WO2009123049A1 - 高ストレス薄膜の成膜方法及び半導体集積回路装置の製造方法 - Google Patents

高ストレス薄膜の成膜方法及び半導体集積回路装置の製造方法 Download PDF

Info

Publication number
WO2009123049A1
WO2009123049A1 PCT/JP2009/056277 JP2009056277W WO2009123049A1 WO 2009123049 A1 WO2009123049 A1 WO 2009123049A1 JP 2009056277 W JP2009056277 W JP 2009056277W WO 2009123049 A1 WO2009123049 A1 WO 2009123049A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
hydrogen
thin film
film
forming
Prior art date
Application number
PCT/JP2009/056277
Other languages
English (en)
French (fr)
Inventor
山下 潤
西田 辰夫
真之 鴻野
修一郎 大田尾
敏雄 中西
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2009123049A1 publication Critical patent/WO2009123049A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7843Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being an applied insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a method for forming a high stress thin film and a method for manufacturing a semiconductor integrated circuit device using the film forming method.
  • Silicon nitride films are used as insulating films and protective films in various semiconductor devices. It is known that such a silicon nitride film can be formed, for example, by plasma CVD using a silicon-containing compound gas such as silane (SiH 4 ) as a source gas and a nitrogen-containing compound gas such as nitrogen or ammonia. (For example, JP 2000-260767 A).
  • a silicon-containing compound gas such as silane (SiH 4 )
  • a nitrogen-containing compound gas such as nitrogen or ammonia.
  • the silicon nitride film formed by the plasma CVD method it has been an important issue to suppress the stress of the film that adversely affects the device characteristics, that is, the tensile stress and the compressive stress.
  • the compressive stress of a silicon nitride film is large, it is known that stress migration that causes disconnection of the metal wiring immediately below the film is caused by the stress. To prevent this, it is necessary to keep the compressive stress small. is there.
  • the direction of the stress (whether it is tensile stress or compression stress) and the magnitude of the silicon nitride film depend on film forming conditions such as pressure, temperature, and film forming gas type.
  • An object of the present invention is to provide a method for forming a high-stress thin film capable of applying a stress greater than the stress given by process conditions to the thin film, and a method for manufacturing a semiconductor integrated circuit device using the film forming method.
  • a method for forming a high stress thin film includes supplying a film forming source gas containing hydrogen into a chamber and placing the thin film into which hydrogen has been incorporated on a semiconductor substrate. Forming a film, and desorbing hydrogen from the thin film while supplying a pulse of hydrogen desorbing gas containing a substance capable of desorbing hydrogen from the thin film to the chamber.
  • a method for forming a high stress thin film according to a second aspect of the present invention is a method for forming a high stress thin film using microwave-excited plasma, wherein a silicon-containing gas, nitrogen and hydrogen are contained in a processing vessel. Introducing a gas, radiating microwaves into the processing vessel, converting the silicon-containing gas and nitrogen- and hydrogen-containing gas introduced into the processing vessel into plasma, and converting the silicon into plasma
  • the containing gas and the nitrogen and hydrogen containing gas are supplied onto the surface of the substrate to be processed, the film formation conditions are set on the surface of the substrate to be processed, the processing temperature is 300 to 600 ° C., the silicon-containing gas and nitrogen and the flow ratio of hydrogen-containing gas 0.005 0.015, microwave power 0.5 W / cm 2 or more 2.045W / cm 2 or less, the process pressure 133.3Pa more 13333P
  • an etching stopper containing a material different from the insulating film is formed on the insulating film using the film forming method according to the first aspect.
  • a method for manufacturing a semiconductor integrated circuit device comprising: forming a gate electrode on a semiconductor substrate, insulated from the semiconductor substrate, and provided with a cap layer on the top; A source / drain region forming impurity is introduced into the semiconductor substrate, and a sidewall spacer is formed on the sidewall of the gate electrode by using the film forming method according to the first aspect. Including.
  • a method for manufacturing a semiconductor integrated circuit device comprising: forming a gate electrode insulated from a semiconductor substrate on a semiconductor substrate; and using the gate electrode as a mask to form a source / drain region
  • a first embodiment of the present invention is to introduce an impurity for formation into the semiconductor substrate, and a stress liner that covers the gate electrode on the semiconductor substrate and applies stress to a portion of the semiconductor substrate under the gate electrode. Forming using such a film forming method.
  • Sectional drawing which shows typically an example of a plasma film-forming apparatus Plan view showing an example of a planar antenna
  • a flow chart showing a basic flow of a film forming method according to an embodiment A flow chart showing a basic flow of a film forming method according to an embodiment Diagram showing the relationship between the amount of detached hydrogen and stress Diagram showing the relationship between stress and processing pressure Diagram showing an example of hydrogen desorption process
  • Schematic sectional view showing an example of a plasma CVD apparatus used in a method for forming a plasma CVD silicon nitride film according to the second embodiment of the present invention
  • Plan view showing an example of a shower head Diagram showing processing conditions Diagram showing dependence of hydrogen amount on processing pressure Diagram showing the relationship between the flow rate ratio between the halogen compound gas and the rare gas and the film reduction rate
  • Sectional drawing which shows the main manufacturing processes of the manufacturing method of the semiconductor integrated circuit device concerning the application example 1
  • Sectional drawing which shows the main manufacturing processes of the manufacturing method of the semiconductor integrated circuit device concerning the application example 1
  • Sectional drawing which shows the main
  • FIG. 1 is a cross-sectional view schematically showing an example of a plasma film forming apparatus that can be used for forming a thin film.
  • the plasma film forming apparatus 100a has a high density by introducing a microwave into the chamber 1 with a planar antenna having a plurality of slots, particularly a RLSA (Radial Line Slot Antenna) to generate plasma.
  • RLSA microwave plasma film forming apparatus capable of generating microwave excitation plasma with a low electron temperature, having a plasma density of 1 ⁇ 10 10 to 5 ⁇ 10 12 / cm 3 and 0.7 to 2 eV. Treatment with low electron temperature plasma is possible. Therefore, it can be suitably used for the purpose of forming a thin film by plasma CVD, for example, forming a silicon nitride film in the manufacturing process of various semiconductor devices.
  • the plasma film forming apparatus 100a includes a substantially cylindrical processing chamber (processing container) 1 that is airtight and grounded.
  • the chamber 1 may have a rectangular tube shape.
  • a thin film such as a plasma CVD silicon nitride film is formed on a semiconductor wafer W that is a substrate to be processed.
  • a circular opening 1b is formed at a substantially central portion of the bottom wall 1a of the processing chamber 1, and an exhaust chamber 2 that communicates with the opening 1b and protrudes downward is provided on the bottom wall 1a.
  • a susceptor (substrate support) 3 made of ceramics such as AlN for horizontally supporting the wafer W is provided inside the processing chamber 1.
  • the susceptor 3 is supported by a support member 4 made of ceramic such as cylindrical AlN extending upward from the center of the bottom of the exhaust chamber 2.
  • a cover ring 5 for covering the outer edge and guiding the wafer W is provided on the outer edge of the susceptor 3.
  • the cover ring 5 is a member made of a material such as quartz, AlN, Al 2 O 3 , or SiN.
  • a resistance heating type heater 6 is embedded in the susceptor 3. The heater 6 is supplied with power from a heater power source 6 a to heat the susceptor 3, and heats the wafer W with the heat of the susceptor 3.
  • thermocouple 6 b is embedded in the susceptor 3.
  • the susceptor 3 is temperature-controlled in a range from room temperature to 1000 ° C., for example, by a temperature controller (TC) 6c based on a temperature signal detected by the thermocouple 6b.
  • TC temperature controller
  • the susceptor 3 is provided with wafer support pins (not shown) for supporting the wafer W and moving it up and down so as to protrude and retract with respect to the surface of the susceptor 3.
  • the exhaust chamber 2 is connected to an exhaust pipe 2a, and an exhaust device 2b including a vacuum pump is connected to the exhaust pipe 2a.
  • the exhaust device 2b includes a vacuum pump such as a turbo molecular pump, a pressure control valve, and the like, and sets the inside of the processing chamber 1 to a predetermined reduced pressure atmosphere.
  • a gate valve 9 is provided on the side wall of the processing chamber 1. By opening and closing the gate valve 9, the processing chamber 1 is communicated with the outside world or airtightly blocked from the outside world. The wafer W is carried into and out of the processing chamber 1 through the gate valve 9.
  • the upper part of the processing chamber 1 is an opening, and the microwave introduction part 10 is airtightly arranged so as to close the opening.
  • the microwave introduction unit 10 includes a microwave transmission plate 11, a planar antenna member 12, and a slow wave material 13 in order from the susceptor 3 side.
  • the microwave transmission plate 11 is provided in an opening at the top of the processing chamber 1 and is airtightly disposed on a support portion 14 having an annular inner periphery via a seal member 15.
  • the microwave transmission plate 11 is made of a dielectric material that transmits microwaves, for example, ceramics such as quartz, Al 2 O 3 , and AlN.
  • the planar antenna member 12 is provided above the microwave transmission plate 11 and is locked to the upper end of the opening of the processing chamber 1.
  • the planar antenna member 12 is made of, for example, a copper plate or an aluminum plate having a surface plated with gold or silver, and a plurality of slot holes 16 for radiating microwaves are formed in a predetermined pattern.
  • the slot hole 16 has a pair of long grooves as shown in FIG.
  • adjacent slot holes 16 are arranged in a T shape, and a plurality of slot holes 16 arranged in a T shape are arranged concentrically.
  • the length and the arrangement interval of the slot holes 16 are determined according to the wavelength ( ⁇ g) of the microwave.
  • the interval of the slot holes 16 is arranged to be ⁇ g / 4 to ⁇ g.
  • the interval between adjacent slot holes 16 formed concentrically is indicated by “ ⁇ r”.
  • the shape of the slot hole 16 may be, for example, a circular shape or an arc shape.
  • the arrangement of the slot holes 16 is not particularly limited to a concentric shape, and can be arranged in a spiral shape or a radial shape, for example.
  • the slow wave material 13 is provided on the planar antenna member 12 so as to cover it.
  • the slow wave material 13 is composed of a dielectric having a dielectric constant larger than that of vacuum, for example, quartz, ceramics such as Al 2 O 3 , fluorine-based resin such as polytetrafluoroethylene, or polyimide-based resin. Since the wavelength of the wave becomes long, it has a function of adjusting the plasma by shortening the wavelength of the microwave.
  • the planar antenna member 12 and the microwave transmission plate 11 and the planar antenna member 12 and the slow wave member 13 may be in close contact with each other or may be separated from each other.
  • a cover 17 is provided above the processing chamber 1 so as to cover the planar antenna member 12 and the slow wave material 13.
  • the cover 17 forms a planar antenna and a flat waveguide, and is disposed on the upper surface of the processing chamber 1 via a seal member 18 so that microwaves do not leak outside.
  • the cover 17 is made of, for example, a metal material such as aluminum or stainless steel, and a cooling water passage 17a is formed inside.
  • the cover 17, the slow wave material 13, the planar antenna 12, and the microwave transmission plate 11 are cooled by flowing the cooling water through the cooling water flow path 17 a, and the cover 17, the slow wave material 13, the planar antenna 12, and the microwave transmission are transmitted. The deformation and breakage of the plate 11 are prevented.
  • the cover 17 is grounded via an antenna and a processing chamber.
  • An opening 17b is formed in the center of the upper wall of the cover 17.
  • a waveguide 18 is connected to the opening 17b.
  • a mode converter 21 and a rectangular waveguide are connected to the end of the waveguide 18, and a microwave generator 20 is connected via a matching circuit 19.
  • the microwave generator 20 generates a microwave having a frequency of 2.45 GHz, for example.
  • the generated microwave is propagated to the planar antenna member 12 through the waveguide 18.
  • As the microwave frequency 2.45 GHz, 8.35 GHz, 1.98 GHz, or the like can be used.
  • the waveguide 18 is a coaxial waveguide 18a having a circular cross section extending upward from the opening 17b of the cover 17, and extends to the center of the coaxial waveguide 18a, and is fixedly connected to the center of the planar antenna member 12.
  • the mode converter 21 converts the microwave propagating in the rectangular waveguide 18b in the TE mode into the TEM mode, and efficiently and uniformly propagates radially to the planar antenna member 12 via the inner conductor 18c.
  • gas inlets 22a and 22b are provided in an annular shape up and down, and each gas inlet 22a and 22b has a plurality of gas discharge holes on the side walls of the gas inlets 22a and 22b. It is formed uniformly along the inner periphery of the.
  • a gas supply unit 27 for supplying a film forming source gas and a plasma excitation gas is connected to the gas introduction units 22a and 22b.
  • the gas introduction parts 22a and 22b may be arranged in a nozzle shape or a shower shape.
  • the gas supply unit 27 includes a silicon-containing gas supply source 27a, a nitrogen-containing gas supply source 27b, an inert gas supply source 27c, and a hydrogen desorption gas supply source 27d.
  • the nitrogen-containing gas supply source 27b is connected to the upper gas introduction part 22a, and the silicon-containing gas supply source 27a, the inert gas supply source 27c, and the hydrogen desorption gas supply source 27d are connected to the lower gas introduction part 22b. ing.
  • nitrogen-containing gas that is a film forming material gas for example, hydrazine derivatives such as nitrogen (N 2 ), ammonia (NH 3 ), and monomethyl hydrazine (MMH) can be used.
  • N 2 nitrogen
  • NH 3 ammonia
  • MMH monomethyl hydrazine
  • silicon-containing gas that is another film forming source gas for example, silane (SiH 4 ), disilane (Si 2 H 6 ), and the like can be used, and disilane (Si 2 H 6 ) is particularly preferable.
  • N 2 gas or rare gas can be used as the inert gas.
  • the rare gas that is a plasma excitation gas for example, Ar gas, Kr gas, Xe gas, He gas, or the like can be used. In terms of cost, Ar gas is preferable.
  • the hydrogen desorption gas is a gas for desorbing hydrogen from the thin film formed, and includes a substance for desorbing hydrogen from the thin film.
  • a halogen-containing gas can be used as the substance for releasing hydrogen from the thin film.
  • the halogen include fluorine or chlorine
  • examples of a preferable halogen-containing gas include a fluoride of nitrogen or a fluoride of chlorine.
  • nitrogen fluoride, chlorine fluoride, or gas containing these fluorides include NF 3 gas, NF 3 -containing gas, ClF 3 gas, or ClF 3 -containing gas. be able to.
  • a rare gas for example, an Ar gas
  • a nitrogen fluoride, a chlorine fluoride, or a gas containing these fluorides is used as the hydrogen desorption gas, it can also be used as a cleaning gas for cleaning the inside of the chamber 1 and the like.
  • the hydrogen desorption gas may be supplied from a cleaning gas supply source connected to the plasma film forming apparatus 100a.
  • the nitrogen-containing gas reaches the gas introduction part 22a via the gas line 21a and is introduced into the chamber 1 from the gas introduction part 22a.
  • the silicon-containing gas, the inert gas, and the hydrogen desorption gas reach the gas introduction part 22b through the gas line 21a, and are introduced into the chamber 1 from the gas introduction part 22b.
  • Each gas line 21a connected to each gas supply source is provided with a mass flow controller 21b and an opening / closing valve 21c before and after the mass flow controller 21b, and is configured to be able to switch the supplied gas and control the flow rate.
  • a rare gas for plasma excitation such as Ar is an arbitrary gas and is not necessarily supplied at the same time as the film forming source gas, but is preferably used in consideration of stable generation of plasma.
  • the hydrogen desorption gas is supplied into the chamber 1 from the lower gas introduction part 22b, but may be supplied from the upper gas introduction part 22a, or the gas introduction part 22a and You may make it supply from the gas introduction part of hydrogen desorption gas introduction provided separately from 22b.
  • the control unit 50 includes a process controller 51 including a CPU, a user interface 52 connected to the process controller 51, and a storage unit 53.
  • the user interface 52 includes a keyboard on which a process manager manages command input to manage the plasma CVD apparatus 100b, a display that visualizes and displays the operating status of the plasma CVD apparatus 100a, and the like.
  • the storage unit 53 stores a recipe in which a control program (software) for realizing various processes executed by the plasma CVD apparatus 100a under the control of the process controller 51, processing condition data, and the like are recorded. An arbitrary recipe is called from the storage unit 53 by an instruction from the user interface 52 as necessary, and is executed by the process controller 51.
  • the plasma film forming apparatus 100 a When the process controller 51 executes the recipe, the plasma film forming apparatus 100 a performs a desired process under the control of the process controller 51.
  • the recipe can be stored in a computer-readable storage medium, such as a CD-ROM, hard disk, flexible disk, flash memory, or the like, or from another device, for example, via a dedicated line. It can be transmitted at any time and used online.
  • the plasma film forming apparatus 100a configured in this way can proceed with damage-free plasma processing to the base film or the like at a low temperature of 800 ° C. or lower, preferably 600 ° C. or lower, and has excellent plasma uniformity. Process uniformity can be achieved.
  • FIG. 3A is a flowchart showing a basic flow of the film forming method according to the present embodiment.
  • a film forming source gas containing hydrogen is supplied into the chamber 1, and a thin film into which hydrogen has been taken is formed on a semiconductor substrate (step 1).
  • a hydrogen releasing gas for releasing hydrogen from the thin film is supplied into the chamber 1 to release hydrogen from the formed thin film (step 2).
  • FIG. 4 is a diagram showing the difference (stress change amount) between the stress during deposition and the stress after desorption of hydrogen.
  • FIG. 4 shows a case where the thin film is a silicon nitride film in which hydrogen is incorporated.
  • FIG. 5 is a diagram showing the relationship between the stress generated in the thin film and the processing pressure.
  • the line I in FIG. 5 shows the stress generated in the silicon nitride film formed under the following process conditions.
  • ⁇ Plasma CVD film forming conditions N 2 / Si 2 H 6 gas system> N 2 gas flow rate (gas introduction part 15a); 1100 mL / min (sccm) Si 2 H 6 gas flow rate; 1 mL / min (sccm) N 2 gas flow rate (gas introduction part 15b); 100 mL / min (sccm) Processing pressure: 4.0 Pa (30 mTorr), 6.7 Pa (50 mTorr), 13.3 Pa (100 mTorr) and 66.6 Pa (500 mTorr) Temperature of mounting table 2; 500 ° C Microwave power: 3000W
  • a line I in FIG. 5 represents a stress applied to the formed thin film under process conditions.
  • a compressive stress is generated in the silicon nitride film formed using the N 2 / Si 2 H 6 gas as a film forming source gas, and the compressive stress tends to increase as the processing pressure decreases.
  • the hydrogen desorption gas may rather cause the thin film to decrease.
  • the hydrogen desorption gas is fluorine, chlorine, or a single compound gas containing both fluorine and chlorine
  • the thin film tends to decrease in thickness.
  • the formed thin film is a silicon nitride film in which hydrogen is taken in, and the hydrogen desorption gas is NF 3 gas, this tendency to reduce the film is remarkable.
  • the film thickness can be further reduced by diluting with a rare gas.
  • the invention is devised so that hydrogen can be efficiently removed from the thin film without reducing the film thickness by minimizing the amount of the halogen compound gas by the supply amount of the dilution gas as follows.
  • a rare gas for plasma excitation for example, Ar gas is supplied into the chamber 1 and microwaves are emitted from the microwave radiation holes 33 to make the inside of the chamber 1 a plasma atmosphere.
  • hydrogen desorption gas is supplied into the chamber 1 for a predetermined time (step 11).
  • An example of the predetermined time is a time during which the amount of film reduction of the formed thin film falls within an allowable range from the start of supply of the hydrogen desorption gas, or a time during which the formed thin film does not decrease.
  • FIG. 6 shows an example of a specific time chart. As shown in the period from time T1 to time T2 in FIG.
  • the thin film is a silicon nitride film in which hydrogen is incorporated.
  • the plasma is stopped, the supply of the hydrogen desorption gas is stopped, and the atmosphere in the chamber 1 is returned to the atmosphere before the hydrogen desorption gas is supplied (step 12).
  • the atmosphere before the hydrogen desorption gas is supplied is a state where there is no or almost no hydrogen desorption gas in the atmosphere in the chamber 1.
  • the supply of NF 3 gas is stopped, and exhaust or natural extinction or exhaust and natural extinction is used so that the NF 3 gas does not remain in the chamber 1.
  • the concentration of the NF 3 gas in the chamber 1 is reduced as much as possible to return to the atmosphere before the NF 3 gas supply (from time T2 to time T3).
  • the supply of NF 3 gas was stopped for 60 seconds while exhausting the inside of the chamber 1 with a predetermined exhaust amount. Thus, as much as possible can reduce the concentration of NF 3 gas.
  • the above steps 11 and 12 are repeated a predetermined number of times.
  • the NF 3 gas is again supplied at a flow rate of 20 sccm for 3 seconds. Supplied to. Thereafter, as shown in the period from time T4 to time T5, the supply of the NF 3 gas is stopped again, and the atmosphere in the chamber 1 is returned to the atmosphere before the NF 3 gas supply.
  • the hydrogen desorption gas in this example, NF 3 gas
  • Steps 11 and 12 are repeated a predetermined number of times, the process of desorbing hydrogen ends, and the thin film formation process ends.
  • the NF 3 gas is supplied into the chamber 1 in a pulsed manner so that the atmosphere inside the chamber 1 is changed to an NF 3 gas-containing atmosphere for a short period of several seconds to several tens of seconds. It is possible to return to the atmosphere before the NF 3 gas supply, that is, the atmosphere without or almost without the NF 3 gas.
  • hydrogen can be released from the formed silicon nitride film. Therefore, it is possible to apply more stress to the formed silicon nitride film than can be given under process conditions.
  • a short period of several seconds to several tens of seconds from the start of the supply of the NF 3 gas, NF 3 gas for example, a period that is not spread sufficiently at a concentration sufficient to the chamber 1. For this reason, it is a period in which the amount of reducing the nitrogen silicon film is very small, or a period in which the film is not reduced at all.
  • the reduction amount of the silicon nitride film by NF 3 gas is also accumulated every time the above steps are repeated, but the reduction amount is very small or not reduced at all.
  • the film amount can be reduced as compared with the comparative example (shown by the dotted line in FIG. 6) in which the NF 3 gas is continuously supplied into the chamber 1, or the film reduction amount can be made zero.
  • a thin film having a stress greater than the stress given by the process conditions is reduced within a safe range (preferably 5% or less of the film thickness during film formation) or reduced. It can be formed in a state where no film is formed. It is possible to form a high-stress thin film with a thin film thickness within an acceptable range (preferably 5% or less of the film thickness at the time of film formation) or in a state in which no thin film is produced. Is also advantageous.
  • the NF 3 gas is supplied to the inside of the chamber 1 in a pulsed manner.
  • the reduction amount of the nitrogen silicon film Preferably, 5% or less of the film thickness at the time of film formation can be reduced, or a state in which film thickness reduction does not occur can be achieved.
  • FIG. 7 is a cross-sectional view showing an example of a plasma film forming apparatus that can be used in the silicon nitride film forming method by the plasma CVD method according to the second embodiment of the present invention.
  • the plasma film forming apparatus 100b differs from the apparatus 100a shown in FIG. 1 in that the gas introduction part is a shower head 22c and the susceptor 3 is embedded with a lower electrode 6d. It is connected to the RF power source 6f through the matcher 6e.
  • a shower head 22c for introducing a processing gas is provided horizontally.
  • the shower head 22 c has a lattice-like gas flow path 23 and a large number of gas discharge holes 24 formed in the lattice-like gas flow path 23. Openings 25 are formed between the lattice-like gas flow paths 23, and the gas discharge holes 24 are formed on the susceptor 3 side of the gas flow paths 23.
  • a gas supply pipe 26 extending to the outside of the processing chamber 1 is connected to the gas flow path 23.
  • the gas supply pipe 26 is connected to a gas supply unit 27 that supplies a processing gas for plasma processing.
  • the gas supply unit 27 includes a silicon-containing gas supply source 27a, a nitrogen and hydrogen-containing gas supply source 27b, a plasma generation gas supply source 27c, and a hydrogen desorption gas supply source 27d.
  • silicon-containing gas, nitrogen and hydrogen-containing gas, and hydrogen desorption gas are supplied to the shower head 22c through the gas line 21a.
  • FIG. 7 illustration of a mass flow controller, a valve, and the like is omitted.
  • the shower head 22c allows the gas to flow inside the processing chamber 1 at a predetermined flow rate through the lattice-like gas flow passages 23 and the gas discharge holes 24 formed on the susceptor 3 side of the lattice-like gas flow passages 23.
  • An example of a silicon-containing gas is disilane, and an example of a nitrogen and hydrogen-containing gas is ammonia.
  • An example of the hydrogen desorbing gas is, for example, a halogen-containing gas, as in the first embodiment.
  • the halogen include fluorine or chlorine
  • examples of the halogen-containing gas include a fluoride of nitrogen or a fluoride of chlorine.
  • nitrogen fluoride, chlorine fluoride, or gas containing these fluorides include NF 3 gas, NF 3 -containing gas, ClF 3 gas, or ClF 3 -containing gas. be able to.
  • the hydrogen desorption gas when a nitrogen fluoride, a chlorine fluoride, or a gas containing these fluorides is used as the hydrogen desorption gas, it can also be used as a cleaning gas for cleaning the inside of the chamber 1.
  • the hydrogen desorption gas may be supplied from a cleaning gas supply source connected to the plasma film forming apparatus 100a.
  • An annular plasma generation gas introduction part 22d is provided on the side wall of the processing chamber 1 between the shower head 22c and the microwave introduction part 10.
  • the plasma generation gas introduction section 222 d includes a plurality of discharge holes 22 e for discharging the plasma generation gas toward the inside of the processing chamber 1.
  • the plasma generating gas is supplied to the gas introduction part 22d.
  • FIG. 7 illustration of a mass flow controller, a valve, and the like is omitted.
  • the gas introduction unit 22d supplies the plasma generation gas to the space 1d between the shower head 22c and the microwave introduction unit 10 in the processing chamber 1 through the discharge hole 22e.
  • An example of the plasma generating gas is argon.
  • the plasma generating gas supplied to the space 1d is turned into plasma by the microwave introduced into the space 1d through the microwave introduction unit 10.
  • Plasmaized gas active species such as ions and radicals
  • Plasmaized gas is supplied to the space 1c through the opening 25 of the shower head 22c, and is discharged from the gas discharge holes 24 of the shower head 22c in the space 1c. The gas is turned into plasma.
  • the plasma film forming apparatus 100b configured as described above deposits a silicon nitride film on the surface of the wafer W by the plasma CVD method in the following procedure, for example.
  • the gate valve 9 is opened, and the wafer W is loaded into the processing chamber 1 and placed on the susceptor 3.
  • the plasma generation gas from the gas supply unit 27 is introduced into the space 1d of the processing chamber 1 from the discharge hole 22e through the piping, and the microwave from the microwave generator 20 is supplied to the matching circuit 19.
  • the rectangular waveguide 18b, the mode converter 21, and the coaxial waveguide 18a are sequentially passed, propagated through the inner conductor 18c, and supplied to the planar antenna member 12 in a radial manner. And radiated into the space 1d of the processing chamber 1.
  • the plasma generation gas is excited into plasma by being excited by the emitted microwave.
  • the plasma is, for example, a low electron temperature plasma with a high density of approximately 1 ⁇ 10 10 to 5 ⁇ 10 12 / cm 3 and 2 eV or less.
  • the plasmaized gas passes through the opening 25 of the shower head 22c and is supplied to the space 1c.
  • silicon-containing gas, nitrogen and hydrogen-containing gas are supplied from the gas supply unit 27 into the space 1c of the processing chamber 1 through the gas discharge holes 24 of the shower head 22c.
  • the gas is excited to be plasmatized by the plasmatized gas that has passed through the lattice-shaped openings 25.
  • low electron temperature plasma of about 1.5 eV or less is obtained.
  • the plasma thus formed has little plasma damage caused by ions or the like on the underlying film.
  • dissociation of the processing gas proceeds in the plasma.
  • silicon nitride SiN x (where x is not necessarily determined stoichiometrically and varies depending on the processing conditions due to the reaction of active species such as SiH and NH. A thin film is deposited.
  • a silicon nitride film is formed by plasma CVD using the plasma film forming apparatus 100b shown in FIG. 7, and the amount of hydrogen in the silicon nitride film (Si—H bond, NH bond, Si—H bond, and N).
  • the processing temperature dependency, silicon-containing gas flow rate dependency, microwave power dependency, and processing pressure dependency were measured.
  • the silicon-containing gas used in this measurement is disilane, nitrogen, and the hydrogen-containing gas is ammonia.
  • FT-IR Fourier transform infrared spectroscopy
  • FIG. 9 is a diagram showing the processing pressure dependence of the hydrogen amount
  • FIG. 9A shows the processing conditions
  • FIG. 9B shows the relationship between the hydrogen amount and the processing pressure.
  • the processing pressure is a parameter (indicated by “ ⁇ ” in the figure)
  • the processing temperature temperature of the susceptor 3
  • the flow rate of disilane Si 2 H 6
  • ammonia NH 3
  • the microwave power was 1.023 W / cm 2 (2 kW)
  • the treatment pressure was changed to 250 mTorr, 1000 mTorr, 2000 mTorr, and 3000 mTorr.
  • the N—H bond is superior to the Si—H bond as in the normal low pressure plasma CVD method. It turned out to be.
  • the reaction under this condition is feed rate limited.
  • the plasma film forming apparatus 100b shown in FIG. 7 when the processing pressure is 1000 mTorr or less, the amount of N—H bonds is on the order of 9 ⁇ 10 21 atoms / cc or more.
  • the amount of Si—H bonds remains on the order of 1 ⁇ 10 21 atoms / cc or less.
  • the total amount of hydrogen in the film is on the order of 9 ⁇ 10 21 atoms / cc or more.
  • the amount of N—H bonds and the amount of Si—H bonds can be balanced even in a silicon nitride film formed using ammonia gas.
  • the amount of N—H bonds and the amount of Si—H bonds are balanced when the processing pressure is about 1800 mTorr (239.9 Pa).
  • the total amount of hydrogen in the film at this time further decreases to the order of 8 ⁇ 10 21 atoms / cc (in this example, the order of approximately 8.4 ⁇ 10 21 atoms / cc).
  • the processing pressure is 2000 mTorr (266.6 Pa)
  • the amount of N—H bonds is on the order of 3 ⁇ 10 21 atoms / cc
  • the amount of Si—H bonds is 5 ⁇ 10 21 atoms / cc.
  • a silicon nitride film of the order of 5 mm was obtained. The total amount of hydrogen in the film at this time is further reduced to the order of 8 ⁇ 10 21 atoms / cc.
  • the total amount of hydrogen in the film is changed, for example, by changing the flow rate ratio between the flow rate of disilane (Si 2 H 6 ) and the flow rate of ammonia (NH 3 ) so that the amount of Si—H bonds decreases (flow rate ratio increase). And / or increase the microwave power, it can be reduced to 6 ⁇ 10 21 atoms / cc or less.
  • the silicon nitride film preferably has fewer Si—H bonds in the film.
  • a gas containing nitrogen and hydrogen for example, ammonia gas is used as a nitrogen-containing gas that is a processing gas for forming a silicon nitride film.
  • the processing pressure is 1000 mTorr (133.3 Pa) or higher, the total amount of hydrogen in the film, which is the sum of the amount of Si—H bonds in the silicon nitride film and the amount of N—H bonds in the film, is 8 It is possible to obtain a silicon nitride film having a low hydrogen content that can be reduced to 4 ⁇ 10 21 atoms / cc or less.
  • the upper limit of the processing pressure is, for example, 100 Torr (for example) as long as there is a tendency to saturate the Si—H bond while continuing the decreasing tendency of the N—H bond. 13333 Pa) or less.
  • the pressure is preferably 10 Torr (1333 Pa) or less.
  • the flow ratio of the silicon-containing gas and a nitrogen and hydrogen-containing gas and 0.01 to 0.015 or less, and / or microwave power when the W / cm 2 or more 2.045W / cm 2 or less, film A silicon nitride film having fewer Si—H bonds therein can be obtained.
  • the silicon nitride film formed by the plasma CVD method according to the film forming method of this example is formed using a gas containing nitrogen and hydrogen, for example, the plasma CVD method using only nitrogen gas is used. Compared with the case where a silicon nitride film is formed, reaction is likely to occur and controllability is good.
  • the amount of N—H bonds can be reduced.
  • the amount of N—H bonds can be made equal to or less than the amount of Si—H bonds.
  • a hydrogen desorption gas for desorbing hydrogen from a silicon nitride film formed by plasma CVD is supplied to the chamber 1 in a pulsed manner, a plasma is pulsed, or a hydrogen desorbing gas. And detaching hydrogen from the silicon nitride film while pulsing the plasma. Therefore, it is possible to obtain a silicon nitride film having a total hydrogen amount of 10 21 atoms / cc or less in a state where there is no problem, or in a state where no film reduction occurs.
  • the probability that vacancies are generated when hydrogen escapes from the film is reduced. Therefore, the probability of occurrence of electron traps is reduced, the film quality is hardly deteriorated, and a highly reliable silicon nitride film that can maintain a good film quality for a long period of time is obtained.
  • a silicon nitride film formed by such a plasma CVD method is advantageous for application to a semiconductor integrated circuit device.
  • the silicon nitride film formed by the plasma CVD method according to the second embodiment it is possible to reduce the total amount of hydrogen in the film, which is the sum of the amount of N—H bonds and the amount of Si—H bonds.
  • a method for forming a plasma CVD silicon nitride film can be provided.
  • FIG. 10 shows the relationship between the flow rate ratio between the halogen compound gas and the rare gas (halogen compound gas / rare gas) and the film reduction rate.
  • the film reduction rate is reduced.
  • the film reduction rate is preferably 5% or less, and in order to make the film reduction rate 5% or less, the flow rate ratio between the halogen compound gas and the rare gas should be 0.006 or less. preferable.
  • a film containing little hydrogen and difficult to reduce the film is advantageous for application to an internal structure of a semiconductor integrated circuit device as described below, for example.
  • Application Example 1 is an example in which a silicon nitride film having a total hydrogen content in the order of 10 21 atoms / cc or less is used as an etching stopper and a hard mask by plasma CVD.
  • 11A to 11C are cross-sectional views showing a method of manufacturing a semiconductor integrated circuit device according to Application Example 1 in the order of main manufacturing steps.
  • an insulating film 201 such as an interlayer insulating film is formed on a semiconductor wafer (not shown).
  • an etching stopper 202 is formed over the insulating film 201.
  • a silicon nitride film formed by a plasma CVD method is used as the etching stopper 202.
  • the silicon nitride film is formed at a low processing temperature of 300 ° C. or higher and 600 ° C. or lower, preferably 500 ° C. or lower.
  • silicon-containing gas for example disilane, nitrogen and of hydrogen-containing gas, for example, the flow rate ratio of ammonia 0.005 0.015, microwave power 0.5 W / cm 2 or more 2.045W / cm 2 or less
  • the processing pressure is set to 133.3 Pa or more and 13333 Pa or less. Preferably, it is set to 1333 Pa or less.
  • hydrogen is released from the silicon nitride film formed by plasma CVD using the method described in the first embodiment. By separating hydrogen in this way, an etching stopper 202 using a silicon nitride film having a total hydrogen content in the order of 10 21 atoms / cc or less can be formed.
  • an interlayer insulating film 203 is formed over the etching stopper 202.
  • the interlayer insulating film 203 for example, a known low dielectric constant insulating film having a dielectric constant lower than that of a silicon oxide film may be used.
  • a hard mask 204 is formed over the interlayer insulating film 203.
  • a plasma silicon nitride film is used for the hard mask 204.
  • the silicon nitride film formed by plasma CVD as the hard mask 204 is formed at a processing temperature of 300 ° C. or higher and 600 ° C. or lower, preferably 500 ° C. or lower.
  • a containing gas for example disilane, nitrogen and hydrogen-containing gas, for example, the flow rate ratio of ammonia 0.005 0.015, microwave power 0.5 W / cm 2 or more 2.045W / cm 2 or less, the process pressure It shall be 133.3 Pa or more and 13333 Pa or less. Preferably, it is set to 1333 Pa or less.
  • hydrogen is released from the formed silicon nitride film using the method described in the first embodiment. By desorbing hydrogen in this manner, a hard mask 202 using a silicon nitride film having a total hydrogen content in the order of 10 21 atoms / cc or less can be formed.
  • a mask pattern 205 made of a photoresist for example, a mask pattern 205 having a hole corresponding to a groove for embedding a wiring material and a hole for connecting wirings is formed.
  • the hard mask 204 is etched using the mask pattern 205 as a mask.
  • the interlayer insulating film 203 is etched using the hard mask 204 as an etching mask, and a groove for embedding a wiring material in the interlayer insulating film 203, or A hole 206 for connecting the wirings is formed.
  • the etching of the interlayer insulating film 203 is continued until the etching stopper 202 is exposed. When the etching stopper 202 is exposed, the etching rate is reduced, and the etching is actually stopped.
  • a hydrogen desorbing gas for desorbing hydrogen from a silicon nitride film formed by plasma CVD is supplied to the chamber 1 in a pulsed manner, a plasma is pulsed, or a hydrogen desorbing gas is desorbed. Hydrogen is desorbed from the silicon nitride film while being supplied in pulses and generating plasma in pulses. For this reason, even if the silicon nitride film is thinly formed, a silicon nitride film having a total amount of hydrogen of 10 21 atoms / cc or less in a state where there is no reduction in film thickness, or no film thickness reduction occurs. Can be obtained.
  • the silicon nitride film formed by the plasma CVD method formed by the method of the present invention is difficult to reduce, the inside of the semiconductor integrated circuit such as the etching stopper 202 for stopping the etching and the interlayer insulating film 203 is used. It is suitable for a hard mask 204 or the like used as an etching mask when a structure is processed.
  • the silicon nitride film formed by the plasma CVD method according to the embodiment is used for both the etching stopper 202 and the hard mask 204, but it is not necessarily used for both, and it is used for either one. You may do it.
  • Application example 2 is an example in which a silicon nitride film formed by the plasma CVD method according to the present invention is used for a cap layer and a sidewall spacer in a self-aligned contact structure.
  • 12A to 12D are cross-sectional views showing a method of manufacturing a semiconductor integrated circuit device according to Application Example 2 in the order of main manufacturing steps.
  • a semiconductor wafer W (a silicon wafer in this example) is thermally oxidized to form a thermally oxidized silicon film that becomes the gate insulating film 301, and a gate is formed on the thermally oxidized silicon film that becomes the gate insulating film 301.
  • a conductive polysilicon film to be the electrode 302 is formed.
  • a cap layer 303 is formed on the polysilicon film to be the gate electrode 302.
  • the film formation conditions are a processing temperature of 300 ° C. or higher and 600 ° C. or lower, preferably 500 ° C.
  • silicon containing gas for example, disilane and the nitrogen and hydrogen-containing gas, for example, the flow rate ratio of ammonia 0.005 0.015, microwave power 0.5 W / cm 2 or more 2.045W / cm 2 or less, the process pressure 133 3 Pa to 13333 Pa.
  • it is set to 1333 Pa or less.
  • hydrogen is released from the formed silicon nitride film using the method described in the first embodiment. By desorbing hydrogen in this manner, the cap layer 303 using a silicon nitride film having a total hydrogen content in the order of 10 21 atoms / cc or less can be formed.
  • a gate pattern (not shown) made of a photoresist is formed on the cap layer 303, and the cap layer 303, the polysilicon film, and the thermal oxide film are sequentially etched using the gate pattern as a mask, and the cap layer 303 is formed above. Is formed.
  • impurities for forming source / drain regions 304 having a conductivity type different from that of the wafer W are introduced into the wafer W.
  • an insulating film to be the sidewall spacer 305 is formed on the source / drain region 304 and the gate electrode 302.
  • a silicon nitride film formed by the plasma CVD method according to the embodiment is used for the insulating film to be the sidewall spacer 305, and the film forming condition is a low temperature of 300 ° C. to 600 ° C., preferably 500 ° C. or less.
  • silicon-containing gas for example disilane, nitrogen and hydrogen-containing gas, for example, the flow rate ratio of ammonia 0.005 0.015, microwave power 0.5 W / cm 2 or more 2.045W / cm 2 or less,
  • the processing pressure is set to 133.3 Pa or more and 13333 Pa or less.
  • the insulating film to be the sidewall spacer 305 is anisotropically etched to form the sidewall spacer 305 on the sidewalls of the cap layer 303 and the gate electrode 302. By separating the hydrogen in this way, the sidewall spacer 305 using the silicon nitride film having a total hydrogen amount in the order of 10 21 atoms / cc or less can be formed.
  • an interlayer insulating film 306 is formed on the cap layer 303, the source / drain regions 304, and the sidewall spacers 305.
  • the interlayer insulating film 306 for example, a known low dielectric constant insulating film having a dielectric constant lower than that of a silicon oxide film may be used.
  • a contact hole pattern (not shown) reaching the source / drain region 304 made of photoresist is formed on the interlayer insulating film 306, and the interlayer insulating film 306 is etched using the contact hole pattern as a mask to form a contact hole. 307 is formed.
  • the contact hole 307 in this example extends over the cap layer 303 and the side wall spacer 305, and the contact hole 307 is in contact with the space between the cap layer 303 and the side wall spacer 305 that covers the gate electrode 302, that is, the gate electrode 302.
  • This is a so-called self-aligned contact structure formed in a self-aligned manner.
  • the contact hole 307 is filled with the conductive material 308, whereby the structure according to Application Example 2 is formed.
  • a hydrogen desorbing gas for desorbing hydrogen from a silicon nitride film formed by plasma CVD is supplied to the chamber 1 in a pulsed manner, a plasma is pulsed, or a hydrogen desorbing gas is desorbed. Hydrogen is released from the plasma CVD silicon nitride film while being supplied in pulses and generating plasma in pulses. For this reason, even if the plasma CVD silicon nitride film is thinly formed, the total amount of hydrogen in the film is 10 21 atoms / cc or less in a state where there is no reduction in film thickness, or no film thickness reduction occurs. A silicon film can be obtained.
  • the silicon nitride film formed by the method of the present invention since the silicon nitride film formed by the method of the present invention has good etching resistance, it covers the gate electrode 302 when the contact hole 307 is formed in a self-aligned manner with respect to the space between the gate electrodes 302. It is also suitable for the cap layer 303 and the side wall spacer 305.
  • FIG. 13 is a diagram showing the relationship between the stress of the silicon nitride film formed by the plasma CVD method and the amount of N—H bonds.
  • the stress of the silicon nitride film having an N—H bond amount of the order of 10 21 atoms / cc in this example, the silicon nitride film of 3.43 ⁇ 10 21 atoms / cc has a compressive stress of ⁇ 1099 MPa.
  • the stress of the film tends to shift from tensile stress to compressive stress. confirmed.
  • a silicon nitride film having a total hydrogen amount of, for example, the order of 10 21 atoms / cc is formed by the plasma CVD method described in the second embodiment, and then the silicon nitride is formed. Further desorb hydrogen from the membrane. For this reason, the total amount of hydrogen in the film is less than the order of 10 21 atoms / cc, such as the order of 10 20 atoms / cc, the order of 10 19 atoms / cc, the order of 10 18 atoms / cc, and so on.
  • a silicon nitride film is obtained. For this reason, for example, a silicon nitride film having a compressive stress exceeding ⁇ 1500 Pa can be obtained.
  • a silicon nitride film formed by plasma CVD is formed using nitrogen and a hydrogen-containing gas (for example, ammonia gas) as a nitriding process gas, and does not contain hydrogen as a nitriding process gas.
  • a hydrogen-containing gas for example, ammonia gas
  • the step coverage of the formed film was examined when the film was formed using nitrogen gas.
  • FIG. 14 is a sectional view showing the step coverage of a silicon nitride film formed by plasma CVD using ammonia gas
  • FIG. 15 shows the step coverage of a silicon nitride film formed by plasma CVD using nitrogen gas. It is sectional drawing shown.
  • FIG. 15 is a reference example.
  • a silicon nitride film 400 NH3 formed by plasma CVD using nitrogen and hydrogen-containing gas, in this example, ammonia gas has a film thickness (Side) on the step side surface and a film on the step upper surface.
  • the ratio “Side / Top” to the thickness (Top) is about 91%, and the ratio “Btm / Top” between the film thickness (Btm) on the step bottom surface and the film thickness (Top) on the step top surface is about 97%.
  • a step coverage of approximately 90% or more was obtained.
  • the film forming conditions in this example are a processing temperature of 400 ° C., a flow rate ratio of disilane and ammonia of 5 sccm / 500 sccm, a microwave power of 1.023 W / cm 2 (2 kW), and a processing pressure of 1000 mTorr.
  • the silicon nitride film 400 N2 formed by the plasma CVD method using nitrogen gas has a ratio “Side / Top” of about 30% and a ratio “Btm / Top” of about 30%.
  • the step coverage was about 30 to 40%.
  • the film forming conditions in this example are a processing temperature of 500 ° C., a flow ratio of disilane and nitrogen of 1 sccm / 1200 sccm, a microwave power of 1.023 W / cm 2 (2 kW), and a processing pressure of 20 mTorr.
  • a silicon nitride film formed using the plasma CVD method described in the second embodiment can be used for nitriding by using nitrogen and hydrogen-containing gas as the nitriding process gas. It was confirmed that the step coverage can be improved as compared with the case of using nitrogen gas as the processing gas. From the measurement result of such step coverage, as described in the first embodiment, a silicon nitride film is formed by plasma CVD using nitrogen and hydrogen-containing gas, for example, nitrogen gas. It was confirmed again that the reaction easily occurs and the controllability is improved as compared with the case where the silicon nitride film is formed by the plasma CVD method using only the above.
  • the step coverage is good and the amount of N—H bonds is on the order of 10 22 atoms / cc.
  • the silicon nitride film formed by the plasma CVD method is formed using nitrogen and hydrogen-containing gas, the step coverage is good and the amount of N—H bonds is on the order of 10 22 atoms / cc.
  • either tensile stress or compressive stress can be selected and applied to the film stress.
  • a silicon nitride film having an N—H bond amount of the order of 10 21 atoms / cc or less can select either tensile stress or compressive stress as the film stress.
  • the plasma CVD silicon nitride film having a total hydrogen amount in the order of 10 21 atoms / cc is formed by the film forming method described in the second embodiment, this plasma CVD is performed. Hydrogen is further released from the silicon nitride film. Therefore, for example, a silicon nitride film formed by a plasma CVD method having a compressive stress exceeding ⁇ 1500 Pa can be obtained with good step coverage.
  • the film is advantageous, for example, for application to an internal structure of a semiconductor integrated circuit device as described below.
  • Application Example 3 is an example in which a silicon nitride film formed by a plasma CVD method according to an embodiment of the present invention is used as a stress liner that applies stress to a channel of a transistor and improves charge mobility.
  • 16A and 16B are cross-sectional views showing a method of manufacturing a semiconductor integrated circuit device according to Application Example 3 in the order of main manufacturing steps.
  • the surface of the semiconductor wafer W (silicon wafer in this example) is thermally oxidized to form a thermal silicon oxide film to be the gate insulating film 401, and on the thermal silicon oxide film to be the gate insulating film 401.
  • a conductive polysilicon film to be the gate electrode 402 is formed.
  • a gate pattern (not shown) made of a photoresist is formed on the polysilicon film to be the gate electrode 402, and the gate electrode 402 is formed by sequentially etching the polysilicon film and the thermal oxide film using the gate pattern as a mask. To do.
  • impurities for forming source / drain regions 403 having a conductivity type different from that of the wafer W are introduced into the wafer W.
  • a stress liner 404 is formed on the source / drain region 403 and the gate electrode 402.
  • a silicon nitride film formed by the plasma CVD method according to the embodiment is used for the insulating film serving as the stress liner 404, and the film formation conditions are a processing temperature of 300 ° C. or higher and 600 ° C. or lower, preferably 500 ° C. or lower.
  • silicon-containing gas at a low temperature for example, disilane and the nitrogen and hydrogen-containing gas, for example, the flow rate ratio of ammonia 0.005 0.015, microwave power 0.5 W / cm 2 or more 2.045W / cm 2 or less,
  • the processing pressure is set to 133.3 Pa or more and 13333 Pa or less.
  • the stress liner 404 using a silicon nitride film having a total hydrogen content in the order of 10 21 atoms / cc or less can be formed.
  • a silicon nitride film having a total hydrogen content in the order of 10 21 atoms / cc or less can have a compressive stress of, for example, ⁇ 1500 Pa or less, as shown in FIG.
  • the silicon nitride film in which the total hydrogen amount in the film is controlled to the order of 10 21 atoms / cc or less for the stress liner 404 a strong compressive stress can be applied to the channel.
  • compressive stress is applied to the channel, the hole mobility is improved, so that it can be effectively applied to a P-channel MOSFET or MISFET.
  • a silicon nitride film formed by the plasma CVD method is used as a processing gas for nitriding
  • a gas containing nitrogen and hydrogen, such as ammonia has good step coverage.
  • a step coverage of approximately 90% or more can be obtained.
  • Such a film is suitable for application to a stress liner.
  • the step coverage of the stress liner is poor, the portion of the stress liner on the gate electrode becomes particularly thick, and the height of the gate electrode increases and the unevenness on the surface of the semiconductor wafer tends to increase. This leads to a situation in which, for example, it becomes difficult to embed between gate electrodes with an interlayer insulating film.
  • the stress liner is formed of a film having a good step coverage, for example, a film having a step coverage of 90% or more, the situation where the portion of the stress liner on the gate electrode becomes particularly thick is solved. The Therefore, it is possible to prevent the unevenness on the surface of the semiconductor wafer from becoming large, and for example, it is possible to obtain an advantage that the gap between the gate electrodes can be easily filled with the interlayer insulating film.
  • hydrogen is released from the silicon nitride film while supplying a hydrogen releasing gas for releasing hydrogen from the silicon nitride film formed by plasma CVD to the chamber 1 in a pulsed manner. For this reason, a silicon nitride film having good step coverage and a total hydrogen amount in the film of 10 21 atoms / cc or less can be obtained in a state where there is no problem or no film thickness reduction occurs.
  • disilane was used as the silicon-containing gas
  • silane, TSA, or the like can be used in addition to disilane.
  • ammonia was used as the nitrogen and hydrogen containing gas, it can be used as long as it contains nitrogen and hydrogen and can form a silicon nitride film by supplying it with the silicon containing gas. is there.
  • the microwave plasma film forming apparatus is exemplified as the film forming apparatus.
  • the present invention is not limited to the microwave plasma film forming apparatus, and other plasma film forming apparatuses can be used.
  • another new stress is generated in addition to the stress given by the process conditions in the silicon nitride film formed by releasing hydrogen, but another new stress is generated.
  • the thin film to be formed is not limited to the silicon nitride film.
  • the present invention can be applied to any thin film as long as another new stress is caused by releasing hydrogen.
  • the microwave plasma film forming apparatus is used for forming the thin film
  • the film is not limited to the thin film formed using the microwave plasma film forming apparatus.
  • a thin film formed using a parallel plate type plasma film forming apparatus may be used, or a thin film formed using a thermal film forming apparatus is not limited to plasma.
  • the film forming method is not limited to the CVD method, and a thin film formed by using the sputtering method may be used.
  • the present invention can be applied not only to vapor phase growth but also to liquid layer growth, for example, a thin film formed using an LPD method or a plating method.
  • the present invention it is possible to provide a method for forming a high-stress thin film capable of applying a stress greater than the stress given by process conditions to the thin film, and a method for manufacturing a semiconductor integrated circuit device using the film forming method.

Abstract

 高ストレス薄膜の成膜方法である。この高ストレス薄膜の成膜方法は、水素を含む成膜原料ガスをチャンバー内に供給し、水素が取り込まれた薄膜を半導体基板上に成膜すること(ステップ1)、および薄膜から水素を離脱させる物質を含む水素離脱ガスを前記チャンバーにパルス的に供給しながら薄膜から水素を離脱させること(ステップ2)、を含む。  

Description

高ストレス薄膜の成膜方法及び半導体集積回路装置の製造方法
 この発明は、高ストレス薄膜の成膜方法及びその成膜方法を用いた半導体集積回路装置の製造方法に関する。
 窒化珪素膜は、各種半導体装置における絶縁膜や保護膜等として使用されている。このような窒化珪素膜は、例えば、原料ガスとしてシラン(SiH)などのシリコン含有化合物のガスと、窒素やアンモニアのような窒素含有化合物のガスを使用するプラズマCVD法により形成できることが知られている(例えば、特開2000-260767号公報)。
 プラズマCVD法により形成される窒化珪素膜においては、デバイス特性に悪影響を及ぼす膜の応力、すなわち引張り(Tensile)ストレスおよび圧縮(Compressive)ストレスを抑制することが重要な課題であった。例えば窒化珪素膜の圧縮ストレスが大きい場合には、膜直下の金属配線がストレスにより断線を引き起こすストレスマイグレーションが発生することが知られており、これを防止するためには圧縮ストレスを小さく抑える必要がある。窒化珪素膜のストレスの方向(引張りストレスであるか圧縮ストレスであるか)や大きさは、プラズマCVD法の場合、圧力、温度、成膜ガス種などの成膜条件に左右される。このため、窒化珪素膜に強いストレスが生じない条件を選定し、プラズマCVD法によりストレスを有さない窒化珪素膜の成膜が行なわれてきた(例えば、前田和夫「VLSIとCVD」槇書店,1997年7月31日発行、6章 CVD膜形成法各論 6.3.4 プラズマCVDSi窒化膜(SiNx)、202-211頁参照)。
 しかし、近年ある種のデバイスにおいて、窒化珪素膜のストレスを積極的に利用してデバイス特性を改善しようする試みがなされている(例えば、特開2007-49166号公報)。
 しかしながら、窒化珪素膜等の薄膜に与えられるストレスは、非特許文献1にも記載されているように、プロセス条件によるため、ストレス値に限度がある。
発明の概要
 この発明は、プロセス条件で与えられるストレス以上に大きなストレスを薄膜に与えることが可能な高ストレス薄膜の成膜方法及びその成膜方法を用いた半導体集積回路装置の製造方法を提供することを目的とする。
 上記課題を解決するために、この発明の第1の態様に係る高ストレス薄膜の成膜方法は、水素を含む成膜原料ガスをチャンバー内に供給し、水素が取り込まれた薄膜を半導体基板上に成膜すること、および前記薄膜から水素を離脱させる物質を含む水素離脱ガスを前記チャンバーにパルス的に供給しながら前記薄膜から水素を離脱させること、を含む。
 この発明の第2の態様に係る高ストレス薄膜の成膜方法は、マイクロ波励起プラズマを用いた高ストレス薄膜の成膜方法であって、処理容器内に、珪素含有ガスと、窒素及び水素含有ガスとを導入すること、マイクロ波を前記処理容器内に放射し、前記処理容器内に導入された前記珪素含有ガス及び前記窒素及び水素含有ガスをプラズマ化すること、前記プラズマ化された前記珪素含有ガス及び前記窒素及び水素含有ガスを、被処理基板の表面上に供給し、この被処理基板の表面上に、成膜条件を、処理温度を300℃以上600℃以下、珪素含有ガスと窒素及び水素含有ガスとの流量比を0.005以上0.015以下、マイクロ波パワーを0.5W/cm以上2.045W/cm以下、処理圧力を133.3Pa以上13333Pa以下として窒化珪素膜を成膜すること、および前記窒化珪素膜から水素を離脱させる物質を含む水素離脱ガスを前記チャンバーにパルス的に供給しながら前記薄膜から水素を離脱させること、を含む。
 この発明の第3の態様に係る半導体集積回路装置の製造方法は、絶縁膜上に、この絶縁膜とは異なる物質を含むエッチングストッパを第1の態様に係る成膜方法を用いて形成すること、前記エッチングストッパの上方に、このエッチングストッパとは異なる物質を含む層間絶縁膜を形成すること、前記層間絶縁膜上に、この層間絶縁膜とは異なる物質を含むハードマスクを第1の態様に係る成膜方法を用いて形成すること、および前記ハードマスクをエッチングマスクに用いて、前記層間絶縁膜に、溝又は孔を形成すること、を含む。
 この発明の第4の態様に係る半導体集積回路装置の製造方法は、半導体基板上に、この半導体基板と絶縁され、上部にキャップ層を備えたゲート電極を形成すること、前記ゲート電極をマスクに用いて、ソース/ドレイン領域形成用の不純物を前記半導体基板内に導入すること、および前記ゲート電極の側壁上に、側壁スペーサを第1の態様に係る成膜方法を用いて形成すること、を含む。
 この発明の第5の態様に係る半導体集積回路装置の製造方法は、半導体基板上に、この半導体基板と絶縁されたゲート電極を形成すること、前記ゲート電極をマスクに用いて、ソース/ドレイン領域形成用の不純物を前記半導体基板内に導入すること、および前記半導体基板上に、前記ゲート電極を被覆し、前記ゲート電極下の前記半導体基板の部分にストレスを与えるストレスライナーを第1の態様に係る成膜方法を用いて形成すること、を含む。
プラズマ成膜装置の一例を模式的に示す断面図 平面アンテナの一例を示す平面図 実施の形態に係る成膜方法の基本的な流れを示す流れ図 実施の形態に係る成膜方法の基本的な流れを示す流れ図 離脱水素量とストレスとの関係を示す図 ストレスと処理圧力との関係を示す図 水素離脱工程の一例を示す図 この発明の第2の実施形態に係るプラズマCVD窒化珪素膜の成膜方法に使用されるプラズマCVD装置の一例を示す概略断面図 シャワーヘッドの一例を示す平面図 処理条件を示す図 水素量の処理圧力依存性を示す図 ハロゲン化合物ガスと希ガスとの流量比と減膜率との関係を示す図 適用例1に係る半導体集積回路装置の製造方法の主要な製造工程を示す断面図 適用例1に係る半導体集積回路装置の製造方法の主要な製造工程を示す断面図 適用例1に係る半導体集積回路装置の製造方法の主要な製造工程を示す断面図 適用例2に係る半導体集積回路装置の製造方法の主要な製造工程順を示す断面図 適用例2に係る半導体集積回路装置の製造方法の主要な製造工程順を示す断面図 適用例2に係る半導体集積回路装置の製造方法の主要な製造工程順を示す断面図 適用例2に係る半導体集積回路装置の製造方法の主要な製造工程順を示す断面図 プラズマCVD窒化珪素膜のストレスとN-H結合の量との関係を示す図 アンモニアガスを用いて成膜したプラズマCVD窒化珪素膜の段差被覆性を示す断面図 窒素ガスを用いて成膜したプラズマCVD窒化珪素膜の段差被覆性を示す断面図 適用例3に係る半導体集積回路装置の製造方法の主要な製造工程を示す断面図 適用例3に係る半導体集積回路装置の製造方法の主要な製造工程を示す断面図
発明を実施するための形態
 以下、適宜添付図面を参照して本発明の実施の形態について具体的に説明する。
  (第1の実施形態)
 図1は、薄膜の形成に利用可能なプラズマ成膜装置の一例を模式的に示す断面図である。このプラズマ成膜装置100aは、複数のスロットを有する平面アンテナ、特にRLSA(Radial Line Slot Antenna;ラジアルラインスロットアンテナ)にてチャンバー1内にマイクロ波を導入してプラズマを発生させることにより、高密度かつ低電子温度のマイクロ波励起プラズマを発生させ得るRLSAマイクロ波プラズマ成膜装置として構成されており、1×1010~5×1012/cmのプラズマ密度で、かつ0.7~2eVの低電子温度のプラズマによる処理が可能である。従って、各種半導体装置の製造過程においてプラズマCVDによる薄膜の成膜処理、例えば、窒化珪素膜の成膜処理などの目的で好適に利用可能なものである。
 上記プラズマ成膜装置100aは、気密に構成され、接地された略円筒状の処理チャンバー(処理容器)1を有している。なお、チャンバー1は角筒形状でもよい。処理チャンバー1の中で、被処理基板である半導体ウエハW上に、プラズマCVD窒化珪素膜等の薄膜が成膜される。処理チャンバー1の底壁1aの略中央部には円形の開口部1bが形成されており、底壁1aにはこの開口部1bと連通し、下方に向けて突出する排気室2が設けられている。
 処理チャンバー1の内部には、ウエハWを水平に支持するためのAlN等のセラミックスからなるサセプタ(基板支持台)3が設けられている。サセプタ3は、排気室2の底部中央から上方に延びる円筒状のAlN等のセラミックスからなる支持部材4により支持されている。サセプタ3の外縁部には、その外縁部をカバーし、ウエハWをガイドするためのカバーリング5が設けられている。カバーリング5は、例えば石英、AlN、Al、SiN等の材質で構成された部材である。サセプタ3には、例えば、抵抗加熱型のヒーター6が埋め込まれており、このヒーター6はヒーター電源6aから給電されることによりサセプタ3を加熱し、サセプタ3の熱でウエハWを加熱する。サセプタ3には熱電対6bが埋設されている。サセプタ3は、熱電対6bが検出した温度信号に基づいて、温度コントローラ(TC)6cにより、例えば、室温から1000℃までの範囲で温度制御される。サセプタ3には、ウエハWを支持して昇降させるためのウエハ支持ピン(図示せず)がサセプタ3の表面に対して突没可能に設けられている。
 排気室2は排気管2aに接続され、排気管2aには真空ポンプを含む排気装置2bが接続されている。排気装置2bは、ターボ分子ポンプ等の真空ポンプおよび圧力制御バルブ等を備えており、処理チャンバー1の内部を所定の減圧雰囲気に設定する。
 処理チャンバー1の側壁部分には、ゲートバルブ9が設けられている。ゲートバルブ9を開閉することにより、処理チャンバー1は外界と連通されたり、外界から気密に遮断されたりする。ウエハWは、ゲートバルブ9を介して処理チャンバー1の内部に搬入出される。
 処理チャンバー1の上部は開口部となっており、開口部を塞ぐようにマイクロ波導入部10が気密に配置される。マイクロ波導入部10は、サセプタ3の側から順に、マイクロ波透過板11、平面アンテナ部材12、遅波材13を備えている。
 マイクロ波透過板11は、処理チャンバー1上部の開口部に設けられ、内周が環状の支持部14上に、シール部材15を介して気密に配置される。マイクロ波透過板11は、マイクロ波を透過する誘電体、例えば、石英やAl、AlN等のセラミックスから構成される。
 平面アンテナ部材12は、マイクロ波透過板11の上方に設けられ、処理チャンバー1の開口部の上端に係止されている。平面アンテナ部材12は、例えば、表面が金または銀メッキされた銅板、又はアルミニウム板から構成され、マイクロ波を放射するための多数のスロット孔16が所定のパターンで貫通して形成されている。スロット孔16は、例えば、図2に示すように一対の長溝状をなす。典型的には隣接するスロット孔16どうしが、T字状に配置され、T字状に配置されたスロット孔16が複数個、同心円状に配置される。スロット孔16の長さや配列間隔は、マイクロ波の波長(λg)に応じて決定され、例えば、スロット孔16の間隔は、λg/4からλgとなるように配置される。なお、図2においては、同心円状に形成された隣接するスロット孔16どうしの間隔を、“Δr”で示している。スロット孔16の形状は、例えば、円形状、円弧状等の形状であってもよい。スロット孔16の配置についても、特に同心円状に限定されるものではなく、例えば、螺旋状、放射状に配置することもできる。
 遅波材13は、平面アンテナ部材12の上に、覆うように設けられる。遅波材13は、真空よりも大きい誘電率を有する誘電体、例えば、石英、Al等のセラミックス、ポリテトラフルオロエチレン等のフッ素系樹脂やポリイミド系樹脂から構成され、真空中ではマイクロ波の波長が長くなることから、マイクロ波の波長を短くしてプラズマを調整する機能を有している。なお、平面アンテナ部材12とマイクロ波透過板11との間、及び平面アンテナ部材12と遅波材13との間は、それぞれ密着させてもよいし、離間させてもよい。
 処理チャンバー1の上方には、平面アンテナ部材12、及び遅波材13を覆うように、カバー17が設けられている。カバー17は平面アンテナと扁平導波管とを形成し、マイクロ波が外に漏れないように、処理チャンバー1の上面上に、シール部材18を介して配置される。カバー17は、例えば、アルミニウムやステンレス鋼等の金属材から構成され、内部には冷却水流路17aが形成される。冷却水を冷却水流路17aに流すことでカバー17、遅波材13、平面アンテナ12、及びマイクロ波透過板11がそれぞれ冷却され、カバー17、遅波材13、平面アンテナ12、及びマイクロ波透過板11の変形及び破損が防止される。なお、カバー17は、アンテナ、処理チャンバーを介して接地されている。
 カバー17の上壁の中央には開口部17bが形成されている。開口部17bには導波管18が接続されている。導波管18の端部には、モード変換器21、矩形導波管が接続され、マッチング回路19を介してマイクロ波発生装置20が接続される。マイクロ波発生装置20は、例えば、周波数2.45GHzのマイクロ波を発生させる。発生されたマイクロ波は、導波管18を介して平面アンテナ部材12へ伝搬される。マイクロ波の周波数としては、2.45GHz、8.35GHz、1.98GHz等も用いることができる。
 導波管18は、カバー17の開口部17bから上方へ延出する断面円形状の同軸導波管18aと、同軸導波管18aの中心に延在し、平面アンテナ部材12の中心に接続固定される内導体18cと、同軸導波管18aの上端部にモード変換器21を介して接続された水平方向に延びる矩形導波管18bとを有している。モード変換器21は、矩形導波管18b内をTEモードで伝搬するマイクロ波を、TEMモードに変換して、内導体18cを介して平面アンテナ部材12へ放射状に効率よく均一に伝播される。
 アンテナの下方には、ガス導入部22aおよび22bが上下に環状に配設されて設けられており、各ガス導入部22aおよび22bには、複数のガス吐出孔がガス導入部22a、22bの側壁の内周に沿って均等に形成されている。ガス導入部22aおよび22bには、成膜原料ガスやプラズマ励起用ガスを供給するガス供給部27が接続されている。なお、ガス導入部22aおよび22bはノズル状またはシャワー状に配置してもよい。
 ガス供給部27は、本例では、珪素含有ガス供給源27a、窒素含有ガス供給源27b、不活性ガス供給源27c、水素離脱ガス供給源27dを備えている。窒素含有ガス供給源27bは、上部のガス導入部22aに接続され、珪素含有ガス供給源27a、不活性ガス供給源27c、及び水素離脱ガス供給源27dは、下部のガス導入部22bに接続されている。
 成膜原料ガスである窒素含有ガスとしては、例えば、窒素(N)、アンモニア(NH)、モノメチルヒドラジン(MMH)のようなヒドラジン誘導体などを用いることができる。
 また、他の成膜原料ガスである珪素含有ガスとしては、例えば、シラン(SiH)、ジシラン(Si)などを用いることができるが、特にジシラン(Si)が好ましい。
 不活性ガスとしては、例えば、Nガスや希ガスなどを用いることができる。プラズマ励起用ガスである希ガスとしては、例えば、Arガス、Krガス、Xeガス、Heガスなどを用いることができる。コスト的には、Arガスが好ましい。
 水素離脱ガスは成膜された薄膜から水素を離脱させるガスであり、薄膜から水素を離脱させる物質を含む。薄膜から水素を離脱させる物質としては、例えば、ハロゲン含有ガスを用いることができる。ハロゲンとしては弗素、又は塩素を挙げることができ、好ましいハロゲン含有ガスの一例としては、窒素の弗化物、又は塩素の弗化物を挙げることができる。また、窒素の弗化物、又は塩素の弗化物、又はこれら弗化物を含有するガスの例としては、例えば、NFガス、又はNF含有ガスやClFガス、又はClF含有ガス等を挙げることができる。さらに、プラズマを安定に生成する希釈ガスとして、希ガス、例えば、Arガスを用いることが好ましい。また、水素離脱ガスとして、窒素の弗化物、又は塩素の弗化物、又はこれら弗化物を含有するガスを用いた場合には、チャンバー1内等を洗浄する洗浄ガスと兼用することも可能である。この場合には、水素離脱ガスは、プラズマ成膜装置100aに接続された洗浄ガス供給源から供給されれば良い。
 窒素含有ガスは、ガスライン21aを介してガス導入部22aに至り、ガス導入部22aからチャンバー1内に導入される。
 珪素含有ガス、不活性ガス、及び水素離脱ガスは、それぞれガスライン21aを介してガス導入部22bに至り、ガス導入部22bからチャンバー1内に導入される。
 各ガス供給源に接続する各々のガスライン21aには、マスフローコントローラ21b、及びその前後に開閉バルブ21cが設けられており、供給されるガスの切替えや流量等の制御が出来るように構成されている。なお、Arなどのプラズマ励起用の希ガスは任意のガスであり、必ずしも成膜原料ガスと同時に供給しなくてもよいが、プラズマの安定生成を考えると、用いることが好ましい。
 なお、本例では水素離脱ガスをチャンバー1内に、下部のガス導入部22bから供給するようにしているが、上部のガス導入部22aから供給するようにしても良いし、ガス導入部22aおよび22bとは別に設けた水素離脱ガス導入のガス導入部から供給するようにしても良い。
 プラズマ成膜装置100aの各構成部は、制御部50によって制御される。制御部50は、CPUを備えたプロセスコントローラ51と、プロセスコントローラ51に接続されたユーザーインターフェース52及び記憶部53とを備えている。ユーザーインターフェース52は、工程管理者がプラズマCVD装置100bを管理するためにコマンドの入力操作等を行なうキーボードや、プラズマCVD装置100aの稼働状況を可視化して表示するディスプレイ等を備えている。記憶部53は、プラズマCVD装置100aで実行される各種処理をプロセスコントローラ51の制御にて実現するための制御プログラム(ソフトウエア)や処理条件データ等が記録されたレシピを格納する。任意のレシピは、必要に応じ、ユーザーインターフェース52からの指示等にて記憶部53から呼び出され、プロセスコントローラ51において実行される。プロセスコントローラ51がレシピを実行することで、プラズマ成膜装置100aは、プロセスコントローラ51の制御のもと、所望の処理を行う。レシピは、コンピュータ読み取り可能な記憶媒体、例えば、CD-ROM、ハードディスク、フレキシブルディスク、フラッシュメモリなどに格納された状態のものを利用したり、あるいは、他の装置から、例えば、専用回線を介して随時伝送させてオンラインで利用したりすることも可能である。
 このように構成されたプラズマ成膜装置100aは、800℃以下、好ましくは600℃以下の低温で下地膜等へのダメージフリーなプラズマ処理を進めることができるとともに、プラズマ均一性に優れており、プロセスの均一性を実現できる。
 図3Aは、本実施の形態に係る成膜方法の基本的な流れを示す流れ図である。
 図3Aに示すように、まず、水素を含む成膜原料ガスをチャンバー1内に供給し、水素が取り込まれた薄膜を半導体基板上に成膜する(ステップ1)。
 次いで、薄膜から水素を離脱させる水素離脱ガスをチャンバー1内に供給し、成膜された薄膜から水素を離脱させる(ステップ2)。
 図4は、堆積時のストレスと水素離脱後のストレスとの差(ストレス変化量)を示す図である。図4では、薄膜が水素を取り込んだ窒化珪素膜の場合を示している。
 図4に示すように、濃度が大きく減少する、即ち、離脱水素量が大きいほど、ストレスが大きく変化する。薄膜が窒化珪素膜である場合には、特に、圧縮ストレスが高まる。
 図5は、薄膜に生じるストレスと処理圧力との関係を示す図である。
 図5中の線Iは、下記のプロセス条件で成膜された窒化珪素膜に生ずるストレスを示したものである。
 <プラズマCVD成膜条件(N/Siガス系)>
 Nガス流量(ガス導入部15a);1100mL/min(sccm)
 Siガス流量;1mL/min(sccm)
 Nガス流量(ガス導入部15b);100mL/min(sccm)
 処理圧力;4.0Pa(30mTorr)、6.7Pa(50mTorr)、13.3Pa(100mTorr)および66.6Pa(500mTorr)
 載置台2の温度;500℃
 マイクロ波パワー;3000W
 図5中の線Iが、成膜された薄膜に対してプロセス条件で与えられるストレスである。成膜原料ガスをN/Siガス系として成膜された窒化珪素膜には圧縮ストレスが生じ、その圧縮ストレスは、処理圧力が小さくなるほど大きくなる傾向がある。
 成膜された窒化珪素膜から水素を離脱させると、線Iに示す圧縮ストレスに対して図4に示した圧縮ストレスを加えることができる。この結果、窒化珪素膜に生じる圧縮ストレスは、図5中の線IIに示すように、さらに強くなる。
 このように、成膜された薄膜中から水素を離脱させることで、成膜された薄膜に対して、プロセス条件で与えられるストレス以上に大きなストレスを与えることができる。
 しかしながら、水素離脱ガスが成膜された薄膜と良く反応する場合には、かえって水素離脱ガスが薄膜を減膜させてしまう可能性がある。特に、水素離脱ガスが弗素、又は塩素、又は弗素及び塩素の双方を含む単化合物ガスの場合には薄膜の減膜傾向が強い。中でも、成膜された薄膜が水素を取り込んだ窒化珪素膜であり、水素離脱ガスがNFガスの場合に、この減膜傾向が顕著である。さらに、希ガスにより希釈することにより、より減膜できる。
 減膜量が増すと、窒化珪素膜の膜厚が設計された膜厚を満たすことが困難になり、また、成膜したはずの窒化珪素膜が消滅する可能性もある。半導体素子は年々微細化しており、これに伴い半導体集積回路中の薄膜は、より薄くなる傾向にある。このため、減膜が起ると、将来、半導体集積回路の特性に著しい影響を与える可能性がある。しかも、この影響は、今後、加速度的に増大していく可能性がある。成膜された薄膜に対してプロセス条件で与えられる以上のストレスを与えることができた、としても、減膜するのであれば、実際の半導体装置のプロセスに適用することが難しい。これでは、プロセス条件で与えられるストレス以上に大きなストレスを持つ薄膜を形成することが困難になる。
 そこで、本実施形態では、以下のように希釈ガスの供給量によりハロゲン化合物ガスの量を極小量にすることで減膜せず、薄膜中から効率的に水素を離脱するように工夫した。
 まず、チャンバー1の内部にプラズマ励起用の希ガス、例えば、Arガスを供給し、マイクロ波放射孔33からマイクロ波を放射してチャンバー1の内部をプラズマ雰囲気とする。そして、図3Bに示すように、水素離脱ガスを、所定の時間の間、チャンバー1内に供給する(ステップ11)。所定の時間の例は、水素離脱ガスの供給開始から、成膜された薄膜の減膜量が許容範囲内に収まる時間内、又は成膜された薄膜が減膜しない時間である。図6に、具体的なタイムチャートの一例を示す。図6中の時刻T1からT2の期間に示すように、本例では、希ガス2000sccm、NFガスを20sccmの流量で3秒間、チャンバー1に供給した。これでチャンバー1の雰囲気は、薄膜から水素を離脱させるプラズマ雰囲気となる。薄膜は、本例では水素を取り込んだ窒化珪素膜である。
 次いで、図3Bに示すように、プラズマを停止し、水素離脱ガスの供給を止め、チャンバー1内の雰囲気を水素離脱ガスが供給される前の雰囲気に戻す(ステップ12)。水素離脱ガスが供給される前の雰囲気とは、チャンバー1内の雰囲気中に水素離脱ガスが無い、又はほとんど無い状態である。本例では、図6中の時刻T2からT3の期間に示すように、NFガスの供給を止め、NFガスがチャンバー1に残留しないように排気又は自然消滅又は排気と自然消滅を利用し、チャンバー1内のNFガスの濃度を極力減少させ、NFガス供給前の雰囲気に戻す(時刻T2から時刻T3)。本例では、所定の排気量でチャンバー1の内部を排気しながら、NFガスの供給を60秒間止めた。これにより、NFガスの濃度を極力減少できる。
 さらに、本実施形態では、上記ステップ11、12を、所定回数繰り返す。
 本例では、図6の時刻T3から時刻T4の期間に示すように、チャンバー1の雰囲気がNFガス供給前の雰囲気に戻ったら、再度、NFガスを20sccmの流量で3秒間、チャンバー1に供給した。その後、時刻T4から時刻T5の期間に示すように、再度、NFガスの供給を止め、チャンバー1の雰囲気をNFガス供給前の雰囲気に戻す。このようにステップ11、12を繰り返すことで、水素離脱ガス、本例ではNFガスがチャンバー1の内部にパルス的に供給される。ステップ11、12が所定回数繰り返されたら、水素を離脱させる工程は終了し、薄膜の成膜工程が終了する。
 このように、本例では、NFガスをチャンバー1の内部にパルス的に供給することで、チャンバー1の内部の雰囲気を数秒乃至数十秒間の短い期間だけNFガス含有雰囲気とした後、NFガス供給前の雰囲気、即ちNFガスが無い、もしくはほとんど無い雰囲気に戻すことができる。
 チャンバー1の内部が、NFガスの供給開始から数秒乃至数十秒間だけNFガス含有雰囲気となっても、水素を取り込んだ窒化珪素膜からは水素が離脱する。離脱した水素の量は、図6に示すように、上記ステップ11、12を繰り返す毎に累積されていく。
 このように、本例によれば、成膜された窒化珪素膜から水素を離脱させることができる。よって、成膜された窒化珪素膜に対してプロセス条件で与えられる以上のストレスを与えることができる。
 さらに、NFガスの供給開始から数秒乃至数十秒間という短い期間は、NFガスが例えば、チャンバー1の内部に十分な濃度で十分に拡がっていない期間である。このため、窒素珪素膜を減膜させる量が非常に少ない期間、又は全く減膜しない期間となる。NFガスによる窒化珪素膜の減膜量も、図6に示すように、上記ステップを繰り返す毎に累積されるのであるが、減膜量が非常に少ないか、又は全く減膜しないから、減膜量を、NFガスをチャンバー1の内部に供給し続ける比較例(図6中の点線に示す)に比較して減らすことができる、又は減膜量をゼロにすることができる。
 このように、本例によれば、プロセス条件で与えられるストレス以上に大きなストレスを持つ薄膜を、差し支えのない範囲の減膜量(好ましくは成膜時の膜厚の5%以下)、又は減膜が生じない状態で形成することができる。高ストレス薄膜を、差し支えのない範囲の減膜量(好ましくは成膜時の膜厚の5%以下)、又は減膜が生じない状態で形成することができることは、今後の半導体素子の微細化にも有利である。
 なお、第1の実施形態では、NFガスをチャンバー1の内部にパルス的に供給するようにしたが、さらに、プラズマをパルス的にたてるようにしても、窒素珪素膜の減膜量(好ましくは成膜時の膜厚の5%以下)を小さくできる、又は減膜が生じない状態とすることができる。
  (第2の実施形態)
 図7は、この発明の第2の実施形態に係るプラズマCVD法による窒化珪素膜の成膜方法に利用することが可能なプラズマ成膜装置の一例を示す断面図である。
 図7に示すように、プラズマ成膜装置100bが、図1に示した装置100aとことなるところは、ガス導入部がシャワーヘッド22cとなっていること、及びサセプタ3には下部電極6dが埋め込まれており、マッチャー6eを介してRF電源6fに接続されていることである。
 処理チャンバー1内の、サセプタ3とマイクロ波導入部10との間には、処理ガスを導入するためのシャワーヘッド22cが水平に設けられている。シャワーヘッド22cは、図8に示すように、格子状のガス流路23と、格子状のガス流路23に形成された多数のガス吐出孔24とを有している。格子状のガス流路23の間は開口部25となっており、ガス吐出孔24はガス流路23のサセプタ3側に形成されている。ガス流路23には処理チャンバー1の外側に延びるガス供給管26が接続される。ガス供給管26は、プラズマ処理のための処理ガスを供給するガス供給部27に接続される。
 ガス供給部27は、本例では珪素含有ガス供給源27a、窒素及び水素含有ガス供給源27b、プラズマ生成用ガス供給源27c、及び水素離脱ガス供給源27dを備えている。本例では、珪素含有ガス、窒素及び水素含有ガス、及び水素離脱ガスを、ガスライン21aを介してシャワーヘッド22cに供給する。なお、図7においては、マスフローコントローラ、及びバルブ等の図示は省略している。シャワーヘッド22cは、上記ガスを、格子状のガス流路23、及格子状のガス流路23のサセプタ3側に形成されたガス吐出孔24を介して所定の流量で処理チャンバー1の内部のうち、シャワーヘッド22cとサセプタ3との間の空間1cへ供給する。珪素含有ガスの一例はジシランであり、窒素及び水素含有ガスの一例はアンモニアである。水素離脱ガスの例は、第1の実施形態と同様に、例えば、ハロゲン含有ガスである。ハロゲンとしては弗素、又は塩素を挙げることができ、ハロゲン含有ガスの一例としては、窒素の弗化物、又は塩素の弗化物を挙げることができる。また、窒素の弗化物、又は塩素の弗化物、又はこれら弗化物を含有するガスの例としては、例えば、NFガス、又はNF含有ガスやClFガス、又はClF含有ガス等を挙げることができる。また、水素離脱ガスとして、窒素の弗化物、又は塩素の弗化物、又はこれら弗化物を含有するガスを用いた場合には、チャンバー1内を洗浄する洗浄ガスと兼用することも可能である。この場合には、水素離脱ガスは、プラズマ成膜装置100aに接続された洗浄ガス供給源から供給されれば良い。
 シャワーヘッド22cとマイクロ波導入部10との間の処理チャンバー1の側壁には、環状のプラズマ生成用ガス導入部22dが設けられている。プラズマ生成用ガス導入部222dは、処理チャンバー1の内部に向かってプラズマ生成用ガスを吐出する吐出孔22eを複数備えている。プラズマ生成用ガスは、ガス導入部22dに供給される。なお、図7においては、マスフローコントローラ、及びバルブ等の図示は省略している。ガス導入部22dは、プラズマ生成用ガスを、吐出孔22eを介して処理チャンバー1の内部のうち、シャワーヘッド22cとマイクロ波導入部10との間の空間1dへ供給する。プラズマ生成用ガスの一例はアルゴンである。
 空間1dに供給されたプラズマ生成用ガスは、マイクロ波導入部10を介して空間1dに導入されたマイクロ波によりプラズマ化される。プラズマ化されたガス(イオン、ラジカル等の活性種)は、シャワーヘッド22cの開口部25を通過して空間1cに供給され、空間1cにおいて、シャワーヘッド22cのガス吐出孔24から吐出された処理ガスをプラズマ化する。
 このように構成されたプラズマ成膜装置100bは、例えば、以下のような手順でプラズマCVD法によりウエハW表面上に窒化珪素膜を堆積する。
 まず、ゲートバルブ9を開にしてウエハWを処理チャンバー1の内部に搬入し、サセプタ3上に載置する。
 次に、ガス供給部27からプラズマ生成用ガスを、配管を介して吐出孔22eから処理チャンバー1のうち、空間1d内に導入しつつ、マイクロ波発生装置20からのマイクロ波を、マッチング回路19を経て、矩形導波管18b、モード変換器21、及び同軸導波管18aを順次通過させ、内導体18cを伝搬して平面アンテナ部材12に放射状に供給され、スロット孔16から透過板11を介して処理チャンバー1のうち、空間1d内に放射される。プラズマ生成ガスは、放射されたマイクロ波により励起されてプラズマ化される。そのプラズマは、例えば、略1×1010~5×1012/cmの高密度で2eV以下の低電子温度プラズマとなる。プラズマ化されたガスは、シャワーヘッド22cの開口部25を通過して空間1cに供給される。
 次に、ガス供給部27から珪素含有ガス、窒素及び水素含有ガスを、シャワーヘッド22cのガス吐出孔24を介して処理チャンバー1の空間1c内に供給する。上記ガスは、格子状の開口部25を通過してきたプラズマ化されたガスにより励起されてプラズマ化される。ウエハW近傍では、例えば、略1.5eV以下の低電子温度プラズマとなる。このようにして形成されたプラズマは、下地膜へのイオン等によるプラズマダメージが少ないものである。そして、プラズマ中で処理ガスの解離が進み、例えば、SiH、NHなどの活性種の反応によって、窒化珪素SiN(ここで、xは必ずしも化学量論的に決定されず、処理条件により異なる値をとる)の薄膜が堆積される。
 次に、第1の実施形態で説明した方法を用いて、堆積された薄膜から水素を離脱させる。
 図7に示すプラズマ成膜装置100bを用いてプラズマCVD法により窒化珪素膜を成膜し、その窒化珪素膜中の水素量(Si-H結合、N-H結合、及びSi-H結合とN-H結合との合計)の、処理温度依存性、珪素含有ガス流量依存性、マイクロ波パワー依存性、及び処理圧力依存性を、それぞれ測定した。この測定において使用した珪素含有ガスはジシラン、窒素及び水素含有ガスはアンモニアである。窒化珪素膜の膜質の分析には、フーリエ変換赤外分光法(FT-IR)を用い、N-H結合に由来するスペクトルの強度、及びSi-H結合に由来するスペクトルの強度から、N-H結合の量、及びSi-H結合の量を求めた。また、求められたN-H結合の量とSi-H結合の量とを合計することにより総膜中水素量(total H)を求めた。
 図9は水素量の処理圧力依存性を示す図で、図9Aは処理条件を、図9Bは水素量と処理圧力との関係を示している。
 図9Aに示すように、処理圧力をパラメータ(図中“-”で示す)とし、処理温度(サセプタ3の温度)を600℃、ジシラン(Si)の流量とアンモニア(NH)の流量との流量比を5sccm/500sccm=0.01、マイクロ波パワーを1.023W/cm(2kW)とし、処理圧力を250mTorr、1000mTorr、2000mTorr、3000mTorrと変化させた。
 図9Bに示すように、通常の減圧プラズマCVD法と同じように、チャンバー1内の処理圧力を1000mTorr(133.3Pa)以下とした場合には、N-H結合がSi-H結合よりも優勢であることが判明した。この条件の反応は供給律速である。具体的には、図7に示したプラズマ成膜装置100bを用いると、処理圧力が1000mTorr以下の場合には、N-H結合の量が9×1021atomos/cc以上のオーダーとなるのに対して、Si-H結合の量は1×1021atomos/cc以下のオーダーにとどまる。総膜中水素量は、9×1021atomos/cc以上のオーダーである。
 対して、処理圧力を、1000mTorr以上に上げてくるとSi-H結合が急激に増加するが、反対にN-H結合も急激に減少しだす傾向があることが判明した。この条件の反応は反応律速である。しかも、N-H結合の減少分のほうが、Si-H結合の増加分より大きい。このため、両者の量を合計した総膜中水素量が減少に転じだす傾向が見いだされた。
 さらに、処理圧力を上げていくと、アンモニアガスを使用して成膜した窒化珪素膜であっても、N-H結合の量とSi-H結合の量とを均衡させることができる。また、処理圧力が、おおよそ1800mTorr(239.9Pa)付近でN-H結合の量とSi-H結合の量とが均衡する。このときの総膜中水素量は、8×1021atomos/ccのオーダー(本例では、おおよそ8.4×1021atomos/ccのオーダー)まで、さらに減少している。
 さらに、処理圧力を1800mTorr以上に上げると、アンモニアガスを使用して成膜した窒化珪素膜であっても、N-H結合の量がSi-H結合の量よりも少なくなる窒化珪素膜を得ることができた。
 例えば、本例では、処理圧力を2000mTorr(266.6Pa)とすると、N-H結合の量が3×1021atomos/ccのオーダーで、Si-H結合の量が5×1021atomos/ccのオーダーの窒化珪素膜を得ることができた。このときの総膜中水素量は、8×1021atomos/ccのオーダーまで、さらに減少している。
 処理圧力を2000mTorr以上に上げると、N-H結合の減少傾向が続くが、Si-H結合の増加分が鈍化することが判明した。つまり、増加していたSi-H結合が飽和しだす。N-H結合の減少傾向が続きつつ、Si-H結合が飽和する、ということは、つまり、総膜中水素量を、さらに減少させることができる、ということである。本例では、処理圧力を3000mTorr(400Pa)とすると、N-H結合の量が1×1021atomos/ccのオーダーまで減少するが、Si-H結合の量が5×1021atomos/ccのオーダーでほとんど変化しなかった。このときの総膜中水素量は、6×1021atomos/ccのオーダーまで引き続き減少する。
 さらに、総膜中水素量は、例えば、ジシラン(Si)の流量とアンモニア(NH)の流量との流量比をSi-H結合の量が少なくなるように変える(流量比増大)、及び/又はマイクロ波パワーを上げると、6×1021atomos/cc以下に、減少させることができる。窒化珪素膜は、膜中のSi-H結合がより少ない方がなお良い。
 このようなプラズマCVD法による窒化珪素膜の成膜方法によれば、窒化珪素膜を成膜する処理ガスである窒素含有ガスとして、窒素と水素とを含むガス、例えば、アンモニアガスを使用した、としても、処理圧力を1000mTorr(133.3Pa)以上とすることで、窒化珪素膜の膜中Si-H結合の量と膜中N-H結合の量とを合計した総膜中水素量が8.4×1021atoms/cc以下にできる低水素量の窒化珪素膜を得ることができる。
 ちなみに、処理圧力を1000mTorr以上とすることで、N-H結合の減少傾向を継続させつつ、Si-H結合については飽和させることができる傾向がある限り、処理圧力の上限は、例えば、100Torr(13333Pa)以下で良い。好ましくは10Torr(1333Pa)以下である。
 さらに、珪素含有ガスと窒素及び水素含有ガスとの流量比を0.01以上0.015以下とする、及び/又はマイクロ波パワーをW/cm以上2.045W/cm以下とすると、膜中のSi-H結合がより少ない窒化珪素膜を得ることができる。
 しかも、本例の成膜方法に従ってプラズマCVD法により成膜された窒化珪素膜は、窒素と水素とを含むガスを使用して成膜するので、例えば、窒素ガスのみを用いてプラズマCVD法により窒化珪素膜を成膜する場合に比較して反応が起りやすく、制御性も良い。そのうえ、窒素と水素とを含むガスを使用してプラズマCVD法により成膜される窒化珪素膜でありながらも、N-H結合の量を減らすことができる。さらにはN-H結合の量をSi-H結合の量以下とすることもできる。このことから、窒素と水素とを含むガスを使用してプラズマCVD法により成膜される窒化珪素膜において懸念点であった、N-H結合が多量に含有されやすい、という事情も解消することもできた。このようなプラズマCVD法により成膜した窒化珪素膜の総膜中水素量の範囲を述べるならば、N-H結合の量とSi-H結合の量との合計値以下Si-H結合の量以上の範囲である。総膜中水素量が上記範囲にあれば、総膜中水素量が少ない窒化珪素膜を得ることができる。
 さらに、本例では、プラズマCVD法により総膜中水素量が少ない窒化珪素膜を得たのち、この窒化珪素膜から、第1の実施形態で説明した方法を用いて、水素を、さらに離脱させる。このため、総膜中水素量が2×1021atomos/cc以下の窒化珪素膜を得ることができる。
 さらに、本例では、プラズマCVD法により成膜した窒化珪素膜から水素を離脱させる水素離脱ガスを、チャンバー1にパルス的に供給しながら、あるいはプラズマをパルス的にたてながら、あるいは水素離脱ガスをパルス的に供給するとともにプラズマをパルス的にたてながら窒化珪素膜から水素を離脱させる。このため、総膜中水素量が1021atomos/cc以下の窒化珪素膜を、差し支えのない範囲の減膜量、又は減膜が生じない状態で得ることができる。
 このように、プラズマCVD法により成膜した総膜中水素量が少ない窒化珪素膜では、膜中から水素が抜け出すことで発生する空孔が発生する確率が低くなる。よって、電子トラップが発生する確率が減り、膜質が劣化し難く、長い期間にわたって良い膜質を保つことができる、信頼性の高い窒化珪素膜となる。このようなプラズマCVD法により成膜した窒化珪素膜は、半導体集積回路装置への適用に有利である。
 このように、第2の実施形態に係るプラズマCVD法による窒化珪素膜によれば、N-H結合の量とSi-H結合の量とを合計した総膜中水素量を減らすことが可能なプラズマCVD窒化珪素膜の成膜方法を提供できる。
  (第3の実施形態)
 図10に、ハロゲン化合物ガスと希ガスとの流量比(ハロゲン化合物ガス/希ガス)と、減膜率との関係を示す。
 図10に示すように、ハロゲン化合物ガスと希ガスとの流量比を低くすることで、減膜率が小さくなる。実用的には、減膜率は5%以下とされることが好ましく、減膜率を5%以下とするには、ハロゲン化合物ガスと希ガスとの流量比を0.006以下とすることが好ましい。
 このように、水素が少なく、かつ、減膜し難い膜は、例えば、次に説明するような半導体集積回路装置の内部構造体への適用に有利である。
  (適用例1)
 適用例1は、プラズマCVD法により総膜中水素量が1021atoms/ccオーダー以下の窒化珪素膜を、エッチングストッパ及びハードマスクに利用した例である。
 図11A乃至図11Cは適用例1に係る半導体集積回路装置の製造方法を主要な製造工程順に示す断面図である。
 まず、図11Aに示すように、半導体ウエハ(図示せず)上に、例えば、層間絶縁膜のような絶縁膜201を形成する。次いで、絶縁膜201上に、エッチングストッパ202を形成する。エッチングストッパ202にはプラズマCVD法により成膜した窒化珪素膜が利用され、この窒化珪素膜の成膜条件は、上述したように処理温度を300℃以上600℃以下、好ましくは500℃以下の低温で、珪素含有ガス、例えばジシランと窒素及び水素含有ガス、例えばアンモニアとの流量比を0.005以上0.015以下、マイクロ波パワーを0.5W/cm以上2.045W/cm以下、処理圧力を133.3Pa以上13333Pa以下とする。好ましくは、1333Pa以下とする。さらに、プラズマCVD法により成膜した窒化珪素膜から、第1の実施形態で説明した方法を用いて水素を離脱させる。このように水素を離脱させることで、総膜中水素量が1021atoms/ccオーダー以下の窒化珪素膜を用いたエッチングストッパ202を形成することができる。次いで、エッチングストッパ202上に、層間絶縁膜203を形成する。層間絶縁膜203には、例えば、酸化珪素膜よりも誘電率が低い周知の低誘電率絶縁膜が用いられて良い。次いで、層間絶縁膜203上に、ハードマスク204を形成する。ハードマスク204には、エッチングストッパ202と同様に、プラズマ窒化珪素膜が利用される。また、ハードマスク204となるプラズマCVD法により成膜した窒化珪素膜の成膜条件は、エッチングストッパ202と同様に、処理温度を300℃以上600℃以下、好ましくは500℃以下の低温で、珪素含有ガス、例えばジシランと窒素及び水素含有ガス、例えばアンモニアとの流量比を0.005以上0.015以下、マイクロ波パワーを0.5W/cm以上2.045W/cm以下、処理圧力を133.3Pa以上13333Pa以下とする。好ましくは、1333Pa以下とする。さらに、成膜された窒化珪素膜から、第1の実施形態で説明した方法を用いて水素を離脱させる。このように水素を離脱させることで、総膜中水素量が1021atoms/ccオーダー以下の窒化珪素膜を用いたハードマスク202を形成することができる。次いで、ハードマスク204上に、ホトレジストからなるマスクパターン、例えば、配線材料を埋め込むための溝や、配線どうしを接続するための孔に対応した開孔を持つマスクパターン205を形成する。
 次いで、図11Bに示すように、マスクパターン205をマスクに用いて、ハードマスク204をエッチングする。
 次いで、図11Cに示すように、マスクパターン205を除去した後、ハードマスク204をエッチングのマスクに用いて層間絶縁膜203をエッチングし、層間絶縁膜203に、配線材料を埋め込むための溝、又は配線どうしを接続するための孔206を形成する。層間絶縁膜203のエッチングは、エッチングストッパ202が露出するまで続けられ、エッチングストッパ202が露出したところでエッチング速度が低下し、事実上、エッチングは停止する。
 本発明の方法ではプラズマCVD法により成膜した窒化珪素膜から水素を離脱させる水素離脱ガスを、チャンバー1にパルス的に供給しながら、あるいはプラズマをパルス的にたてながら、あるいは水素離脱ガスをパルス的に供給するとともにプラズマをパルス的にたてながら窒化珪素膜から水素を離脱させる。このため、たとえ、窒化珪素膜を薄く形成した、としても、差し支えのない範囲の減膜量、又は減膜が生じない状態で、総膜中水素量が1021atomos/cc以下の窒化珪素膜を得ることができる。
 このように、本発明の方法で形成したプラズマCVD法により成膜した窒化珪素膜は減膜し難いので、エッチングを停止させるためのエッチングストッパ202や、層間絶縁膜203等の半導体集積回路の内部構造体を加工する際にエッチングのマスクとして用いられるハードマスク204等に好適である。
 なお、適用例1においては、エッチングストッパ202及びハードマスク204の双方に実施形態に係るプラズマCVD法により成膜した窒化珪素膜を用いたが、双方に用いる必要は必ずしもなく、いずれか一方に用いるようにしても良い。
  (適用例2)
 適用例2は、本発明の方法で形成したプラズマCVD法による窒化珪素膜を、セルフアラインコンタクト構造におけるキャップ層及び側壁スペーサに利用した例である。
 図12A乃至図12Dは適用例2に係る半導体集積回路装置の製造方法を主要な製造工程順に示す断面図である。
 図12Aに示すように、半導体ウエハW(本例ではシリコンウエハ)を熱酸化し、ゲート絶縁膜301となる熱酸化珪素膜を形成し、ゲート絶縁膜301となる熱酸化珪素膜上に、ゲート電極302となる、例えば、導電性のポリシリコン膜を形成する。次いで、ゲート電極302となるポリシリコン膜上に、キャップ層303を形成する。キャップ層303には、実施形態に係るプラズマCVD法により成膜した窒化珪素膜が用いられ、成膜条件は、処理温度を300℃以上600℃以下、好ましくは500℃以下の低温で、珪素含有ガス、例えばジシランと窒素及び水素含有ガス、例えばアンモニアとの流量比を0.005以上0.015以下、マイクロ波パワーを0.5W/cm以上2.045W/cm以下、処理圧力を133.3Pa以上13333Pa以下とする。好ましくは、1333Pa以下とする。さらに、成膜された窒化珪素膜から、第1の実施形態で説明した方法を用いて水素を離脱させる。このように水素を離脱させることで、総膜中水素量が1021atoms/ccオーダー以下の窒化珪素膜を用いたキャップ層303を形成することができる。次いで、キャップ層303上に、ホトレジストからなる図示せぬゲートパターンを形成し、ゲートパターンをマスクに用いて、キャップ層303、ポリシリコン膜、熱酸化膜を順次エッチングして、上部にキャップ層303を備えたゲート電極302を形成する。次いで、ゲート電極302をマスクに用いて、ウエハW内に、ウエハWとは異なる導電型のソース/ドレイン領域304形成用の不純物を導入する。
 次に、図12Bに示すように、ソース/ドレイン領域304及びゲート電極302上に、側壁スペーサ305となる絶縁膜を形成する。側壁スペーサ305となる絶縁膜には、実施形態に係るプラズマCVD法により成膜した窒化珪素膜が用いられ、成膜条件は、処理温度を300℃以上600℃以下、好ましくは500℃以下の低温で、珪素含有ガス、例えばジシランと窒素及び水素含有ガス、例えばアンモニアとの流量比を0.005以上0.015以下、マイクロ波パワーを0.5W/cm以上2.045W/cm以下、処理圧力を133.3Pa以上13333Pa以下とする。好ましくは、1333Pa以下とする。さらに、成膜された窒化珪素膜から、第1の実施形態で説明した方法を用いて水素を離脱させる。次いで、側壁スペーサ305となる絶縁膜を異方性エッチングし、キャップ層303及びゲート電極302の側壁上に側壁スペーサ305を形成する。このように水素を離脱させることで、総膜中水素量が1021atoms/ccオーダー以下の窒化珪素膜を用いた側壁スペーサ305を形成することができる。
 次に、図12Cに示すように、キャップ層303、ソース/ドレイン領域304、側壁スペーサ305上に、層間絶縁膜306を形成する。層間絶縁膜306には、例えば、酸化珪素膜よりも誘電率が低い周知の低誘電率絶縁膜が用いられて良い。次いで、層間絶縁膜306上に、ホトレジストからなるソース/ドレイン領域304に達するコンタクト孔パターン(図示せず)を形成し、コンタクト孔パターンをマスクに用いて、層間絶縁膜306をエッチングし、コンタクト孔307を形成する。本例のコンタクト孔307は、キャップ層303及び側壁スペーサ305上にかかっており、コンタクト孔307は、ゲート電極302を被覆するキャップ層303及び側壁スペーサ305、即ち、ゲート電極302間の空間に対して自己整合的に形成される、いわゆる、セルフアラインコンタクト構造である。
 次に、図12Dに示すように、コンタクト孔307を導電物308で埋め込むことで、適用例2に係る構造体が形成される。
 本発明の方法ではプラズマCVD法により成膜した窒化珪素膜から水素を離脱させる水素離脱ガスを、チャンバー1にパルス的に供給しながら、あるいはプラズマをパルス的にたてながら、あるいは水素離脱ガスをパルス的に供給するとともにプラズマをパルス的にたてながらプラズマCVD窒化珪素膜から水素を離脱させる。このため、たとえ、プラズマCVD窒化珪素膜を薄く形成した、としても、差し支えのない範囲の減膜量、又は減膜が生じない状態で、総膜中水素量が1021atomos/cc以下の窒化珪素膜を得ることができる。このため、本発明の方法で形成した窒化珪素膜はエッチング耐性が良いので、コンタクト孔307を、ゲート電極302間の空間に対して自己整合的に形成する際の、ゲート電極302上を被覆するキャップ層303や、側壁スペーサ305にも好適である。
  (第4の実施形態)
 さらに、N-H結合の量とプラズマCVD法により成膜した窒化珪素膜のストレスとの関係を調べてみた。ストレスの測定には、KLA-Tencor社製FLX-2320を用いた。
 図13は、プラズマCVD法により成膜した窒化珪素膜のストレスとN-H結合の量との関係を示す図である。
 図13に示すように、N-H結合の量が1022atoms/ccオーダーの窒化珪素膜、本例では、1.32×1022atoms/ccの窒化珪素膜のストレスは、1496MPaの引張ストレスを持つ。
 反対に、N-H結合の量が1021atoms/ccオーダーの窒化珪素膜、本例では、3.43×1021atoms/ccの窒化珪素膜のストレスは、-1099MPaの圧縮ストレスを持つ。
 このように、プラズマCVD法により成膜した窒化珪素膜からN-H結合の量、特に、総膜中水素量が減るにつれて、膜のストレスは、引張ストレスから圧縮ストレスの方向にシフトする傾向が確認された。
 本実施形態では、第2の実施形態で説明したプラズマCVD法の成膜方法で、総膜中水素量が、例えば、1021atoms/ccオーダーの窒化珪素膜を成膜した後、この窒化珪素膜から水素をさらに離脱させる。このため、総膜中水素量が1020atoms/ccオーダー、1019atoms/ccオーダー、1018atoms/ccオーダー、…、というように、総膜中水素量が1021atoms/ccオーダー以下の窒化珪素膜が得られる。このため、例えば、-1500Paを超える圧縮応力を持つ窒化珪素膜を得ることが可能となる。
 さらに、プラズマCVD法により成膜した窒化珪素膜を、窒化用の処理ガスとして窒素及び水素含有ガス(例えば、アンモニアガス)を用いて成膜した場合と、窒化用の処理ガスとして水素を含まない窒素ガスを用いて成膜した場合とで、成膜された膜の段差被覆性を調べてみた。
 図14はアンモニアガスを用いてプラズマCVD法により成膜した窒化珪素膜の段差被覆性を示す断面図、図15は窒素ガスを用いてプラズマCVD法により成膜した窒化珪素膜の段差被覆性を示す断面図である。なお、図15は参考例である。
 図14に示すように、窒素及び水素含有ガス、本例ではアンモニアガスを用いてプラズマCVD法により成膜した窒化珪素膜400NH3は、段差側面上の膜厚(Side)と段差上面上の膜厚(Top)との比“Side/Top”が約91%であり、段差底面上の膜厚(Btm)と段差上面上の膜厚(Top)との比“Btm/Top”が約97%であり、おおよそ90%以上の段差被覆率を得ることができた。なお、本例における成膜条件は、処理温度400℃、ジシランとアンモニアとの流量比5sccm/500sccm、マイクロ波パワー1.023W/cm(2kW)、処理圧力1000mTorrである。
 対して、図15に示すように、窒素ガスを用いてプラズマCVD法により成膜した窒化珪素膜400N2は、比“Side/Top”が約30%であり、比“Btm/Top”が約38%であり、段差被覆率は、おおむね30~40%であった。なお、本例における成膜条件は、処理温度500℃、ジシランと窒素との流量比1sccm/1200sccm、マイクロ波パワー1.023W/cm(2kW)、処理圧力20mTorrである。
 このように、例えば、第2の実施形態で説明したプラズマCVD法の成膜方法を用いて成膜した窒化珪素膜は、窒化用の処理ガスとして窒素及び水素含有ガスを用いることで、窒化用の処理ガスとして窒素ガスを用いる場合に比較して、段差被覆性を良好にできることが確認された。このような段差被覆性の測定結果から、第1の実施形態においても述べたが、窒化珪素膜を、窒素及び水素含有ガスを使用してプラズマCVD法により成膜することで、例えば、窒素ガスのみを用いて窒化珪素膜をプラズマCVD法により成膜する場合に比較して反応が起りやすく、制御性も良くなるということを、改めて確認することができた。
 このように、プラズマCVD法により成膜した窒化珪素膜を、窒素及び水素含有ガスを使用して成膜すると、段差被覆性が良く、また、N-H結合の量を1022atoms/ccオーダー以上から1021atoms/ccオーダー以下へ減らしていくことで、膜のストレスに、引張ストレス及び圧縮ストレスのいずれかを選択して与えることができる。さらに、N-H結合の量が1021atoms/ccオーダー以下である窒化珪素膜は、膜のストレスとして引張ストレス、又は圧縮ストレスのいずれかを選択することができる。
 さらに、本実施形態では、第2の実施形態で説明した成膜方法で、総膜中水素量が、例えば、1021atoms/ccオーダーのプラズマCVD窒化珪素膜を成膜した後、このプラズマCVD窒化珪素膜から水素をさらに離脱させる。このため、例えば、-1500Paを超える圧縮応力を持つプラズマCVD法により成膜した窒化珪素膜を、段差被覆性良く得ることができる。膜は、例えば、次に説明するような半導体集積回路装置の内部構造体への適用に有利である。
  (適用例3)
 適用例3は、この発明の実施形態に係るプラズマCVD法により成膜した窒化珪素膜を、トランジスタのチャネルにストレスを与え、電荷の移動度を改善するストレスライナーに利用した例である。
 図16A及び図16Bは適用例3に係る半導体集積回路装置の製造方法を主要な製造工程順に示す断面図である。
 図16Aに示すように、半導体ウエハW(本例ではシリコンウエハ)の表面を熱酸化し、ゲート絶縁膜401となる熱酸化珪素膜を形成し、ゲート絶縁膜401となる熱酸化珪素膜上に、ゲート電極402となる、例えば、導電性のポリシリコン膜を形成する。次いで、ゲート電極402となるポリシリコン膜上に、ホトレジストからなる図示せぬゲートパターンを形成し、ゲートパターンをマスクに用いて、ポリシリコン膜、熱酸化膜を順次エッチングしてゲート電極402を形成する。次いで、ゲート電極402をマスクに用いて、ウエハW内に、ウエハWとは異なる導電型のソース/ドレイン領域403形成用の不純物を導入する。
 次に、図16Bに示すように、ソース/ドレイン領域403及びゲート電極402上に、ストレスライナー404を形成する。ストレスライナー404となる絶縁膜には、実施形態に係るプラズマCVD法により成膜した窒化珪素膜が用いられ、成膜条件は、処理温度を300℃以上600℃以下、好ましくは、500℃以下の低温で珪素含有ガス、例えばジシランと窒素及び水素含有ガス、例えばアンモニアとの流量比を0.005以上0.015以下、マイクロ波パワーを0.5W/cm以上2.045W/cm以下、処理圧力を133.3Pa以上13333Pa以下とする。好ましくは、1333Pa以下とする。さらに、成膜されたプラズマ窒化珪素膜から、第1の実施形態で説明した方法を用いて水素を離脱させる。このように水素を離脱させることで、総膜中水素量が1021atoms/ccオーダー以下の窒化珪素膜を用いたストレスライナー404を形成することができる。
 総膜中水素量が1021atoms/ccオーダー以下の窒化珪素膜は、図13に示したように、例えば、-1500Pa以下の圧縮ストレスを持たせることができる。
 このように、総膜中水素量が1021atoms/ccオーダー以下に制御した窒化珪素膜を、ストレスライナー404に用いることで、チャネルに強い圧縮ストレスを与えることができる。チャネルに圧縮ストレスを与えると、反対に正孔の移動度が向上するので、Pチャネル型のMOSFET又はMISFETに有効に適用することができる。
 また、プラズマCVD法により成膜した窒化珪素膜を、窒化用の処理ガスとして窒素及び水素含有ガス、例えば、アンモニアを使用すると段差被覆性が良い。例えば、図17を参照して説明したように、おおよそ90%以上の段差被覆率を得ることができる。このような膜は、ストレスライナーへの適用に好適である。例えば、ストレスライナーの段差被覆性が悪いと、ストレスライナーのうち、ゲート電極上の部分が特に厚くなってしまい、ゲート電極の高さが増して半導体ウエハ表面上の凹凸が大きくなりやすい。これは、例えば、ゲート電極間を層間絶縁膜で埋め込み難くなる、という事情を招く。しかしながら、ストレスライナーを、段差被覆率が良い、例えば、90%以上の段差被覆率を持つ膜で形成すると、ストレスライナーのうち、ゲート電極上の部分が特に厚くなってしまうような事情が解消される。よって、半導体ウエハ表面上の凹凸が大きくなることを抑制でき、例えば、ゲート電極間を層間絶縁膜で埋め込み易くなる、という利点も得ることができる。
 しかも、本例では、プラズマCVD法により成膜した窒化珪素膜から水素を離脱させる水素離脱ガスを、チャンバー1にパルス的に供給しながら、その窒化珪素膜から水素を離脱させる。このため、段差被覆性が良く、総膜中水素量が1021atoms/cc以下の窒化珪素膜を、差し支えのない範囲の減膜量、又は減膜が生じない状態で得ることができる。
 以上、この発明を、いくつかの実施形態を参照して述べたが、この発明は上記実施形態に限られるものではなく、種々の変形が可能である。
 例えば、珪素含有ガスとしてジシランを使用したが、ジシランの他、シランやTSA等も使用することができる。また、窒素及び水素含有ガスとしてはアンモニアを使用したが、窒素と水素とを含有し、かつ、珪素含有ガスとともに供給することで窒化珪素膜を成膜できるものでれば使用することが可能である。
 また、上記実施形態では、成膜装置として、マイクロ波プラズマ成膜装置を例示したが、マイクロ波プラズマ成膜装置に限られることもなく、他のプラズマ成膜装置を使用することもできる。
 さらに、上記実施形態では、水素を離脱させることによって成膜された窒化珪素膜に、プロセス条件によって与えられるストレスに加えて、別の新たなストレスを生じさせたが、別の新たなストレスを生じさせる薄膜は窒化珪素膜に限られるものではない。水素を離脱させることによって、別の新たなストレスが生じる薄膜であれば、如何なる薄膜においても、この発明を適用することができる。
 また、薄膜の成膜にはマイクロ波プラズマ成膜装置を用いたが、マイクロ波プラズマ成膜装置を用いて成膜された薄膜に限られるものではない。平行平板型プラズマ成膜装置を用いて成膜された薄膜であっても良いし、プラズマに限らず熱成膜装置を用いて成膜された薄膜であっても良い。また、成膜手法もCVD法に限られるものではなく、スパッタ法を用いて成膜された薄膜でも良い。また、気相成長ばかりでなく、液層成長、例えば、LPD法やメッキ法を用いて成膜された薄膜にも、この発明は適用することができる。
 この発明によれば、プロセス条件で与えられるストレス以上に大きなストレスを薄膜に与えることが可能な高ストレス薄膜の成膜方法及びその成膜方法を用いた半導体集積回路装置の製造方法を提供できる。
 

Claims (19)

  1.  水素を含む成膜原料ガスをチャンバー内に供給し、水素が取り込まれた薄膜を半導体基板上に成膜すること、および
     前記薄膜から水素を離脱させる物質を含む水素離脱ガスを前記チャンバーにパルス的に供給しながら前記薄膜から水素を離脱させること、
     を含む高ストレス薄膜の成膜方法。
  2.  マイクロ波励起プラズマを用いた高ストレス薄膜の成膜方法であって、
     処理容器内に、珪素含有ガスと、窒素及び水素含有ガスとを導入すること、
     マイクロ波を前記処理容器内に放射し、前記処理容器内に導入された前記珪素含有ガス及び前記窒素及び水素含有ガスをプラズマ化すること、
     前記プラズマ化された前記珪素含有ガス及び前記窒素及び水素含有ガスを、被処理基板の表面上に供給し、この被処理基板の表面上に、成膜条件を、処理温度を300℃以上600℃以下、珪素含有ガスと窒素及び水素含有ガスとの流量比を0.005以上0.015以下、マイクロ波パワーを0.5W/cm以上2.045W/cm以下、処理圧力を133.3Pa以上13333Pa以下として窒化珪素膜を成膜すること、および
     前記窒化珪素膜から水素を離脱させる物質を含む水素離脱ガスを前記チャンバーにパルス的に供給しながら前記薄膜から水素を離脱させること、
     を含む高ストレス薄膜の成膜方法。
  3.  前記薄膜から水素を離脱させる物質が、ハロゲン含有ガスである請求項1に記載の高ストレス薄膜の成膜方法。
  4.  前記薄膜から水素を離脱させる物質が、ハロゲン含有ガスである請求項2に記載の高ストレス薄膜の成膜方法。
  5.  前記ハロゲンが、弗素、又は塩素である請求項1に記載の高ストレス薄膜の成膜方法。
  6.  前記ハロゲンが、弗素、又は塩素である請求項2に記載の高ストレス薄膜の成膜方法。
  7.  前記水素を含む成膜原料ガスが、珪素の水素化物を含むガスと、窒素を含むガスとを含み、
     前記薄膜が、窒化珪素膜である請求項1に記載の高ストレス薄膜の成膜方法。
  8.  前記水素を含む成膜原料ガスが、珪素の水素化物を含むガスと、窒素を含むガスとを含み、
     前記薄膜が、窒化珪素膜である請求項2に記載の高ストレス薄膜の成膜方法。
  9.  前記窒化珪素膜から前記水素を離脱させる物質が、窒素の弗化物、又は塩素の弗化物である請求項7に記載の高ストレス薄膜の成膜方法。
  10.  前記窒化珪素膜から前記水素を離脱させる物質が、窒素の弗化物、又は塩素の弗化物である請求項8に記載の高ストレス薄膜の成膜方法。
  11.  前記窒素の弗化物、又は前記塩素の弗化物を含むガスが、前記チャンバーの内部を洗浄する洗浄ガスである請求項9に記載の高ストレス薄膜の成膜方法。
  12.  前記窒素の弗化物、又は前記塩素の弗化物を含むガスが、前記チャンバーの内部を洗浄する洗浄ガスである請求項10に記載の高ストレス薄膜の成膜方法。
  13.  前記薄膜から水素を離脱させることが、
     (1)前記水素離脱ガスを、この水素離脱ガスの供給開始から前記成膜された薄膜の減膜量が許容範囲内に収まる時間内又は前記成膜された薄膜が減膜しない時間内で前記チャンバー内に供給すること、及び
     (2)前記水素離脱ガスの供給を止め、前記チャンバー内の雰囲気を、前記水素離脱ガスが供給される前の雰囲気に戻すこと、を含み、
     前記(1)、(2)を所定の回数繰り返す請求項1に記載の高ストレス薄膜の成膜方法。
  14.  前記薄膜から水素を離脱させることが、
     (1)前記水素離脱ガスを、この水素離脱ガスの供給開始から前記成膜された薄膜の減膜量が許容範囲内に収まる時間内又は前記成膜された薄膜が減膜しない時間内で前記チャンバー内に供給すること、及び
     (2)前記水素離脱ガスの供給を止め、前記チャンバー内の雰囲気を、前記水素離脱ガスが供給される前の雰囲気に戻すこと、を含み、
     前記(1)、(2)を所定の回数繰り返す請求項2に記載の高ストレス薄膜の成膜方法。
  15.  前記薄膜から水素を離脱させることが、プラズマ雰囲気中で行われる請求項1に記載の高ストレス薄膜の成膜方法。
  16.  前記薄膜から水素を離脱させることが、プラズマ雰囲気中で行われる請求項2に記載の高ストレス薄膜の成膜方法。
  17.  絶縁膜上に、この絶縁膜とは異なる物質を含むエッチングストッパを請求項1に記載の成膜方法を用いて形成すること、
     前記エッチングストッパの上方に、このエッチングストッパとは異なる物質を含む層間絶縁膜を形成すること、
     前記層間絶縁膜上に、この層間絶縁膜とは異なる物質を含むハードマスクを請求項1に記載の成膜方法を用いて形成すること、および
     前記ハードマスクをエッチングマスクに用いて、前記層間絶縁膜に、溝又は孔を形成すること、
     を含む半導体集積回路装置の製造方法。
  18.  半導体基板上に、この半導体基板と絶縁され、上部にキャップ層を備えたゲート電極を形成すること、
     前記ゲート電極をマスクに用いて、ソース/ドレイン領域形成用の不純物を前記半導体基板内に導入すること、および
     前記ゲート電極の側壁上に、側壁スペーサを請求項1に記載の成膜方法を用いて形成すること、
     を含む半導体集積回路装置の製造方法。
  19.  半導体基板上に、この半導体基板と絶縁されたゲート電極を形成すること、
     前記ゲート電極をマスクに用いて、ソース/ドレイン領域形成用の不純物を前記半導体基板内に導入すること、および
     前記半導体基板上に、前記ゲート電極を被覆し、前記ゲート電極下の前記半導体基板の部分にストレスを与えるストレスライナーを請求項1に記載の成膜方法を用いて形成すること、
     を含む半導体集積回路装置の製造方法。
PCT/JP2009/056277 2008-03-31 2009-03-27 高ストレス薄膜の成膜方法及び半導体集積回路装置の製造方法 WO2009123049A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-090716 2008-03-31
JP2008090716A JP2009246131A (ja) 2008-03-31 2008-03-31 高ストレス薄膜の成膜方法及び半導体集積回路装置の製造方法

Publications (1)

Publication Number Publication Date
WO2009123049A1 true WO2009123049A1 (ja) 2009-10-08

Family

ID=41135427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056277 WO2009123049A1 (ja) 2008-03-31 2009-03-27 高ストレス薄膜の成膜方法及び半導体集積回路装置の製造方法

Country Status (2)

Country Link
JP (1) JP2009246131A (ja)
WO (1) WO2009123049A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3882976A1 (en) * 2020-03-19 2021-09-22 Samsung Display Co., Ltd. Display device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5473962B2 (ja) * 2011-02-22 2014-04-16 東京エレクトロン株式会社 パターン形成方法及び半導体装置の製造方法
JP7045954B2 (ja) * 2018-07-25 2022-04-01 東京エレクトロン株式会社 ハードマスク用膜を形成する方法および装置、ならびに半導体装置の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04299570A (ja) * 1991-03-27 1992-10-22 Canon Inc 薄膜半導体装置の製造方法
JPH0649627A (ja) * 1992-07-31 1994-02-22 Central Glass Co Ltd 窒化珪素のクリーニング方法
JP2000082781A (ja) * 1998-06-29 2000-03-21 Toshiba Corp 半導体装置の製造方法
JP2006303431A (ja) * 2005-03-23 2006-11-02 Tokyo Electron Ltd 成膜装置、成膜方法及び記憶媒体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04299570A (ja) * 1991-03-27 1992-10-22 Canon Inc 薄膜半導体装置の製造方法
JPH0649627A (ja) * 1992-07-31 1994-02-22 Central Glass Co Ltd 窒化珪素のクリーニング方法
JP2000082781A (ja) * 1998-06-29 2000-03-21 Toshiba Corp 半導体装置の製造方法
JP2006303431A (ja) * 2005-03-23 2006-11-02 Tokyo Electron Ltd 成膜装置、成膜方法及び記憶媒体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3882976A1 (en) * 2020-03-19 2021-09-22 Samsung Display Co., Ltd. Display device

Also Published As

Publication number Publication date
JP2009246131A (ja) 2009-10-22

Similar Documents

Publication Publication Date Title
JP5241499B2 (ja) プラズマクリーニング方法、プラズマcvd方法、およびプラズマ処理装置
JP4256763B2 (ja) プラズマ処理方法及びプラズマ処理装置
KR101028625B1 (ko) 기판의 질화 처리 방법 및 절연막의 형성 방법
US7960293B2 (en) Method for forming insulating film and method for manufacturing semiconductor device
US10017853B2 (en) Processing method of silicon nitride film and forming method of silicon nitride film
TWI415187B (zh) Selective plasma treatment
KR100966927B1 (ko) 절연막의 제조 방법 및 반도체 장치의 제조 방법
US20100029093A1 (en) Plasma oxidizing method, plasma processing apparatus, and storage medium
WO2010038900A1 (ja) 酸化珪素膜、酸化珪素膜の形成方法、および、プラズマcvd装置
KR20090009931A (ko) 플라즈마 cvd 방법, 질화 규소막의 형성 방법 및 반도체장치의 제조 방법
US8835320B2 (en) Etching method and device
US7972973B2 (en) Method for forming silicon oxide film, plasma processing apparatus and storage medium
US20130022760A1 (en) Plasma nitriding method
US20120252188A1 (en) Plasma processing method and device isolation method
WO2008038787A1 (fr) Procédé de formation d'un film d'oxyde de silicium, appareil de traitement au plasma et support de stockage
JP2009246129A (ja) プラズマcvd窒化珪素膜の成膜方法及び半導体集積回路装置の製造方法
US8318267B2 (en) Method and apparatus for forming silicon oxide film
US8389420B2 (en) Method and apparatus for forming silicon oxide film
WO2010038886A1 (ja) 窒化珪素膜の成膜方法、コンピュータ読み取り可能な記憶媒体およびプラズマcvd装置
WO2009123049A1 (ja) 高ストレス薄膜の成膜方法及び半導体集積回路装置の製造方法
JP2004363558A (ja) 半導体装置の製造方法およびプラズマエッチング装置のクリーニング方法
US20100140683A1 (en) Silicon nitride film and nonvolatile semiconductor memory device
US20210090888A1 (en) Method for forming boron-based film, formation apparatus
JP2013012776A (ja) プラズマ処理装置および基板載置台
JP2009246130A (ja) 成膜装置、成膜方法及び半導体集積回路装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09726768

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09726768

Country of ref document: EP

Kind code of ref document: A1