JP2005015854A - 極限変形能と形状凍結性に優れた高強度熱延鋼板とその製造方法 - Google Patents

極限変形能と形状凍結性に優れた高強度熱延鋼板とその製造方法 Download PDF

Info

Publication number
JP2005015854A
JP2005015854A JP2003182675A JP2003182675A JP2005015854A JP 2005015854 A JP2005015854 A JP 2005015854A JP 2003182675 A JP2003182675 A JP 2003182675A JP 2003182675 A JP2003182675 A JP 2003182675A JP 2005015854 A JP2005015854 A JP 2005015854A
Authority
JP
Japan
Prior art keywords
less
steel sheet
rolled steel
shape freezing
strength hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003182675A
Other languages
English (en)
Other versions
JP4276482B2 (ja
Inventor
Natsuko Sugiura
夏子 杉浦
Manabu Takahashi
学 高橋
Naoki Yoshinaga
直樹 吉永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003182675A priority Critical patent/JP4276482B2/ja
Priority to TW093118280A priority patent/TWI248977B/zh
Priority to ES04746934T priority patent/ES2293299T3/es
Priority to DE602004008917T priority patent/DE602004008917T2/de
Priority to KR1020057024886A priority patent/KR100754035B1/ko
Priority to CA2530008A priority patent/CA2530008C/en
Priority to CNB2004800174633A priority patent/CN100374586C/zh
Priority to US10/561,133 priority patent/US7485195B2/en
Priority to AT04746934T priority patent/ATE373110T1/de
Priority to PL04746934T priority patent/PL1636392T3/pl
Priority to PCT/JP2004/009465 priority patent/WO2005005670A1/en
Priority to EP04746934A priority patent/EP1636392B1/en
Publication of JP2005015854A publication Critical patent/JP2005015854A/ja
Application granted granted Critical
Publication of JP4276482B2 publication Critical patent/JP4276482B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Abstract

【課題】極限変形能と形状凍結性に優れた高強度熱延鋼板とその製造方法を提供する。
【解決手段】フェライトもしくはベイナイトを体積分率最大の相とし、少なくとも1/2板厚において、{100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値が2.5以上、{554}<225>、{111}<112>および{111}<110>の3つの結晶方位のX線ランダム強度比の平均値が3.5以下、{100}<011>X線反射ランダム強度比が{211}<011>X線ランダム強度比以上、{100}<011>X線反射ランダム強度比が2.5以上の全てを満足し、かつ、圧延方向のr値および圧延方向と直角方向のr値のうち少なくとも1つが0.7以下であり、さらに、均一伸びの異方性△uElが4%以下、局部伸びの異方性△LElが2%以上で、かつ、△uElが△LEl以下である極限変形能と形状凍結性に優れた高強度熱延鋼板。
【選択図】 なし

Description

【0001】
【発明の属する技術分野】
本発明は、自動車部材等に使用され、効率よく自動車部材の軽量化を達成することのできる極限変形能と形状凍結性に優れた高強度熱延鋼板と、その製造方法に関するものである。
【0002】
【従来の技術】
自動車からの炭酸ガスの排出量を抑えるために、高強度鋼板を使用して自動車車体の軽量化が進められている。また、搭乗者の安全性確保のためにも、自動車車体には軟鋼板の他に高強度鋼板が多く使用されるようになってきている。さらに自動車車体の軽量化を今後進めていくために、従来以上に、高強度鋼板の使用強度レベルを高めたいという新たな要請が非常に高まりつつある。
【0003】
しかしながら、高強度鋼板に曲げ変形を加えると、加工後の形状は、その高強度ゆえに、加工冶具の形状から離れて、加工前の形状にもどりやすくなる。加工を与えても、加工後の形状が元の形状の方向にもどろうとする現象はスプリング・バックと呼ばれている。このスプリング・バックが発生すると、狙いとする加工部品の形状が得られない。
【0004】
したがって、従来の自動車の車体では、主として440MPa以下の高強度鋼板に限って使用されてきた。自動車車体にとっては、490MPa以上の高強度鋼板を使用して車体の軽量化を進めていく必要があるにもかかわらず、スプリング・バックが少なく、かつ、形状凍結性の良い高強度鋼板が存在しないのが実状である。
【0005】
一方、高強度鋼板を自動車用部品等へ加工する際には、形状凍結性以外にも様々な特性が要求される。特に、伸びフランジ加工やバーリング加工の際に要求される極限変形能は重要な特性であり、該特性と形状凍結性が両立することで、自動車車体への高強度鋼板の適用範囲が、一層広範なものとなる。
【0006】
本発明者らは、これまでも、特許文献1などで結晶方位とr値を規定した形状凍結性に優れた鋼板およびその製造方法について開示してきた。
【0007】
今回、さらに鋭意検討を重ねた結果、形状凍結性と加工性が両立するためには、さらなる集合組織制御、および、延性の異方性制御が極めて重要であることを新たに見出した。そして、これらを満足するための最適造条件を、新たに見出した。
【0008】
【特許文献1】
WO00/06791号国際出願公報
【0009】
【発明が解決しようとする課題】
曲げ加工を施す自動車用部材に適用する鋼板の強度を増すと、鋼板強度の上昇にしたがってスプリング・バックの量が増大し、形状不良が発生し、高強度鋼板の適用が制限されているのが現状である。
【0010】
また、良好なプレス成形性と高い衝撃エネルギー吸収能は、高強度鋼板が自動車部品等に適用されるためには欠くことのできない特性である。
【0011】
本発明は、この問題を抜本的に解決して、良好な形状凍結性と良好な極限変形能を有する高強度熱延鋼板、および、その製造方法を提供するものである。
【0012】
【課題を解決するための手段】
従来の知見によれば、スプリング・バックを抑えるための方策としては、鋼板の降伏点を低くすることが、とりあえず重要であると考えられていた。そして、降伏点を低くするためには、引張強さの低い鋼板を使用せざるをえなかった。
【0013】
しかし、これだけでは、鋼板の曲げ加工性を向上させ、スプリング・バック量を低く抑えるための根本的な解決にはならない。
【0014】
そこで、本発明者らは、曲げ加工性を向上させてスプリング・バックの発生を根本的に解決するために、新たに鋼板の集合組織の曲げ加工性への影響に着目して、その作用効果を詳細に調査、研究した。
【0015】
そして、その結果、曲げ加工性に優れた鋼板を見いだした。即ち、本発明者らは、{100}<011>〜{223}<110>方位群、その中でも、特に、{100}<011>方位、さらに、{554}<225>、{111}<112>、{111}<110>の各方位のX線ランダム強度比を制御すること、さらには、圧延方向のr値および圧延方向と直角方向のr値のうち少なくとも1つをできるだけ低い値にすること、および、局部伸びの異方性を2%以上にすることで、曲げ加工性が飛躍的に向上することを明らかにした。
【0016】
しかし、局部伸びの異方性が大きくなると伸びフランジ性が劣化することが予想され、形状凍結性と加工性の両立が困難となる。そこで、本発明者らは、鋭意研究の結果、上記集合組織制御と炭化物制御を同時に成立させることによって、形状凍結性と極限変形能を同時に高めることができることを明らかにした。
【0017】
また、種々の部品を成形するためのブランク採取方向を限定しないことは、鋼材の歩留まり向上に大きく貢献するが、このためには、延性の異方性、とりわけ、均一伸びの異方性を小さくすることが重要な意味を持つ。
【0018】
本発明者らは、実験によって、鋼板の仕上熱間圧延の開始温度と終了温度を制御することによって、{100}<011>方位を主方位として発達せしめ、それによって、上記形状凍結性と加工性を確保しつつ、均一伸びの異方性を小さくすることが可能であることを見出した。
【0019】
本発明は、前述の知見に基づいて構成されており、その主旨とするところは、以下のとおりである。
【0020】
(1) ミクロ組織がフェライトもしくはベイナイトを体積分率最大の相とし、少なくとも1/2板厚における板面の、
(1) {100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値が2.5以上、
(2) {554}<225>、{111}<112>および{111}<110>の3つの結晶方位のX線ランダム強度比の平均値が3.5以下、
(3) {100}<011>X線ランダム強度比が{211}<011>X線ランダム強度比以上、および、
(4) {100}<011>X線ランダム強度比が2.5以上
の全てを満足し、かつ、圧延方向のr値および圧延方向と直角方向のr値のうち少なくとも1つが0.7以下であり、さらに、均一伸びの異方性△uElが4%以下、局部伸びの異方性△LElが2%以上で、かつ、△uElが△LEl以下であることを特徴とする極限変形能と形状凍結性に優れた高強度熱延鋼板。
【0021】
ただし、△uEl={|uEl(L)−uEl(45°)|+|uEl(C)−uEl(45°)|}/2
△LEl={|LEl(L)−LEl(45°)|+|LEl(C)−LEl(45°)|}/2
であり、圧延方向と平行(L方向)、垂直(C方向)、および、45°方向の均一伸びを、それぞれ、uEl(L)、uEl(C)、および、uEl(45°)とし、圧延方向と平行(L方向)、垂直(C方向)、および、45°方向の局部伸びを、それぞれ、LEl(L)、LEl(C)、および、LEl(45°)とする。
【0022】
(2) さらに、直径0.2μm以上の鉄炭化物の占積率が0.3%以下であることを特徴とする(1)記載の極限変形能と形状凍結性に優れた高強度熱延鋼板。
【0023】
(3) さらに、時効指数AIが8MPa以上であることを特徴とする(1)または(2)記載の極限変形能と形状凍結性に優れた高強度熱延鋼板。
【0024】
(4) 質量%で、
C:0.01%以上、0.2%以下、
Si:0.001%以上、2.5%以下、
Mn:0.01%以上、2.5%以下、
P:0.2%以下、
S:0.03%以下、
Al:0.01%以上、2.0%以下、
N:0.01%以下、
O:0.01%以下
含み、残部がFeおよび不可避的不純物からなることを特徴とする(1)〜(3)のいずれかに記載の極限変形能と形状凍結性に優れた高強度熱延鋼板。
【0025】
(5) さらに、質量%で、Nb、Ti、Vの1種または2種以上を合計で0.001%以上0.8%以下含むことを特徴とする(1)〜(4)のいずれかに記載の極限変形能と形状凍結性に優れた高強度熱延鋼板。
【0026】
(6) さらに、質量%で、Bを0.01%以下含むことを特徴とする(1)〜(5)のいずれかに記載の極限変形能と形状凍結性に優れた高強度熱延鋼板。
【0027】
(7) さらに、質量%で、
Mo:1%以下、
Cr:1%以下、
Cu:2%以下、
Ni:1%以下、
Sn:0.2%以下、
Co:2%以下
の1種または2種以上を含有することを特徴とする(1)〜(6)のいずれかに記載の極限変形能と形状凍結性に優れた高強度熱延鋼板。
【0028】
(8) 質量%で、
Ca:0.0005〜0.005%、
Rem:0.001〜0.05%、
Mg:0.0001〜0.05%、
Ta:0.0001〜0.05%
の1種または2種以上を含むことを特徴とする(1)〜(7)のいずれかに記載の極限変形能と形状凍結性に優れた高強度熱延鋼板。
【0029】
(9) (1)〜(8)のいずれかに記載の極限変形能と形状凍結性に優れた高強度熱延鋼板にめっきを施したことを特徴とする極限変形能と形状凍結性に優れた高強度熱延鋼板。
【0030】
(10) (1)〜(9)のいずれかに記載の極限変形能と形状凍結性に優れた高強度熱延鋼板を製造するにあたり、(4)〜(8)のいずれかに記載の成分組成を有する鋳造スラブを、鋳造ままもしくは一旦冷却した後に1000〜1300℃の範囲に再度加熱し、熱間圧延をする際、Ar3℃〜(Ar3+150)℃の温度範囲における圧下率の合計が25%以上となるように制御し、仕上熱延開始温度TFSと仕上熱延完了温度TFE(℃)が下記(1)〜(4)式を全て同時に満足するように熱間圧延を終了し、熱間圧延後冷却して(5)式に示す鋼の化学成分で決まる臨界温度To(℃)以下で、かつ、700℃以下400℃以上の温度で巻き取ることを特徴とする極限変形能と形状凍結性に優れた高強度熱延鋼板の製造方法。
【0031】
Figure 2005015854
ここで、Bは質量%で表現した鋼の成分より求まる。
【0032】
B=−50.6×Mneq+894.3
Mneq=Mn%+0.24×Ni%+0.13×Si%+0.38×Mo%+0.55×Cr%+0.16×Cu%−0.50×Al%−0.45×Co%+0.90×V%
ただし、
Ar3=901−325×C%+33×Si%+287×P%+40×Al%−92×(Mn%+Mo%+Cu%)−46×(Cr%+Ni%)
(11) さらに、Ar3〜(Ar3+150)℃の温度範囲における熱間圧延の内少なくとも1パス以上において摩擦係数が0.2以下となるように制御することを特徴とする(10)記載の極限変形能と形状凍結性に優れた高強度熱延鋼板の製造方法。
【0033】
(12) (10)または(11)記載の極限変形能と形状凍結性に優れた高強度熱延鋼板の製造方法で製造された高強度熱延鋼板に、0.1%以上5%以下のスキンパス圧延を施すことを特徴とする極限変形能と形状凍結性に優れた高強度熱延鋼板の製造方法。
【0034】
【発明の実施の形態】
以下に、本発明の内容を詳細に説明する。
【0035】
1/2板厚における板面の{100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値:
板厚中心位置での板面のX線回折を行い、ランダム試料に対する各方位の強度比を求めたとき、{100}<011>〜{223}<110>方位群の平均値は2.5以上でなくてはならない。これが2.5未満では、形状凍結性が劣悪となる。
【0036】
この方位群に含まれる主な方位は、{100}<011>、{116}<110>、{114}<110>、{113}<110>、{112}<110>、{335}<110>、および、{223}<110>である。
【0037】
これら各方位のX線ランダム強度比は、{110}極点図に基づきベクトル法により計算した3次元集合組織や、{110}、{100}、{211}、および、{310}の極点図のうち、複数の極点図(好ましくは3つ以上)を用いて級数展開法で計算した3次元集合組織から求めればよい。
【0038】
例えば、後者の方法における上記各結晶方位のX線ランダム強度比には、3次元集合組織のφ2=45゜断面における(001)[1−10]、(116)[1−10]、(114)[1−10]、(113)[1−10]、(112)[1−10]、(335)[1−10]、(223)[1−10]の強度をそのまま用いればよい。
【0039】
{100}<011>〜{223}<110>方位群の平均値とは、上記の各方位の相加平均である。上記の全ての方位の強度を得ることができない場合には、{100}<011>、{116}<110>、{114}<110>、{112}<110>、および、{223}<110>の方位の相加平均で代替してもよい。
【0040】
さらに、望ましくは、{100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値が4.0以上である。
【0041】
1/2板厚における板面の{554}<225>、{111}<112>および{111}<110>の3つの結晶方位のX線ランダム強度比の平均値:
1/2板厚における板面の{554}<225>、{111}<112>および{111}<110>の3つの結晶方位のX線ランダム強度比の平均値は、3.5以下でなくてはならない。これが3.5超であると、{100}<011>〜{223}<110>方位群の強度が適正であっても、良好な形状凍結性を得ることが困難となる。
【0042】
{554}<225>、{111}<112>および{111}<110>のX線ランダム強度比も、上記の方法に従って計算した3次元集合組織から求めればよい。
【0043】
さらに、望ましくは、{554}<225>、{111}<112>および{111}<110>のX線ランダム強度比の相加平均値が、2.5未満である。
【0044】
1/2板厚における板面の{100}<011>および{211}<011>X線ランダム強度比:
1/2板厚における板面の{100}<011>X線ランダム強度比は、{112}<011>X線ランダム強度比以上でなければならない。{211}<011>方位のX線ランダム強度比が{100}<011>X線ランダム強度比より大きくなると、均一伸びの異方性が大きくなり、加工性が劣化する。
【0045】
また、{100}<011>X線ランダム強度比は、2.5以上でなければならない。これが2.5未満になると、良好な形状凍結性を得ることができない。
【0046】
なお、ここで述べる{100}<011>および{211}<011>は、それぞれ、同様の効果を有する方位の範囲として、圧延方向に対して直角な方向(Transverse direction)を回転軸として、±12°を許容する。さらに、望ましくは、±6°とする。
【0047】
以上述べた結晶方位のX線強度が、曲げ加工時の形状凍結性や伸びの異方性に対して重要であることの理由は、必ずしも明らかではないが、曲げ変形時の結晶のすべり挙動と関係があるものと推測される。
【0048】
X線回折に供する試料は、機械研磨などによって鋼板を所定の板厚まで減厚し、次いで、化学研磨や電解研磨などによって歪みを除去すると同時に、板厚1/2面が測定面となるように作製する。
【0049】
鋼板の板厚中心層に偏析帯や欠陥などが存在し、測定上不都合が生ずる場合には、板厚の3/8〜5/8の範囲で適当な面が測定面となるように、上述の方法に従って試料を調整して測定すればよい。
【0050】
当然のことであるが、上述のX線強度の限定が、板厚1/2近傍だけでなく、なるべく多くの厚み(特に最表層〜板厚の1/4)について満たされることで、より一層、形状凍結性が良好になる。
【0051】
なお、{hkl}<uvw>で表される結晶方位とは、板面の法線方向が<hkl>に平行で、圧延方向が<uvw>と平行であることを示している。
【0052】
圧延方向のr値(rL)および圧延方向と直角方向のr値(rC):
本発明において重要な要件である。すなわち、本発明者らが鋭意検討した結果、上述した種々の結晶方位のX線強度が適正であっても、必ずしも良好な形状凍結性が得られないことが判明した。
【0053】
上記のX線強度と同時に、rLおよびrCのうち少なくとも1つが0.7以下であることが必須である。より好ましくは0.55以下である。
【0054】
rLおよびrCの下限は特に定めることなく、本発明の効果を得ることができるが、r値はJIS5号引張試験片を用いた引張試験により評価する。引張歪みは通常15%であるが、均一伸びが15%を下回る場合には、均一伸びの範囲で、できるだけ15%に近い歪みで評価すればよい。
【0055】
なお、曲げ加工を施す方向は、加工部品によって異なるので、特に限定するものではないが、r値が小さい方向に対して垂直もしくは垂直に近い方向に折り曲げる加工を主とすることが好ましい。
【0056】
ところで、一般に、集合組織とr値とは相関があることが知られているが、本発明においては、既述の結晶方位のX線強度比に関する限定と、r値に関する限定とは互いに同義ではなく、両方の限定が同時に満たされなくては、良好な形状凍結性を得ることはできない。
【0057】
延性の異方性:
鋼板をプレス成形する場合には、鋼板の均一伸び、すなわち、n値が重要な意味を持つ。特に、張りだし成形が主となる高強度鋼板においては、この均一伸び(n値)が異方性を持つ場合には、部品によってブランク切りだし方向を注意深く選定することが必要となり、生産性の低下や鋼板歩留まりの低下を招く。また、場合によっては、所望の形状に成形できない場合も生じる。
【0058】
400MPa程度以上の引張り強度(引張り試験で得られる最大強度)を持つ鋼においては、この均一伸びの異方性△uElが4%以下であれば、方向によらない良好な成形性を示すことが判明した。
【0059】
特に厳しい加工性が要求される場合には、異方性△uElが3%以下であることが望ましい。均一伸びの異方性△uElの下限は特に限定しないが、加工性の観点からは0%にすることが最も好ましい。
【0060】
また、局部伸びの異方性△LElが2%未満になると、形状凍結性が劣化することから、△LElの下限は2%とする。△LElの上限は特に設定しないが、△LElが大きくなりすぎると成形性が低下することから、12%以下とすることが望ましい。
【0061】
ただし、上記の条件を満足しても、△uEl>△LElとなる場合には、良好な成形性と形状凍結性が両立しなかったので、△uElは△LEl以下とした。
【0062】
なお、均一伸びと局部伸びの異方性は、圧延方向と平行(L方向)、垂直(C方向)、および、45°方向の伸び(均一伸びuEl、局部伸びLEl)を用いて、
△uEl={|uEl(L)−uEl(45°)|+|uEl(C)−uEl(45°)|}/2
△LEl={|LEl(L)−LEl(45°)|+|LEl(C)−LEl(45°)|}/2
と定義される。
【0063】
ミクロ組織:
実際の自動車部品においては、1つの部品の中で、上記のような曲げ加工に起因する形状凍結性が問題になるだけではなく、同一部品の他の部位においては、伸びフランジ加工やバーリング加工等の加工を受ける場合が少なくない。
【0064】
したがって、上述の集合組織を制御した曲げ加工時の形状凍結性の向上とともに、鋼板の極限変形能も向上させる必要がある。
【0065】
この観点から、金属組織は、高い穴拡げ性を有するフェライトもしくはベイナイト相を体積分率最大の相とする。ただし、集合組織の観点からは、低温で変態生成するベイナイト相の方が集合組織の発達が強いことから、ベイナイトを主相とする方が好ましい。
【0066】
なお、ここで述べるベイナイトは、ミクロ組織中に鉄炭化物粒子を含んでも含まなくてもよい。また、変態後に加工を受け、内部の転位密度が非常に高くなったフェライト(加工フェライト)は、延性が著しく劣化し、部品加工には適さないことから、本発明に規定するフェライトとは区別する。
【0067】
さらに、伸びフランジ性を著しく劣化させる直径0.2μm以上の鉄炭化物の占積率は0.3%以下に限定することが好ましい。鉄炭化物の占積率は、倍率500倍以上の光学顕微鏡観察写真において、画像処理によって鉄炭化物の面積率を求めて代替してもよい。また、写真上に描いたn個の格子点のうち0.2μm以上の鉄炭化物が占める格子点の数mを求め、m/nを占積率としてもよい。
【0068】
時効指数AI(Aging Index ):
鋼板の時効性を示す指数であるAIは、8MPa以上とすることが好ましい。AIが8MPa未満になると、形状凍結性が低下するので、8MPaを下限とする。AIが低下すると形状凍結性が劣化する要因は明らかでないが、AIは鋼材中の可動転位密度と相関があることから、この可動転位密度の違いが変形になんらかの影響を及ぼしていると考えられる。
【0069】
AIの上限は特に規定しないが、AIが100MPa超になると、ストレッチャーストレインが発生し、鋼板の外観を著しく損ねるおそれがあることから、AIは100MPa以下とすることが望ましい。
【0070】
なお、時効指数の測定には、L方向またはC方向のJIS5号引張試験片を用い、予歪み10%与えた際の変形応力と、その後一旦除荷し、100℃で一時間の時効を行った後、再度引張試験を行った際の降伏応力(降伏伸びが発生する場合には下降伏応力)との差を時効指数AIとする。
【0071】
以下に、本発明の好ましい化学成分について述べる(単位は質量%である)。
【0072】
C:
Cの下限を0.01%としたのは、Cが0.01%未満では高い加工性を維持したまま鋼板の強度を確保することが困難なためである。一方、0.2%超になると、極限変形能を低下させるオーステナイト相やマルテンサイト相、粗大炭化物ができやすくなるうえ、溶接性も低下するので、上限を0.2%とする。
【0073】
Si:
鋼板の機械的強度を高めるのに有効な元素であるが、2.5%超となると加工性が劣化したり、表面疵が発生したりするので、2.5%を上限とする。一方、実用鋼で、Siを0.001%未満とするのは困難であるので、0.001%を下限とする。
【0074】
Mn:
鋼板の機械的強度を高めるのに有効な元素であるが、2.5%超となると加工性が劣化するので、2.5%を上限とする。一方、実用鋼で、Mnを0.01%未満とするのは困難であるので、0.01%を下限とする。
【0075】
また、Mn以外に、Sによる熱間割れの発生を抑制するTiなどの元素が十分に添加されない場合には、Mnを、質量%でMn/S≧20となる量添加することが望ましい。
【0076】
P、S:
それぞれ、0.2%以下、および、0.03%以下とする。これは、加工性の劣化や熱間圧延または冷間圧延時の割れを防ぐためである。
【0077】
Al:
脱酸のために0.01%以上添加する。しかし、多すぎると加工性が低下したり、表面性状が劣悪となるため、上限を2.0%とする。
【0078】
N、O:
不純物であり、加工性を悪くさせないように、それぞれ、0.01%以下、および、0.01%以下とする。
【0079】
Ti、Nb、V:
析出強化、組織制御、細粒強化などの機構を通じて材質を改善する元素であるので、必要に応じて、1種または2種以上を、合計で0.001%以上添加することが望ましい。
【0080】
しかし、過度に添加しても格段の効果はなく、むしろ加工性や表面性状を劣化させるので、1種または2種以上の合計で0.8%を上限とする。
【0081】
B:
粒界の強化や鋼材の高強度化に有効であるが、その添加量が0.01%を超えると、その効果が飽和するばかりでなく、必要以上に鋼板強度を上昇させ、部品への加工性も低下させるので、上限を0.01%とした。ただし、Bの添加効果を得るためには、0.0002%以上添加することが好ましい。
【0082】
Mo、Cr、Cu、Ni、Sn、Co:
機械的強度を高めたり材質を改善する効果があるので、必要に応じて、各成分とも0.001%以上を添加することが望ましい。しかし、過度の添加は、逆に、加工性を劣化させるので、上限を、それぞれ、1%、1%、2%、1%、0.2%、2%とする。
【0083】
Ca、希土類元素(Rem):
介在物制御に有効な元素で、適量添加は熱間加工性を向上させるが、過剰の添加は、逆に、熱間脆化を助長させるので、必要に応じて、それぞれ、Ca:0.0005〜0.005%、Rem:0.001〜0.05%とした。ここで、希土類元素とは、Y,Srおよびランタノイド系の元素を指し、工業的には、これらの混合物である。
【0084】
また、Mgを0.0001%以上0.05%以下、Taを0.0001%以上0.05%以下添加することも、等価な効果を発現する。
【0085】
ここで、全ての場合に、下限値は介在物制御効果の発現する最低添加量を示し、最大値以上では、逆に、介在物が大きく成長しすぎることによって、伸びフランジ性等の極限変形能を低下させる。ミッシュメタル(混合物)として添加することが、コスト的に有利である。
【0086】
以下に、本発明の製造方法について述べる。
【0087】
スラブ再加熱温度:
所定の成分に調整された鋼は、鋳造後直接もしくは一旦Ar3変態温度以下まで冷却された後に再加熱され、その後に熱間圧延される。
【0088】
この時の再加熱温度が1000℃未満の場合には、所定の仕上熱延完了温度を確保することが難しくなるので、1000℃を下限とした。また、再加熱温度が1300℃を超える場合には、加熱時のスケール生成による歩留まり劣化を招くと同時に、製造コストの上昇も招くことから、1300℃を再加熱温度の上限値とした。
【0089】
加熱後の鋼片は、熱間圧延の途中で局部的にもしくは全体を加熱されても、本発明の特性に何ら影響を及ぼさない。
【0090】
熱間圧延条件:
熱間圧延およびその後の冷却によって、所定のミクロ組織と集合組織に制御される。最終的に得られる鋼板の集合組織は、熱間圧延の温度領域によって大きく変化する。熱延完了温度TFEがAr3℃未満になった場合には、均一伸びの異方性△uElが4%超となり、成形性を著しく劣化させるために、
TFE≧Ar3(℃) (1)
とした。
【0091】
TFEは、熱延の最終圧延を施すスタンドの後方で測定されるのが一般的であるが、必要な場合には、計算によって得られる温度を用いてもよい。
【0092】
また、熱延完了温度の上限は特に限定しないが、(Ar3+180℃)超の場合には、鋼板の表面に生成する酸化物層により表面品位が低下するので、(Ar3+180℃)以下であることが望ましい。
【0093】
より厳格な表面品位が求められる場合には、TFEを(Ar3+150℃)以下にすることが望ましい。
【0094】
ただし、鋼板の化学成分によらず、TFEが800℃未満になった場合には、熱延時の圧延荷重が高くなりすぎると同時に、鋼板の延性異方性が大きくなることから、
Ar3≧800℃ (2)
とした。
【0095】
また、仕上熱延開始温度TFSが1100℃超の場合には、鋼板表面品位が著しく低下することから、
TFS≦1100℃ (3)
とした。
【0096】
また、TFSとTFEの差が120℃超の場合には、集合組織の発達が十分でなく、良好な形状凍結性と低い異方性が両立せず、また、この差を20℃未満にすることは、操業上困難であることから、
20℃≦(TFS−TFE)≦120℃ (4)
とした。
【0097】
また、熱間圧延において、Ar3℃〜(Ar3+150)℃の温度範囲における圧下率は、最終的な鋼板の集合組織形成に大きな影響を及ぼし、この温度範囲での圧延率が25%未満の場合には、集合組織の発達が十分でなく、最終的に得られる鋼板が良好な形状凍結性を示さないので、Ar3℃〜(Ar3+150)℃の温度範囲における圧下率の下限を25%とした。
【0098】
この圧下率が高いほど、所望の集合組織が発達するから、圧下率は、50%以上であることが好ましく、また、75%以上であれば、さらに好ましい。
【0099】
圧下率の上限は特に定めないが、99%以上圧下することは、装置への負荷が大きく、また、特段の効果も得られないので、99%未満とすることが好ましい。
【0100】
ただし、
Ar3=901−325×C%+33×Si%+287×P%+40×Al%−92×(Mn%+Mo%+Cu%)−46×(Cr%+Ni%)
とする。
【0101】
この温度範囲での熱間圧延を、通常の条件で行っても、最終的な鋼板の形状凍結性は高いが、この温度範囲で行われる熱間圧延の少なくとも1パス以上において、その摩擦係数が0.2以下となるように制御した場合には、さらに、最終的な鋼板の形状凍結性が高くなる。
【0102】
また、仕上熱延に先立って、スケール除去を目的とした加工や高圧水噴射、微粒子噴射等を行うことは、最終鋼板の表面品位を高める効果があり、好ましい。
【0103】
熱間圧延後の冷却は、巻取り温度を制御することが最も重要であるが、平均の冷却速度が15℃/秒以上であることが好ましい。冷却は熱間圧延後、速やかに開始されることが望ましい。また、冷却の途中に空冷を設けることも、最終的な鋼板の特性を劣化させない。
【0104】
このようにして形成されたオーステナイトの集合組織を、最終的な熱延鋼板に受け継がせるためには、(5)式に示す臨界温度To(℃)以下で巻き取る必要がある。したがって、鋼の成分で決まるToを巻取り温度の上限とした。
【0105】
このTo温度は、オーステナイトとオーステナイトと同一成分のフェライトが同一の自由エネルギーを持つ温度として熱力学的に定義され、C以外の成分の影響も考慮して、(5)式を用いて簡易的に計算することができる。
【0106】
To温度に及ぼすとして本発明に規定された成功以外の成分の影響はそれほど大きくないので、ここでは無視した。
【0107】
冷却が鋼材の化学成分で決まる温度To以上で完了し、そのまま巻取り処理が行われた場合には、上記の熱間圧延条件が満足されていた場合でも、最終的に得られる鋼板で所望の集合組織が十分に発達せず、鋼板の形状凍結性が高くならない。
【0108】
Figure 2005015854
ここで、Bは質量%で表現した鋼の成分より求まる。
【0109】
B=−50.6×Mneq+894.3
Mneq=Mn%+0.24×Ni%+0.13×Si%+0.38×Mo%+0.55×Cr%+0.16×Cu%−0.50×Al%−0.45×Co%+0.90×V%
また、巻取り温度が700℃超になると、コイル全長での巻取り温度の確保が困難になり、材質バラツキの原因になるうえ、Ti、Nb、および/または、Vの炭化物形成元素が含有されている場合には、これらの炭化物が粒界で粗大化し、極限変形能が著しく損なわれる。したがって、700℃を巻取り温度の上限値とした。
【0110】
一方、巻取り温度が400℃未満となると、鋼板中にオーステナイト相やマルテンサイト相が多量に生成され極限変形能が低下するので、400℃を巻取り温度の下限値とした。
【0111】
スキンパス圧延:
以上の方法で製造された本発明鋼に、出荷前にスキンパス圧延を施すことは、鋼板の形状を良好にする。この時、スキンパス圧下率が0.1%未満では、この効果が小さいことから、0.1%をスキンパス圧下率の下限とした。
【0112】
また、圧下率5%超のスキンパス圧延を行うためには、通常のスキンパス圧延機の改造が必要となり、経済的なデメリットが生じるとともに、加工性が著しく劣化するので、5%をスキンパス圧下率の上限とした。
【0113】
めっき:
めっきの種類や方法は特に限定されるものではなく、電気めっき、溶融めっき、蒸着めっき等のいずれでも、本発明の効果を得ることができる。
【0114】
本発明の鋼板は、曲げ加工だけではなく、曲げ、張り出し、絞り等、曲げ加工を主体とする複合成形にも適用できる。
【0115】
【実施例】
(実施例)
表1に示すA〜Kの鋼材を1100℃から1270℃に加熱し、表2中に示した熱延条件で熱延し、2.5mm厚の熱延鋼板とした。この熱延鋼板に対する各種評価の結果を、表3および表4に示す。
【0116】
【表1】
Figure 2005015854
【0117】
【表2】
Figure 2005015854
【0118】
【表3】
Figure 2005015854
【0119】
【表4】
Figure 2005015854
【0120】
形状凍結性の評価は、270mm長さ×50mm幅×板厚の短冊状のサンプルを用い、パンチ幅78mm、パンチ肩R5mm、ダイ肩R5mmにて、種々のしわ押さえ圧でハット型に成形した後、壁部の反り量を曲率半径ρ(mm)として測定し、その逆数1000/ρによって行った。1000/ρが小さいほど、形状凍結性は良好である。
【0121】
一般に、鋼板の強度が上昇すると形状凍結性が劣化することが知られている。本発明者らが実際の部品成形を行った結果から、上記方法によって測定したしわ押さえ圧70kNでの1000/ρが、0(mm−1)以上で、かつ、鋼板の引張り強度TS[MPa]に対して(0.012×TS−4.5)(mm−1)以下となる場合には、際だって形状凍結性が良好となる。
【0122】
それ故、0≦1000/ρ≦(0.012×TS−4.5)を、良好な形状凍結性の条件として評価した。
【0123】
ここで、しわ押さえ圧を増加すると、1000/ρは減少する傾向にある。しかしながら、どのようなしわ押さえ圧を選択しても、鋼板の形状凍結性の優位性の順位は変化しない。したがって、しわ押さえ圧70kNでの評価は、鋼板の形状凍結性をよく代表している。
【0124】
穴拡げ性は、1辺100mmの試験片の中央に径10mmの打ち抜き穴を加工し、その初期穴を頂角60°の円錐ポンチにて押し広げ、割れが鋼板を貫通した時点での穴径d(mm)の初期穴径10mmに対する穴広げ率λ(次式)で評価した。
【0125】
λ={(d−10)/10}×100(%)
穴広げ率も、一般的に、鋼板の強度が上昇すると劣化する。
【0126】
そこで、(穴広げ率λ[%])/(鋼板の引張り強度TS[MPa])を穴広げ性の指標とし、その値が0.15以上のものを穴広げ性良好として評価した。
【0127】
r値、延性の異方性、AIは、JIS5号引張り試験片を用いて測定した。また、X線の測定は、鋼板の代表値として板厚の7/16厚の位置で板面に平行なサンプルを調製して実施した。
【0128】
表2において、No.5〜11、および、No.13,No15は、いずれも、熱延条件が本発明の範囲から外れていることから、延性の異方性が大きく、一部では形状凍結性も十分でなく、伸びフランジ性も不十分であり、結果として、形状凍結性と低異方性および極限変形能を兼備した高強度鋼板になっていない。
【0129】
No.21は、成分、熱延条件ともが本発明範囲にないことから、形状凍結性、極限変形能ともに満足できていない。
【0130】
本発明範囲内の化学成分の鋼を本発明範囲内の熱延条件によって製造した場合には、良好な延性異方性、極限変形能とともに、良好な形状凍結性が得られていることがわかる。
【0131】
【発明の効果】
本発明によって、スプリング・バック量が少なく、形状凍結性に優れると同時に異方性が少ない良好なプレス成形性を有する薄鋼板が提供できるようになり、従来は、形状不良の問題から高強度鋼板の適用が難しかった部品にも、高強度鋼板が使用できるようになると同時に、効率的に自動車の安全性と車体の軽量化を両立することが可能となり、CO排出削減等の環境・社会からの要請に応える自動車製造に大きく貢献することができる。
【0132】
したがって、本発明は、工業的に極めて高い価値のある発明である。

Claims (12)

  1. ミクロ組織がフェライトもしくはベイナイトを体積分率最大の相とし、少なくとも1/2板厚における板面の、
    (1) {100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値が2.5以上、
    (2) {554}<225>、{111}<112>および{111}<110>の3つの結晶方位のX線ランダム強度比の平均値が3.5以下、
    (3) {100}<011>X線ランダム強度比が{211}<011>X線ランダム強度比以上、および、
    (4) {100}<011>X線ランダム強度比が2.5以上
    の全てを満足し、かつ、圧延方向のr値および圧延方向と直角方向のr値のうち少なくとも1つが0.7以下であり、さらに、均一伸びの異方性△uElが4%以下、局部伸びの異方性△LElが2%以上で、かつ、△uElが△LEl以下であることを特徴とする極限変形能と形状凍結性に優れた高強度熱延鋼板。
    ただし、△uEl={|uEl(L)−uEl(45°)|+|uEl(C)−uEl(45°)|}/2
    △LEl={|LEl(L)−LEl(45°)|+|LEl(C)−LEl(45°)|}/2
    であり、圧延方向と平行(L方向)、垂直(C方向)、および、45°方向の均一伸びを、それぞれ、uEl(L)、uEl(C)、および、uEl(45°)とし、圧延方向と平行(L方向)、垂直(C方向)、および、45°方向の局部伸びを、それぞれ、LEl(L)、LEl(C)、および、LEl(45°)とする。
  2. さらに、直径0.2μm以上の鉄炭化物の占積率が0.3%以下であることを特徴とする請求項1記載の極限変形能と形状凍結性に優れた高強度熱延鋼板。
  3. さらに、時効指数AIが8MPa以上であることを特徴とする請求項1または2記載の極限変形能と形状凍結性に優れた高強度熱延鋼板。
  4. 質量%で、
    C:0.01%以上、0.2%以下、
    Si:0.001%以上、2.5%以下、
    Mn:0.01%以上、2.5%以下、
    P:0.2%以下、
    S:0.03%以下、
    Al:0.01%以上、2%以下、
    N:0.01%以下、
    O:0.01%以下
    含み、残部がFeおよび不可避的不純物からなることを特徴とする請求項1〜3のいずれか1項に記載の極限変形能と形状凍結性に優れた高強度熱延鋼板。
  5. さらに、質量%で、Nb、Ti、Vの1種または2種以上を合計で0.001%以上0.8%以下含むことを特徴とする請求項1〜4のいずれか1項に記載の極限変形能と形状凍結性に優れた高強度熱延鋼板。
  6. さらに、質量%で、Bを0.01%以下含むことを特徴とする請求項1〜5のいずれか1項に記載の極限変形能と形状凍結性に優れた高強度熱延鋼板。
  7. さらに、質量%で、
    Mo:1%以下、
    Cr:1%以下、
    Cu:2%以下、
    Ni:1%以下、
    Sn:0.2%以下、
    Co:2%以下
    の1種または2種以上を含有することを特徴とする請求項1〜6のいずれか1項に記載の極限変形能と形状凍結性に優れた高強度熱延鋼板。
  8. さらに、質量%で、
    Ca:0.0005〜0.005%、
    Rem:0.001〜0.05%、
    Mg:0.0001〜0.05%、
    Ta:0.0001〜0.05%、
    の1種または2種以上を含むことを特徴とする請求項1〜7のいずれか1項に記載の極限変形能と形状凍結性に優れた高強度熱延鋼板。
  9. 請求項1〜8のいずれか1項に記載の極限変形能と形状凍結性に優れた高強度熱延鋼板にめっきを施したことを特徴とする極限変形能と形状凍結性に優れた高強度熱延鋼板。
  10. 請求項1〜9のいずれか1項に記載の極限変形能と形状凍結性に優れた高強度熱延鋼板を製造するにあたり、請求項4〜8のいずれか1項に記載の成分組成を有する鋳造スラブを、鋳造ままもしくは一旦冷却した後に1000〜1300℃の範囲に再度加熱し、熱間圧延をする際、Ar3℃〜(Ar3+150)℃の温度範囲における圧下率の合計が25%以上となるように制御し、仕上熱延開始温度TFSと仕上熱延完了温度TFEが下記(1)〜(4)式を全て同時に満足するように熱間圧延を終了し、熱間圧延後冷却して(5)式に示す鋼の化学成分で決まる臨界温度To(℃)以下で、かつ、700℃以下400℃以上の温度で巻き取ることを特徴とする極限変形能と形状凍結性に優れた高強度熱延鋼板の製造方法。
    Figure 2005015854
    ここで、Bは質量%で表現した鋼の成分より求まる。
    B=−50.6×Mneq+894.3
    Mneq=Mn%+0.24×Ni%+0.13×Si%+0.38×Mo%+0.55×Cr%+0.16×Cu%−0.50×Al%−0.45×Co%+0.90×V%
    ただし、
    Ar3=901−325×C%+33×Si%+287×P%+40×Al%−92×(Mn%+Mo%+Cu%)−46×(Cr%+Ni%)
  11. さらに、Ar3〜(Ar3+150)℃の温度範囲における熱間圧延の内少なくとも1パス以上において摩擦係数が0.2以下となるように制御することを特徴とする請求項10記載の極限変形能と形状凍結性に優れた高強度熱延鋼板の製造方法。
  12. 請求項10または11記載の極限変形能と形状凍結性に優れた高強度熱延鋼板の製造方法で製造された高強度熱延鋼板に、0.1%以上5%以下のスキンパス圧延を施すことを特徴とする極限変形能と形状凍結性に優れた高強度熱延鋼板の製造方法。
JP2003182675A 2003-06-26 2003-06-26 極限変形能と形状凍結性に優れた高強度熱延鋼板とその製造方法 Expired - Fee Related JP4276482B2 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2003182675A JP4276482B2 (ja) 2003-06-26 2003-06-26 極限変形能と形状凍結性に優れた高強度熱延鋼板とその製造方法
TW093118280A TWI248977B (en) 2003-06-26 2004-06-24 High-strength hot-rolled steel sheet excellent in shape fixability and method of producing the same
PL04746934T PL1636392T3 (pl) 2003-06-26 2004-06-28 Walcowana na gorąco cienka blacha stalowa o dużej wytrzymałości i doskonałej zdolności zachowania kształtu oraz sposób jej wytwarzania
KR1020057024886A KR100754035B1 (ko) 2003-06-26 2004-06-28 형상 동결성이 우수한 고강도 열연 강판 및 그 제조 방법
CA2530008A CA2530008C (en) 2003-06-26 2004-06-28 High-strength hot-rolled steel sheet excellent in shape fixability and method of producing the same
CNB2004800174633A CN100374586C (zh) 2003-06-26 2004-06-28 具有良好的形状可固定性的高强度热轧薄钢板及其生产方法
ES04746934T ES2293299T3 (es) 2003-06-26 2004-06-28 Chapa de acero laminada en caliente, de alta resistencia, excelente en capacidad para fijar el conformado y metodo para su produccion.
AT04746934T ATE373110T1 (de) 2003-06-26 2004-06-28 Hochfestes warmgewalztes stahlblech mit hervorragenden formfixierungseigenschaften und zugehöriges herstellungsverfahren
DE602004008917T DE602004008917T2 (de) 2003-06-26 2004-06-28 Hochfestes warmgewalztes stahlblech mit hervorragenden formfixierungseigenschaften und zugehöriges herstellungsverfahren
PCT/JP2004/009465 WO2005005670A1 (en) 2003-06-26 2004-06-28 High-strength hot-rolled steel sheet excellent in shape fixability and method of producing the same
EP04746934A EP1636392B1 (en) 2003-06-26 2004-06-28 High-strength hot-rolled steel sheet excellent in shape fixability and method of producing the same
US10/561,133 US7485195B2 (en) 2003-06-26 2004-06-28 High-strength hot-rolled steel sheet excellent in shape fixability and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003182675A JP4276482B2 (ja) 2003-06-26 2003-06-26 極限変形能と形状凍結性に優れた高強度熱延鋼板とその製造方法

Publications (2)

Publication Number Publication Date
JP2005015854A true JP2005015854A (ja) 2005-01-20
JP4276482B2 JP4276482B2 (ja) 2009-06-10

Family

ID=34182987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003182675A Expired - Fee Related JP4276482B2 (ja) 2003-06-26 2003-06-26 極限変形能と形状凍結性に優れた高強度熱延鋼板とその製造方法

Country Status (2)

Country Link
JP (1) JP4276482B2 (ja)
CN (1) CN100374586C (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006103991A1 (ja) * 2005-03-28 2006-10-05 Kabushiki Kaisha Kobe Seiko Sho 穴拡げ加工性に優れた高強度熱延鋼板およびその製造方法
JP2007277661A (ja) * 2006-04-10 2007-10-25 Nippon Steel Corp バーリング加工性に優れた高ヤング率薄鋼板及びその製造方法
JP2007307616A (ja) * 2006-04-20 2007-11-29 Nippon Steel Corp 金属板の剪断方法及び剪断工具及び剪断により得られた金属板加工品
JP2009007660A (ja) * 2007-06-29 2009-01-15 Sumitomo Metal Ind Ltd 熱延鋼板およびその製造方法
JP2009263715A (ja) * 2008-04-24 2009-11-12 Nippon Steel Corp 穴広げ性に優れた熱延鋼板及びその製造方法
JP2010090476A (ja) * 2008-09-11 2010-04-22 Nippon Steel Corp 穴広げ性に優れた高強度熱延鋼板及びその製造方法
WO2011090205A1 (ja) 2010-01-25 2011-07-28 新日本製鐵株式会社 冷間鍛造用鋼板及びその製造方法
KR101149202B1 (ko) 2009-06-26 2012-05-25 현대제철 주식회사 용융아연 도금 특성이 우수한 열연강판의 제조방법
WO2012133636A1 (ja) * 2011-03-31 2012-10-04 新日本製鐵株式会社 等方加工性に優れるベイナイト含有型高強度熱延鋼板及びその製造方法
WO2014097430A1 (ja) * 2012-12-19 2014-06-26 新日鐵住金株式会社 熱延鋼板及びその製造方法
KR20220055544A (ko) * 2020-10-26 2022-05-04 현대제철 주식회사 고강도 고연신 열연강재 및 그 제조방법
CN114585764A (zh) * 2019-10-31 2022-06-03 杰富意钢铁株式会社 钢板、部件及其制造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101630548B1 (ko) * 2011-12-08 2016-06-14 제이에프이 스틸 가부시키가이샤 냉간 압연의 소재용 열연 강판 및 그 제조 방법
JP5994356B2 (ja) * 2012-04-24 2016-09-21 Jfeスチール株式会社 形状凍結性に優れた高強度薄鋼板およびその製造方法
CN102912229B (zh) * 2012-10-23 2016-01-20 鞍钢股份有限公司 一种390MPa级低成本热轧结构钢板及其制造方法
EP3018227B1 (en) * 2013-07-03 2019-03-06 Posco Hot-rolled steel sheet having excellent workability and anti-aging properties and method for manufacturing same
KR20150025952A (ko) * 2013-08-30 2015-03-11 현대제철 주식회사 고강도 열연도금강판 및 그 제조 방법
KR102460598B1 (ko) * 2018-03-29 2022-10-31 닛폰세이테츠 가부시키가이샤 핫 스탬프 성형체

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1072272C (zh) * 1997-01-29 2001-10-03 新日本制铁株式会社 冲击能吸收特性和成形良好的高强度钢板及其制造方法
JP4060997B2 (ja) * 1999-08-27 2008-03-12 新日本製鐵株式会社 曲げ性と深絞り性に優れた高強度冷延鋼板と高強度亜鉛めっき冷延鋼板およびその製造方法
US6866725B2 (en) * 2000-02-28 2005-03-15 Nippon Steel Corporation Steel pipe excellent in formability and method of producing the same
JP3990554B2 (ja) * 2000-06-30 2007-10-17 新日本製鐵株式会社 形状凍結性に優れた鋼板およびその製造方法
JP3990553B2 (ja) * 2000-08-03 2007-10-17 新日本製鐵株式会社 形状凍結性に優れた高伸びフランジ性鋼板およびその製造方法
JP3814134B2 (ja) * 2000-09-21 2006-08-23 新日本製鐵株式会社 加工時の形状凍結性と衝撃エネルギー吸収能に優れた高加工性高強度冷延鋼板とその製造方法
JP3927384B2 (ja) * 2001-02-23 2007-06-06 新日本製鐵株式会社 切り欠き疲労強度に優れる自動車用薄鋼板およびその製造方法
JP2002317246A (ja) * 2001-04-19 2002-10-31 Nippon Steel Corp 切り欠き疲労強度とバーリング加工性に優れる自動車用薄鋼板およびその製造方法
TWI290177B (en) * 2001-08-24 2007-11-21 Nippon Steel Corp A steel sheet excellent in workability and method for producing the same
DE60224557T4 (de) * 2001-10-04 2015-06-25 Nippon Steel & Sumitomo Metal Corporation Ziehbares hochfestes dünnes Stahlblech mit hervorragender Formfixierungseigenschaft und Herstellungsverfahren dafür

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8038809B2 (en) 2005-03-28 2011-10-18 Kobe Steel, Ltd. High strength hot rolled steel sheet excellent in bore expanding workability and method for production thereof
WO2006103991A1 (ja) * 2005-03-28 2006-10-05 Kabushiki Kaisha Kobe Seiko Sho 穴拡げ加工性に優れた高強度熱延鋼板およびその製造方法
US8486205B2 (en) 2005-03-28 2013-07-16 Kobe Steel, Ltd. High strength hot rolled steel sheet excellent in bore expanding workability and method for production thereof
JP2007277661A (ja) * 2006-04-10 2007-10-25 Nippon Steel Corp バーリング加工性に優れた高ヤング率薄鋼板及びその製造方法
JP2007307616A (ja) * 2006-04-20 2007-11-29 Nippon Steel Corp 金属板の剪断方法及び剪断工具及び剪断により得られた金属板加工品
JP2009007660A (ja) * 2007-06-29 2009-01-15 Sumitomo Metal Ind Ltd 熱延鋼板およびその製造方法
JP2009263715A (ja) * 2008-04-24 2009-11-12 Nippon Steel Corp 穴広げ性に優れた熱延鋼板及びその製造方法
JP2010090476A (ja) * 2008-09-11 2010-04-22 Nippon Steel Corp 穴広げ性に優れた高強度熱延鋼板及びその製造方法
KR101149202B1 (ko) 2009-06-26 2012-05-25 현대제철 주식회사 용융아연 도금 특성이 우수한 열연강판의 제조방법
WO2011090205A1 (ja) 2010-01-25 2011-07-28 新日本製鐵株式会社 冷間鍛造用鋼板及びその製造方法
US8945719B2 (en) 2010-01-25 2015-02-03 Nippon Steel & Sumitomo Metal Corporation Steel plate for cold forging and process for producing same
US9587287B2 (en) 2011-03-31 2017-03-07 Nippon Steel and Sumitomo Metal Corporation Bainite-containing-type high-strength hot-rolled steel sheet having excellent isotropic workability and manufacturing method thereof
WO2012133636A1 (ja) * 2011-03-31 2012-10-04 新日本製鐵株式会社 等方加工性に優れるベイナイト含有型高強度熱延鋼板及びその製造方法
JP5376089B2 (ja) * 2011-03-31 2013-12-25 新日鐵住金株式会社 等方加工性に優れるベイナイト含有型高強度熱延鋼板及びその製造方法
US10364478B2 (en) 2011-03-31 2019-07-30 Nippon Steel Corporation Bainite-containing-type high-strength hot-rolled steel sheet having excellent isotropic workability and manufacturing method thereof
KR20150079923A (ko) * 2012-12-19 2015-07-08 신닛테츠스미킨 카부시키카이샤 열연 강판 및 그 제조 방법
JP5907287B2 (ja) * 2012-12-19 2016-04-26 新日鐵住金株式会社 熱延鋼板及びその製造方法
US9903004B2 (en) 2012-12-19 2018-02-27 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and method for manufacturing the same
KR101996119B1 (ko) * 2012-12-19 2019-07-03 닛폰세이테츠 가부시키가이샤 열연 강판 및 그 제조 방법
WO2014097430A1 (ja) * 2012-12-19 2014-06-26 新日鐵住金株式会社 熱延鋼板及びその製造方法
CN114585764A (zh) * 2019-10-31 2022-06-03 杰富意钢铁株式会社 钢板、部件及其制造方法
KR20220055544A (ko) * 2020-10-26 2022-05-04 현대제철 주식회사 고강도 고연신 열연강재 및 그 제조방법
KR102464386B1 (ko) 2020-10-26 2022-11-08 현대제철 주식회사 고강도 고연신 열연강재 및 그 제조방법

Also Published As

Publication number Publication date
JP4276482B2 (ja) 2009-06-10
CN100374586C (zh) 2008-03-12
CN1809646A (zh) 2006-07-26

Similar Documents

Publication Publication Date Title
KR100754035B1 (ko) 형상 동결성이 우수한 고강도 열연 강판 및 그 제조 방법
JP5172403B2 (ja) プレス加工性に優れた高強度熱延鋼板およびその製造方法
KR100543956B1 (ko) 형상 동결성이 우수한 강판 및 그 제조방법
KR101778643B1 (ko) 고항복비 고강도 냉연 강판 및 그의 제조 방법
JP4276482B2 (ja) 極限変形能と形状凍結性に優れた高強度熱延鋼板とその製造方法
JP5402191B2 (ja) 伸びフランジ性に優れた超高強度冷延鋼板およびその製造方法
JP4980163B2 (ja) 成形性に優れる複合組織鋼板およびその製造方法
JP5446885B2 (ja) 冷延鋼板の製造方法
JP4740099B2 (ja) 高強度冷延鋼板及びその製造方法
KR20100092503A (ko) 가공성이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법
JP5825205B2 (ja) 冷延鋼板の製造方法
JP2005314798A (ja) 伸びフランジ性と疲労特性に優れた高延性熱延鋼板およびその製造方法
US11332804B2 (en) High-strength cold-rolled steel sheet, high-strength coated steel sheet, and method for producing the same
JP6973694B1 (ja) 高強度鋼板およびその製造方法
JP2007291514A (ja) 冷延−再結晶焼鈍後の面内異方性が小さい熱延鋼板、面内異方性が小さい冷延鋼板およびそれらの製造方法
JP3990553B2 (ja) 形状凍結性に優れた高伸びフランジ性鋼板およびその製造方法
JP2005256020A (ja) 形状凍結性に極めて優れた低降伏比型高強度冷延鋼板およびその製造方法
JP3990549B2 (ja) 形状凍結性に優れた高伸びフランジ性鋼板およびその製造方法
JP4430444B2 (ja) 形状凍結性に優れた低降伏比型高強度熱延鋼板とその製造方法
JP6398210B2 (ja) 冷延鋼板の製造方法
JP6217455B2 (ja) 冷延鋼板
JP2002097545A (ja) 加工時の形状凍結性と衝撃エネルギー吸収能に優れた高加工性高強度鋼板とその製造方法
JP4166657B2 (ja) フェライト系ステンレス鋼板およびその製造方法
JP2006022349A (ja) 形状凍結性に優れた高強度鋼板、高強度溶融亜鉛めっき鋼板、および、高強度合金化溶融亜鉛めっき鋼板とそれらの製造方法
JP4160840B2 (ja) 形状凍結性に優れた高加工性高強度熱延鋼板とその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090306

R151 Written notification of patent or utility model registration

Ref document number: 4276482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees