JP2005011940A - 基板処理方法、半導体装置の製造方法および半導体装置 - Google Patents

基板処理方法、半導体装置の製造方法および半導体装置 Download PDF

Info

Publication number
JP2005011940A
JP2005011940A JP2003173433A JP2003173433A JP2005011940A JP 2005011940 A JP2005011940 A JP 2005011940A JP 2003173433 A JP2003173433 A JP 2003173433A JP 2003173433 A JP2003173433 A JP 2003173433A JP 2005011940 A JP2005011940 A JP 2005011940A
Authority
JP
Japan
Prior art keywords
layer
processing method
source gas
substrate processing
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003173433A
Other languages
English (en)
Inventor
Yasuhiko Kojima
康彦 小島
Yasuhiro Oshima
康弘 大島
Takashi Shigeoka
隆 重岡
Tadahiro Ishizaka
忠大 石坂
Yukio Fukuda
幸夫 福田
Gohei Kawamura
剛平 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2003173433A priority Critical patent/JP2005011940A/ja
Publication of JP2005011940A publication Critical patent/JP2005011940A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

【課題】複数の原料ガスを交互に供給する、原子層・分子層に近いレベルの成膜方法で導電層と当該導電層のバリア層の間に密着層を形成する
【解決手段】処理容器内の被処理基板上に成膜する基板処理方法であって、前記処理容器内に金属を含む第1の原料ガスを供給し、さらに前記第1の原料ガスを前記処理容器内から除去する第1の工程と、前記処理容器内に前記第1の原料ガスを還元する第2の原料ガスを供給し、さらに前記第2の原料ガスを前記処理容器内から除去する第2の工程と、前記処理容器内に珪素を含む第3の原料ガスを供給し、さらに前記第3の原料ガスを前記処理容器内から除去する第3の工程とを含む第1の成膜工程を有し、さらに、前記第1の成膜工程によって形成された金属と窒素と珪素を含む層の上に導電層を形成する第2の成膜工程を有することを特徴とする基板処理方法。
【選択図】 図4

Description

【0001】
【発明の属する技術分野】
【従来の技術】
近年、半導体装置の高性能化に伴い、半導体デバイスの高集積化が進んで微細化の要求が著しくなっており、配線ルールは0.13μmから0.10μm以下の領域へと開発が進んでいる。また、配線材料は従来のAlから、配線遅延の影響の少ない、抵抗値の低いCuに置き換えられてきている。
【0002】
そのため、Cu成膜技術と微細配線技術の組み合わせが、近年の高性能半導体装置の製造技術において重要となっており、Cu配線技術の高度化と、微細化に伴う薄膜の膜質および膜質の均一性の要求が厳しくなってきている。
【0003】
前記したような微細パターンに対して薄膜形成を行う場合、当該微細パターンに良好なカバレッジで成膜する方法として、成膜時に複数種の原料ガスを1種類ずつ交互に供給することで、原料ガスの反応表面への吸着を経由して原子層・分子層に近いレベルで成膜を行ない、これらの工程を繰り返して所定の厚さの薄膜を得る方法が提案されている。(例えば特許文献1参照)。このような成膜をAtomic Layer Deposition(ALD)と呼ぶことがある。このような原子層・分子層に近いレベルで金属膜・絶縁膜などが形成される場合、従来用いられていたPVD法やCVD法に比べて薄膜化が可能であり、微細パターンにおいて不純物が存在しない高品質な成膜を良好なカバレッジでかつ均一な膜質で行うことが可能となる。
【0004】
しかし、前記したようなCu配線を考えた場合、Cu層と、当該Cu層の周囲に形成される例えば高融点金属の窒化膜で形成されCuの拡散を防止するバリア層との間の密着性が問題になる場合があった。このようなバリア層の材料としては、例えばTiN、TaN、WNなどが知られている。
【0005】
このようなCu層とバリア層の密着性向上の対策として、Cu層とCuバリア層であるたとえばTiN層の間に密着層としてTiSiN(TiN(Si)と表記する場合もある)を設ける方法が提案されている。
【0006】
例えば原料にTDMAT(Ti[N(CH)をベースに用いたCVD法により、Cu層とTiN層の間にTiSiN層を形成する方法が提案されている。(例えば非特許文献1参照)。
【0007】
また、同様にTiN層の上にTiSiN層を形成する方法として、TiN層形成後の当該TiN表面をSiHに曝してTiN表面にTiSiN層を形成する方法が提案されている。(例えば非特許文献2参照)。
【0008】
【特許文献1】
特開平6−89873号公報
【0009】
【特許文献2】
特開平7−252660号公報
【0010】
【特許文献3】
特開2000−195820号公報
【0011】
【特許文献4】
WO 00/16377号公報
【0012】
【非特許文献1】
Barry L. Chin ”Barrier and seed technology for sub−0.10um copper chips” SEMICONDUCTOR INTERNATIONAL, 2001,May, p107−114
【0013】
【非特許文献2】
K.Mosig ”Integration of porous ultra low−k dielectric with CVD barriers” in Proceedings of IEDM 2001, p88−91
【0014】
【非特許文献3】
A.E.Braun ”ALD breaks materials, conformality barriers” SEMICONDUCTOR INTERNATIONAL, 2001, October, p52−58
【0015】
【発明が解決しようとする課題】
しかし、前記したようなCVD法を用いてCu層とバリア層の密着層を形成する場合は、膜質および膜質の均一性が問題となり、微細パターンにおける数nmの精度での膜厚の均一性やカバレッジを達成するのは困難である。
【0016】
また、TiN表面をSiHに曝して密着層であるTiN層を形成する場合、形成されるTiSiN層はTiNの表層のみであり、Siの含有量およびSiが含有される深さの制御が実質的に不可能であり、CuとTiNの密着性を制御するのは困難である。
【0017】
そこで、本発明は上記の課題を解決した新規で有用な基板処理方法、半導体装置の製造方法および半導体装置を提供することを統括的目的としている。
【0018】
本発明の具体的な課題は、複数の原料ガスを交互に供給する、原子層・分子層に近いレベルの成膜方法で導電層と当該導電層のバリア層の間に密着層を形成することにより、微細パターンにカバレッジよく、また良好で均一な膜質で当該密着層を形成して当該導電層と当該導電バリア層の密着性を向上させることにある。
【0019】
【課題を解決するための手段】
本発明は、上記の課題を解決するために、
請求項1に記載したように、
処理容器内の被処理基板上に成膜する基板処理方法であって、
前記処理容器内に金属を含む第1の原料ガスを供給し、さらに前記第1の原料ガスを前記処理容器内から除去する第1の工程と、
前記処理容器内に前記第1の原料ガスを還元する第2の原料ガスを供給し、さらに前記第2の原料ガスを前記処理容器内から除去する第2の工程と、
前記処理容器内に珪素を含む第3の原料ガスを供給し、さらに前記第3の原料ガスを前記処理容器内から除去する第3の工程とを含む第1の成膜工程を有し、
さらに、前記第1の成膜工程によって形成された金属と窒素と珪素を含む層の上に導電層を形成する第2の成膜工程を有することを特徴とする基板処理方法により、また、
請求項2に記載したように、
前記第2の原料ガスが窒素を含むことを特徴とする請求項1記載の基板処理方法により、また、
請求項3に記載したように、
前記第1の原料ガスが窒素を含むことを特徴とする請求項1記載の基板処理方法により、また、
請求項4に記載したように、
前記導電層はCu層であることを特徴とする請求項1〜3のうち、いずれか1項記載の基板処理方法により、また、
請求項5に記載したように、
前記第1の成膜工程では、前記第1の工程、前記第2の工程および前記第3の工程が複数回繰り返されることを特徴とする請求項1〜4のうち、いずれか1項記載の基板処理方法により、また、
請求項6に記載したように、
前記金属と窒素と珪素を含む層は、前記被処理基板上に形成された金属窒化物層の上に形成されることを特徴とする請求項1〜5のうち、いずれか1項記載の基板処理方法により、また、
請求項7に記載したように、
前記第1の成膜工程の前に、前記金属窒化物層を形成する工程をさらに含むことを特徴とする請求項6記載の基板処理方法により、また、
請求項8に記載したように、
前記金属窒化物層を形成する工程は、
前記処理容器内に前記第1の原料ガスを供給し、さらに前記第1の原料ガスを前記処理容器内から除去する第4の工程と、
前記処理容器内に前記第2の原料ガスを供給し、さらに前記第2の原料ガスを前記処理容器内から除去する第5の工程とを含むことを特徴とする請求項7記載の基板処理方法により、また、
請求項9に記載したように、
前記金属窒化物層は、前記第4の工程と前記第5の工程を複数回繰り返すことによって形成されることを特徴とする請求項8記載の基板処理方法により、また、
請求項10に記載したように、
前記金属窒化物層は、被処理基板上に形成された絶縁層の上に形成されることを特徴とする請求項7〜9のうち、いずれか1項記載の基板処理方法により、また、
請求項11に記載したように、
前記金属窒化物層を形成する工程の前に、前記絶縁層をエッチングする工程をさらに含むことを特徴とする請求項10記載の基板処理方法により、また、
請求項12に記載したように、
前記エッチングは、前記絶縁層にホール部を形成するビアエッチングであることを特徴とする請求項11記載の基板処理方法により、また、
請求項13に記載したように、
前記エッチングは、前記絶縁層に溝部を形成するトレンチエッチングであることを特徴とする請求項11または12記載の基板処理方法により、また、
請求項14に記載したように、
前記第2の原料ガスはプラズマ励起されていることを特徴とする請求項1〜13のうち、いずれか1項記載の基板処理方法により、また、
請求項15に記載したように
前記第3の原料ガスはプラズマ励起されていることを特徴とする請求項1〜14のうち、いずれか1項記載の基板処理方法により、また、
請求項16に記載したように、
前記プラズマ励起は前記基板処理容器と離間した空間で行われることを特徴とする請求項14または15記載の基板処理方法により、また、
請求項17に記載したように、
前記金属はTiであることを特徴とする請求項1〜16のうち、いずれか1項記載の基板処理方法により、また、
請求項18に記載したように、
前記金属はTaであることを特徴とする請求項1〜16のうち、いずれか1項記載の基板処理方法により、また、
請求項19に記載したように、
前記金属はWであることを特徴とする請求項1〜16のうち、いずれか1項記載の基板処理方法により、また、
請求項20に記載したように、
請求項1〜19のうち、いずれか1項記載の基板処理方法を用いた半導体装置の製造方法により、また、
請求項21に記載したように、
請求項1〜19のうち、いずれか1項記載の基板処理方法を用いた半導体装置により、解決する。
[作用]
本発明によれば、導電層であるCu層とCuバリア層の間の密着層を、複数の原料ガスを交互に供給することにより原子層・分子層に近いレベルの成膜方法で形成した結果、Cu層と、Cuバリア層の密着性が向上すると共に、微細なパターンにカバレッジ良く、良質でかつ均一な膜厚・膜質で当該密着層を形成することが可能となる。また、当該密着層の厚さや組成の制御、さらに、当該密着層の深さ方向での組成の変更の制御が容易になり、密着層形成の制御性が良好となる。
【0020】
【発明の実施の形態】
次に、本発明の実施の形態に関して、図面に基づき、以下に説明する。
[第1実施例]
図1(A)〜(C)は本発明による基板処理方法の概要を示す図である。
【0021】
まず、図1(A)を参照するに、図示しない被処理基板上に絶縁層1が形成されている。前記絶縁層1の上には、この後の工程で形成される導電層、例えばCu層のバリア層である金属窒化物層、例えばTiN層2が形成されている。前記TiN層2は、たとえばPVD法、CVD法など、いずれの方法で成膜されたものでもよい。
【0022】
次に、図1(B)において、前記TiN層2の上に本発明によるCu層とバリア層の密着層を形成する。本発明よる成膜方法、すなわち前記被処理基板に複数のガスを交互に供給することで、膜質がよく、かつ膜厚・膜質の均一性が優れた原子層・分子層レベルに近い膜を、膜厚の制御性良く形成することができる。まず、第1の工程として、金属を含む金属原料ガス、例えばTiClを前記被処理基板上に供給して前記TiN層2の上に吸着させた後、余剰なTiClを前記被処理基板上および処理容器内より取り除く。次に、第2の工程として、金属原料ガスを還元するガス、たとえばNHを前記被処理基板上に供給して、前記TiN層2の上に吸着したTiClと反応させた後、余剰なNHを前記被処理基板上および処理容器内より取り除く。次に、第3の工程として、シリコンを含むシリコン原料ガス、たとえばSiHを前記被処理基板上に供給して前記TiN層2の上で反応させた後、余剰なSiHを前記被処理基板上および処理容器内より取り除く。このような第1〜3の工程を繰り返すことで、前記TiN層2とこの後で形成されるCu層との密着層であるTiSiN層(もしくはTiN(Si)層と表記する場合もある)3が形成される。従来あったTiN層2の表面を改質して密着層とする方法では、形成されるTiSiN層の厚さの制御が不可能であり、またTiSiNの組成の制御が困難であった。一方、本発明によれば、例えば前記第1〜3の工程を繰り返し実施する際に、前記第1〜3の工程のいずれかを実施する回数を変更することで、形成されるTiSiN層の膜厚や組成を制御することが容易に可能になる。この方法については後述する。
【0023】
次に、図1(C)において、導電層、この場合例えばCu層4を形成する。この場合、前記した図1(B)の工程において密着層である前記TiSiN層3が形成されており、TiSiN層3はアモルファスに近い構造となるため、Cuの凝集が無く、形成される前記Cu層4と前記TiSiN層3の密着性は良好である。また、前記TiN層2と前記TiSiN層3の密着性は良好であるため、前記TiSiN層3を介した前記Cu層4と前記TiN層2の密着性は良好となる。前記Cu層4の形成方法は、例えば、PVD法、CVD法、メッキ法などいずれの方法でも同様の効果が得られる。
[第2実施例]
次に、図2(A)〜(D)に本発明による別の基板処理方法の概要を示す。ただし図中、先に説明した部分には同一の参照符号を付し、説明を省略する。
【0024】
図2(C)、(D)のTiSiN層とCu層の形成工程はそれぞれ、図1(B)、(C)の工程と同一である。本実施例に示す基板処理方法では、図2(A)〜(B)に示す前記絶縁層1の上に、TiN層を形成する工程が含まれる。
【0025】
まず、図2(A)を参照するに、図示しない被処理基板または被処理基板上に形成された薄膜上に絶縁層1が形成されている。
【0026】
次に、図2(B)において、TiN層2を形成する。この場合、図1(B)に示した前記TiSiN層3を形成した場合と同様の方法で形成する。すなわち、TiClを前記被処理基板上に供給して前記絶縁層1の上に吸着させた後、余剰なTiClを前記被処理基板上および処理容器内より取り除き、次にNHを前記被処理基板上に供給して、前記絶縁層1の上に吸着したTiClと反応させた後、余剰なNHを前記被処理基板上および処理容器内より取り除く工程を繰り返し、TiN層2を形成する。このようにして形成された前記TiN層2は、PVD法やCVD法によって形成されたTiN層に比べて膜中不純物が少なくバリア性が高い。またこのような形成法によれば、膜厚の制御性良くTiN層を形成することができる。
【0027】
さらに、本実施例の場合は、前記TiN層2の膜質および膜質と膜厚の均一性においても良好であり、さらに続く図2(C)のTiSiN層の形成工程と同様の成膜方法なため、図2(B)の工程と図2(C)の工程を連続的に同一の装置で処理を効率的に行う事が可能となる。
【0028】
次に、本発明による成膜方法を実施する成膜装置について以下に説明する。
[第3実施例]
図3は、本発明の成膜方法を実施可能な成膜装置10の構成図である。
【0029】
図3を参照するに、前記成膜装置10は、例えばアルミ、表面をアルマイト処理されたアルミもしくはステンレスなどからなる処理容器11を有し、前記処理容器11の内部には基板保持台支持部15に支持されたAlNからなる基板保持台12が設置され、前記基板保持台12の中心には被処理基板である半導体ウェハWが載置される。前記基板保持台12には図示しないヒータが内蔵されて前記ウェハを所望の温度に加熱することが可能な構造となっている。前記基板処理容器11内は、排気口18に接続される図示しない排気系により真空排気され、前記処理容器11内を減圧状態とすることが可能である。また、前記ウェハWは、前記処理容器11に設置された図示しないゲートバルブより搬入もしくは搬出される。そのため、前記基板保持台12には、前記ウェハWの前記処理容器11内への搬入・搬出時に前記ウェハWを保持して前記基板保持台15より離脱または載置するリフターピン13が設置されている。前記リフターピン13は、連結棒14を介してベローズ16にて真空シールされた上下機構17に接続されており、前記リフターピン13を上下動させて、前記基板載置台12より前記ウェハWを離脱、もしくは載置することが可能となっている。
【0030】
前記処理容器11の上部にはガス導入路11Aが設けられており、前記被処理基板Wに成膜を行うための原料ガス、もしくは希釈ガスなどが導入される。前記ガス導入路11Aには、ガスライン24が接続されており、前記ガスライン24はさらに金属原料ガスライン25および希釈ガスライン26に接続されている。前記金属原料ガスライン25は質量流量コントローラ25Aおよびバルブ25Bを介して金属原料ガス源25Cに接続されている。前記金属原料ガス源25Cには、例えばTi化合物、Ta化合物またはW化合物などの金属原料ガス源が接続されて、それぞれTi、TaまたはWを含む原料ガスを、前記処理容器11に供給する。また、前記希釈ガスライン26は質量流量コントローラ26Aおよびバルブ26Bを介して希釈ガス源26Cに接続されており、必要に応じて前記金属原料ガスを希釈するための、例えばN、Ar、Heなどの希釈ガス源を設置して、N、Ar、Heなどを前記ガスライン24を介して前記処理容器11内に供給する。また、希釈ガスを前記ガスライン24から導入することで、前記処理容器11内から前記ガスライン24へのガスの逆流を防止する効果もある。
【0031】
また、前記ガス導入路11Aには、後述するリモートプラズマ源19を介してガスライン20が接続されている。前記ガスライン20には、窒素原料ガスライン21、シリコン原料ガスライン22および希釈ライン23が接続されている。前記窒素原料ガスライン21には、質量流量コントローラ21A、バルブ21Bを介して窒素原料ガス源21Cが接続されており、窒素原料として窒素化合物、例えば、NH、N、NH(CH、NCHなどのガス源が接続されて前記処理容器11内に窒素化合物ガスを導入する。
【0032】
また、前記シリコン原料ガスライン22には、質量流量コントローラ22A、バルブ22Bを介してシリコン原料ガス源22Cが接続されており、シリコン原料としてシリコン化合物、例えば、SiH、Si、SiHCl、SiClなどのガス源が接続されて前記処理容器11内にシリコン化合物ガスを導入する。
【0033】
また、前記希釈ライン23には、質量流量コントローラ23A,バルブ23Bを介して希釈原料ガス源23Cが接続されており、必要に応じて前記窒素原料ガスまたは前記シリコン原料ガスを希釈するための、例えばN、Ar、Heなどの希釈ガス源を設置して、N、Ar、Heなどを前記ガスライン20を介して前記処理容器11内に供給する。また、希釈ガスをガスライン20から導入することで、前記処理容器11内から前記ガスライン20、前記リモートプラズマ源19へのガスの逆流を防止する効果もある。
【0034】
前記リモートプラズマ源19は、高周波を印加されて、前記リモートプラズマ源19に導入されるガスをプラズマ励起するプラズマ発生装置が内蔵されている。前記リモートプラズマ源19は、必要に応じて前記リモートプラズマ源19に供給される前記窒素原料ガスまたは前記シリコン原料ガスをプラズマ励起する。また、前記したようなプラズマ励起を行わない場合は供給されるガスはそのまま前記リモートプラズマ源19を通過して前記処理容器11内へ供給される。プラズマ励起されたガスからは、ガスが解離したイオン、ラジカルなどの反応種が生成されるが、おもにラジカルが前記ガス導入路11Aより前記処理容器11内へ導入され、例えば窒素原料ガスをプラズマ励起した場合はおもにNH*(ラジカル)、シリコン原料ガスの場合はSiH*(ラジカル)が前記処理容器11内へ導入される。
【0035】
本実施例では、前記リモートプラズマ源のプラズマ励起方法は2MHzの高周波を用いたICP(誘導結合型プラズマ)装置を用いているが、前記の方法に限定されるものではない。プラズマ励起は、たとえば平行平板プラズマでもECRプラズマでもよい。また、例えば周波数は400kHz、800kHzなどのより低周波を用いてもよく、また13.56MHzなどの高周波や、マイクロ波(2.45GHz)を用いることも可能であり、プラズマが励起されてガスを解離することが可能であれば、印加する周波数やプラズマ励起の方法は、いずれの方法でもよい。
【0036】
また、前記したようなバルブ21B〜26Bまでの開閉動作、前記リフターピン13の動作、前記リモートプラズマ源19のプラズマ励起の動作など成膜に関する前記成膜装置10の動作は制御装置10Aによって一括制御され、第4実施例以下で後述するプロセスフローは前記制御装置10Aによって制御される。
【0037】
次に、前記した図1に示した成膜方法について、前記成膜装置10を用いたより具体的な成膜方法に関して説明する。
[第4実施例]
図4は、前記成膜装置10を用いて行う本発明による基板処理方法によるプロセスフローを示す図である。当該プロセスフローはステップ210(図中S210と示す。以下同様)〜ステップ330よりなる。
【0038】
まず、ステップ210において、被処理基板であるウェハWを前記成膜装置10に搬入する。
【0039】
次に、ステップ220において、前記ウェハWを前記基板保持台12に載置する。
【0040】
ステップ230においては、前記基板載置台12に内蔵したヒータによって前記ウェハが昇温され、略400℃に保持される。以後の工程においては前記ウェハWは略400℃に保持される。
【0041】
次にステップ240において、前記バルブ25Bを開放し、前記質量流量コントローラ25Aで流量を制御して前記処理容器11内にTiClを30sccm供給する。その際に同時にバルブ26Bおよびバルブ23Bを開放して前記質量流量コントローラ26Aおよび23Aで流量を制御して希釈ガスであるNを前記希釈ガスライン23および希釈ガスライン26からそれぞれ100sccmずつ合計で200sccmを前記処理容器11内に導入する。本ステップにおいて、TiClが被処理基板上に供給されることで、被処理基板上に形成されている前記TiN層2上にTiClが吸着する。本ステップ240は10秒間実施される。
【0042】
次に、ステップ250で、前記バルブ23B、25Bおよび26Bを閉じて前記処理容器11へのTiClおよびNの供給を停止する。ここで前記TiN層2上に吸着していない未吸着で前記処理容器11内に残留していたTiClは、前記排気口18より前記処理容器11の外へと排出される。本ステップ250は約2秒間実施される。
【0043】
次に、ステップ260において、前記バルブ21Bを開放し、前記質量流量コントローラ21Aで流量を制御して前記処理容器11内にNHを100sccm供給する。その際に同時にバルブ26Bおよびバルブ23Bを開放して前記質量流量コントローラ26Aおよび23Aで流量を制御して希釈ガスであるNを前記希釈ガスライン23および希釈ガスライン26からそれぞれ100sccmずつ合計で200sccmを前記処理容器11内に導入する。本ステップにおいて、NHが略400℃となっている被処理基板上に供給されることで、被処理基板上に吸着しているTiClとNHが反応してTiNが形成される。本ステップ260は10秒間実施される。
【0044】
次に、ステップ270で、前記バルブ21B、23Bおよび26Bを閉じて前記処理容器11へのNHおよびNの供給を停止する。ここで未反応で前記処理容器11内に残留していたNHと反応副生成物は、前記排気口18より前記処理容器11の外へと排出される。本ステップ270は約2秒間実施される。
【0045】
次に、ステップ280において、前記バルブ22Bを開放し、前記質量流量コントローラ22Aで流量を制御して前記処理容器11内にSiHを30sccm供給する。その際に同時にバルブ26Bおよびバルブ23Bを開放して前記質量流量コントローラ26Aおよび23Aで流量を制御して希釈ガスであるNを前記希釈ガスライン23および希釈ガスライン26からそれぞれ100sccmずつ合計で200sccmを前記処理容器11内に導入する。そこでSiHが被処理基板上に供給されることで、被処理基板上に形成されたTiNとSiHが反応して前記TiSiN層3が形成される。本ステップ280は10秒間実施される。
【0046】
次に、ステップ290で、前記バルブ22B、23Bおよび26Bを閉じて前記処理容器11へのSiHおよびNの供給を停止する。ここで、未反応で前記処理容器11内に残留していたSiHは、前記排気口18より前記処理容器11の外へと排出される。本ステップ290は約2秒間実施される。
【0047】
ここで、前記TiN層2上には前記TiSiN層3が形成されるが、ステップ240〜ステップ290までをTiSiN層形成の1サイクルとすると、1サイクルで約0.2nmのTiSiN層が形成される。なお、ここで表記したTiSiN層とは、構造が限定されるものではなく、形成される膜中にチタン、シリコン、窒素を含む膜を示すものである。
【0048】
次に、ステップ300においては、必要な膜厚のTiSiN層を形成するために、成膜工程を再びステップ240に戻して所望の膜厚となるまでステップ240〜290を繰り返し、必要な回数終了後に次のステップ310に移行する。
【0049】
次に、ステップ310では前記リフターピン13を上昇させて前記ウェハWを前記基板保持台12より離間する。
【0050】
次にステップ320で前記処理容器11から前記ウェハWを搬出する。
【0051】
次に、ステップ330において、形成されたTiSiN層3上に、前記Cu層4を形成するため、Cu成膜装置に搬送して、前記Cu層4を成膜する。
【0052】
この場合、前記したように、Cu層はPVD装置、CVD装置、メッキ装置のいずれで成膜した場合も、密着層であるTiSiN層3との密着性が良好な成膜を行う事が可能となる。また、前記TiSiN層3は前記TiN層2との密着性が良好なため、TiN層に直接Cuを形成した場合にくらべて密着性にすぐれた構造となっている。
【0053】
また、前記したプロセスフローは次に示す第5実施例で示すように変更することが可能である。
[第5実施例]
図5は、図4に示した本発明の第4実施例である基板処理方法のプロセスフローの変更例である。ただし図中、先に説明した部分には同一の参照符号を付し、説明を省略する。
【0054】
図5を参照するに、ステップ210〜250、ステップ270、およびステップ290〜330は前記した第4実施例の場合と同一である。本実施例では図4で示したステップ260およびステップ280に換わってそれぞれ260A、280Aが実行される。
【0055】
まず、ステップ260Aにおいては、前記ステップ260と同様に、前記バルブ21Bを開放し、前記質量流量コントローラ21Aで流量を制御して前記処理容器11内にNHを100sccm供給する。その際に同時にバルブ26Bおよびバルブ23Bを開放して前記質量流量コントローラ26Aおよび23Aで流量を制御して希釈ガスであるNを前記希釈ガスライン23および希釈ガスライン26からそれぞれ100sccmずつ合計で200sccmを前記処理容器11内に導入する。その際に、前記リモートプラズマ源19で高周波電力を75W印加してプラズマ励起を行う。前記リモートプラズマ源においては、供給されるNHが解離してNH*となり、前記処理容器11内に供給される。そこで、前記ステップ240〜250によって、前記ウェハ上のTiN層2上に吸着しているTiClとNH*が反応してTiNが形成される。本実施例の場合はTiN形成のためにNHに換わっておもにNH*を用いているため、TiClとの反応が促進されてTiNが形成が進むために、形成されるTiN、および最終的に形成されるTiSiN層中に残留塩素が少なく、膜質が良好であるという特長がある。
【0056】
また、ステップ280Aにおいては、前記ステップ280と同様に、前記バルブ22Bを開放し、前記質量流量コントローラ22Aで流量を制御して前記処理容器11内にSiHを30sccm供給する。その際に同時にバルブ26Bおよびバルブ23Bを開放して前記質量流量コントローラ26Aおよび23Aで流量を制御して希釈ガスであるNを前記希釈ガスライン23および希釈ガスライン26からそれぞれ100sccmずつ合計で200sccmを前記処理容器11内に導入する。その際に、前記リモートプラズマ源19で高周波電力を75W印加してプラズマ励起を行う。前記リモートプラズマ源においては、供給されるSiHが解離してSiH*となり、前記処理容器11内に供給される。そこで、前記ステップ270によって、前記ウェハ上のTiN層2上に形成されたTiNとSiH*が反応してTiSiN層が形成される。本ステップではTiSiN層を形成するために、SiHの換わりにラジカル(SiH*)を用いているため、反応が生じやすく、TiSiN層中のSiの含有率を高くすることができる。また、高周波電力を上昇させると、さらにSiの含有率を高くすることが可能となり、TiSiN層中のSi含有率の制御が可能となる。
【0057】
また、リモートプラズマ励起は、必要に応じてステップ260のみで行ってもよく、またステップ280のみで行うことも可能である。
[第6実施例]
次に、第6実施例として、前記した第5実施例の変更例を図6に基づき、以下に説明する。ただし図中、先に説明した部分には同一の参照符号を付し、説明を省略する。
【0058】
図6を参照するに、ステップ210〜290およびステップ300〜330は図5に示した第5実施例の場合と同一である。
【0059】
本実施例においては、ステップ290とステップ300の間に、ステップ291とステップ292を追加している。ステップ291は前記処理容器11内にプラズマ励起された窒素原料ガスおよび希釈ガスを導入するステップであり、ステップ260Aと同一である。ステップ292は前記窒素原料ガスおよび希釈ガスを排出するステップであり、ステップ270と同一である。
【0060】
本実施例では、TiSiN層を形成する1サイクルであるステップ240〜292の間に金属原料ガスの供給と排出が1回、シリコン原料ガスの供給と排出が1回に対して、窒素原料ガスの供給と排出が2回となっている。このように、金属原料、窒素原料、シリコン原料を供給・排出する回数を必要に応じて変更することが可能である。例えば、形成されるTiSiN層のシリコンの含有率を変更したい場合の例として、金属原料ガスの供給と排出、窒素原料ガスの供給と排出およびシリコン原料ガスの供給と排出を繰り返す通常のサイクルAと、シリコン原料ガスの供給・排出を省略した、金属原料ガスの供給と排出、窒素原料ガスの供給と排出を繰り返すサイクルBを組み合わせて実行する方法がある。前記サイクルAと前記サイクルBの回数の比率でシリコンの含有率を制御できる。すなわち、前記サイクルBの比率が大きいと、シリコンの含有率が大きくなる。また、成膜開始から終了までの間に、前記サイクルAと前記サイクルBの繰り返しの比率を変更することで、形成されるTiSiN層の深さ方向において、組成を変更することが可能となり、TiSiN層形成の場合の組成の制御性が良好になる。なお、本実施例の場合の組成比をXPS(X線光電子分光分析装置)で調査したところ、Tiが32%、窒素が28%、シリコンが16%であった。
[第7実施例]
また、第2実施例で図2を用いて説明したように、本発明による基板処理方法において、絶縁層上にバリア層である前記TiN層2を形成し、さらに第4〜6実施例で前記したようなTiSiN層の形成工程を連続的に実施することが可能である。以下に図7に基づいて基板処理方法を説明する。ただし図中、先に説明した部分には同一の参照符号を付し、説明を省略する。
【0061】
図7を参照するに、ステップ240〜330は図6に示した第6実施例の場合と同一である。本実施例においては、ステップ240の前にステップ110〜180を設け、絶縁層上にバリア膜であるTiN層を形成する工程を設けている。
【0062】
まずステップ110〜130は、前記したステップ210〜230と同一である。
【0063】
次に、ステップ140、150、160、170はそれぞれ前記したステップ240、250、260A、270とそれぞれ同一である。このステップ140〜170をTiN層形成の1サイクルとして、所望の膜厚が形成されるまで、繰り返す。
【0064】
ステップ180においては、ステップ170終了後にステップ140〜170のTiN層成膜のサイクルが、所望の回数繰り返されていない場合はステップを140に戻して、ステップ140〜170を所望の回数繰り返す。その後、ステップ240以降に移行して、TiSiN層の形成、そして前記したCu層の形成をして成膜処理は終了する。
【0065】
このように、本実施例ではTiN層を形成する場合も原子層・分子層レベルに近い成膜方法を行っているため、形成されるバリア膜であるTiN層の膜質および膜質均一性においても良好であり、膜中欠陥の少ないバリア性の高いTiN層の形成ができる。また、TiN層形成の後、さらに続くステップ240以降のTiSiN層の形成工程を連続的に、同一の装置で処理を効率的に行う事が可能となる。
[第8実施例]
次に、本発明による基板処理方法を半導体装置の製造工程に適用した例を以下図8(A)〜(C)、図9(D)〜(F)および図10において、手順を追って説明する。ただし図中、先に説明した部分には同一の参照符号を付し、説明を省略する。
【0066】
まず、図8(A)は、図示しない半導体基板上に形成された半導体装置の一部の製造過程を示すものである。
【0067】
この構成に関して説明すると、まず、シリコンからなる当該半導体基板上に形成された、例えば、MOSトランジスタなどの素子に電気的に接続されている配線層(図示せず)と、これに電気的に接続された、例えばCuからなる配線層31が形成されている。配線層31の上部にはキャップ層32、第1の絶縁層33、第1のマスク層34、第2の絶縁層35、第2のマスク層36が形成されている。
【0068】
次に、図8(B)において、例えば、プラズマによるドライエッチングによってホール状のエッチングを行い、前記第2のマスク層36、前記第2の絶縁層35、前記第2のマスク層34、前記第1の絶縁層33およびキャップ層32に円筒状のホール部37を設けるいわゆるビアのエッチングを行う。その際に、例えば前記第1の絶縁層33および第2の絶縁層35がシリコン酸化膜、シリコン酸化物にフッ素を添加したもの、もしくは無機SOD、例えばHSQなどの無機系の膜である場合はCF、Cなどフロロカーボン系のガスを用いる。また前記第1の絶縁層33および第2の絶縁層35が、SiC、SiCO、SiCO(H)、有機SOD、例えばMSQなどの有機系の膜である場合はOやHなどをエッチングガスに用いる。また前記キャップ層32、前記第1のマスク層34および第2のマスク層36に関しても、材料に対して適切にエッチングに用いるガスを適宜選択、変更しながらドライエッチングを行う。
【0069】
次に、図8(C)の工程において、前記第2の絶縁層35および第2のマスク層36に対して溝部を形成するいわゆるトレンチのエッチングを行い、溝部38を形成する。この場合も、図8(B)のビアのエッチングの場合で前記したように、ドライエッチングをもって行う。この場合も前記したように、前記第2の絶縁層35および前記第2のマスク層36の材質に合わせて、ドライエッチングのガスを選択して、必要に応じてドライエッチングのガスを変更してエッチングを行う必要がある。
【0070】
なお、図8(B)の工程と図8(C)の工程の順番を入れ替えて、トレンチエッチングを最初に行って、ビアエッチングを行うようにしてもよい。
【0071】
次に、図9(D)の工程において、図7のステップ130〜180の工程を適用して、Cuバリア層であるTiN層39を形成する。この場合、前記したように、原子層・分子層に近いレベルで成膜が行われ、例えば前記ホール部37または前記溝部38のカバレッジが優れており、微細パターンにも均一にかつ良好な膜質でカバレッジよくTiN層39を形成することが可能である。
【0072】
次に、図9(E)の工程において、図7のステップ240〜300の工程を適用して、TiSiN層40の形成を行う。この場合も、TiN層39を形成した場合と同様に、原子層・分子層に近いレベルで成膜が行われ、例えば前記ホール部37または前記溝部38のカバレッジが優れており、微細パターンにも均一にかつ良好な膜質でカバレッジよくTiSiN層40を形成することが可能である。また、TiSiN層40は、アモルファスに近い構造となるため、この後の工程で形成される導電層であるCuの凝集が無く、密着性が向上する。さらに、形成されるCuの配向性が〔111〕になりやすく、エレクトロマイグレーション耐性にすぐれた構造となる。
【0073】
次に、図9(F)の工程において、前記ホール部37および前記溝部38を満たすように、Cu層41を形成する。前記Cu層41を形成する場合は、PVD法、CVD法またはメッキ法などいずれの方法を用いることも可能である。またこの場合、いずれの方法を用いても前記したように、TiSiN層40が形成されているために、前記TiSiN層40を介してTiN層39とCu層の41の密着性が良好であり、かつ、エレクトロマイグレーション耐性にすぐれている。また、この後の工程において、前記Cu層41の上部および前記TiSiN層40、前記TiN層39を、例えば、CMP(化学機械研磨)などで研削して、前記第2のマスク層36の上面が露出するようにして、前記Cu層41の上面と前記第2のマスク層36の上面が面一になるようにする。必要に応じて前記マスク層36はCMPですべて削除してもよい。
【0074】
次に、その上に、図10に示すように、別のキャップ層32A、別の第1の絶縁層33A、別の第1のマスク層34A、別の第2の絶縁層35Aおよび別の第2のマスク層36Aを形成して、前記したような図8(B)〜(C)、図9(D)〜(F)と同様の工程を適用する。その結果、別のTiN層39A、別のTiSiN層40Aおよび別のCu層41Aが形成されることによって、いわゆる多層配線構造が形成される。必要に応じて、さらに前記Cu層41の上に、前記したような絶縁層と導電層を形成する本発明による基板処理方法を適用して、さらに多層化してもよい。
【0075】
また、本実施例においては、金属原料ガスにTiCl、窒素原料ガスにNH、シリコン原料ガスにSiHを用いて、TiN層およびTiSiN層を形成する方法を記述したが、本発明はこの例に限定されるものではない。金属原料ガスには、Ta化合物、もしくはW化合物をもちいて、バリア層としてTiN層の換わりに、Ta(C)N層(Ta(C)N層は、TaN層またはTaCN層を意味する)またはWN層、密着層としてTiSiN層の換わりにTa(C)SiN層(Ta(C)SiN層は、TaSiN層またはTaCSiN層を意味する)またはWSiN層を置き換えることが可能であり、本実施例に記述したTiN層、TiSiN層を用いた場合と同様の効果を得ることができる。また窒素原料ガス、シリコン原料ガスについても他の原料を用いることが可能である。図11に、本発明に用いることが可能な金属原料ガス、窒素原料ガスおよびシリコン原料ガスと、形成される膜種の例を示す。
[第9実施例]
また、例えば、前記した実施例において金属原料ガスが窒素を含む場合、金属原料ガスを還元するガスとして、例えばH、もしくは水素を含むガスを用いることが可能であり、この場合の実施例を図12〜13に示す。
【0076】
図12は、図5に示した第5実施例の変更例である。ただし図中、先に説明した部分には同一の参照符号を付し、説明を省略する。
【0077】
図12を参照するに、本実施例において、ステップ210〜230、ステップ280A〜330は、図5の場合と同一である。
【0078】
本実施例においては、ステップ240B,250Bにおいて、金属原料ガスに、窒素を含む金属原料ガス、例えば、Ta(NC(CH)(N(CHを用いている。また、ステップ260B〜270Bにおいて、金属原料ガスを還元するガスに、Hを用いている。このように、金属原料ガスが窒素を含む場合、還元ガスには水素もしくは水素を含むガスを用いることが可能である。
【0079】
図12記載の成膜方法によって、Ta(C)SiN膜を形成することが可能であり、第5実施例に記載した場合と同様の効果を奏する。
[第10実施例]
図13は、図7に示した第7実施例の変更例である。ただし図中、先に説明した部分には同一の参照符号を付し、説明を省略する。
【0080】
本実施例においては、ステップ140B,150B,240B,250Bにおいて、金属原料ガスに、窒素を含む金属原料ガス、例えば、Ta(NC(CH)(N(CHを用いている。また、ステップ160B,170B、260B,270Bにおいて、金属原料ガスを還元するガスに、Hを用いている。このように、金属原料ガスが窒素を含む場合、還元ガスには水素もしくは水素を含むガスを用いることが可能である。
【0081】
なお、本実施例では、ステップ291,292は省略している。図13記載の成膜方法によって、Ta(C)SiN/Ta(C)N膜を形成することが可能であり、第7実施例に記載した場合と同様の効果を奏する。
【0082】
以上、本発明を好ましい実施例について説明したが、本発明は上記の特定の実施例に限定されるものではなく、特許請求の範囲に記載した要旨内において様々な変形・変更が可能である。
【0083】
【発明の効果】
本発明によれば、導電層であるCu層とCuバリア層の間の密着層を、複数の原料ガスを交互に供給することにより原子層・分子層に近いレベルの成膜方法で形成した結果、Cu層と、Cuバリア層の密着性が向上すると共に、微細なパターンにカバレッジ良く、良質でかつ均一な膜厚・膜質で当該密着層を形成することが可能となった。また、当該密着層の厚さや組成の制御、さらに、当該密着層の深さ方向での組成の変更の制御が容易になり、密着層形成の制御性が良好となった。
【図面の簡単な説明】
【図1】本発明による基板処理方法を示す図(その1)である。
【図2】本発明による基板処理方法を示す図(その2)である。
【図3】本発明のよる基板処理を行う装置の構成を示す図である。
【図4】本発明による基板処理方法のプロセスフローを示す図(その1)である。
【図5】本発明による基板処理方法のプロセスフローを示す図(その2)である。
【図6】本発明による基板処理方法のプロセスフローを示す図(その3)である。
【図7】本発明による基板処理方法のプロセスフローを示す図(その4)である。
【図8】(A)、(B)、(C)は本発明による半導体装置の製造方法を示す図(その1)である。
【図9】(D)、(E)、(F)は本発明による半導体装置の製造方法を示す図(その2)である。
【図10】本発明による半導体装置の製造方法を示す図(その3)である。
【図11】本発明に用いることが可能な原料ガスと形成される膜種の例を示す図である。
【図12】本発明による基板処理方法のプロセスフローを示す図(その5)である。
【図13】本発明による基板処理方法のプロセスフローを示す図(その6)である。
【符号の説明】
1 絶縁層
2 バリア層
3 密着層
4 Cu層
10 成膜装置
11 処理容器
12 基板保持台
13 リフターピン
14 連結棒
15 基板保持台支持
16 ベローズ
17 上下駆動部
18 排気口
19 リモートプラズマ源
20,21,22,23,24,25,26 ガスライン
10A 制御装置
31,31A Cu層
32,32A キャップ層
34,34A,36,36A マスク層
33,35 絶縁層
37 ホール部
38 溝部
39,39A TiN層
40,40A TiSiN層
41,41A Cu層

Claims (21)

  1. 処理容器内の被処理基板上に成膜する基板処理方法であって、
    前記処理容器内に金属を含む第1の原料ガスを供給し、さらに前記第1の原料ガスを前記処理容器内から除去する第1の工程と、
    前記処理容器内に前記第1の原料ガスを還元する第2の原料ガスを供給し、さらに前記第2の原料ガスを前記処理容器内から除去する第2の工程と、
    前記処理容器内に珪素を含む第3の原料ガスを供給し、さらに前記第3の原料ガスを前記処理容器内から除去する第3の工程とを含む第1の成膜工程を有し、
    さらに、前記第1の成膜工程によって形成された金属と窒素と珪素を含む層の上に導電層を形成する第2の成膜工程を有することを特徴とする基板処理方法。
  2. 前記第2の原料ガスが窒素を含むことを特徴とする請求項1記載の基板処理方法。
  3. 前記第1の原料ガスが窒素を含むことを特徴とする請求項1記載の基板処理方法。
  4. 前記導電層はCu層であることを特徴とする請求項1〜3のうち、いずれか1項記載の基板処理方法。
  5. 前記第1の成膜工程では、前記第1の工程、前記第2の工程および前記第3の工程が複数回繰り返されることを特徴とする請求項1〜4のうち、いずれか1項記載の基板処理方法。
  6. 前記金属と窒素と珪素を含む層は、前記被処理基板上に形成された金属窒化物層の上に形成されることを特徴とする請求項1〜5のうち、いずれか1項記載の基板処理方法。
  7. 前記第1の成膜工程の前に、前記金属窒化物層を形成する工程をさらに含むことを特徴とする請求項6記載の基板処理方法。
  8. 前記金属窒化物層を形成する工程は、
    前記処理容器内に前記第1の原料ガスを供給し、さらに前記第1の原料ガスを前記処理容器内から除去する第4の工程と、
    前記処理容器内に前記第2の原料ガスを供給し、さらに前記第2の原料ガスを前記処理容器内から除去する第5の工程とを含むことを特徴とする請求項7記載の基板処理方法。
  9. 前記金属窒化物層は、前記第4の工程と前記第5の工程を複数回繰り返すことによって形成されることを特徴とする請求項8記載の基板処理方法。
  10. 前記金属窒化物層は、被処理基板上に形成された絶縁層の上に形成されることを特徴とする請求項7〜9のうち、いずれか1項記載の基板処理方法。
  11. 前記金属窒化物層を形成する工程の前に、前記絶縁層をエッチングする工程をさらに含むことを特徴とする請求項10記載の基板処理方法。
  12. 前記エッチングは、前記絶縁層にホール部を形成するビアエッチングであることを特徴とする請求項11記載の基板処理方法。
  13. 前記エッチングは、前記絶縁層に溝部を形成するトレンチエッチングであることを特徴とする請求項11または12記載の基板処理方法。
  14. 前記第2の原料ガスはプラズマ励起されていることを特徴とする請求項1〜13のうち、いずれか1項記載の基板処理方法。
  15. 前記第3の原料ガスはプラズマ励起されていることを特徴とする請求項1〜14のうち、いずれか1項記載の基板処理方法。
  16. 前記プラズマ励起は前記基板処理容器と離間した空間で行われることを特徴とする請求項14または15記載の基板処理方法。
  17. 前記金属はTiであることを特徴とする請求項1〜16のうち、いずれか1項記載の基板処理方法。
  18. 前記金属はTaであることを特徴とする請求項1〜16のうち、いずれか1項記載の基板処理方法。
  19. 前記金属はWであることを特徴とする請求項1〜16のうち、いずれか1項記載の基板処理方法。
  20. 請求項1〜19のうち、いずれか1項記載の基板処理方法を用いた半導体装置の製造方法。
  21. 請求項1〜19のうち、いずれか1項記載の基板処理方法を用いた半導体装置。
JP2003173433A 2003-06-18 2003-06-18 基板処理方法、半導体装置の製造方法および半導体装置 Pending JP2005011940A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003173433A JP2005011940A (ja) 2003-06-18 2003-06-18 基板処理方法、半導体装置の製造方法および半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003173433A JP2005011940A (ja) 2003-06-18 2003-06-18 基板処理方法、半導体装置の製造方法および半導体装置

Publications (1)

Publication Number Publication Date
JP2005011940A true JP2005011940A (ja) 2005-01-13

Family

ID=34097253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003173433A Pending JP2005011940A (ja) 2003-06-18 2003-06-18 基板処理方法、半導体装置の製造方法および半導体装置

Country Status (1)

Country Link
JP (1) JP2005011940A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245538A (ja) * 2005-02-28 2006-09-14 Hynix Semiconductor Inc フラッシュメモリ素子の製造方法
JP2007138295A (ja) * 2005-11-18 2007-06-07 Tokyo Electron Ltd シングルチャンバ内で異なる堆積プロセスを実行する方法およびシステム
US7960278B2 (en) 2005-10-24 2011-06-14 Tokyo Electron Limited Method of film deposition
WO2013105389A1 (ja) * 2012-01-13 2013-07-18 東京エレクトロン株式会社 TiSiN膜の成膜方法および記憶媒体
KR101295031B1 (ko) * 2011-04-22 2013-08-09 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 금속 실리콘 질화물 박막의 플라즈마 강화 사이클릭 증착방법
JP2015514161A (ja) * 2012-04-09 2015-05-18 アイクストロン、エスイー 原子層堆積法の使用によるTiSiN薄層の形成方法
KR20200023203A (ko) 2018-08-23 2020-03-04 도쿄엘렉트론가부시키가이샤 성막 방법 및 성막 장치
WO2022059325A1 (ja) * 2020-09-16 2022-03-24 株式会社Kokusai Electric 半導体装置の製造方法、プログラム、基板処理装置及び基板処理方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245538A (ja) * 2005-02-28 2006-09-14 Hynix Semiconductor Inc フラッシュメモリ素子の製造方法
US7960278B2 (en) 2005-10-24 2011-06-14 Tokyo Electron Limited Method of film deposition
JP2007138295A (ja) * 2005-11-18 2007-06-07 Tokyo Electron Ltd シングルチャンバ内で異なる堆積プロセスを実行する方法およびシステム
KR101295031B1 (ko) * 2011-04-22 2013-08-09 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 금속 실리콘 질화물 박막의 플라즈마 강화 사이클릭 증착방법
WO2013105389A1 (ja) * 2012-01-13 2013-07-18 東京エレクトロン株式会社 TiSiN膜の成膜方法および記憶媒体
JP2015514161A (ja) * 2012-04-09 2015-05-18 アイクストロン、エスイー 原子層堆積法の使用によるTiSiN薄層の形成方法
KR20200023203A (ko) 2018-08-23 2020-03-04 도쿄엘렉트론가부시키가이샤 성막 방법 및 성막 장치
WO2022059325A1 (ja) * 2020-09-16 2022-03-24 株式会社Kokusai Electric 半導体装置の製造方法、プログラム、基板処理装置及び基板処理方法

Similar Documents

Publication Publication Date Title
JP6962955B2 (ja) シームレスのコバルト間隙充填を可能にする方法
JP6727359B2 (ja) シームレスのコバルト間隙充填を可能にする方法
US9418889B2 (en) Selective formation of dielectric barriers for metal interconnects in semiconductor devices
JP4823690B2 (ja) 成膜方法および半導体装置の製造方法
US10910263B2 (en) Doping control of metal nitride films
US10170320B2 (en) Feature fill with multi-stage nucleation inhibition
US8101521B1 (en) Methods for improving uniformity and resistivity of thin tungsten films
US20040202786A1 (en) Method of forming low-resistivity tungsten interconnects
US7727881B1 (en) Protective self-aligned buffer layers for damascene interconnects
KR20180071174A (ko) 리모트 플라즈마 프로세스를 위한 챔버 컨디셔닝
JP2009509322A (ja) 半導体装置用構造およびその製造方法
TW201413031A (zh) 改進小臨界尺寸特徵物中之鎢接觸電阻之方法
US20160141203A1 (en) Cobalt selectivity improvement in selective cobalt process sequence
JP2005347472A (ja) 基板処理方法および半導体装置の製造方法
JP2011035366A (ja) 高アスペクト比のフィーチャーへのタングステン堆積方法
US10373906B2 (en) Structure and formation method of interconnection structure of semiconductor device
KR102394249B1 (ko) 코발트에 대한 망간 배리어 층 및 접착 층
JP2005011940A (ja) 基板処理方法、半導体装置の製造方法および半導体装置
TW202021046A (zh) 形成具有嵌入式阻障層的穿孔之方法
KR100404941B1 (ko) 반도체 소자의 금속 배선 형성방법
TWI609095B (zh) 用於氮化錳整合之方法
KR100888199B1 (ko) 반도체 소자의 금속배선 형성방법
WO2009123049A1 (ja) 高ストレス薄膜の成膜方法及び半導体集積回路装置の製造方法
WO2001013415A1 (fr) Procede de fabrication d'un dispositif a semi-conducteurs et fabrication dudit dispositif
JPH08330424A (ja) 半導体集積回路装置およびその製造方法ならびにそれに用いる製造装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100209