes.
Next, a 50 μm-thick epoxy-based semi-curable resin sheet was laminated by heating and pressing, and the manufacturing process of the remaining series of wiring substrates was completed to prepare a wiring substrate by the manufacturing method of the present invention.

両面に所定の回路パターンが形成された不織ガラスエポキシ樹脂を含浸させた銅張り樹脂基板(図示せず)を用いた、所定のビルドアップ工程における途中工程において、絶縁樹脂12としてのエポキシ系樹脂上に専用の処理液を用い、無電解Cuめっきを行う事で、Cu薄膜を形成した。   Epoxy resin as insulating resin 12 in the middle of a predetermined build-up process using a copper-clad resin substrate (not shown) impregnated with a non-woven glass epoxy resin having a predetermined circuit pattern formed on both sides A Cu thin film was formed by performing electroless Cu plating using a dedicated processing solution.

次いで、Cu薄膜表面に厚さ12μmのドライフィルムフォトレジストをラミネートし、露光現像を行い、所望の配線10となるCu薄膜表面を露出させた。
次に、露出しているCu薄膜表面に電解Cuめっきを行い、Cuを12μm程度析出させた。
次いで、40μm厚のドライフィルムレジストをラミネートし、UVYAGレーザーを用い、層間の電気的接続用のバンプとなる穴を形成した。
Next, a dry film photoresist having a thickness of 12 μm was laminated on the surface of the Cu thin film, exposed and developed, and the surface of the Cu thin film to be the desired wiring 10 was exposed.
Next, electrolytic Cu plating was performed on the exposed Cu thin film surface to deposit about 12 μm of Cu.
Next, a dry film resist having a thickness of 40 μm was laminated, and holes serving as bumps for electrical connection between layers were formed using a UVYAG laser.

次いで、電解Cuめっきを行い、バンプとなる穴にCuを40μm程度析出させた。
次に、表面を1、2μm程度研磨しバンプ13の高さを揃え、更にバンプ13先端に電解金めっきを行い、1μm程度の金14を形成した。
次に、ドライフィルムフォトレジストおよびドライフィルムレジストを専用の剥離液で剥離し、Cu薄膜を過硫酸アンモニウム水溶液等でソフトエッチングすることにより、配線10を形成し、所望の基板を作製した(図2(a))。
Next, electrolytic Cu plating was performed to deposit about 40 μm of Cu in the holes to be bumps.
Next, the surface was polished by about 1 μm, the bumps 13 were made to have the same height, and the gold 13 having a thickness of about 1 μm was formed by performing electrolytic gold plating on the tips of the bumps 13.
Next, the dry film photoresist and the dry film resist were stripped with a dedicated stripping solution, and the Cu thin film was soft-etched with an aqueous ammonium persulfate solution or the like, thereby forming the wiring 10 and fabricating a desired substrate (FIG. 2 ( a)).

次いで、12μm厚のCu箔の平滑面に、チタン酸バリウムストロンチウム等のセラミック薄膜を0.2μm厚程度スパッタリングし、更に1000℃前後で熱処理を行い、更にセラミック薄膜上にCu薄膜をスパッタリングした。
次いで、電解Cuめっきを行い、5μm厚のCuを厚付けすることで部材を作製した。
Next, a ceramic thin film of barium strontium titanate or the like was sputtered to a smooth surface of a 12 μm-thick Cu foil to a thickness of about 0.2 μm, heat-treated at about 1000 ° C., and a Cu thin film was sputtered on the ceramic thin film.
Next, electrolytic Cu plating was performed, and a member having a thickness of 5 μm was prepared.

次いで、50μm厚のエポキシ系の半硬化性樹脂シートと部材の12μm厚Cu箔側とを130℃、30N/cm2の条件で加熱加圧ラミネートし、続いて、これを上記基板上に、130℃、50N/cm2の条件で加熱加圧ラミネートし、更に200℃、1時間の熱処理を行うことで、エポキシ系の半硬化性絶縁樹脂シートの硬化および層間の電気的接
続を行った。
Next, a 50 μm-thick epoxy-based semi-curing resin sheet and a 12 μm-thick Cu foil side of the member were laminated under heat and pressure under the conditions of 130 ° C. and 30 N / cm 2. Lamination was performed under the conditions of 50 ° C. and 50 N / cm 2 , followed by heat treatment at 200 ° C. for 1 hour to cure the epoxy semi-curable insulating resin sheet and to electrically connect the layers.

次に、Cu箔表面に厚さ15μmのウレタン樹脂系のドライフィルムフォトレジストをラミネートし、露光現像を行い、所望のキャパシタ上部電極以外のCu箔表面を露出させた。ここで、ウレタン樹脂系を用いた理由として、後工程で行うサンドブラスト時において、衝撃吸収性に優れているためである。   Next, a urethane resin-based dry film photoresist having a thickness of 15 μm was laminated on the surface of the Cu foil, exposed and developed, and the surface of the Cu foil other than the desired capacitor upper electrode was exposed. Here, the reason why the urethane resin system is used is that it is excellent in shock absorption during sandblasting performed in a subsequent process.

次に、塩化第2銅液等でCu箔のエッチングを行い、キャパシタ上部電極を作製した。次に、数μmから数十μm径の微細砥粒をノズルから噴出させ、対象物の表面を削るサンドブラスト工法を用い、誘電材を除去し、誘電材パターンを形成し、キャパシタ下部電極および配線となるCu箔表面を露出させた。   Next, the Cu foil was etched with a cupric chloride solution or the like to produce a capacitor upper electrode. Next, a fine abrasive grain having a diameter of several μm to several tens of μm is ejected from the nozzle, and the dielectric material is removed by using a sandblasting method in which the surface of the object is shaved, and a capacitor lower electrode and wiring are formed. The resulting Cu foil surface was exposed.

次に、ドライフィルムフォトレジストを専用の剥離液で剥離した。
次に、Cu箔表面に液状フォトレジストを塗布し、露光現像を行い、所望の配線およびキャパシタ下部電極のフォトレジストパターンを形成した。
次に、塩化第2銅液等でCu箔のエッチングを行い、フォトレジストを専用の剥離液で剥離し、所望の配線およびキャパシタ下部電極を作製した。
Next, the dry film photoresist was stripped with a dedicated stripper.
Next, a liquid photoresist was applied to the surface of the Cu foil, exposure and development were performed, and a desired wiring and a photoresist pattern of the capacitor lower electrode were formed.
Next, the Cu foil was etched with a cupric chloride solution or the like, and the photoresist was stripped with a dedicated stripping solution to produce desired wirings and capacitor lower electrodes.

次いで、50μm厚のエポキシ系の半硬化性樹脂シートを加熱加圧ラミネートし、残された一連の配線基板の製造工程を終了させる事により、本発明の製造方法による配線基板を作製した。   Next, a 50 μm-thick epoxy-based semi-curable resin sheet was laminated by heating and pressing, and the manufacturing process of the remaining series of wiring substrates was completed to prepare a wiring substrate by the manufacturing method of the present invention.

両面に所定の回路パターンが形成された不織ガラスエポキシ樹脂を含浸させた銅張り樹脂基板(図示せず)を用いた、所定のビルドアップ工程における途中工程において、絶縁樹脂12としてのエポキシ系樹脂上に専用の処理液を用い、無電解Cuめっきを行う事で、Cu薄膜を形成した。   Epoxy resin as insulating resin 12 in the middle of a predetermined build-up process using a copper-clad resin substrate (not shown) impregnated with a non-woven glass epoxy resin having a predetermined circuit pattern formed on both sides A Cu thin film was formed by performing electroless Cu plating using a dedicated processing solution.

次いで、Cu薄膜表面に厚さ12μmのドライフィルムフォトレジストをラミネートし、露光現像を行い、所望の配線10となるCu薄膜表面を露出させた。
次に、露出しているCu薄膜表面に電解Cuめっきを行い、Cuを12μm程度析出させた。
次いで、40μm厚のドライフィルムレジストをラミネートし、UVYAGレーザーを用い、層間の電気的接続用のバンプとなる穴を形成した。
Next, a dry film photoresist having a thickness of 12 μm was laminated on the surface of the Cu thin film, exposed and developed, and the surface of the Cu thin film to be the desired wiring 10 was exposed.
Next, electrolytic Cu plating was performed on the exposed Cu thin film surface to deposit about 12 μm of Cu.
Next, a dry film resist having a thickness of 40 μm was laminated, and holes serving as bumps for electrical connection between layers were formed using a UVYAG laser.

次いで、電解Cuめっきを行い、バンプとなる穴にCuを40μm程度析出させた。
次に、表面を1、2μm程度研磨しバンプ13の高さを揃え、更にバンプ13先端に電解金めっきを行い、1μm程度の金14を形成した。
次に、ドライフィルムフォトレジストおよびドライフィルムレジストを専用の剥離液で剥離し、Cu薄膜を過硫酸アンモニウム水溶液等でソフトエッチングすることにより、配線10を形成し、所望の基板を作製した(図2(a))。
Next, electrolytic Cu plating was performed to deposit about 40 μm of Cu in the holes to be bumps.
Next, the surface was polished by about 1 μm, the bumps 13 were made to have the same height, and the gold 13 having a thickness of about 1 μm was formed by performing electrolytic gold plating on the tips of the bumps 13.
Next, the dry film photoresist and the dry film resist were stripped with a dedicated stripping solution, and the Cu thin film was soft-etched with an aqueous ammonium persulfate solution or the like, thereby forming the wiring 10 and fabricating a desired substrate (FIG. 2 ( a)).

次いで、図3に示すように、専用のエッチング液で表面が0.5μm程度粗化された12μm厚の3枚のCu箔1a、1a’、1a’’の間に、誘電材2、2’となるエポキシ系樹脂にチタン酸バリウム等を混入させ加工された20μm厚の半硬化性の2枚の樹脂シートが交互に位置するように、130℃、30N/cm2の条件で加熱加圧ラミネートを行い、更に200℃、1時間の熱処理を行うことで部材を作製した。 Next, as shown in FIG. 3, between the three 12 μm thick Cu foils 1a, 1a ′, 1a ″ whose surface is roughened by about 0.5 μm with a dedicated etching solution, the dielectric materials 2, 2 ′ Heat-press laminate under conditions of 130 ° C. and 30 N / cm 2 so that two 20 μm-thick semi-cured resin sheets processed by mixing barium titanate and the like into the epoxy resin to be used are alternately positioned. Then, a member was manufactured by performing heat treatment at 200 ° C. for 1 hour.

次いで、50μm厚のエポキシ系の半硬化性絶縁樹脂シート5を上記部材に、130℃、3ON/cm2の条件で加熱加圧ラミネートし、続いて、上記基板4上に130℃、5
0N/cm2の条件で加熱加圧ラミネートし、更に200℃、1時間の熱処理を行うことで、エポキシ系の半硬化性絶縁樹脂シート5の硬化および層間の電気的接続を行った。
Next, an epoxy-based semi-curing insulating resin sheet 5 having a thickness of 50 μm is laminated on the above member by heating and pressing under the conditions of 130 ° C. and 3 ON / cm 2.
The epoxy-type semi-curable insulating resin sheet 5 was cured and the layers were electrically connected by performing heat and pressure lamination under the condition of 0 N / cm 2 and further performing heat treatment at 200 ° C. for 1 hour.

次に、Cu箔1a表面に厚さ15μmのウレタン樹脂系のドライフィルムフォトレジストをラミネートし、露光現像を行い、所望のキャパシタ上部電極7以外のCu箔表面を露出させた。ここで、ウレタン樹脂系を用いた理由として、後工程で行うサンドブラスト時において、衝撃吸収性に優れているためである。
次に、塩化第2銅液等でCu箔のエッチングを行い、キャパシタ上部電極7を作製した。
Next, a 15 μm-thick urethane resin dry film photoresist was laminated on the surface of the Cu foil 1a, exposed and developed, and the surface of the Cu foil other than the desired capacitor upper electrode 7 was exposed. Here, the reason why the urethane resin system is used is that it has excellent impact absorbability at the time of sandblasting performed in a subsequent process.
Next, the Cu foil was etched with a cupric chloride solution or the like to produce the capacitor upper electrode 7.

次に、数μmから数十μm径の微細砥粒をノズルから噴出させ、対象物の表面を削るサンドブラスト工法を用い、誘電材2を除去し、誘電材パターン2aを形成し、キャパシタ中部電極17となるCu箔1a’表面を露出させた。
次に、塩化第2銅液等でCu箔1a’のエッチングを行い、キャパシタ中部電極17を作製した。
Next, fine abrasive grains having a diameter of several μm to several tens of μm are ejected from the nozzle, and the dielectric material 2 is removed by using a sandblasting method in which the surface of the object is shaved to form the dielectric material pattern 2a. The surface of the Cu foil 1a ′ was exposed.
Next, the Cu foil 1a ′ was etched with a cupric chloride solution or the like to produce a capacitor middle electrode 17.

次に、数μmから数十μm径の微細砥粒をノズルから噴出させ、対象物の表面を削るサンドブラスト工法を用い、誘電材2’を除去し、誘電材パターン2a’を形成し、キャパシタ下部電極9および配線となるCu箔1a’’表面を露出させた。   Next, a fine abrasive grain having a diameter of several μm to several tens of μm is ejected from the nozzle, and the dielectric material 2 ′ is removed by using a sand blasting method in which the surface of the object is cut to form a dielectric material pattern 2a ′. The surface of the Cu foil 1a ″ that becomes the electrode 9 and the wiring was exposed.

次に、ドライフィルムフォトレジストを専用の剥離液で剥離した。
次に、Cu箔表面に液状フォトレジストを塗布し、露光現像を行い、所望の配線およびキャパシタ下部電極のフォトレジストパターンを形成した。
次に、塩化第2銅液等でCu箔のエッチングを行い、フォトレジストパターンを専用の剥離液で剥離し、所望の配線10およびキャパシタ下部電極9を作製した。
Next, the dry film photoresist was stripped with a dedicated stripper.
Next, a liquid photoresist was applied to the surface of the Cu foil, exposure and development were performed, and a desired wiring and a photoresist pattern of the capacitor lower electrode were formed.
Next, the Cu foil was etched with a cupric chloride solution or the like, and the photoresist pattern was stripped with a dedicated stripping solution to produce the desired wiring 10 and capacitor lower electrode 9.

次いで、50μm厚のエポキシ系の半硬化性樹脂シートを加熱加圧ラミネートし、残された一連の配線基板の製造工程を終了させる事により、本発明の製造方法による配線基板を作製した。尚、キャパシタ上部電極を形成した後、ドライフィルムフォトレジストを剥離し、改めて、キャパシタ中部電極を形成しても良い。また、図4、図5にキャパシタの電気的接続例を示す。   Next, a 50 μm-thick epoxy-based semi-curable resin sheet was laminated by heating and pressing, and the manufacturing process of the remaining series of wiring substrates was completed to prepare a wiring substrate by the manufacturing method of the present invention. In addition, after forming the capacitor upper electrode, the dry film photoresist may be peeled off, and the capacitor middle electrode may be formed again. 4 and 5 show examples of capacitor electrical connection.

(a)〜(h)は、本発明による配線基板の製造方法の一実施例の工程説明図である。(A)-(h) is process explanatory drawing of one Example of the manufacturing method of the wiring board by this invention. (a)は、実施例1〜4の工程説明図の一部である。(A) is a part of process explanatory drawing of Examples 1-4.

(b)、(c)は、実施例1の工程説明図である。
実施例4の工程説明図である。 実施例4の工程説明図である。 実施例4の工程説明図である。 (a)〜(d)は、キャパシタが内蔵される配線基板の従来の製造方法の説明図である。 配線基板の表面の荒れの説明図である。
(B), (c) is process explanatory drawing of Example 1. FIG.
FIG. 10 is a process explanatory diagram of Example 4. FIG. 10 is a process explanatory diagram of Example 4. FIG. 10 is a process explanatory diagram of Example 4. (A)-(d) is explanatory drawing of the conventional manufacturing method of the wiring board in which a capacitor is incorporated. It is explanatory drawing of the roughness of the surface of a wiring board.

符号の説明Explanation of symbols

1・・・金属箔
1a、1a’、1a’’・・・Cu箔
2、2’・・・誘電材
2a、2a’・・・誘電材パターン
3・・・部材
4・・・基板
5・・・半硬化性絶縁樹脂シート
6・・・フォトレジストパターン
7・・・キャパシタ上部電極
8・・・フォトレジスト
8’・・・フォトレジストパターン
9・・・キャパシタ下部電極
10、10’・・・配線
11・・・抵抗体
12・・・絶縁樹脂
13・・・バンプ
14・・・金
15・・・ニッケル−リン系金属
16、16’・・・金属
17・・・キャパシタ中部電極
18・・・ビア
DESCRIPTION OF SYMBOLS 1 ... Metal foil 1a, 1a ', 1a''... Cu foil 2, 2' ... Dielectric material 2a, 2a '... Dielectric material pattern 3 ... Member 4 ... Substrate 5 ..Semi-curable insulating resin sheet 6 ... photoresist pattern 7 ... capacitor upper electrode 8 ... photoresist 8 '... photoresist pattern 9 ... capacitor lower electrode 10, 10' ... Wiring 11 ... resistor 12 ... insulating resin 13 ... bump 14 ... gold 15 ... nickel-phosphorous metal 16, 16 '... metal 17 ... capacitor middle electrode 18 ...・ Beer

Claims (6)

キャパシタが内蔵される配線基板の製造方法において、
1)誘電材の両面に金属箔を有する部材の形成について、誘電材は900〜1000℃の高温焼成の熱処理をされたものである、部材の形成の工程、
2)配線基板の積層途中工程における配線上に、半硬化性絶縁樹脂シートを介して該部材を接着する工程、
3)金属箔表面にフォトレジストを設け、露光、現像を行い、キャパシタ上部電極となる部分のフォトレジストパターンを形成する工程、
4)露出した金属箔にエッチングを行い、フォトレジストパターンを剥離し、キャパシタ上部電極を形成する工程、
5)露出した誘電材を除去し、誘電材パターンを形成する工程、
6)露出した該金属箔表面及び該キャパシタ上部電極上にフォトレジストを設け、露光、現像を行い、キャパシタ下部電極及び配線となる部分のフォトレジストパターンを形成する工程、
7)露出した該金属箔にエッチングを行い、フォトレジストパターンの剥離を行い、キャパシタ下部電極及び配線を形成する工程、
を具備することを特徴とする配線基板の製造方法。
In a method for manufacturing a wiring board with a built-in capacitor,
1) Regarding the formation of a member having metal foil on both sides of the dielectric material, the dielectric material is a member subjected to a heat treatment of high-temperature firing at 900 to 1000 ° C.
2) A step of adhering the member to the wiring in the process of laminating the wiring board via a semi-curable insulating resin sheet,
3) A step of providing a photoresist on the surface of the metal foil, performing exposure and development, and forming a photoresist pattern of a portion to be a capacitor upper electrode;
4) etching the exposed metal foil, peeling the photoresist pattern, and forming the capacitor upper electrode;
5) removing the exposed dielectric material to form a dielectric material pattern;
6) A step of providing a photoresist on the exposed surface of the metal foil and the capacitor upper electrode, performing exposure and development, and forming a photoresist pattern of a portion serving as the capacitor lower electrode and wiring;
7) etching the exposed metal foil, peeling off the photoresist pattern, and forming a capacitor lower electrode and wiring;
A method for manufacturing a wiring board, comprising:
前記誘電材が、有機系の絶縁樹脂にセラミック系の粉末が分散されてなることを特徴とする請求項2に記載の配線基板の製造方法。 3. The method of manufacturing a wiring board according to claim 2, wherein the dielectric material is obtained by dispersing ceramic powder in an organic insulating resin. 前記誘電材が、金属箔上にスパッタリング、CVD等で形成される誘電体薄膜であることを特徴とする請求項1に記載の配線基板の製造方法。 2. The method of manufacturing a wiring board according to claim 1, wherein the dielectric material is a dielectric thin film formed on a metal foil by sputtering, CVD, or the like. 前記部材が、金属箔と誘電材が交互に形成された多層の部材であることを特徴とする請求項1乃至3のいずれかに記載の配線基板の製造方法。 4. The method for manufacturing a wiring board according to claim 1, wherein the member is a multilayer member in which metal foils and dielectric materials are alternately formed. 前記部材が、誘電材の両面に金属箔を有する部材の片面に抵抗体となる抵抗金属が形成されている部材であることを特徴とする請求項1乃至4のいずれかに記載の配線基板の製造方法。 Said member, the wiring board according to any one of claims 1 to 4, characterized in that a member-resistance metal as the one side to the resistor member having a metal foil on both surfaces of the dielectric material is formed Production method. 前記部材を、金属箔と誘電材シートをラミネートし、誘電材の両面に金属箔を有する部材として形成することを特徴とする請求項1乃至5のいずれかに記載の配線基板の製造方法。
Said member, by laminating a metal foil and a dielectric sheet, method of manufacturing a wiring board according to any one of claims 1 to 5, characterized in that formed as a member having a metal foil on both surfaces of the dielectric material.
JP2003298254A 2003-08-22 2003-08-22 Wiring board manufacturing method Expired - Fee Related JP4453301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003298254A JP4453301B2 (en) 2003-08-22 2003-08-22 Wiring board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003298254A JP4453301B2 (en) 2003-08-22 2003-08-22 Wiring board manufacturing method

Publications (2)

Publication Number Publication Date
JP2005072166A JP2005072166A (en) 2005-03-17
JP4453301B2 true JP4453301B2 (en) 2010-04-21

Family

ID=34403802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003298254A Expired - Fee Related JP4453301B2 (en) 2003-08-22 2003-08-22 Wiring board manufacturing method

Country Status (1)

Country Link
JP (1) JP4453301B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310531A (en) * 2005-04-28 2006-11-09 Toppan Printing Co Ltd Wiring circuit board and its manufacturing method
JP5023268B2 (en) * 2006-06-09 2012-09-12 株式会社クリーンベンチャー21 Method for manufacturing photoelectric conversion device
WO2017154167A1 (en) * 2016-03-10 2017-09-14 三井金属鉱業株式会社 Multilayer laminate plate and production method for multilayered printed wiring board using same

Also Published As

Publication number Publication date
JP2005072166A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
US7351915B2 (en) Printed circuit board including embedded capacitor having high dielectric constant and method of fabricating same
WO2006016589A1 (en) Method for producing dielectric layer-constituting material, dielectric layer-constituting material produced by such method, method for manufacturing capacitor circuit-forming member using such dielectric layer-constituting material, capacitor circuit-forming member obtained by such method, and multilayer printed wiring boa
JP2006245588A (en) Built-in capacitor type printed circuit board and method of manufacturing same
JP2004031682A (en) Method of manufacturing printed wiring board
US20180061555A1 (en) Inductor and method of manufacturing the same
JP2008159973A (en) Electronic component module and circuit board with built-in components incorporating the module
JP3441368B2 (en) Multilayer wiring board and manufacturing method thereof
JP4060629B2 (en) Method for forming plated through hole and method for manufacturing multilayer wiring board
JP4453301B2 (en) Wiring board manufacturing method
JP2000133916A (en) Formation material for wiring pattern transfer, manufacture of formation material for wiring pattern transfer, wiring board using formation material for wiring pattern transfer and manufacture thereof
JP2005045191A (en) Manufacturing method for wiring circuit board and for multi-layer wiring board
JP4337453B2 (en) Wiring board manufacturing method
JP2006287138A (en) Lamination film for forming passive component, sheet type passive component, and its manufacturing method
JP4687072B2 (en) Wiring board manufacturing method and wiring board
JP4501570B2 (en) Manufacturing method of multilayer wiring board with built-in capacitor
JP2000323839A (en) Manufacture of multilayer substrate
JP2005086141A (en) Wiring board
JP4701853B2 (en) Multi-layer wiring board with built-in resistance element and resistance value adjustment method for the resistance element
JPH0818228A (en) Manufacture of multi-layer printed board
JPH11284342A (en) Package and manufacture thereof
JP4337408B2 (en) Method for manufacturing printed wiring board
JP4899353B2 (en) Wiring board manufacturing method
JP2007299849A (en) Method for manufacturing wiring board
JP4802575B2 (en) Electric circuit board
JP2005019883A (en) Multilayer substrate and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4453301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees